يعرض 1 - 20 نتائج من 55 نتيجة بحث عن '"прионы"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Acta Biomedica Scientifica; Том 9, № 3 (2024); 90-94 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4818/2790; Geschwind MD. Prion diseases. Continuum (Minneap Minn). 2015; 21: 1612-1638. doi:10.1212/CON.0000000000000251; Appleby BS, Shetty S, Elkasaby M. Genetic aspects of human prion diseases. Front Neurol. 2022; 13: 1003056. doi:10.3389/fneur.2022.1003056; Crocco L, Appleby BS, Gambetti P. Fatal familial insomnia and sporadic insomnia with fatal outcome. Handb Clin Neurol. 2018; (153): 271-299. doi:10.1016/B978-0-444-63945-5.00015-5; Rodriguez-Porcel F, Ciarlariello VB, Dwivedi AK, Lovera L, Da Prat G, Lopez-Castellanos R, et al. Movement disorders in prionopathies: A systematic review. Tremor Other Hyperkinet Mov (NY). 2019; 9. doi:10.5334/tohm.512; Baldelli L, Provini F. Fatal familial insomnia and agrypnia excitata: Autonomic dysfunctions and pathophysiological implications. Auton Neurosci. 2019; 218: 68-86. doi:10.1016/j.autneu.2019.02.007; Xie K, Chen Y, Chu M, Cui Y, Chen Z, Zhang J, et al. Specific structuro-metabolic pattern of thalamic subnuclei in fatal familial insomnia: A PET/MRI imaging study. Neuroimage Clin. 2022; 34: 103026. doi:10.1016/j.nicl.2022.103026; Goldman JS, Vallabh SM. Genetic counseling for prion disease: Updates and best practices. Genet Med. 2022; 24(10): 1993-2003. doi:10.1016/j.gim.2022.06.003; Wu L, Lu H, Wang X, Liu J, Huang C, Ye J, et al. Clinical features and sleep analysis of Chinese patients with fatal familial insomnia. Sci Rep. 2017; 7(1): 36-25. doi:10.1038/s41598-017-03817-3; Chu M, Xie K, Zhang J, Chen Z, Gorayeb I, Ruprecht S, et al. Proposal of new diagnostic criteria for fatal familial insomnia. J Neurol. 2022; 269(9): 4909-4919. doi:10.1007/s00415-022-11135-6; https://www.actabiomedica.ru/jour/article/view/4818

  2. 2
  3. 3
  4. 4
    Academic Journal

    المصدر: Vavilov Journal of Genetics and Breeding; Том 22, № 4 (2018); 415-424 ; Вавиловский журнал генетики и селекции; Том 22, № 4 (2018); 415-424 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1544/1080; Anderson D.M., Anderson K.M., Cang C.L., Makarewich C.A., Nelson B.R., McAnally J.R., Kasaragod P., Shelton J.M., Liou J., Bassel-Duby R., Olson E.N. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160: 595-606.; Aprea J., Prenninger S., Dori M., Ghosh T., Monasor L.S., Wessendorf E., Zocher S., Massalini S., Alexopoulou D., Lesche M., Dahl A., Groszer M., Hiller M., Calegari F. Transcriptome sequencing during mouse brain development identifies long noncoding RNAs functionally involved in neurogenic commitment. EMBO J. 2013;32(24):3145-3160.; Battistuzzi F.U., Schneider K.A., Spencer M.K., Fisher D., Chaudhry S., Escalante A.A. Profiles of low complexity regions in Apicomplexa. BMC Evol. Biol. 2016;16:47. DOI 10.1186/s12862-016-0625-0.; Bellingham S.A., Coleman B.M., Hill A.F. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40(21):10937-10949.; Boese A.S., Saba R., Campbell K., Majer A., Medina S., Burton L., Booth T.F., Chong P., Westmacott G., Dutta S.M., Saba J.A., Booth S.A. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol. Cell. Neurosci. 2016;71:13-24.; Borchert G.M., Holton N.W., Williams J.D., Hernan W.L., Bishop I.P., Dombosky J.A., Elste J.E., Gregoire N.S., Kim J.A., Koehler W.W., Lengerich J.C., Medema A.A., Nguyen M.A., Ower G.D., Ra rick M.A., Strong B.N., Tardi N.J., Tasker N.M., Wozniak D.J., Gatto C., Larson E.D. