يعرض 1 - 20 نتائج من 204 نتيجة بحث عن '"резорбция"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Известия на Съюза на учените – Варна. Серия „Медицина и екология”; Vol 29, No 1 (2024); 62-65 ; Izvestia Journal of the Union of Scientists - Varna. Medicine and Ecology Series; Vol 29, No 1 (2024); 62-65 ; 2603-4565 ; 1310-6031

    وصف الملف: application/pdf

  2. 2
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of publicly funded research project No. 056-00026-24-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D reporting No. 124022300127-0)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022300127-0).

    المصدر: Safety and Risk of Pharmacotherapy; Том 12, № 2 (2024); 190-200 ; Безопасность и риск фармакотерапии; Том 12, № 2 (2024); 190-200 ; 2619-1164 ; 2312-7821

    وصف الملف: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/435/1157; https://www.risksafety.ru/jour/article/downloadSuppFile/435/520; https://www.risksafety.ru/jour/article/downloadSuppFile/435/525; Белая ЖЕ, Белова КЮ, Бирюкова ЕВ, Дедов ИИ, Дзеранова ЛК, Драпкина ОМ и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Остеопороз и остеопатии. 2021;24(2):4–47. https://doi.org/10.14341/osteo12930; Доброхотова ЮЭ, Дугиева М.З. Постменопаузальный остеопороз: препараты кальция в современной стратегии профилактики и лечения. РМЖ. 2017;25(15):1135–9.; Srivastava RK, Sapra L. The rising era of “immunoporosis”: role of immune system in the pathophysiology of osteoporosis. J Inflamm Res. 2022;15:1667–98. https://doi.org/10.2147/JIR.S351918; Закроева АГ, Бабалян ВН, Габдулина ГХ, Лобанченко ОВ, Ершова ОБ, Исаева СМ и др. Состояние проблемы остеопороза в странах Евразийского региона. Остеопороз и остеопатии. 2020;23(4):19–29. https://doi.org/10.14341/osteo12700; Lesnyak O, Ershova O, Belova K, Gladkova E, Sinitsina O, Ganert O, et al. Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Arch Osteoporos. 2012;7:67–73. https://doi.org/10.1007/s11657-012-0082-3; Park SY, Kim SH, Lee YK, Shin JH, Ha YC, Chung HY. Position statement: postmenopausal osteoporosis treatment strategies in Korea. J Bone Metab. 2023;30(4):289–95. https://doi.org/10.11005/jbm.2023.30.4.289; Сметник ВП. Постменопаузальный остеопороз: патофизиология, диагностика, приверженность лекарственной терапии — оригинальные препараты или дженерики. Медицинский Совет. 2013;(8):88–93.; Drejer LA, El-Masri BM, Ejersted C, Andreasen CM, Thomsen LK, Thomsen JS, et al. Trabecular bone deterioration in a postmenopausal female suffering multiple spontaneous vertebral fractures due to a delayed denosumab injection — a post-treatment re-initiation bone biopsy-based case study. Bone Rep. 2023;19:101703. https://doi.org/10.1016/j.bonr.2023.101703; Ricart Torres E. Fracturas vertebrales múltiples tras el efecto rebote de denosumab en una mujer con posmenopausia. Aten Primaria. 2024;56(2):102810. Ricart Torres E. Multiple vertebral fractures after rebound effect of denosumab in postmenopausal woman. Aten Primaria. 2024;56(2):102810 (In Spanish). https://doi.org/10.1016/j.aprim.2023.102810; De Vincentis S, Domenici D, Ansaloni A, Boselli G, D’Angelo G, Russo A, et al. COVID-19 lockdown negatively impacted on adherence to denosumab therapy: incidence of non-traumatic fractures and role of telemedicine. J Endocrinol Invest. 2022;45(10):1887–97. https://doi.org/10.1007/s40618-022-01820-8; Аврунин АС. Остеоцитарное ремоделирование: история вопроса, современные представления и возможности клинической оценки. Травматология и ортопедия России. 2012;1(63):128–34. EDN: OWZWNN; Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell . and more. Endocr Rev. 2013;34:658–90. https://doi.org/10.1210/er.2012-1026; Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24. https://doi.org/10.1007/s00223-013-9790-y; Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009:25:629–48. https://doi.org/10.1146/annurev.cellbio.042308.113308; Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2011;13(1):27–38. https://doi.org/10.1038/nrm3254; Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349–55. https://doi.org/10.1038/nature01660; Plotkin LI, Bellido T. Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol. 2016;12(10):593–605. https://doi.org/10.1038/nrendo.2016.71; Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev. 2017;23(3):268–80. https://doi.org/10.1089/ten.TEB.2016.0454; Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46. https://doi.org/10.1016/j.abb.2008.03.018; Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development. 