يعرض 1 - 20 نتائج من 68 نتيجة بحث عن '"предоперационное планирование"', وقت الاستعلام: 0.64s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study has no sponsorship, Исследование не имеет спонсорской поддержки

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 13, № 2 (2024); 247-257 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 13, № 2 (2024); 247-257 ; 2541-8017 ; 2223-9022

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1887/1462; Mauffrey C, Vasario G, Battiston B, Lewis C, Beazley J, Seligson D. Tibial pilon fractures : a review of incidence, diagnosis, treatment, and complications. Acta Orthop Belg. 2011;77(4):432–440. PMID: 21954749; Beaman DN, Gellman R. Fracture reduction and primary ankle arthrodesis: a reliable approach for severely comminuted tibial pilon fracture. Clin Orthop Relat Res. 2014;472(12):3823–3834. PMID: 24844887 doi:10.1007/s11999-014-3683-x; Destot EAJ. Traumatismes du pied et rayons X: Malleoles-Astragale-Calcaneum-Avant-pied. Paris: Masson; 1911.; Carter TH, Duckworth AD, Oliver WM, Molyneux SG, Amin AK, White TO. Open Reduction and Internal Fixation of Distal Tibial Pilon Fractures. JBJS Essent Surg Tech. 2019;9(3):e29. PMID: 32021729 doi:10.2106/JBJS.ST.18.00093; Saad BN, Yingling JM, Liporace FA, Yoon RS. Pilon Fractures: Challenges and Solutions. Orthop Res Rev. 2019;11:149–157. PMID: 31576179 doi:10.2147/ORR.S170956; Rüedi T. Fractures of the lower end of the tibia into the ankle joint: results 9 years after open reduction and internal fixation. Injury. 1973;5(2):130–134. PMID: 4774764 doi:10.1016/s0020-1383(73)80089-0; Müller ME. Müller AO Classification of Fractures-Long Bones. Berlin, Germany: Springer-Verlag; 2010.; Dirschl DR, Adams GL. A critical assessment of factors influencing reliability in the classification of fractures, using fractures of the tibial plafond as a model. J Orthop Trauma. 1997;11(7):471–476. PMID: 9334947 doi:10.1097/00005131-199710000-00003; Ramappa M, Bajwa A, Singh A, Mackenney P, Hui A, Port A. Interobserver and intraobserver variations in tibial pilon fracture classification systems. Foot (Edinb). 2010;20(2-3):61–63. PMID: 20609577 doi:10.1016/j.foot.2010.06.002; Martin JS, Marsh JL, Bonar SK, DeCoster TA, Found EM, Brandser EA. Assessment of the AO/ASIF fracture classification for the distal tibia. J Orthop Trauma. 1997;11(7):477–483. PMID: 9334948 doi:10.1097/00005131-199710000-00004; Swiontkowski MF, Sands AK, Agel J, Diab M, Schwappach JR, Kreder HJ. Interobserver variation in the AO/OTA fracture classification system for pilon fractures: is there a problem? J Orthop Trauma. 1997;11(7):467–470. PMID: 9334946 doi:10.1097/00005131-199710000-00002; Cole PA, Mehrle RK, Bhandari M, Zlowodzki M. The pilon map: fracture lines and comminution zones in OTA/AO type 43C3 pilon fractures. J Orthop Trauma. 2013;27(7):e152–e156. PMID: 23360909 doi:10.1097/BOT.0b013e318288a7e9; Topliss CJ, Jackson M, Atkins RM. Anatomy of pilon fractures of the distal tibia. J Bone Joint Surg Br. 2005;87(5):692–697. PMID: 15855374 doi:10.1302/0301-620X.87B5.15982; Tang X, Tang PF, Wang MY, Lü DC, Liu MZ, Liu CJ, et al. Pilon fractures: a new classification and therapeutic strategies. Chin Med J (Engl). 2012;125(14):2487–2492. PMID: 22882927; Leonetti D, Tigani D. Pilon fractures: A new classification system based on CT-scan. Injury. 2017;48(10):2311–2317. PMID: 28774706 doi:10.1016/j.injury.2017.07.026; White TO, Guy P, Cooke CJ, Kennedy SA, Droll KP, Blachut PA, et al. The results of early primary open reduction and internal fixation for treatment of OTA 43.C-type tibial pilon fractures: a cohort study. J Orthop Trauma. 2010;24(12):757–763. PMID: 21076248 doi:10.1097/BOT.0b013e3181d04bc0; Keiler A, Riechelmann F, Thöni M, Brunner A, Ulmar B. Three-dimensional computed tomography reconstruction improves the reliability of tibial pilon fracture classification and preoperative surgical planning. Arch Orthop Trauma Surg. 2020;140(2):187–195. PMID: 31529150 doi:10.1007/s00402-019-03259-8; Byun SE, Choi W, Choi Y, Ahn T-K, Kim HK, Yoon S, et al. Impact of two-and three-dimensional computed tomography use on intraobserver and interobserver reliabilities of pilon fracture classification and treatment recommendation. Orthop Traumatol Surg Res. 2019;105(7):1407–1412. PMID: 31542310 doi:10.1016/j.otsr.2019.07.011; Palma J, Villa A, Mery P, Abarca M, Mora A, Peña A, et al. A New Classification System for Pilon Fractures Based on CT Scan: An Independent Interobserver and Intraobserver Agreement Evaluation. J Am Acad Orthop Surg. 2020;28(5):208–213. PMID: 31800439 doi:10.5435/JAAOS-D-19-00390; Qiu XS, Li XG, Qi XY, Wang Z, Chen YX. What Is the Most Reliable Classification System to Assess Tibial Pilon Fractures? J Foot Ankle Surg. 2020;59(1):48–52. PMID: 31882147 doi:10.1053/j.jfas.2019.07.002; Tomás-Hernández J. High-energy pilon fractures management: State of the art. EFORT Open Rev. 2017;1(10):354–361. PMID: 28461913 doi:10.1302/2058-5241.1.000016; dʼHeurle A, Kazemi N, Connelly C, Wyrick JD, Archdeacon MT, Le TT. Prospective Randomized Comparison of Locked Plates Versus Nonlocked Plates for the Treatment of High-Energy Pilon Fractures. J Orthop Trauma. 2015;29(9):420–423. PMID: 26165256 doi:10.1097/BOT.0000000000000386; Lomax A, Singh A, Jane M N, Senthil K C. Complications and early results after operative fixation of 68 pilon fractures of the distal tibia. Scott Med J. 2015;60(2):79–84. PMID: 25630506 doi:10.1177/0036933015569159; Zhao L, Li Y, Chen A, Zhang Z, Xi J, Yang D. Treatment of type C pilon fractures by external fixator combined with limited open reduction and absorbable internal fixation. Foot Ankle Int. 2013;34(4):534–542. PMID: 23447509 doi:10.1177/1071100713480344; Артемьев, А. А., Загородний, Н. В., Ивашкин, А. Н., Абакиров, М. Д., Плетнев, В. В. Внешний остеосинтез по Илизарову как метод окончательной фиксации сложных переломов голеностопного сустава. Клиническая практика. 2015;(1):10–16.; Giannoudis VP, Ewins E, Taylor DM, Foster P, Harwood P. Clinical and Functional Outcomes in Patients with Distal Tibial Fracture Treated by Circular External Fixation: A Retrospective Cohort Study. Strategies Trauma Limb Reconstr. 2021;16(2):86-95. PMID: 34804224 doi:10.5005/jp-journals-10080-1516; Helfet DL, Koval K, Pappas J, Sanders RW, DiPasquale T. Intraarticular “pilon” fracture of the tibia. Clin Orthop Relat Res. 1994;(298):221–228. PMID: 8118979; Patterson MJ, Cole JD. Two-staged delayed open reduction and internal fixation of severe pilon fractures. J Orthop Trauma. 1999;13(2):85–91. PMID: 10052781 doi:10.1097/00005131-199902000-00003; Sirkin M, Sanders R, DiPasquale T, Herscovici D Jr. A staged protocol for soft tissue management in the treatment of complex pilon fractures. J Orthop Trauma. 