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements. 2011;1(1):8-17.; Burak K., Lamoureux L., Boese A., Majer A., Saba R., Niu Y., Frost K., Booth S.A. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptoma tic prion disease. Neurobiol. Dis. 2018;112:1-13. DOI 10.1016/j.nbd.2017.12.011.; Couzigou J.M., Andre O., Cuillotin B., Alexandre M., Combier J.P. Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean. New Phytol. 2016;211(2):379-381.; Couzigou J.M., Lauressergues D., Becard G., Comier J.P. miRNAencoded peptides (miPEPs): A new tool to analyze the role of miRNAs in plant biology. RNA Biol. 2015;12:1178-1180.; De Cecco E., Legname G. The role of the prion protein in the internalization of α-synuclein amyloids. Prion. 2018;12(1):23-27. DOI 10.1080/19336896.2017.1423186.; Deng B., Cheng X., Li H., Qin J., Tian M., Jin G. Microarray expression profiling in the denervated hippocampus identified long noncoding RNAs functionally involved in neurogenesis. BMC Mol. Biol. 2017;18(1):15. DOI 10.1186/s12867-017-0091-2.; Dwivedi Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. Dialogues Clin. Neurosci. 2014;16(1):43-61.; Eigenbrod S., Frick P., Bertsch U., Mitteregger-Kretzschmar G., Mielke J., Maringer M., Piening N., Hepp A., Daude N., Windl O., Levin J., Giese A., Sakthivelu V., Tatzelt J., Kretzschmar H., Westaway D. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice. PLoS ONE. 2017;12(12):e0188989.; Evans E.G., Pushie M.J., Markham K.A., Lee H.W., Millhauser G.L. Interaction between prion protein’s cooperbound octarepeat domain and charged C-terminal pocket suggests a mechanism for N-terminal regulation. Structure. 2016;24(7):1057-1067.; Faulkner G.J. Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett. 2011;585(11):1589-1594.; Fitzgerald K.A., Caffrey D.R. Long noncoding RNAs in innate and adaptive immunity. Curr. Opin. Immunol. 2014;26:140-146.; Gao C., Shi Q., Wei J., Zhou W., Xiao K., Wang J., Shi Q., Dong X.P. The associations of two SNPs in miRNA146a and one SNP in ZBTB38-RASA2 with the disease susceptibility and the clinical features of the Chinese patients of sCJD and FFI. Prion. 2018;12(1): 34-41. DOI 10.1080/19336896.2017.1405885.; Gim J., Ha H., Ahn K., Kim D.S., Kim H.S. Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform. 2014;12(4):261-267.; Gonzalez-Montalban N., Makarava N., Savtchenko R., Baskakov I.V. Relationship between conformational stability and amplification efficiency of prions. Biochemistry. 2011;50(37):79337940.; Harbi D., Harrison P.M. Classifying prion and prion-like phenomena. Prion. 2014;8(2):pii27960.; Hennig S., Kong G., Mannen T., Sadowska A., Kobelke S., Blythe A., Knott G.J., Iyer K.S., Ho D., Newcombe E.A., Hosoki K., Goshima N., Kawaguchi T., Hatters D., Trinkle-Mulcahy L., Hirose T., Bond C.S., Fox A.H. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J. Cell. Biol. 2015;210(4):529-539.; Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7): 959-976.; Kyle R.A. Amyloidosis: a convoluted story. Br. J. Haematol. 2001; 114(3):529-538.; Lauressergues D., Couzigou J.M., Clemente H.S., Martinez Y., Dunand C., Becard G., Combier J.P. Primary transcripts of microRNAs encode regulatory peptides. Nature. 2015;520(7545):90-93.; Li Y., Li C., Xia J., Jin Y. Domestication of transposable elements into MicroRNA genes in plants. PLoS ONE. 2011;6:e19212.; Lorenzetti A.P., A de Antonio G.Y., Paschoal A.R., Domingues D.S. Plant TE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Funct. Integr. Genomics. 