2022;149(8):dev199908. https://doi.org/10.1242/dev.199908; Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. https://doi.org/10.3390/cells9092073; Sølling AS, Harsløf T, Jørgensen NR, Langdahl B. Changes in RANKL and TRAcP 5b after discontinuation of denosumab suggest RANKL mediated formation of osteoclasts results in the increased bone resorption. Osteoporos Int. 2023;34(3):599–605. https://doi.org/10.1007/s00198-022-06651-0; McDonald MM, Kim AS, Mulholland BS, Rauner M. New insights into osteoclast biology. JBMR Plus. 2021;5(9):e10539. https://doi.org/10.1002/jbm4.10539; Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225–35. https://doi.org/10.1177/1759720X16670154; Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci. 2011;124(Pt 7):991–8. https://doi.org/10.1242/jcs.063032; Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576–81. https://doi.org/10.1016/j.tem.2012.03.008; Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. https://doi.org/10.1038/nrendo.2013.137; Mirza F, Canalis E. Management of endocrine disease: secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015;173(3):R131–51. https://doi.org/10.1530/EJE-15-0118; Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998;13(5):763–73. https://doi.org/10.1359/jbmr.1998.13.5.763; Clarke BL, Khosla S. Physiology of bone loss. Radiol Clin North Am. 2010;48:483–95. https://doi.org/10.1016/j.rcl.2010.02.014; Zhao R, Wang X, Feng F. Upregulated cellular expression of IL-17 by CD4+ T-cells in osteoporotic postmenopausal women. Ann Nutr Metab. 2016;68:113–8. https://doi.org/10.1159/000443531; Pietschmann P, Mechtcheriakova D, Meshcheryakova A, Foger-Samwald U, Ellinger I. Immunology of osteoporosis: a mini-review. Gerontology. 2016;62:128–37. https://doi.org/10.1159/000431091; Rauner M, Sipos W, Pietschmann P. Osteoimmunology. Int Arch Allergy Immunol. 2007;143:31–48. https://doi.org/10.1159/000098223; Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, et al. Ovariectomy activates chronic low-grade inflammation mediated by memory T cells, which promotes osteoporosis in mice. J Bone Miner Res. 2020;35:1174–87. https://doi.org/10.1002/jbmr.3966; Ukon Y, Makino T, Kodama J, Tsukazaki H, Tateiwa D, Yoshikawa H, et al. Molecular-based treatment strategies for osteoporosis: a literature review. Int J Mol Sci. 2019;20(10):2557. https://doi.org/10.3390/ijms20102557; Appelman-Dijkstra NM, Oei HLDW, Vlug AG, Winter EM. The effect of osteoporosis treatment on bone mass. Best Pract Res Clin Endocrinol Metab. 2022;36(2):101623. https://doi.org/10.1016/j.beem.2022.101623; Chavassieux P, Portero-Muzy N, Roux JP, Horlait S, Dempster DW, Wang A, et al. Reduction of cortical bone turnover and erosion depth after 2 and 3 years of denosumab: iliac bone histomorphometry in the FREEDOM trial. J Bone Miner Res. 2019;34(4):626–31. https://doi.org/10.1002/jbmr.3631; McClung MR, Wagman RB, Miller PD, Wang A, Lewiecki EM. Observations following discontinuation of long-term denosumab therapy. Osteoporos Int. 2017;28(5):1723–32. https://doi.org/10.1007/s00198-017-3919-1; Kim AS, Girgis CM, McDonald MM. Osteoclast recycling and the rebound phenomenon following denosumab discontinuation. Curr Osteoporos Rep. 2022;20(6):505–15. https://doi.org/10.1007/s11914-022-00756-5; McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184(5):1330–1347.e13. https://doi.org/10.1016/j.cell.2021.02.002; Fontalis A, Gossiel F, Schini M, Walsh J, Eastell R. The effect of denosumab treatment on osteoclast precursor cells in postmenopausal osteoporosis. Bone Reports. 2020;13:100457. https://doi.org/10.1016/j.bone.2016.08.010; Fu Q, Bustamante-Gomez NC, Reyes-Pardo H, Gubrij I, Escalona-Vargas D, Thostenson JD, et al. Reduced osteoprotegerin expression by osteocytes may contribute to rebound resorption after denosumab discontinuation. JCI Insight. 2023;8(18):e167790. https://doi.org/10.1172/jci.insight.167790; Ebina K, Hirao M, Tsuboi H, Nagayama Y, Kashii M, Kaneshiro S, et al. Effects of prior osteoporosis treatment on early treatment response of romosozumab in patients with postmenopausal osteoporosis. Bone, 2020;140:115574. https://doi.org/10.1016/j.bone.2020.115574; Kashii M, Ebina K, Kitaguchi K, Yoshikawa H. Romosozumab was not effective in preventing multiple spontaneous clinical vertebral fractures after denosumab discontinuation: а case report. Bone Reports. 2020;13:100288. https://doi.org/10.1016/j.bonr.2020.100288; Grassi G, Chiodini I, Palmieri S, Cairoli E, Arosio M, Eller-Vainicher C. Bisphosphonates after denosumab withdrawal reduce the vertebral fractures incidence. Eur J Endocrinol. 2021;185(3):387–96. https://doi.org/10.1530/EJE-21-0157; Tutaworn T, Nieves JW, Wang Z, Levin JE, Yoo JE, Lane JM. Bone loss after denosumab discontinuation is prevented by alendronate and zoledronic acid but not risedronate: a retrospective study. Osteoporos Int. 2023;34(3):573–84. https://doi.org/10.1007/s00198-022-06648-9; Laura I, Felicia B, Alexia C, Aude M, Florence B, Murielle S, et al. Which treatment to prevent an imminent fracture? Bone Rep. 2021;15:101105. https://doi.org/10.1016/j.bonr.2021.101105; Kong SH, Kim JH, Kim SW, Jeong AJ, Lee SH, Ye SK, Shin CS. Effect of denosumab on the change of osteoclast precursors compared to zoledronate treatment in postmenopausal women with osteoporosis. J Bone Metab. 2022;29(2):93–101. https://doi.org/10.11005/jbm.2022.29.2.93; Pavone V, Testa G, Giardina SMC, Vescio A, Restivo DA, Sessa G. Pharmacological therapy of osteoporosis: a systematic current review of literature. Front Pharmacol. 2017;8:803. https://doi.org/10.3389/fphar.2017.00803; Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–45. https://doi.org/10.4065/83.9.1032; Barnsley J, Buckland G, Chan PE, Ong A, Ramos AS, Baxter M, et al. Pathophysiology and treatment of osteoporosis: challenges for clinical practice in older people. Aging Clin Exp Res. 2021;33(4):759–73. https://doi.org/10.1007/s40520-021-01817-y; https://www.risksafety.ru/jour/article/view/435