1999;13(2):78–84. PMID: 10052780 doi:10.1097/00005131-199902000-00002; Stillhard PF, Frima H, Sommer C. Pilonfrakturen – Überlegungen zur Versorgung und Zugänge. Oper Orthop Traumatol. 2018;30(6):435–456. PMID: 30334079 doi:10.1007/s00064-018-0570-8; Tornetta P 3 rd , Gorup J. Axial computed tomography of pilon fractures. Clin Orthop Relat Res. 1996;(323):273–276. PMID: 8625591 doi:10.1097/00003086-199602000-00037; Calori GM, Tagliabue L, Mazza E, de Bellis U, Pierannunzii L, Marelli BM, et al. Tibial pilon fractures: which method of treatment? Injury. 2010;41(11):1183–1190. PMID: 20870227 doi:10.1016/j.injury.2010.08.041; Teeny SM, Wiss DA. Open reduction and internal fixation of tibial plafond fractures. Variables contributing to poor results and complications. Clin Orthop Relat Res. 1993;(292):108–117. PMID: 8519097; Manegold S, Springer A, Märdia S, Tsitsilonis S. Treatment Algorithm for Pilon Fracture – Clinical and Radiological Results. Algoritmus léčby zlomenin pilonu – klinické a radiologické výsledky. Acta Chir Orthop Traumatol Cech. 2019;86(1):11–17. PMID: 30843508; Duckworth AD, Jefferies JG, Clement ND, White TO. Type C tibial pilon fractures: short- and long-term outcome following operative intervention. Bone Joint J. 2016;98-B(8):1106–1111. PMID: 27482025 doi:10.1302/0301-620X.98B8.36400; Pollak AN, McCarthy ML, Bess RS, Agel J, Swiontkowski MF. Outcomes after treatment of high-energy tibial plafond fractures. J Bone Joint Surg Am. 2003;85(10):1893–1900. PMID: 14563795 doi:10.2106/00004623-200310000-00005; Ware J, Snow KK, Kosinski M, Gandek B. SF36 Health Survey: Manual and Interpretation Guide. Lincoln, RI: Quality Metric, Inc; 1993. p. 30.; Cutillas-Ybarra MB, Lizaur-Utrilla A, Lopez-Prats FA. Prognostic factors of health-related quality of life in patients after tibial plafond fracture. A pilot study. Injury. 2015;46(11):2253–2257. PMID: 26115581 doi:10.1016/j.injury.2015.06.025; Harris AM, Patterson BM, Sontich JK, Vallier HA. Results and outcomes after operative treatment of high-energy tibial plafond fractures. Foot Ankle Int. 2006;27(4):256–265. PMID: 16624215 doi:10.1177/107110070602700406; Boraiah S, Kemp TJ, Erwteman A, Lucas PA, Asprinio DE. Outcome following open reduction and internal fixation of open pilon fractures. J Bone Joint Surg Am. 2010;92(2):346–352. PMID: 20124061 doi:10.2106/JBJS.H.01678; van den Berg J, Monteban P, Roobroeck M, Smeets B, Nijs S, Hoekstra H. Functional outcome and general health status after treatment of AO type 43 distal tibial fractures. Injury. 2016;47(7):1519-1524. PMID: 27129909 doi:10.1016/j.injury.2016.04.009; Marsh JL, Weigel DP, Dirschl DR. Tibial plafond fractures. How do these ankles function over time? J Bone Joint Surg Am. 2003;85(2):287–295. PMID: 12571307; Bonato LJ, Edwards ER, Gosling CM, Hau R, Hofstee DJ, Shuen A, et al. Patient reported health related quality of life early outcomes at 12 months after surgically managed tibial plafond fracture. Injury. 2017;48(4):946–953. PMID: 28233519 doi:10.1016/j.injury.2016.11.012; Zeng J, Xu C, Xu G, Zhang W, Wang D, Li H, et al. Evaluation of Ankle Fractures in 228 Patients from a Single Center Using Three-Dimensional Computed Tomography Mapping. Front Bioeng Biotechnol. 2022;10:855114. PMID: 35372321 doi:10.3389/fbioe.2022.855114; Leslie M. Pilon Fractures. C C V5. 2021. https://ota.org/sites/files/2021-06/LE%20F%26A1%20Pilon%20Fractures.pdf [Accessed May 16, 2024].; Hak DJ, Rose J, Stahel PF. Preoperative planning in orthopedic trauma: benefits and contemporary uses. Orthopedics. 2010;33(8):581–584. PMID: 20704156 doi:10.3928/01477447-20100625-21; Pilson HT, Reddix RN Jr, Mutty CE, Webb LX. The long lost art of preoperative planning--resurrected? Orthopedics. 2008;31(12): orthosupersite.com/. PMID: 19226056 doi:10.3928/01477447-20081201-19; Galán-Olleros M, García-Coiradas J, Llanos S, Valle-Cruz JA, Marco F. Fracture planning is easy: Development of a basic method of digital planning based on the traditional pencil and paper technique. Planificar fracturas es sencillo: desarrollo de un método básico de planificación digital basado en la técnica tradicional con lápiz y papel. Rev Esp Cir Ortop Traumatol. 2022;66(5):328–340. PMID: 34366259 doi:10.1016/j.recot.2021.05.002; Ordas-Bayon A, Cabrera Ortiz D, Logan K, Pesantez R. Enhancing Preoperative Planning in Orthopedic Trauma Surgery Using a Presentation Software. Rev Bras Ortop (Sao Paulo). 2021;56(4):517–522. PMID: 34602675. doi:10.1055/s-0040-1721833; Steinberg EL, Segev E, Drexler M, Ben-Tov T, Nimrod S. Preoperative Planning of Orthopedic Procedures using Digitalized Software Systems. Isr Med Assoc J. 2016;18(6):354–358. PMID: 27468530; Benum P, Aamodt A, Nordsletten L. Customised femoral stems in osteopetrosis and the development of a guiding system for the preparation of an intramedullary cavity: a report of two cases. J Bone Joint Surg Br. 2010;92(9):1303–1305. PMID: 20798453 doi:10.1302/0301-620X.92B9.24415; Davidovitch RI, Weil Y, Karia R, Forman J, Looze C, Liebergall M, et al. Intraoperative syndesmotic reduction: three-dimensional versus standard fluoroscopic imaging. J Bone Joint Surg Am. 2013;95(20):1838–1843. PMID: 24132357 doi:10.2106/JBJS.L.00382; Chana-Rodríguez F, Mañanes RP, Rojo-Manaute J, Gil P, Martínez-Gómiz JM, Vaquero-Martín J. 3D surgical printing and pre contoured plates for acetabular fractures. Injury. 2016;47(11):2507–2511. PMID: 27599393 doi:10.1016/j.injury.2016.08.027; Bai J, Wang Y, Zhang P, Liu M, Wang P, Wang J, et al. Efficacy and safety of 3D print-assisted surgery for the treatment of pilon fractures: a meta-analysis of randomized controlled trials. J Orthop Surg Res. 2018;13(1):283. PMID: 30419933 doi:10.1186/s13018-018-0976-x; Meng M, Wang J, Sun T, Zhang W, Zhang J, Shu L, et al. Clinical applications and prospects of 3D printing guide templates in orthopaedics. J Orthop Translat. 2022;34:22–41. doi:10.1016/j.jot.2022.03.001; Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med. 2018;4(1):11. PMID: 30649688 doi:10.1186/s41205-018-0030-y; Auricchio F, Marconi S. 3D printing: clinical applications in orthopaedics and traumatology. EFORT Open Rev. 2017;1(5):121–127. PMID: 28461938 doi:10.1302/2058-5241.1.000012; Skelley NW, Smith MJ, Ma R, Cook JL. Three-dimensional Printing Technology in Orthopaedics. J Am Acad Orthop Surg. 2019;27(24):918–925. PMID: 31268868 doi:10.5435/JAAOS-D-18-00746; Alemayehu DG, Zhang Z, Tahir E, Gateau D, Zhang DF, Ma X. Preoperative Planning Using 3D Printing Technology in Orthopedic Surgery. Biomed Res Int. 2021;2021:7940242. PMID: 34676264 doi:10.1155/2021/7940242; Pal AK, Bhanakar U, Ray B. Three-dimensional (3D) printing: A potentially versatile tool in the field of medicine. Indian J Clin Anat Physiol. 