-
1Academic Journal
المؤلفون: К. G. Sukhanova, A. B. Kuznetsov, S. G. Skublov, O. L. Galankina, К. Г. Суханова, А. Б. Кузнецов, С. Г. Скублов, О. Л. Галанкина
المساهمون: The study was carried out as part of the research topic of IPGG RAS № FMUW-2022-0005. The work used the equipment of the Shared Research Facilities "AIRIZ" of IPGG RAS., Исследование выполнено в рамках темы НИР ИГГД РАН № FMUW-2022-0005. В работе использовалось оборудование ЦКП «АИРИЗ» ИГГД РАН.
المصدر: Geodynamics & Tectonophysics; Том 13, № 2 (2022); 0618 ; Геодинамика и тектонофизика; Том 13, № 2 (2022); 0618 ; 2078-502X
مصطلحات موضوعية: геотермометрия, equilibrated ordinary chondrite, microprobe analysis, Cr spinel, olivine, geothermometry, равновесный обыкновенный хондрит, микрозондовый анализ, хромшпинелид, оливин
وصف الملف: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1490/656; Blackburn T., Alexander C.M.O.D., Carlson R., Elkins-Tanton L.T., 2017. The Accretion and Impact History of the Ordinary Chondrite Parent Bodies. Geochimica et Cosmochimica Acta 200, 201–217. https://doi.org/10.1016/j.gca.2016.11.038.; Dodd R.T., 1981. Meteorites: A Petrologic-Chemical Synthesis. Cambridge University Press, Cambridge, 152 p.; Dodd R.T., Hutchison R., 2004. Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge University Press, Cambridge, 506 p.; Henke S., Gail H.-P., Trieloff M., Schwarz W., 2013. Thermal Evolution Model for the H Chondrite Asteroid-Instantaneous Formation versus Protracted Accretion. Icarus 226 (1), 212–228. https://doi.org/10.1016/j.icarus.2013.05.034.; Huss G.R., Rubin A.E., Grossman J.N., 2006. Thermal Metamorphism in Chondrites. In: D.S. Lauretta, H.Y. McSween Jr. (Eds), Meteorites and the Early Solar System II. University of Arizona Press, p. 567–586.; Kessel R., Beckett J.R., Huss G.R., Stolper E.M., 2004. The Activity of Chromite in Multicomponent Spinels: Implications for T‐fO2 Conditions of Equilibrated H Chondrites. Meteoritics & Planetary Science 39 (8), 1287–1305. https://doi.org/10.1111/j.1945-5100.2004.tb00947.x.; Kleine T., Touboul M., Van Orman J.A., Bourdon B., Maden C., Mezger K., Halliday A.N., 2008. Hf–W Thermochronometry: Closure Temperature and Constraints on the Accretion and Cooling History of the H Chondrite Parent Body. Earth and Planetary Science Letters 270 (1–2), 106–118. https://doi.org/10.1016/j.epsl.2008.03.013.; McDougal D., Nakashima D., Tenner T.J., Kita N.T., Valley J.W., Noguchi T., 2017. Intermineral Oxygen Three-Isotope Systematics of Silicate Minerals in Equilibrated Ordinary Chondrites. Meteoritics & Planetary Science 52 (11), 2322–2342. https://doi.org/10.1111/maps.12932.; Scott E.R.D., Krot A.N., 2014. Chondrites and Their Components. In: H.D. Holland, K.K. Turekian (Eds), Treatise on Geochemistry. Second Edition. Vol. 1. Elsevier, p. 65–137. https://doi.org/10.1016/B978-0-08-095975-7.00104-2.; Wlotzka F., 2005. Cr Spinel and Chromite as Petrogenetic Indicators in Ordinary Chondrites: Equilibration Temperatures of Petrologic Types 3.7 to 6. Meteoritics & Planetary Science 40 (11), 1673–1702. https://doi.org/10.1111/j.1945-5100.2005.tb00138.x.; https://www.gt-crust.ru/jour/article/view/1490