2016;16: 235-242.; Lu X., Sachs F., Ramsay L., Jacques P.E., Goke J., Bourque G., Ng H.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 2014; 21(4):423-425.; Lv S., Pan L., Wang G. Commentary: primary transcripts of microRNAs encode regulatory peptides. Front. Plant Sci. 2016;7:1436.; Mabbott N.A. How do PrPSc prions spread between host species, and within hosts? Pathogens. 2017;6(4). pii: E60. DOI 10.3390/pathogens6040060.; March Z.M., King O.D., Shorter J. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drives of neurodegenerative disease. Brain Res. 2016;1647:9-18.; Mercer T.R., Dinger M.E., Sunkin S.M., Mehler M.F., Mattick J.S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA. 2008;105(2):716-721.; Michelitsch M.D., Weissman J.S. A census of glutamine/asparagines-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA. 2000;97(22): 11910-11915.; Montag J., Hitt R., Opitz L., Schulz-Schaeffer W.J., Hunsmann G., Motzkus D. Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol. Neurodegener. 2009;4:36. DOI 10.1186/1750-1326-4-36.; Murakami T., Ishiguro N., Haguchi K. Transmission of systemic AA amyloidosis in animals. Vet. Pathol. 2014;51(2):363-371.; Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):742-749. DOI 10.18699/VJ17.30-o. (in Russian); Nelson B.R., Makarewich C.A., Anderson D.M., Winders B.R., Trou pes C.D., Wu F., Reese A.L., McAnally J.R., Chen X., Kevalali E.T., Cannon S.C., Houser S.R., Bassel-Duby R., Olson E.N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351(6270):271-275.; Notwell J.H., Chung T., Heavner W., Bejerano G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun. 2015;6:6644.; Richardson S.R., Morell S., Faulkner G.J. L1 retrotransposons and somatic mosaicism in the brain. Annu. Rev. Genet. 2014;48:127.; Rubenstein R., Wang K.K., Chiu A., Grinkina N., Sharma D.R., Agarwal S., Lin F., Yang Z. PrPC expression and calpain activity independently mediate the effects of closed head injury in mice. Behav. Brain Res. 2018;340:29-40.; Ruiz-Orera J., Messeguer X., Subirana J.A., Alba M.M. Long noncoding RNAs as a source of new peptides. Elife. 2014;3:e03523. DOI 10.7554/eLife.03523.; Saa P., Sferrazza G.F., Ottenberg G., Oelschlegel A.M., Dorsey K., Lasmezas C.I. Strain-specific role of RNAs in prion replication. J. Virol. 2012;86(19):10494-10504.; Saba R., Goodman C.D., Huzarewich R.L., Robertson C., Booth S.A. A miRNA signature of prion induced neurodegeneration. PLoS ONE. 2008;3:e3652.; Saba R., Gushue S., Huzarewich R.L., Manguiat K., Medina S., Robertson C., Booth S.A. MicroRNA 146a (miR-146a) is overexpressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS ONE. 2012;7(2):e30832.; Saba R., Medina S.J., Booth S.A. A functional SNP catalog of overlapping miRNA-binding sites in genes implicated in prion disease and other neurodegenerative disorders. Hum. Mutat. 2014;35(10):1233-1248.; Saghatelian A., Couso J.P. Discovery and сharacterization of smORF encoded bioactive polypeptides. Nat. Chem. Biol. 2015;11(12):909-916.; Sanz Rubio D., Lopez-Perez O., de Andres Pablo A., Bolea R., Osta R., Badiola J.J., Zaragoza P., Martin-Burriel I., Toivonen J.M. Increased circulating microRNAs miR-342-3p and miR-215p in natural sheep prion disease. J. Gen. Virol. 