2022;9(2):78–84. doi:10.18231/j.ijcap.2022.020; Morgan C, Khatri C, Hanna SA, Ashrafian H, Sarraf KM. Use of three-dimensional printing in preoperative planning in orthopaedic trauma surgery : A systematic review and meta-analysis. World J Orthop. 2020;11(1):57–67. PMID: 31966970 doi:10.5312/wjo.v11.i1.57; Ertürk C, Ayyıldız S, Erdöl C. Orthopedics and 3D technology in Turkey: A preliminary report. Jt Dis Relat Surg. 2021;32(2):279–289. PMID: 34145802 doi:10.52312/jdrs.2021.20; Zheng W, Su J, Cai L, Lou Y, Wang J, Guo X, et al. Application of 3D-printing technology in the treatment of humeral intercondylar fractures. Orthop Traumatol Surg Res. 2018;104(1):83–88. PMID: 29248764 doi:10.1016/j.otsr.2017.11.012; Zheng W, Tao Z, Lou Y, Feng Z, Li H, Cheng L, et al. Comparison of the Conventional Surgery and the Surgery Assisted by 3d Printing Technology in the Treatment of Calcaneal Fractures. J Invest Surg. 2018;31(6):557–567. PMID: 28925760 doi:10.1080/08941939.2017.1363833; Xie L, Chen C, Zhang Y, Zheng W, Chen H, Cai L. Three-dimensional printing assisted ORIF versus conventional ORIF for tibial plateau fractures : A systematic review and meta-analysis. Int J Surg. 2018;57:35–44. PMID: 30081183 doi:10.1016/j.ijsu.2018.07.012; Wong RMY, Wong PY, Liu C, Chung YL, Wong KC, Tso CY, et al. 3D printing in orthopaedic surgery : a scoping review of randomized controlled trials. Bone Joint Res. 2021;10(12):807–819. PMID: 34923849 doi:10.1302/2046-3758.1012.BJR-2021-0288.R2; Moya D, Gobbato B, Valente S, Roca R. Uso de planificación preoperatoria e impresión 3D en ortopedia y traumatología: ingresando en una nueva era [Use of preoperative planning and 3D printing in orthopedics and traumatology: entering a new era]. Acta Ortop Mex. 2022;36(1):39–47. PMID: 36099572; Hull CW. Apparatus for production of three-dimensional objects by stereolithography. Patent Number: 4575330. United States; 1986.; Zhuang Y, Cao S, Lin Y, Li R, Wang G, Wang Y. Minimally invasive plate osteosynthesis of acetabular anterior column fractures using the two-incision minimally invasive approach and a preshaped three dimension plate. Int Orthop. 2016;40(10):2157–2162. PMID: 26768591 doi:10.1007/s00264-015-3111-1; Yang L, Shang XW, Fan JN, He ZX, Wang JJ, Liu M, et al. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication. Biomed Res Int. 2016;2016:2482086. PMID: 27446944 doi:10.1155/2016/2482086; Zheng W, Chen C, Zhang C, Tao Z, Cai L. The Feasibility of 3D Printing Technology on the Treatment of Pilon Fracture and Its Effect on Doctor-Patient Communication. Biomed Res Int. 2018;2018:8054698. PMID: 29581985 doi:10.1155/2018/8054698; Burwell HN, Charnley AD. The treatment of displaced fractures at the ankle by rigid internal fixation and early joint movement. J Bone Joint Surg Br. 1965;47(4):634–660. PMID: 5846764; Li Y, Yuan Z. Application of rapid prototype and 3D printing in therapy of complex pilon fractures. Chin J Orthop Trauma. 2016;18(1):42–46.; Gu H, Zhang Y, Lv X, Zhao A, Zhu M, Zhang J, et al. 3D printing technology in applicatoin of tibial PILON fractures. Chin J Trauma Disabil Med. 2017;24:8–10.; Ou Yang HW, Zhao XD, Shi KM. Clinical application of 3D printing technique in the treatment of high energy Pilon fracture. Chin Cont Med Edu. 2017;9(17):130–131.; Huang J, Wang XP, Deng ZC, Wu W-W, Chen L-Y, Hu S-Q, et al. Application of three-dimensional reconstruction using mimics software to repair of pilon fracture. J Clin Tis Eng Res. 2015;19(44):7167–7171.; Yang S, Lin H, Luo C. Meta-Analysis of 3D Printing Applications in Traumatic Fractures. Front Surg. 2021;8:696391. PMID: 34532337 doi:10.3389/fsurg.2021.696391; Jiang M, Chen G, Coles-Black J, Chuen J, Hardidge A. Three-dimensional printing in orthopaedic preoperative planning improves intraoperative metrics : a systematic review. ANZ J Surg. 2020 Mar;90(3):243–250. PMID: 31701621 doi:10.1111/ans.15549; Xiong L, Li X, Li H, Chen Z, Xiao T. The efficacy of 3D printing-assisted surgery for traumatic fracture: a meta-analysis. Postgrad Med J. 2019;95(1126):414–419. PMID: 31324729 doi:10.1136/postgradmedj-2019-136482; Kang HJ, Kim BS, Kim SM, Kim YM, Kim HN, Park JY, et al. Can Preoperative 3D Printing Change Surgeon’s Operative Plan for Distal Tibia Fracture? Biomed Res Int. 2019;2019:7059413. PMID: 30886862 doi:10.1155/2019/7059413; Oki S, Kobayashi H, Kubota H, Umezu T, Nagasaki M, Iwabu S. A Pilon Fracture With Fibular Head Dislocation Treated With the Use of 3D Preoperative Planning : A Case Report and Literature Review. J Foot Ankle Surg. 2021;60(2):404–407. PMID: 33423890 doi:10.1053/j.jfas.2020.09.014; Merema BJ, Kraeima J, Ten Duis K, Wendt KW, Warta R, Vos E, et al. The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery. Injury. 2017;48(11):2540–2547. PMID: 28899562 doi:10.1016/j.injury.2017.08.059; Stockmans F, Dezillie M, Vanhaecke J. Accuracy of 3D Virtual Planning of Corrective Osteotomies of the Distal Radius. J Wrist Surg. 2013;2(4):306–314. PMID: 24436834 doi:10.1055/s-0033-1359307; Cho W, Job AV, Chen J, Baek JH. A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery. Asian Spine J. 2018;12(1):171–177. PMID: 29503698 doi:10.4184/asj.2018.12.1.171; Coakley M, Hurt DE. 3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware. J Lab Autom. 2016;21(4):489–495. PMID: 27197798 doi:10.1177/2211068216649578; Buijze GA, Leong NL, Stockmans F, Axelsson P, Moreno R, Ibsen Sörensen A, et al. Three-Dimensional Compared with Two-Dimensional Preoperative Planning of Corrective Osteotomy for Extra-Articular Distal Radial Malunion: A Multicenter Randomized Controlled Trial. J Bone Joint Surg Am. 2018;100(14):1191–1202. PMID: 30020124 doi:10.2106/JBJS.17.00544; Pehde CE, Bennett J, Lee Peck B, Gull L. Development of a 3-D Printing Laboratory for Foot and Ankle Applications. Clin Podiatr Med Surg. 2020;37(2):195–213. PMID: 32146978 doi:10.1016/j.cpm.2019.12.011; Pugliese R, Regondi S. Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches. Polymers (Basel). 2022;14(14):2794. PMID: 35890571 doi:10.3390/polym14142794; Mondal K, Tripathy PK. Preparation of Smart Materials by Additive Manufacturing Technologies : A Review. Materials (Basel). 2021;14(21):6442. PMID: 34771968 doi:10.3390/ma14216442; Vasiliadis AV, Koukoulias N, Katakalos K. From Three-Dimensional (3D)- to 6D-Printing Technology in Orthopedics: Science Fiction or Scientific Reality? J Funct Biomater. 2022;13(3):101. PMID: 35893469 doi:10.3390/jfb13030101; https://www.jnmp.ru/jour/article/view/1887