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المساهمون: Исследование выполнено за счет гранта Российского научного фонда (проект № 21-15-00251)

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 24, № 4 (2022); 73-84 ; Вестник трансплантологии и искусственных органов; Том 24, № 4 (2022); 73-84 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1553/1390; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1192; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1193; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1194; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1195; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1196; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1197; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1199; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1200; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1201; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1202; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1203; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1204; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1205; Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel). 2021; 13 (7): 1105. doi:10.3390/polym13071105.; Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N et al. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater. 2017; 105 (2): 431–459. doi:10.1002/jbm.b.33547.; Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018; 12: 3117–3145. doi:10.2147/DDDT.S165440.; Vasilets VN, Surguchenko VA, Ponomareva AS, Nemetz EA, Sevastianov VI, Bae JW et al. Effects of surface properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on adhesion and proliferation of mouse fibroblasts. Macromolecular Research. 2015; 23: 205–213. doi 10.1007/s13233-015-3025-1.; Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014; 1840 (8): 2506–2519. doi:10.1016/j.bbagen.2014.01.010.; Paulo Zambon J, Atala A, Yoo JJ. Methods to generate tissue-derived constructs for regenerative medicine applications. Methods. 2020; 171: 3–10. doi:10.1016/j.ymeth.2019.09.016.; Gupta SK, Mishra NC, Dhasmana A. Decellularization methods for scaffold fabrication. Methods Mol Biol. 2018; 1577: 1–10. doi:10.1007/7651_2017_34.; Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng. 2020; 48 (7): 2132–2153. doi:10.1007/s10439-019-02408-9.; Philips C, Campos F, Roosens A, Sánchez-Quevedo MDC, Declercq H, Carriel V. Qualitative and quantitative evaluation of a novel detergent-based method for decellularization of peripheral nerves. Ann Biomed Eng. 2018; 46 (11): 1921–1937. doi:10.1007/s10439-018-2082-y.; Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissuespecific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020; 21 (15): 5447. doi:10.3390/ijms21155447.; Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int. 2017; 2017: 9831534. doi:10.1155/2017/9831534.; Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci. 2018; 19 (12): 4117. doi:10.3390/ijms19124117.; Sevastianov VI, Basok YB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA et al. A comparison of the capacity of mesenchymal stromal cells for cartilage regeneration depending on collagen-based injectable biomimetic scaffold type. Life. 2021; 11 (8): 756. doi:10.3390/life11080756.; Song C, Luo Y, Liu Y, Li S, Xi Z, Zhao L et al. Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers (Basel). 2020; 12 (4): 780. doi:10.3390/polym12040780.; Gil-Ramírez A, Rosmark O, Spégel P, Swärd K, Westergren-Thorsson G, Larsson-Callerfelt A.K et al. Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Reports. 2020; 10 (1): 4031. doi:10.1038/s41598-020-60827-4.; Алексеев ЕС, Алентьев АЮ, Белова АС, Богдан ВИ, Богдан ТВ, Быстрова АВ и др. Сверхкритические флюиды в химии. Успехи химии. 2020; 89 (12): 1337–1427.; Разгонова МП, Захаренко АМ, Сергиевич АА, Каленик ТК, Голохваст КС. Сверхкритические флюиды: теория, этапы становления, современное применение: учебное пособие. СПб.: Лань, 2019; 192.; Nemets EA, Malkova AP, Dukhina GA, Lazhko AE, Basok YB, Kirillova AD et al. Effect of supercritical carbon dioxide on the in vivo biocompatible and resorptive properties of tissue-specific scaffolds from decellularized pig liver fragments. Inorganic Materials: Applied Research. 2022; 13: 413–420. doi:10.1134/S2075113322020319.; Ingrosso F, Ruiz-López MF. Modeling solvation in supercritical CO2. Chemphyschem. 2017; 18: 2560–2572. doi:10.1002/cphc.201700434.; Sevastianov VI, Nemets EA, Lazhko AE, Basok YuB, Kirsanova LA, Kirillova AD. Application of supercritical fluids for complete decellularization of porcine cartilage. Journal of Physics: Conference Series. XV International Russian Chinese Symposium «New Materials and Technologies». 2019; 1347 (1): 012081. doi:10.1088/1742-6596/1347/1/012081.; Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 2018; 67: 270–281. doi:10.1016/j.actbio.2017.11.046.; Nemets EA, Lazhko AE, Basok YuB, Kirsanova LA, Kirillova AD, Sevastianov VI. Preparation of tissue-specific matrix from decellularized porcine cartilage. Russian Journal of Physical Chemistry B. 2020; 14: 1245–1251. doi:10.1134/S1990793120080059.; Huang Z, Godkin O, Schulze-Tanzil G. The challenge in using mesenchymal stromal cells for recellularization of decellularized cartilage. Stem Cell Rev Rep. 2017 Feb; 13 (1): 50–67. doi:10.1007/s12015-016-9699-8.; ГОСТ ISO 10993-6. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 6. Исследование местного действия после имплантации.; Basok YB, Kirillova AD, Grigoryev AM, Kirsanova LA, Nemets EA, Sevastianov VI. Fabrication of microdispersed tissue-specific decellularized matrix from porcine articular cartilage. Inorganic Materials: Applied Research. 2020; 11 (5): 1153–1159. doi:10.1134/S2075113320050044.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32: 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; https://journal.transpl.ru/vtio/article/view/1553