2017;98(2):305310.; Simoneau S., Thomzig A., Ruchoux M.M., Vignier N., Daus M.L., Poleggi A., Lebon P., Freire S., Durand V., Graziano S., Galeno R., Cardone F., Comoy E., Pocchiari M., Beekes M., Deslys J.P., Four nier J.G. Synthetic scrapie infectivity: interaction between recombinant PrP and scrapie brain-derived RNA. Virulence. 2015;6(2):132-144. DOI 10.4161/21505594.2014.989795.; Tetz G., Tetz V. Prion-like domains in phagobiota. Front. Microbiol. 2017;8:2239.; Timmes A.G., Moore R.A., Fischer E.R., Priora S.A. Recombinant prion refolded with lipid and RNA has the biochemical hallmarks of a prion but lacks in vivo infectivity. PLoS ONE. 2013;8(7):e71081.; Tycko R. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci. 2014;23(11):1528-1539.; Upton K.R., Gerhardt D.J., Jesuadian J.S., Richardson S.R., Sanchez-Luque F.J., Bodea G.O., Ewing A.D., Salvador-Palomegue C., van der Knaap M.S., Brennan P.M., Vanderver A., Faulkner G.J. Ubi quitous L1 mosaicism in hippocampal neurons. Cell. 2015;161(2): 228-239.; Wang J., Li X., Wang L., Li J., Zhao Y., Bou G., Li Y., Jiao G., Shen X., Wei R., Liu S., Xie B., Lei L., Li W., Zhou Q., Liu Z. A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos. EMBO Rep. 2016;17:1452-1470.; Zhang J., Mujahid H., Hou Y., Nallamilli B.R., Peng Z. Plant long ncRNAs: a new frontier for gene regulatory control. Am. J. Plant Sci. 2013;4(5):1038-1045. DOI 10.4236/ajps.2013.45128.; https://vavilov.elpub.ru/jour/article/view/1544

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: Scientific research and developments of students; № 2(2); 45-49 ; Научные исследования и разработки студентов; № 2(2); 45-49

    وصف الملف: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-9909215-1-1; https://interactive-plus.ru/e-articles/329/Action329-115103.pdf; 1. Григорьев В.Б. Прионные болезни человека и животных / В.Б. Григорьев // Вопросы вирусологии. – 2004. – №5. – С. 4–12.; 2. Зуев В.А. Медленные инфекции человека и животных / В.А. Зуев // Вопросы вирусологии. – 2014. – №5. – С. 5–12.; 3. Зуев В.А. От прионных болезней к проблеме старения и смерти / В.А. Зуев // Вестник Российской Академии медицинских наук. – 2001. – №11. – С. 46–49.; 4. Зуев В.А. Прионы – новый класс возбудителей инфекционных заболеваний / В.А. Зуев // Антибиотики и химиотерапия. – 1999. – №10. – С. 33–38.; 5. Зуев В.А. Прионы – особый класс возбудителей медленных инфекций человека и животных / В.А. Зуев // Русский медицинский журнал. – 2013. –№30. – С. 1559–1566.; 6. Зуев В.А. Прионы – проблема, которая грозит стать бедствием для человечества / В.А. Зуев // Российские медицинские вести. – 1998. –№1. – С. 44–46.; 7. Ковалев Н.А. Вирусы и прионы в патологии животных и человека / Н.А. Ковалев, П.А. Красочко. – Минск: Белорусская наука, 2012. – 427 с.; 8. Ройхель В.М. Глиоз как пусковой механизм патоморфологических изменений при прионных болезнях / В.М. Ройхель, В.А. Зуев, Н.Г. Игнатова // Вопросы вирусологии. – 2003. – №4. – С. 35–37.; 9. Galkin A.P. Yeast prions, mammalian amyloidoses, and the problem of proteomic networks / A.P. Galkin, L.N. Mironova, G.A. Zhuravleva, S.G. Inge-Vechtomov // Genetica. – 2006. – 42 (11).; https://interactive-plus.ru/files/Books/Cover-329.jpg?req=115103; https://interactive-plus.ru/article/115103/discussion_platform; https://doi.org/10.21661/r-115103

  8. 8
  9. 9
  10. 10
    Academic Journal
  11. 11
  12. 12
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
  18. 18
    Academic Journal
  19. 19
  20. 20