  2. 2
    Academic Journal

    المؤلفون: Khodjanov I.Y., Ubaydullaev B.S.

    المساهمون: 1

    المصدر: Traumatology and Orthopedics of Russia; Vol 30, No 2 (2024); 143-150 ; Травматология и ортопедия России; Vol 30, No 2 (2024); 143-150 ; 2542-0933 ; 2311-2905 ; 10.17816/2311-2905-2024-30-2

    وصف الملف: application/pdf

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: Уральский медицинский журнал. 2022. т. 21. №2; Особенности морфологии вертлужной впадины, определяющие технологию имплантации тазового компонента протеза / А. С. Ершов, Е. А. Волокитина, И. А. Меньщикова, М. Ю. Удинцева. – Текст: электронный // Уральский медицинский журнал. – Екатеринбург: УГМУ, 2022. - т. 21, № 2. - c. 6-12.; http://elib.usma.ru/handle/usma/6368

  5. 5
    Academic Journal

    المساهمون: 1

    المصدر: Traumatology and Orthopedics of Russia; Vol 28, No 4 (2022); 66-78 ; Травматология и ортопедия России; Vol 28, No 4 (2022); 66-78 ; 2542-0933 ; 2311-2905 ; 10.17816/2311-2905-2022-28-4

    وصف الملف: application/pdf

    Relation: https://journal.rniito.org/jour/article/view/2001/pdf; https://journal.rniito.org/jour/article/view/2001/pdf_1; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3698; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3699; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3735; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3736; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3737; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3738; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3739; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3740; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3741; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3742; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3922; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3923; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3924; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3925; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3926; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3927; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3928; https://journal.rniito.org/jour/article/downloadSuppFile/2001/3929; https://journal.rniito.org/jour/article/downloadSuppFile/2001/4011; https://journal.rniito.org/jour/article/downloadSuppFile/2001/4012; https://journal.rniito.org/jour/article/downloadSuppFile/2001/4013; https://journal.rniito.org/jour/article/downloadSuppFile/2001/4014; https://journal.rniito.org/jour/article/downloadSuppFile/2001/4015; https://journal.rniito.org/jour/article/downloadSuppFile/2001/4016; https://journal.rniito.org/jour/article/downloadSuppFile/2001/39781; https://journal.rniito.org/jour/article/downloadSuppFile/2001/39782; https://journal.rniito.org/jour/article/downloadSuppFile/2001/39783; https://journal.rniito.org/jour/article/downloadSuppFile/2001/39784; https://journal.rniito.org/jour/article/downloadSuppFile/2001/39785; https://journal.rniito.org/jour/article/downloadSuppFile/2001/39786; https://journal.rniito.org/jour/article/view/2001

  6. 6
    Academic Journal

    المساهمون: The study has no sponsorship, Исследование не имеет спонсорской поддержки

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 11, № 1 (2022); 96-103 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 11, № 1 (2022); 96-103 ; 2541-8017 ; 2223-9022

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1344/1114; Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–1107. PMID: 2860322 https://doi.org/10.1016/s0140-6736(85)92413-4; Picht T, Mularski S, Kuehn B, Vajkoczy P, Kombos T, Suess O. Navi­ga­ted transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery. 2009;65(6 suppl):93–99. PMID: 19935007 https://doi.org/10.1227/01.NEU.0000348009.22750.59; Tharin S, Golby A. Functional brain mapping and its applications to neurosurgery. Neurosurgery. 2007;60(4 Suppl 2):185–202. PMID: 17415154 https://doi.org/10.1227/01.NEU.0000255386.95464.52; Щербук А.Ю., Щербук Ю.А., Ерошенко М.Е. Технические аспекты картирования моторной зоны коры путем навигационной транскраниальной магнитной стимуляции у больных с опухолями головного мозга. Российский нейрохирургический журнал им. А.Л. Поленова. 2015;7(4):26–32.; Picht T, Krieg SM, Sollmann N, Rösler J, Niraula B, Neuvonen T, et al. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery. 2013;72(5):808–819. PMID: 23385773 https://doi.org/10.1227/NEU.0b013e3182889e01; Forster MT, Limbart M, Seifert V, Senft C. Test-retest reliability of navigated transcranial magnetic stimulation of the motor cortex. Neurosurgery. 2014;10(Suppl 1):51–56. PMID: 23842557 https://doi.org/10.1227/NEU.0000000000000075; Forster MT, Hattingen E, Senft C, Gasser T, Seifert V, Szelenyi A. Navigated transcranial magnetic stimulation and functional magnetic resonance imaging: advanced adjuncts in preoperative planning for central region tumors. Neurosurgery. 2011;68(5):1317–1325. PMID: 21273929 https://doi.org/10.1227/NEU.0b013e31820b528c; Sollmann N, Meyer B, Krieg SM. Implementing functional preoperative mapping in the clinical routine of a neurosurgical department: technical note. World Neurosurg. 2017;103:94–105. PMID: 28377253 https://doi.org/10.1016/j.wneu.2017.03.114; Saisanen L, Julkunen P, Kemppainen S, Danner N, Immonen A, Mervaala E, et al. Locating and outlining the cortical motor representation areas of facial muscles with navigated transcranial magnetic stimulation. Neurosurgery. 2015;77(3):394–495. PMID: 26035404 https://doi.org/10.1227/NEU.0000000000000798; Takahashi S, Vajkoczy P, Picht T. Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with rolandic brain tumors. Neurosurg Focus. 2013;34(4):E3. PMID: 23544409 https://doi.org/10.1227/10.3171/2013.1.FOCUS133; Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, et al. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg. 2012;116(5):994–1001. PMID: 22304452 https://doi.org/10.3171/2011.12.JNS111524; Picht T, Schulz J, Vajkoczy P. The preoperative use of navigated transcranial magnetic stimulation facilitates early resection of suspected low-grade gliomas in the motor cortex. Acta Neurochir. 2013;155(10):1813-1821. PMID: 23996233 https://doi.org/10.1007/s00701-013-1839-1; Ille S, Sollmann N, Butenschoen VM, Meyer B, Ringe F, Krieg SM. Resection of highly language-eloquent brain lesions based purely on rTMS language mapping without awake surgery. Acta Neurochir (Wien). 2016;158(12):2265–2275. PMID: 27688208 https://doi.org/10.1007/s00701-016-2968-0; Raffa G, Scibilia A, Conti A, Cardali SM, Rizzo V, Terranova C, et al. Multimodal surgical treatment of high-grade gliomas in the motor area: the impact of the combination of navigated transcranial magnetic stimulation and fluorescein-guided resection. World Neurosurg. 2019;128:e378-e390. PMID: 31029822 https://doi.org/10.1016/j.wneu.2019.04.158; Picht T, Schulz J, Hanna M, Schmidt S, Suess O, Vajkoczy P. Assessment of the influence of navigated transcranial magnetic stimulation on surgical planning for tumors in or near the motor cortex. Neurosurgery. 2012;70(5):1248–1257. PMID: 22127045 https://doi.org/10.1227/NEU.0b013e318243881e; Jung J, Lavrador JP, Patel S, Giamouriadis A, Lam J, Bhangoo R, et al. First United Kingdom experience of navigated transcranial magnetic stimulation in preoperative mapping of brain tumors. World Neurosurg. 