  13. 13
    Academic Journal

    المساهمون: Обзор выполнен при поддержке ЗАО «ФармФирма «Сотекс».

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 15, No 1 (2022); 107-118 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 15, No 1 (2022); 107-118 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/651/410; Herrero-Beaumont G., Pérez-Baos S., Sánchez-Pernaute O., et al. Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. Biochem Pharmacol. 2019; 165: 24–32. https://doi.org/10.1016/j.bcp.2019.02.030.; Громова О.А., Торшин И.Ю., Лила А.М. и др. Стандартизированные формы хондроитина сульфата как патогенетическое средство лечения остеоартрита в контексте постгеномных исследований. Современная ревматология. 2021; 15 (1): 136–43. https://doi.org/10.14412/1996-7012-2021-1-136-143.; Barreto G., Manninen M., Eklund K.K. Osteoarthritis and toll-like receptors: when innate immunity meets chondrocyte apoptosis. Biology (Basel). 2020; 9 (4): 65. https://doi.org/10.3390/biology9040065.; Торшин И.Ю., Громова О.А., Нечаева Г.И. и др. Систематический анализ молекулярно-биологических механизмов поддержки хондроитина сульфатом метаболизма соединительной ткани. Неврология, нейропсихиатрия, психосоматика. 2021; 13 (1): 154– 62. https://doi.org/10.14412/2074-2711-2021-1-154-162.; Goerres G.W., Häuselmann H.J., Seifert B., et al. Patients with knee osteoarthritis have lower total hip bone mineral density in the symptomatic leg than in the contralateral hip. J Clin Densitom. 2005; 8 (4): 484–7. https://doi.org/10.1385/jcd:8:4:484.; Yu D., Xu J., Liu F., et al. Subchondral bone changes and the impacts on joint pain and articular cartilage degeneration in osteoarthritis. Clin Exp Rheumatol. 2016; 34 (5): 929–34.; Salbach J., Rachner T.D., Rauner M., et al. Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med (Berl). 2012; 90 (6): 625–35. https://doi.org/10.1007/s00109-011-0843-2.; Fournier P., Dupuis Y. Antirachitic power of various socalled structural compounds: lactose, glucosamine, L-xylose, mannitol. C R Hebd Seances Acad Sci. 1960; 250: 3050–2 (на фр. яз.).; Шавловская О.А., Золотовская И.А., Прокофьева Ю.С. Антирезорбтивная активность фармацевтического хондроитина сульфата у лиц старшей возрастной группы. Терапевтический архив. 2020; 92 (12): 75–9. https://doi.org/10.26442/00403660.2020.12.200448.; Torshin I.Yu., Rudakov K.V. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis. 2015; 25 (4): 577–87. https://doi.org/10.1134/S1054661815040252.; Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 1: properties of compactness. Pattern Recognition and Image Analysis. 2016; 26 (2): 274–84. https://doi.org/10.1134/S1054661816020255.; Торшин И.Ю., Громова О.А., Стаховская Л.В. и др. Анализ 19,9 млн публикаций базы данных PubMed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 146–63. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.021.; Stanford Biomedical Network Dataset Collection. URL: http://snap.stanford.edu/biodata (дата обращения 27.12.2021).; The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019; 47 (D1): D330– 8. https://doi.org/10.1093/nar/gky1055.; Maeda K., Kobayashi Y., Koide M., et al. The regulation of bone metabolism and disorders by Wnt signaling. Int J Mol Sci. 2019; 20 (22): 5525. https://doi.org/10.3390/ijms20225525.; Deng H., Liu H., Yang Z., et al. Progress of selenium deficiency in the pathogenesis of arthropathies and selenium supplement for their treatment. Biol Trace Elem Res. 2021; Nov. 15. https://doi.org/10.1007/s12011-021-03022-4.; Hong S.W., Kang J.H. Bone mineral density, bone microstructure, and bone turnover markers in females with temporomandibular joint osteoarthritis. Clin Oral Investig. 2021; 25 (11): 6435–48. https://doi.org/10.1007/s00784-021-03946-0.; Lin Z., Miao J., Zhang T., et al. d-Mannose suppresses osteoarthritis development in vivo and delays IL-1β-induced degeneration in vitro by enhancing autophagy activated via the AMPK pathway. Biomed Pharmacother. 