2019; 122:e1578–e1587. PMID: 30476661 https://doi.org/10.1016/j.wneu.2018.11.114; Raffa G, Scibilia A, Conti A, Ricciardo G, Rizzo V, Morelli A, et al. The role of navigated transcranial magnetic stimulation for surgery of motor-eloquent brain tumors: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2019;180:7–17. PMID: 30870762 https://doi.org/10.1016/j.clineuro.2019.03.003; Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012;117(2):354–362. PMID: 22702484 https://doi.org/10.3171/2012.5.JNS112124; Sollmann N, Picht T, Makela JP, Meyer B, Ringel F, Krieg SM. Navigated transcranial magnetic stimulation for preoperative language mapping in a patient with a left frontoopercular glioblastoma. J Neurosurg. 2013;118(1):175–179. PMID: 23101450 https://doi.org/10.3171/2012.9.JNS121053; Takahashi S, Jussen D, Vajkoczy P, Picht T. Plastic relocation of motor cortex in a patient with LGG (low grade glioma) confirmed by NBS (navigated brain stimulation). Acta Neurochir (Wien). 2012;154(11):2003–2008. PMID: 22945898 https://doi.org/10.1007/s00701-012-1492-0; Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, et al. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. J Neurosurg. 2015;123(2):314–324. PMID: 25884257 https://doi.org/10.3171/2014.10.JNS141582; Kato N, Schilt S, Schneider H, Frey D, Kufeld M, Vajkoczy P, et al. Functional brain mapping of patients with arteriovenous malformations using navigated transcranial magnetic stimulation: first experience in ten patients. Acta Neurochir (Wien). 2014;156(5):885–895. PMID: 24639144 https://doi.org/10.1007/s00701-014-2043-7; Ottenhausen M, Krieg SM, Meyer B, Ringel F. Functional preoperative and intraoperative mapping and monitoring: increasing safety and effcacy in glioma surgery. Neurosurg Focus. 2015;38(1):E3. PMID: 25552283 https://doi.org/10.3171/2014.10.FOCUS14611; Picht T, Schmidt S, Woitzik J, Suess O. Navigated brain stimulation for preoperative cortical mapping in paretic patients: case report of a hemiplegic patient. Neurosurgery. 2011;68(5):E1475–E1480. PMID: 21307789 https://doi.org/10.1227/NEU.0b013e318210c7df; Raffa G, Quattropani MC, Germano A. When imaging meets neurophysiology: the value of navigated transcranial magnetic stimulation for preoperative neurophysiological mapping prior to brain tumor surgery. Neurosurg Focus. 2019; 47(6):E10. PMID: 31786549 https://doi.org/10.3171/2019.9.FOCUS19640; Raffa G, Conti A, Scibilia A, Cardali SM, Esposito F, Angileri FF, et al. The impact of diffusion tensor imaging fiber tracking of the corticospinal tract based on navigated transcranial magnetic stimulation on surgery of motor-eloquent brain lesions. Neurosurgery. 2018;83(4):768–782. PMID: 29211865 https://doi.org/10.1093/neuros/nyx554; Sollmann N, Kelm A, Ille S, Schroder A, Zimmer C, Ringel F, et al. Setup presentation and clinical outcome analysis of treating highly language-eloquent gliomas via preoperative navigated transcranial magnetic stimulation and tractography. Neurosurg Focus. 2018;44(6):E2. PMID: 29852769 https://doi.org/10.3171/2018.3.FOCUS1838; Hendrix P, Senger S, Simgen A, Griessenauer CJ, Oertel J. Preoperative rTMS language mapping in speech-eloquent brain lesions resected under general anesthesia: a pair-matched cohort study. World Neurosurg. 2017;100:425-433. PMID: 28109861 https://doi.org/10.1016/j.wneu.2017.01.041; Ille S, Drummer K, Giglhuber K, Conway N, Maurer S, Meyer B, et al. Mapping of arithmetic processing by navigated repetitive transcranial magnetic stimulation in patients with parietal brain tumors and correlation with postoperative outcome. World Neurosurg. 2018;114:e1016–e1030. PMID: 29597021 https://doi.org/10.1016/j.wneu.2018.03.136; Forster MT, Hoecker AC, Kang JS, Quick J, Seifert V, Hattingen E, et al. Does navigated transcranial stimulation increase the accuracy of tractography? A prospective clinical trial based on intraoperative motor evoked potential monitoring during deep brain stimulation. Neurosurgery. 2015;76(6):766–776. PMID: 25988930 https://doi.org/10.1227/NEU.0000000000000715; Krieg SM, Buchmann NH, Gempt J, Shiban E, Meyer B, Ringel F. Diffusion tensor imaging fiber tracking using navigated brain stimulation – a feasibility study. Acta Neurochir (Wien). 2012;154(3):555–563. PMID: 22270529 https://doi.org/10.1007/s00701-011-1255-3; Rosenstock T, Grittner U, Acker G, Schwarzer V, Kulchytska N, Vajkoczy P, et al. Risk stratifcation in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data. J Neurosurg. 2017;126(4):1227-1237. PMID: 27257834 https://doi.org/10.3171/2016.4.JNS152896; Sollmann N, Wildschuetz N, Kelm A, Conway N, Moser T, Bulubas L, et al. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach. J Neurosurg. 2018;128(3):800-810. PMID: 28362239 https://doi.org/10.3171/2016.11.JNS162322; Takakura T, Muragaki Y, Tamura M, Maruyama T, Nitta M, Niki C, et al. Navigated transcranial magnetic stimulation for glioma removal: prognostic value in motor function recovery from postsurgical neurological deficits. J Neurosurg. 2017;127(4):877–891. PMID: 28059664 https://doi.org/10.3171/2016.8.JNS16442; Conway N, Wildschuetz N, Moser T, Bulubas L, Sollmann N, Tanigawa N, et al. Cortical plasticity of motor-eloquent areas measured by navigated transcranial magnetic stimulation in patients with glioma. J Neurosurg. 2017;127(5):981-991. PMID: 28106500 https://doi.org/10.3171/2016.9.JNS161595; Forster MT, Senft C, Hattingen E, Lorei M, Seifert V, Szelenyi A. Motor cortex evaluation by nTMS after surgery of central region tumors: a feasibility study. Acta Neurochir (Wien). 2012;154(8):1351–1359. PMID: 22669201 https://doi.org/10.1007/s00701-012-1403-4; Ille S, Picht T, Shiban E, Meyer B, Vajkoczy P, Krieg SM. The impact of nTMS mapping on treatment of brain AVMs. Acta Neurochir (Wien). 2018;160(3):567-578. PMID: 29368047 https://doi.org/10.1007/s00701-018-3475-2; Germano A, Raffa G, Conti A, Fiore P, Cardali SM, Esposito F, et al. Modern treatment of brain arteriovenous malformations using preoperative planning based on navigated transcranial magnetic stimulation: a revisitation of the concept of eloquence. World Neurosurg. 2019;131:371–384. PMID: 31247351 https://doi.org/10.1016/j.wneu.2019.06.119; Zdunczyk A, Fleischmann R, Schulz J, Vajkoczy P, Picht T. The reliability of topographic measurements from navigated transcranial magnetic stimulation in healthy volunteers and tumor patients. Acta Neurochir (Wien). 2013;155(7):1309–1317. PMID: 23479092 https://doi.org/10.1007/s00701-013-1665-5; Butenschon VM, Ille S, Sollmann N, Meyer B, Krieg SM. Cost-effectiveness of preoperative motor mapping with navigated transcranial magnetic brain stimulation in patients with high-grade glioma. Neurosurg Focus. 2018;44(6):E18. PMID: 29852777 https://doi.org/10.3171/2018.3.FOCUS1830; Kombos T, Picht T, Derdilopoulos A, Suess O. Impact of intraoperative neurophysiological monitoring on surgery of high-grade gliomas. J Clin Neurophysiol. 2009;26(6):422–425. PMID: 19952567 https://doi.org/10.1097/WNP.0b013e3181c2c0dc; Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, et al. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg. 2015;123(1):212–225. PMID: 25748306 https://doi.org/10.3171/2014.9.JNS14929; Mirbagheri A, Schneider H, Zdunczyk A, Vajkoczy P, Picht T. NTMS mapping of non-primary motor areas in brain tumour patients and healthy volunteers. Acta Neurochir (Wien). 2020;162(2):407–416. PMID: 31768755 https://doi.org/10.1007/s00701-019-04086-x; Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, et al. Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery. 2011;69(3):581–589. PMID: 21430587 https://doi.org/10.1227/NEU.0b013e3182181b89; https://www.jnmp.ru/jour/article/view/1344