2021; 135: 111199. https://doi.org/10.1016/j.biopha.2020.111199.; Monasterio G., Castillo F., Rojas L., et al. Th1/Th17/Th22 immune response and their association with joint pain, imagenological bone loss, RANKL expression and osteoclast activity in temporomandibular joint osteoarthritis: a preliminary report. J Oral Rehabil. 2018; 45 (8): 589–97. https://doi.org/10.1111/joor.12649.; Berardi S., Corrado A., Maruotti N., et al. Osteoblast role in the pathogenesis of rheumatoid arthritis. Mol Biol Rep. 2021; 48 (3): 2843–52. https://doi.org/10.1007/s11033-021-06288-y.; Ragipoglu D., Dudeck A., Haffner-Luntzer M., et al. The role of mast cells in bone metabolism and bone disorders. Front Immunol. 2020; 11: 163. https://doi.org/10.3389/fimmu.2020.00163.; Kamiya N., Kuroyanagi G., Aruwajoye O., Kim H.K.W. IL6 receptor blockade preserves articular cartilage and increases bone volume following ischemic osteonecrosis in immature mice. Osteoarthritis Cartilage. 2019; 27 (2): 326–35. https://doi.org/10.1016/j.joca.2018.10.010.; Ren Y., Deng Z., Gokani V., et al. Anti-interleukin-6 therapy decreases hip synovitis and bone resorption and increases bone formation following ischemic osteonecrosis of the femoral head. J Bone Miner Res. 2021; 36 (2): 357–68. https://doi.org/10.1002/jbmr.4191.; Takeuchi T., Sugimoto A., Imazato N., et al. Glucosamine suppresses osteoclast differentiation through the modulation of glycosylation including O-GlcNAcylation. Biol Pharm Bull. 2017; 40 (3): 352–6. https://doi.org/10.1248/bpb.b16-00877.; Nagaoka I., Igarashi M., Sakamoto K. Biological activities of glucosamine and its related substances. Adv Food Nutr Res. 2012; 65: 337–52. https://doi.org/10.1016/B978-0-12-416003-3.00022-6.; Ivanovska N., Dimitrova P. Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine. Arthritis Res Ther. 2011; 13 (2): R44. https://doi.org/10.1186/ar3283.; Золотовская И.А., Давыдкин И.Л. Антирезорбтивноцитокиновые эффекты хондропротективной терапии у пациентов с болью в нижней части спины. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020; 120 (4): 65–71. https://doi.org/10.17116/jnevro202012004165.; Veronese N., Koyanagi A., Stubbs B., et al. Mediterranean diet and knee osteoarthritis outcomes: a longitudinal cohort study. Clin Nutr. 2019; 38 (6): 2735–9. https://doi.org/10.1016/j.clnu.2018.11.032.; Bahrambeigi S., Yousefi B., Rahimi M., Shafiei-Irannejad V. Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomed Pharmacother. 2019; 109: 1593–601. https://doi.org/10.1016/j.biopha.2018.11.032.; Zheng H.X., Chen J., Zu Y.X., et al. Chondroitin sulfate prevents STZ induced diabetic osteoporosis through decreasing blood glucose, antioxidative stress, anti-inflammation and OPG/RANKL expression regulation. Int J Mol Sci. 2020; 21 (15): 5303. https://doi.org/10.3390/ijms21155303.; Fan R., Hao Y., Liu X., et al. Undenatured type II collagen relieves bone impairment through improving inflammation and oxidative stress in ageing db/db mice. Molecules. 2021; 26 (16): 4942. https://doi.org/10.3390/molecules26164942.; Veronese N., Cooper C., Reginster J.Y., et al. Type 2 diabetes mellitus and osteoarthritis. Semin Arthritis Rheum. 2019; 49 (1): 9–19. https://doi.org/10.1016/j.semarthrit.2019.01.005.; Громова О.А., Торшин И.Ю., Зайчик Б.Ц. и др. О различиях в стандартизации лекарственных препаратов на основе экстрактов хондроитина сульфата. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (1): 40– 52. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.083.; Wu Y., Kadota-Watanabe C., Ogawa T., Moriyama K. Combination of estrogen deficiency and excessive mechanical stress aggravates temporomandibular joint osteoarthritis in vivo. Arch Oral Biol. 2019; 102: 39–46. https://doi.org/10.1016/j.archoralbio.2019.03.012.; Asai H., Nakatani S., Kato T., et al. Glucosamines attenuate bone loss due to menopause by regulating osteoclast function in ovariectomized mice. Biol Pharm Bull. 2016; 39 (6): 1035–41. https://doi.org/10.1248/bpb.b16-00066.; Jiang Z., Li Z., Zhang W., et al. Dietary natural N-acetyl-Dglucosamine prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. Molecules. 2018; 23 (9): 2302. https://doi.org/10.3390/molecules23092302.; Miyazaki T., Miyauchi S., Anada T., et al. Chondroitin sulfate-E binds to both osteoactivin and integrin αVβ3 and inhibits osteoclast differentiation. J Cell Biochem. 2015; 116 (10): 2247–57. https://doi.org/10.1002/jcb.25175.; Koike T., Mikami T., Shida M., et al. Chondroitin sulfate-E mediates estrogen-induced osteoanabolism. Sci Rep. 2015; 5: 8994. https://doi.org/10.1038/srep08994.; Yoo T.K., Kim S.K., Kim D.W., et al. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning. Yonsei Med J. 2013; 54 (6): 1321–30. https://doi.org/10.3349/ymj.2013.54.6.1321.; Kiyomoto K., Iba K., Hanaka M., et al. High bone turnover state under osteoporotic changes induces pain-like behaviors in mild osteoarthritis model mice. J Bone Miner Metab. 2020; 38 (6): 806–18. https://doi.org/10.1007/s00774-020-01124-y.; Sun Q., Zhen G., Li T.P., et al. Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. Elife. 2021; 10: e66532. https://doi.org/10.7554/eLife.66532.; Nwosu L.N., Allen M., Wyatt L., et al. Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage. 2017; 25 (6): 858–65. https://doi.org/10.1016/j.joca.2017.01.002.; Nakamura Y., Uchiyama S., Kamimura M., et al. Bone alterations are associated with ankle osteoarthritis joint pain. Sci Rep. 2016; 6: 18717. https://doi.org/10.1038/srep18717.; Торшин И.Ю., Лила А.М., Наумов А.В. и др. Метаанализ клинических исследований эффективности лечения остеоартита препаратом Хондрогард. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (4): 18– 29. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066.; Salbach-Hirsch J., Ziegler N., Thiele S., et al. Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts. J Cell Biochem. 2014; 115 (6): 1101–11. https://doi.org/10.1002/jcb.24750.; Salbach J., Kliemt S., Rauner M., et al. The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials. 2012; 33 (33): 8418–29. https://doi.org/10.1016/j.biomaterials.2012.08.028.; Trabszo C., Ramms B., Chopra P., et al. Arylsulfatase K inactivation causes mucopolysaccharidosis due to deficient glucuronate desulfation of heparan and chondroitin sulfate. Biochem J. 2020; 477 (17): 3433–51. https://doi.org/10.1042/BCJ20200546.; Peck S.H., Tobias J.W., Shore E.M., et al. Molecular profiling of failed endochondral ossification in mucopolysaccharidosis VII. Bone. 2019; 128: 115042. https://doi.org/10.1016/j.bone.2019.115042.; Лила А.М., Громова О.А., Торшин И.Ю. и др. Молекулярные эффекты хондрогарда при остеоартрите и грыжах межпозвоночного диска. Неврология, нейропсихиатрия, психосоматика. 2017; 9 (3): 88–97. https://doi.org/10.14412/2074-2711-2017-3-88-97.; Noonan K.J., Stevens J.W., Tammi R., et al. Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. J Orthop Res. 1996; 14 (4): 573–81. https://doi.org/10.1002/jor.1100140411.; Martins J.M.S., Dos Santos Neto L.D., Noleto-Mendonça R.A., et al. Dietary supplementation with glycosaminoglycans reduces locomotor problems in broiler chickens. Poult Sci. 2020; 99 (12): 6974–82. https://doi.org/10.1016/j.psj.2020.09.061.; Lambertini E., Penolazzi L., Pandolfi A., et al. Human osteoclasts/ osteoblasts 3D dynamic co culture system to study the beneficial effects of glucosamine on bone microenvironment. Int J Mol Med. 2021; 47 (4): 57. https://doi.org/10.3892/ijmm.2021.4890.; Lv C., Wang L., Zhu X., et al. Glucosamine promotes osteoblast proliferation by modulating autophagy via the mammalian target of rapamycin pathway. Biomed Pharmacother. 2018; 99: 271–7. https://doi.org/10.1016/j.biopha.2018.01.066.; https://www.pharmacoeconomics.ru/jour/article/view/651