  7. 7
    Academic Journal

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 37, № 1 (2022); 67-76 ; Сибирский журнал клинической и экспериментальной медицины; Том 37, № 1 (2022); 67-76 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://cardiotomsk.elpub.ru/jour/article/view/1356/687; Всемирная организация здравоохранения. 10 ведущих причин смерти в мире. URL: https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death; Starodubov V.I., Marczak L.B., Varavikova E., Bikbov B., Ermakov S.P., Gall J. et al. The burden of disease in Russia from 1980 to 2016: А systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10153):1138–1146. DOI:10.1016/S0140-6736(18)31485-5.; Коков А.Н., Масенко В.Л., Семенов С.Е., Барбараш О.Л. МРТ сердца в оценке постинфарктных изменений и ее роль в определении тактики реваскуляризации миокарда. Комплексные проблемы сердечно-сосудистых заболеваний. 2014;(3):97–102. DOI:10.17802/2306-1278-2014-3-97-102.; Сигаев И.Ю., Алшибая М.М., Бокерия О.Л., Бузиашвили Ю.И., Голухова Е.З., Мерзляков В.Ю. и др. Современные тенденции развития коронарной хирургии в НЦССХ им. А.Н. Бакулева. Бюллетень НЦССХ им А.Н. Бакулева РАМН. 2016;17(3):66–76.; Contreras C.A.M., Orellana P.X., de Almeida A.F.S., Finger M.A., Rossi Neto J.M., Chaccur P. Left ventricular reconstruction surgery in candidates for heart transplantation. Braz. J. Cardiovasc. Surg. 2019;34(3):265–270. DOI:10.21470/1678-9741-2018-0087.; Hartyánszky I., Tóth A., Berta B., Pólos M., Veres G., Merkely B. et al. Personalized surgical repair of left ventricular aneurysm with computer-assisted ventricular engineering. Interact. Сardiovasc. Thorac. Surg. 2014;19(5):801–806. DOI:10.1093/icvts/ivu219.; Yan J., Jiang S.-L. Impact of surgical ventricular restoration on early and long-term outcomes of patients with left ventricular aneurysm. Medicine (Baltimore). 2020;97(41):e12773. DOI:10.1097/MD.0000000000012773.; Siddiqui I., Nguyen T., Movahed A., Kabirdas D. Elusive left ventricular thrombus: Diagnostic role of cardiac magnetic resonance imaging-A case report and review of the literature. World J. Clin. Cases. 2018;6(6):127–131. DOI:10.12998/wjcc.v6.i6.127.; Paul M., Schäfers M., Grude M., Reinke F., Juergens K.U., Fischbach R. et al. Idiopathic left ventricular aneurysm and sudden cardiac death in young adults. Europace. 2006;8(8):607–612. DOI:10.1093/europace/eul074.; Levin D., Mackensen G.B., Reisman M., McCabe J.M., Dvir D., Ripley B. 3D printing applications for transcatheter aortic valve replacement. Curr. Card. Rep. 2020;22(4):23. DOI:10.1007/s11886-020-1276-8.; Vukicevic M., Puperi D.S., Jane Grande-Allen K., Little S.H. 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann. Biomed. Eng. 2017;45(2):508–519. DOI:10.1007/s10439-016- 1676-5.; Чернявский А.М., Карева Ю.Е., Денисова М.А., Эфендиев В.У. Проблема предоперационного моделирования левого желудочка. Кардиология и сердечно-сосудистая хирургия. 2015;8(2):4–7. DOI:10.17116/kardio2015824-7.; Cox J.L. Surgical management of left ventricular aneurysms: a clarification of the similarities and differences between the Jatene and Dor techniques. Semin. Thorac. Cardiovasc. Surg. 1997;9(2):131–138.; Jacobs S., Grunert R., Mohr F.W., Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact. Сardiovasc. Thorac. Surg. 2008;7(1):6–9. DOI:10.1510/icvts.2007.156588.; Радивилко А.С. Профилактика осложнений после операций с искусственным кровообращением (дайджест публикаций). Комплексные проблемы сердечно-сосудистых заболеваний. 2016;(3):117–123. DOI:10.17802/2306-1278-2016-3-117-123.; Чегрина Л.В., Рыбка М.М. Взаимосвязь повышения послеоперационного уровня тропонина Т и лактата с развитием осложнений у больных, оперированных с применением искусственного кровообращения. Клиническая физиология кровообращения. 2015;(1):42–48.; Белов Ю.В., Литвицкий П.Ф., Винокуров И.А. Острая почечная недостаточность в кардиохирургической практике: предикторы, механизмы развития и критерии диагноза. Сеченовский вестник. 2015;22(4):4–11.; Farhoudi M., Mehrvar K., Afrasiabi A., Parvizi R., Khalili A.A., Nasiri B. et al. Neurocognitive impairment after off-pump and on-pump coronary artery bypass graft surgery – an Iranian experience. Neuropsychiatr. Dis. Treat. 2010;6:775–778. DOI:10.2147/NDT.S14348.; Motallebzadeh R., Bland J.M., Markus H.S., Kaski J.C., Jahangiri M. Neurocognitive function and cerebral emboli: randomized study of onpump versus off-pump coronary artery bypass surgery. Ann. Thorac. Surg. 2007;83(2):475–482. DOI:10.1016/j.athoracsur.2006.09.024.; Lombard F.W., Mathew J.P. Neurocognitive dysfunction following cardiac surgery. Semin. Cardiothorac. Vasc. Anesth. 2010;14(2):102–110. DOI:10.1177/1089253210371519.; https://cardiotomsk.elpub.ru/jour/article/view/1356