  14. 14
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 12, № 2 (2021); 98-105 ; Лучевая диагностика и терапия; Том 12, № 2 (2021); 98-105 ; 2079-5343

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/627/489; Стандарты диагностики и лечения на основе данных конусно-лучевой компьютерной томографии в амбулаторной стоматологии, челюстно-лицевой хирургии и оториноларингологии: учебное пособие / под ред. М.А.Чибисовой, Р.А.Фадеева. СПб.: ООО «МЕДИ издательство», 2017. 375 с. (электронная книга).; Чибисова М.А., Батюков Н.М., Филиппова Т.В., Аверичева Е.Б., Батюков И.Н., Соколович Н.А. Лучевая диагностика цервикальной инвазивной резорбции и планирование лечения по данным конусно-лучевой компьютерной томографии // Медицинский альянс. 2020. Т. 8, № 2. С. 85–92.; Heithersay G.S. Invasive cervical resorption: an analysis of potential predisposing factors // Quintessence Int. 1999. No. 30. Р. 83–95. PMID: 10356560.; Shanon P., Kanagasingam Sh., Ford Th.P. External Cervical Resorption: A Review // JOE. 2009. Vol. 35 (5). Р. 616–624. doi:10.1016/j.joen.2009.01.015.; Mavridou A., Hauben E., Wevers M. et al. Understanding External Cervical Resorption in Vital Teeth // J. Endod. 2016. Vol. 42 (12). Р. 1737–1751. doi:10.1016/j.joen.2016.06.007.; https://radiag.bmoc-spb.ru/jour/article/view/627

  15. 15
    Academic Journal
  16. 16
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal

    المساهمون: The investigation has been conducted within scientific topic №AAAA-A19-119021190148-3, 0514-2019-0005 «Comorbid infections in rheumatic diseases and safety issues of antirheumatic therapy»., Статья подготовлена в рамках научной темы «Коморбидные инфекции при ревматических заболеваниях и проблемы безопасности антиревматической терапии (АААА-А19-119021190148-3, 0514-2019-0005).

    المصدر: Modern Rheumatology Journal; Том 15, № 5 (2021); 103-107 ; Современная ревматология; Том 15, № 5 (2021); 103-107 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1207/1161; Wegierska M, Dura M, Blumfield E, et al. Osteoporosis diagnostics in patients with rheumatoid arthritis. Reumatologia. 2016; 54(1):29-34. doi:10.5114/reum.2016.58759.Epub 2016 Mar 24.; Laan RF, Buijs WC, Verbeek AL, et al. Bone mineral density in patients with recent onset rheumatoid arthritis: influence of disease activity and functional capacity. Ann Rheum Dis. 1993 Jan;52(1):21-6. doi:10.1136/ard.52.1.21.; Gough AK, Lilley J, Eyre S, et al. Generalised bone loss in patients with early rheumatoid arthritis. Lancet. 1994 Jul 2; 344(8914):23-7. doi:10.1016/s0140-6736(94)91049-9.; Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Allaart CF, et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study). Arthritis Rheum. 2005 Nov;52(11):3381-90. doi:10.1002/art.21405.; Haugeberg G, Uhlig T, Falch JA, et al. Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum. 2000 Mar;43(3):522-30. doi:10.1002/1529-0131(200003)43:33.0.CO;2-Y.; Федина ТП, Братыгина ЕА, Старкова АС и др. Денситометрическая оценка костной ткани больных ревматоидным артритом. Тезисы II Всероссийского конгресса ревматологов России. Ярославль; 2011. C. 81.; Sinigaglia L, Nervetti A, Mela Q, et al. A multicenter crosssectional study on bone mineral density in rheumatoid arthritis. J Rheumatol. 2000 Nov;27(11):2582-9.; Jensen T, Hansen M, Jensen KE, et al. Comparison of dual X-ray absorptiometry (DXA), digital X-ray radiogrammetry (DXR), and conventional radiographs in the evaluation of osteoporosis and bone erosions in patients with rheumatoid arthritis. Scand J Rheumatol. 2005;34(1):27-33. doi:10.1080/03009740510017986.; Stewart A, Mackenzie LM, Black AJ, Reid DM. Predicting erosive disease in rheumatoid arthritis. A longitudinal study of changes in bone density using digital X-ray radiogrammetry: a pilot study. Rheumatology (Oxford). 2004 Dec;43(12):1561-4. doi:10.1093/rheumatology/keh385.Epub 2004 Aug 24.; Forslind K, Keller C, Svensson B, Hafstrom I. Reduced bone mineral density in early rheumatoid arthritis is associated with radiological joint damage at baseline and after 2 years in women. J Rheumatol. 2003 Dec; 30(12):2590-6.; Rossini M, Bagnato G, Frediani B, et al. Relationship of focal erosions, bone mineral density, and parathyroid hormone in rheumatoid arthritis. J Rheumatol. 2011 Jun;38(6): 997-1002. doi:10.3899/jrheum.100829.Epub 2011 Apr 1.; Петрова ЕВ, Дыдыкина ИС, Смирнов АВ и др. Ассоциация между минеральной плотностью и эрозивно-деструктивными изменениями костной ткани у больных ревматоидным артритом (предварительные результаты). Терапевтический архив. 2014;86(5):10-7.; Keller KK, Thomsen JS, Stengaard-Pedersen K, Hauge EM. Systemic but no local effects of combined zoledronate and parathyroid hormone treatment in experimental autoimmune arthritis. PLoS One. 2014 Mar 17;9(3):e92359. doi:10.1371/journal.pone.0092359. eCollection 2014.; Romas E. Bone loss in inflammatory arthritis: mechanisms and therapeutic approaches with bisphosphonates. Best Pract Res Clin Rheumatol. 2005 Dec;19(6):1065-79.doi:10.1016/j.berh.2005.06.008.; Дыдыкина ИС, Коваленко ПС, Смирнов АВ и др. Опыт применения деносумаба в терапии остеопороза больных ревматоидным артритом, получающих глюкокортикоиды. Современная ревматология. 2018;12(2):50-7.; Takeuchi T, Tanaka Y, Ishiguro N, et al. Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose-response study of AMG 162 (Denosumab) in patients with RheumatoId arthritis on methotrexate to Validate inhibitory effect on bone Erosion (DRIVE)-a 12-month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann Rheum Dis. 2016 Jun;75(6):983-90. doi:10.1136/annrheumdis-2015-208052. Epub 2015 Nov 19.; Cohen SB, Dore RK, Lane NE, et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a 12-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 2008 May;58(5):1299-309. doi:10.1002/art.23417.; Okano T, Koike T, Tada M, et al. The limited effects of anti-tumor necrosis factor blockade on bone health in patients with rheumatoid arthritis under the use of glucocorticoid. J Bone Miner Metab. 2014 Sep;32(5):593-600. doi:10.1007/s00774-013-0535-9.; Gü ler-Yü ksel M, Bijsterbosch J, Goekoop-Ruiterman YPM, et al. Changes in bone mineral density in patients with recent onset, active rheumatoid arthritis. Ann Rheum Dis. 2008 Jun;67(6):823-8. doi:10.1136/ard.2007.073817. Epub 2007 Jul 20.; Eekman DA, Vis M, Bultink IEM, et al. Stable bone mineral density in lumbar spine and hip in contrast to bone loss in the hands during long-term treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2011 Feb;70(2):389-90. doi:10.1136/ard.2009.127787. Epub 2010 May 6.; Tada M, Inui K, Sugioka Y, et al. Use of bisphosphonate might be important to improve bone mineral density in patients with rheumatoid arthritis even under tight control: the TOMORROW study. Rheumatol Int. 2017 Jun;37(6):999-1005. doi:10.1007/s00296-017-3720-7. Epub 2017 Apr 12.; Haugeberg G, Helgetveit KB, F∅rre ∅, et al. Generalized bone loss in early rheumatoid arthritis patients followed for ten years in the biologic treatment era. BMC Musculoskelet Disord. 2014 Sep 2;15:289. doi:10.1186/1471-2474-15-289.; Bejarano V, Hensor E, Green M, et al. Relationship between early bone mineral density changes and long-term function and radiographic progression in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2012 Jan;64(1):66-70. doi:10.1002/acr.20553.; https://mrj.ima-press.net/mrj/article/view/1207

  20. 20