  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 11, № 3 (2020); 7-13 ; Лучевая диагностика и терапия; Том 11, № 3 (2020); 7-13 ; 2079-5343 ; 10.22328/2079-5343-2020-3

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/541/423; Vukicevic M., Puperi D.S., Jane Grande-Allen K., Little S.H. Cardiac 3D рrinting and its future directions // JACC Cardiovasc Imaging. 2017. Vol. 10, No. 2. P. 171–184. DOI:10.1007/s10439-016-1676-5.; Коровин А.Е., Нагибович О.А., Пелешок С.А., Копыленкова Т.И., Шилин В.П., Ольховик А.Ю., Шевченко В.А. 3D- моделирование и биопрототипирование в военной медицине // Клиническая патофизиология. 2015. № 3. P. 17–23.; Meier L.M., Meineri M., Qua Hiansen J., Horlick E.M. Structural and congenital heart disease interventions: the role of three- dimensional printing // Neth Heart J. 2017. Vol. 25, No. 2. P. 65–75. DOI:10.1007/s12471-016-0942-3.; Багатурия Г.О. Перспективы использования 3D-печати при планировании хирургических операций // Медицина: теория и практика. 2016. Vol. 1, No. 1. P. 26–35.; Farooqi K.M., Cooper C., Chelliah A., Saeed O., Chai P.J., Jambawalikar S.R., Lipson H., Bacha E.A., Einstein A.J., Jorde U.P. 3D printing and heart failure: the present and the future // JACC: Heart Failure. 2019. Vol. 7, No. 2. P. 132–142. DOI:10.1016/j.jchf.2018.09.011.; Luo H., Meyer-Szary J., Wang Z., Sabiniewicz R., Liu Y. Three-dimensional printing in cardiology: current applications and future challenges // Cardiol. J. 2017. Vol. 24, No. 4. P. 436–444. DOI:10.5603/CJ.a2017.0056.; Mathur M., Patil P., Bove A. The role of 3D printing in structural heart disease: all that glitters is not gold // JACC: Cardiovascular Imaging. 2015. Vol. 8, No. 8. P. 987–988. DOI:10.1016/j.jcmg.2015.03.009.; El Sabbagh A., Eleid M.F., Al-Hijji M., Anavekar N.S., Holmes D.R., Nkomo V.T., Oderich G.S., Cassivi S.D., Said S.M., Rihal C.S.; Matsumoto J.M., Foley T.A. The various applications of 3D printing in cardiovascular diseases // Curr. Cardiol Rep. 2018. Vol. 20, No. 6. P. 47. DOI:10.1007/s11886-018-0992-9.; Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions // Revista Española de Cardiología (English Edition). 2017. Vol. 70, No. 4. P. 282–291. DOI:10.1016/j.rec.2017.01.012.; Liu P., Liu R., Zhang Y., Liu Y., Tang X., Cheng Y. The value of 3D printing models of left atrial appendage using real-time 3D transesophageal echocardiographic data in left atrial appendage occlusion: applications toward an era of truly personalized medicine // Cardiology. 2016. Vol. 135, No. 4. P. 255–261. DOI:10.1159/000447444.; Maragiannis D., Jackson M.S., Igo S.R., Schutt R.C., Connell P., GrandeAllen J., Barker C.M., Chang S.M., Reardon M.J., Zoghbi W.A., Little S.H. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling // Circcardiovasc imaging. 2015. Vol. 8, No. 10. P. e003626.DOI:10.1161/CIRCIMAGING.115.003626.; Нагибович О.А., Свистов Д.В., Пелешок С.А., Коровин А.Е., Городков Е.В. Применение технологии 3D-печати в медицине // Клиническая патофизиология. 2017. Vol. 23, No. 3. P. 14–22.; Schmauss D., Haeberle S., Hagl C., Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience // Eur. J. Cardiothorac Surg. 2015. Vol. 47, No. 6. P. 1044–1052. DOI:10.1093/ejcts/ezu310.; Wang J., Coles-Black J., Matalanis G., Chuen J. Innovations in cardiac surgery: techniques and applications of 3D printing // J. 3D Print. Med. 2018. Vol. 2, No. 4. P. 179–186. DOI:10.2217/3dp-2018-0013.; Park C.Y., Chang J.K., Jeong D.Y., Yoon G.J., Chung C., Kim J.K., Han D.C., Min B.G. Development of a custom designed TAH using rapid prototyping // Asaio journal (American Society for Artificial Internal Organs: 1992). 1997. Vol. 43, No. 5.; Harb S.C., Xu B., Klatte R., Griffin B.P., Rodriguez L.L. Haemodynamic assessment of severe aortic stenosis using a three-dimensional (3D) printed model incorporating a flow circuit // Heart, Lung and Circulation. 2018. Vol. 27. DOI:10.1016/j.hlc.2018.05.099.; Binder T.M., Moertl D., Mundigler G., Rehak G., Franke M., Delle-Karth G., Mohl W., Baumgartner H., Maurer G. Stereolithographic biomodelling to create tangible hard copies of cardiac structures from echocardiographic data: In vitro and in vivo validation // Journal of the American College of Cardiology. 2000. Vol. 35, No. 1. P. 230–237. DOI:10.1016/S0735-1097(99)00498-2.; Ngan E.M., Rebeyka I.M., Ross D.B., Hirji M., Wolfaardt J.F., Seelaus R., Grosvenor A., Noga M.L. The rapid prototyping of anatomic models in pulmonary atresia // The Journal of Thoracic and Cardiovascular Surgery. 2006. Vol. 132, No. 2. P. 264–269. DOI:10.1016/j.jtcvs.2006.02.047.; Noecker A.M., Chen J.F., Zhou Q., White R.D., Kopcak M.W., Arruda M.J., Duncan B.W. Development of patient-specific three-dimensional pediatric cardiac models // Asaio Journal. 2006. Vol. 52, No. 3. P. 349–353. DOI:10.1097/01.mat.0000217962.98619.ab.; Schievano S., Migliavacca F., Coats L., Khambadkone S., Carminati M., Wilson N., Deanfield J.E., Bonhoeffer P., Taylor A.M. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from mr data // Radiology. 2007. Vol. 242, No. 2. P. 490–497. DOI:10.1148/radiol.2422051994; Jacobs S., Grunert R., Mohr F.W., Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study // Interact Cardio Vasc Thorac Surg. 2008. Vol. 7, No. 1. P. 6–9. DOI:10.1510/icvts.2007.156588.; Ma X.J., Tao L., Chen X., Li W., Peng Z.Y., Chen Y., Jin J., Zhang X.L., Xiong Q.F., Zhong Z.L., Chen X.F. Clinical application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot // Genet. Mol. Res. 2015. Vol. 14, No. 1. P. 1301–1309. DOI:10.4238/2015.February.13.9.; Guo H.C., Wang Y., Dai J., Ren C.W., Li J.H., Lai Y.Q. Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: a preliminary study // J. Thorac. Dis. 2018. Vol. 10, No. 2. P. 867–873. DOI:10.21037/jtd.2018.01.55.; Valverde I., Gomez G., Coserria J.F., Suarez-Mejias C., Uribe S., Sotelo J., Velasco M.N., Santos De Soto J., Hosseinpour A.R., Gomez-Cia T. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia: 3D cardiovascular model simulation // Catheterization and Cardiovascular Interventions. 2015. Vol. 85. DOI:10.1002/ccd.25810.; Lim K.H., Loo Z.Y., Goldie S.J., Adams J.W., McMenamin P.G. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy // Anatomical sciences education. 2015. Vol. 9. DOI:10.1002/ase.1573.; Costello J.P., Olivieri L.J., Krieger A., Thabit O., Marshall M.B., Yoo S.J., Kim P.C., Jonas R.A., Nath D.S. Utilizing three- dimensional printing technology to assess the feasibility of high- fidelity synthetic ventricular septal defect models for simulation in medical education // World journal for pediatric & congenital heart surgery. 2014. Vol. 5. P. 421–426. DOI:10.1177/2150135114528721; Ochoa S., Segal J., Garcia N., Fischer E.A. Three‐dimensional printed cardiac models for focused cardiac ultrasound instruction // Journal of Ultrasound in Medicine. 2018. Vol. 38. DOI:10.1002/jum.14818.; White S.C., Sedler J., Jones T.W., Seckeler M. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects // Congenit Heart Dis. 2018. Vol. 13, No. 6. P. 1045–1049. DOI:10.1111/chd.12673.; Smerling J., Marboe C.C., Lefkowitch J.H., Pavlicova M., Bacha E., Einstein A.J., Naka Y., Glickstein J., Farooqi K.M. Utility of 3D printed cardiac models for medical student education in congenital heart disease: across a spectrum of disease severity // Pediatr. Cardiol. 2019. Vol. 40, No. 6. P. 1258–1265. DOI:10.1007/s00246-019-02146-8.; Biglino G., Capelli C., Wray J., Schievano S., Leaver L.K., Khambadkone S., Giardini A., Derrick G., Jones A., Taylor A.M. 3D-manufactured patientspecific models of congenital heart defects for communication in clinical practice: Feasibility and acceptability // BMJ Open. 2015. Vol. 5. P. e007165. DOI:10.1136/bmjopen-2014-007165; Wamala I., Brüning J., Dittmann J., Jerichow S., Weinhold J., Goubergitis L., Hennemuth A., Volkmar F., KempfertJ… Simulation of a Right Anterior Thoracotomy Access for Aortic Valve Replacement Using a 3D Printed Model // Innovations (Phila). 2019. P. 1–8. DOI:10.1177/1556984519870510.; Estai M., Bunt S. Best teaching practices in anatomy education: a critical review // Annals of anatomy. 2016. Vol. 208. P. 151–157. DOI:10.1016/j.aanat.2016.02.010.; Shi D., Liu K., Zhang X., Liao H., Chen X. Applications of three- dimensional printing technology in the cardiovascular field // Internal and emergency medicine. 2015. Vol. 10. DOI:10.1007/s11739-015-1282-9.; Schievano S., Taylor A.M., Capelli C., Coats L., Walker F., Lurz P., Nordmeyer J., Wright S., Khambadkone S., Tsang V., Carminati M., Bonhoeffer P. First-in-man implantation of a novel percutaneous valve: a new approach to medical device development // EuroIntervention. 2010. Vol. 5, No. 6. P. 745–750.; Pepper J., Petrou M., Rega F., Rosendahl U., Golesworthy T., Treasure T. Implantation of an individually computer-designed and manufactured external support for the Marfan aortic root // Multimed Man Cardiothorac Surg. 2013. Vol. 2013. P. 1–8. DOI:10.1093/mmcts/mmt004.; Herrmann T.A., Siefert A.W., Pressman G.S., Gollin H.R., Touchton S.A. Jr. Saikrishnan N., Yoganathan A.P. In vitro comparison of doppler and cathetermeasured pressure gradients in 3D models of mitral valve calcification // J. Biomech Eng. 2013. Vol. 135, No. 9. DOI:10.1115/1.4024579.; Mashari A., Knio Z., Jeganathan J., Montealegre-Gallegos M., Yeh L., Amador Y., Matyal R., Saraf R., Khabbaz K., Mahmood F. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: a clinical application of three-dimensional printing // Journal of Cardiothoracic and Vascular Anesthesia. 2016. Vol. 30. DOI:10.1053/j.jvca.2016.01.013.; Aldosari S., Jansen S., Sun Z. Patient-specific 3D printed pulmonary artery model with simulation of peripheral pulmonary embolism for developing optimal computed tomography pulmonary angiography protocols // Quant. Imaging Med. Surg. 2019. Vol. 9, No. 1. P. 75–85. DOI:10.21037/qims.2018.10.13.; Vignali E., Manigrasso Z., Gasparotti E., Biffi B., Landini L., Positano V., Capelli C., Celi S. Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion // Int. J. Artif. Organs. 2019. Vol. 42, № 10. P. 539–547. DOI:10.1177/0391398819856892.; Byrne N., Velasco Forte M., Tandon A., Valverde I., Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system // JRSM Cardiovascular Disease. 2016. Vol. 5. DOI:10.1177/2048004016645467.; https://radiag.bmoc-spb.ru/jour/article/view/541

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: POLYTRAUMA; № 1 (2019): март; 36-41 ; ПОЛИТРАВМА / POLYTRAUMA; № 1 (2019): март; 36-41 ; 2541-867X ; 1819-1495

    وصف الملف: application/pdf; text/html

  13. 13
    Academic Journal

    المصدر: Medical Visualization; № 5 (2018); 6-13 ; Медицинская визуализация; № 5 (2018); 6-13 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/649/501; Keles G.E., Chang E.F., Lamborn K.R., Tihan T., Chang C.J., Chang S.M., Berger M.S. Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J. Neurosurg. 2006; 105: 34–40. DOI:10.3171/jns.2006.105.1.34.; Keles G.E., Lamborn K.R., Berger M.S. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J. Neurosurg. 2001; 95: 735–745. DOI:10.3171/jns.2001.95.5.0735.; Lacroix M., Abi-Said D., Fourney D.R., Gokaslan Z.L., Shi W., DeMonte F., Lang F.F., McCutcheon I.E., Hassenbusch S.J., Holland E., Hess K., Michael C., Miller D., Sawaya R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 2001; 95: 190–198. DOI:10.3171/jns.2001.95.2.0190.; McGirt M.J., Chaichana K.L., Gathinji M., Attenello F.J., Than K., Olivi A., Weingart J.D., Brem H., Quinones-Hinojosa A.R. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J. Neurosurg. 2009; 110: 156–162. DOI:10.3171/2008.4.17536.; Sanai N., Mirzadeh Z., Berger M.S. Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 2008; 358: 18–27. DOI:10.1056/NEJMoa067819.; Matthews P.M., Honey G.D., Bullmore E.T. Applications of fMRI in translational medicine and clinical practice. Nat. Rev. Neurosci. 2006; 7: 732–744. DOI:10.1038/nrn1929.; French C.C., Beaumont J.G. A critical review of EEG coherence studies of hemisphere function. Int. J. Psychophysiol. 1984; 1: 241–254.; Kiviniemi V., Kantola J.H., Jauhiainen J., Hyvärinen A., Tervonen O. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage. 2003; 19: 253–260.; Locatelli T., Cursi M., Liberati D., Franceschi M., Comi G. EEG coherence in Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 1998; 106: 229–237.; Smith S.M., Fox P.T., Miller K.L., Glahn D.C., Fox P.M., Mackay C.E., Filippini N., Watkins K.E., Toro R., Laird A.R., Beckmann C.F. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA. 2009; 106: 13040–13045. DOI:10.1073/pnas.0905267106.; Larson-Prior L.J., Zempel J.M., Nolan T.S., Prior F.W., Snyder A.Z., Raichle M.E. Cortical network functional connectivity in the descent to sleep. Proc. Natl. Acad. Sci. USA. 2009; 106: 4489–4494. DOI:10.1073/pnas.0900924106.; Samann P.G., Tully C., Spoormaker V.I., Wetter T.C., Holsboer F., Wehrle R., Czisch M. Increased sleep pressure reduces resting state functional connectivity. MAGMA. 2010; 23: 375–389. DOI:10.1007/s10334-010-0213-z.; Mhuircheartaigh R.N., Rosenorn-Lanng D., Wise R., Jbabdi S., Rogers R., Tracey I. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J. Neurosci. 2010; 30: 9095–9102. DOI:10.1523/JNEUROSCI.5516-09.2010.; Gusnard D.A., Raichle M.E. Searching for a baseline: functional imaging and the resting humanbrain. Nat. Rev. Neurosci. 2001; 2: 685–694. DOI:10.1038/35094500.; Shulman G.L., Fiez J.A., Corbetta M., Buckner R.L., Miezin F.M., Raichle M.E., Petersen S.E. Common blood flow changes across visual tasks. II. Decreases in cerebral cortex. J. Cogn. Neurosci. 1997; 9: 648–663. DOI:10.1162/jocn.1997.9.5.648.; Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA. 2003; 100: 253–258. DOI:10.1073/pnas.0135058100.; Beckmann C.F., De Luca M., Devlin J.T., Smith S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2005; 360: 1001–1013. DOI:10.1098/rstb.2005.1634.; Damoiseaux J.S., Rombouts S.A., Barkhof F., Scheltens P., Stam C.J., Smith S.M., Beckmann C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA. 2006; 103: 13848–13853.; De Luca M., Beckmann C.F., De Stefano N., Matthews P.M., Smith S.M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neu-reimage. 2006; 29: 1359–1367. DOI:10.1016/j.neuroimage.2005.08.035.; Lee M.H., Hacker C.D., Snyder A.Z., Corbetta M., Zhang D., Leuthardt E.C., Shimony J.S. Clustering of resting state networks. PLoSOne. 2012; 7: e40370. DOI:10.1371/journal.pone.0040370.; van den Heuvel M., Mandl R., Hulshoff Pol. H. Normalized cut group clustering of resting-state fMRI data. PLoSOne. 2008; 3: e2001. DOI:10.1371/journal.pone.0002001.; Yeo B.T., Krienen F.M., Sepulcre J., Sabuncu M.R., Lashkari D., Hollinshead M., Roffman J.L., Smoller J.W., Zollei L., Polimeni J.R., Fischl B., Liu H., Buckner R.L. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011; 106: 1125–1165. DOI:10.1152/jn.00338.2011.; Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA2005; 102: 9673–9678. DOI:10.1073/pnas.0504136102.; Golland Y., Golland P., Bentin S., Malach R. Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems. Neuropsychologia. 2008; 46: 540–553. DOI:10.1016/j.neuropsychologia.2007.10.003.; Chai X.J., Castanon A.N., Ongur D., Whitfield- Gabrieli S.: Anticorrelations in resting state networks without global signal regression. Neuroimage. 2012; 59: 1420–1428. DOI:10.1016/j.neuroimage.2011.08.048.; Power J.D., Cohen A.L., Nelson S.M., Wig G.S., Barnes K.A., Church J.A., Vogel A.C., Laumann T.O., Miezin F.M., Schlaggar B.L., Petersen S.E. Functional network organization of the human brain. Neuron. 2011; 72: 665–678. DOI:10.1016/j.neuron.2011.09.006.; Zhang Z., Liao W., Zuo X.N., Wang Z., Yuan C., Jiao Q., Chen H., Biswal B.B., Lu G., LiuY. Resting-state brain organization revealed by functional covariance networks. PLoSOne. 2011; 6: e28817. DOI:10.1371/journal.pone.0028817.; Doucet G., Naveau M., Petit L., Delcroix N., Zago L., Crivello F., Jobard G., Tzourio-Mazoyer N., Mazoyer B., Mellet E., Joliot M. Brain activity at rest:a multiscale hierarchical functional organization. J. Neurophysiol. 2011; 105: 2753–2763. DOI:10.1152/jn.00895.2010.; Jack A.I., Dawson A.J., Begany K.L., Leckie R.L., Barry K.P., Ciccia A.H., Snyder A.Z. fMRI reveals reciprocal inhibition between social and physical cognitive domains. Neuroimage. 2012; 66C: 385–401. DOI:10.1016/j.neuroimage.2012.10.061.; Spreng R.N. The fallacy of a ‘task-negative’ network. Front Psychol. 2012; 3: 145. DOI:10.3389/fpsyg.2012.00145.; Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995; 34: 537–541.; Hacker C.D., Laumann T.O., Szrama N.P., Baldassarre A., Snyder A.Z., Leuthardt E.C., Corbetta M. Resting state network estimation in individual subjects. Neuroimage. 2013; 82: 616–633. DOI:10.1016/j.neuroimage.2013.05.108.; Lee M.H., Smyser C.D., Shimony J.S. Resting-state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 2013; 34: 1866–1872. DOI:10.3174/ajnr.A3263.; Tomasi D., Volkow N.D. Resting functional connectivity of language networks:characterization and reproducibility. Mol. Psychiatry. 2012; 17: 841–854. DOI:10.1038/mp.2011.177.; Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002; 3: 201–215. DOI:10.1038/nrn755.; Fox M.D., Corbetta M., Snyder A.Z., Vincent J.L., Raichle M.E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. USA. 2006; 103: 10046–10051. DOI:10.1073/pnas.0604187103.; Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007; 27: 2349–2356. DOI:10.1523/JNEUROSCI.5587-06.2007.; Astafiev S.V., Shulman G.L., Corbetta M. Visuo-spatial reorienting signals in the humantem-poro-parietal junction are independent of response selection. Eur. J. Neurosci. 2006; 23: 591– 596. DOI:10.1111/j.1460-9568.2005.04573.x.; Power J.D., Petersen S.E. Control-related systems in the human brain. Curr. Opin. Neurobiol. 2013; 23: 223–228. DOI:10.1016/j.conb.2012.12.009.; Vincent J.L., Kahn I., Snyder A.Z., Raichle M.E., Buckner R.L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 2008; 100: 3328–3342. DOI:10.1152/jn.90355.2008.; Dosenbach N.U., Visscher K.M., Palmer E.D., Miezin F.M., Wenger K.K., Kang H.C., Burgund E.D., Grimes A.L., Schlaggar B.L., Petersen S.E. A core system for the implementation of task sets. Neuron. 2006; 50: 799–812. DOI:10.1016/j.neuron.2006.04.031.; Zhang D., Johnston J.M., Fox M.D., Leuthardt E.C., Grubb R.L., Chicoine M.R., Smyth M.D., Snyder A.Z., Raichle M.E., Shimony J.S. Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery. 2009; 65: 226–236. DOI:10.1227/01.NEU.0000350868.95634.CA.; Zhang D., Snyder A.Z., Fox M.D., Sansbury M.W., Shimony J.S., Raichle M.E. Intrinsic functional relations between human cerebralcortex and thalamus. J. Neurophysiol. 2008; 100: 1740–1748. DOI:10.1152/jn.90463.2008.; Quigley M., Cordes D., Wendt G., Turski P., Moritz C., Haughton V., Meyerand M.E. Effect of focal and nonfocal cerebral lesions on functional connectivity studied with MR imaging. Am. J. Neuroradiol. 2001; 22: 294–300.; Liu H., Buckner R.L., Talukdar T., Tanaka N., Madsen J.R., Stufflebeam S.M. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J. Neurosurg. 2009; 111: 746–754. DOI:10.3171/2008.10.JNS08846.; Otten M. L., Mikell C.B., Youngerman B.E., Liston C., Sisti M.B., Bruce J.N., Small S.A., Mc-Khann G.M. 2nd. Motor deficits correlate with resting state motor network connectivity in patients with brain tumours. Brain. 2012; 135: 1017–1026. DOI:10.1093/brain/aws041.; Mitchell T.H., Hacker C.D., Breshears J.D., Szrama N.P., Sharma M., Bundy D.T., Pahwa M., Corbetta M., Snyder A.Z., Shimony J.S., Leuthardt E.C. A novel datadriven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery. 2013; 73: 969–982. DOI:10.1227/NEU.0000000000000141.; https://medvis.vidar.ru/jour/article/view/649

  14. 14
    Academic Journal
  15. 15
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20