-
1Academic Journal
المؤلفون: Ismail Allakov, binti Deraman Fatanah, binti Sapar Siti Hasana, binti Ismail Shahrina, Исмаил Аллаков, бинти Дераман Фатана, бинти Сапар Сити Хасана, бинти Исмаил Шахрина
المصدر: Chebyshevskii Sbornik; Том 24, № 5 (2023); 5-15 ; Чебышевский сборник; Том 24, № 5 (2023); 5-15 ; 2226-8383 ; 10.22405/2226-8383-2023-24-5
مصطلحات موضوعية: иррациональные числа, estimation, finite groups, sum of characters, additive characters, multiplicative character, Beatty sequences, number theory, pigeonhole principle, rational number, irrational numbers, оценка, конечные группы, сумма характеров, аддитивный характеры, мультипликативный характеры, последовательность битти, теория чисел, принцип «ячейки», рациональное число
وصف الملف: application/pdf
Relation: https://www.chebsbornik.ru/jour/article/view/1617/1135; Chua L., Park S., Smith G.D., “Bounded Gaps Between Primes in Special Sequences” // Proceedings of The American Mathematical Society, Springer Berlin Heidelberg, 2015, vol. 143, pp. 4597-4611. (http://doi.org/10.1090/proc/12607); Guloglu A. M., Nevans C. W., “Sums of multiplicative functions over a Beatty sequence” // Bull. Austral. Math. Soc., 78, pp. 327–334, 2008. (https://doi.org/10.1017/S0004972708000853); Simpson R. J., “Disjoint covering systems rational Beatty sequences” // Discrete Mathematics, 92, pp. 361-369, 1991.; Banks W. D., Shparlinski I. E., “Non-residues and primitive roots in Beatty sequences” // Bull. Austral. Math. Soc. 73, pp. 433–443, 2006. (https://doi.org/10.1017/S0004972700035449); Banks W. D., Shparlinski I. E., “Short character sums with beatty sequences” // Math. Res. Lett., 13, pp. 1–100N, 2006. (https://doi.org/10.4310/MRL.2006.v13.n4.a4); Cassaigne J., Duch˜Aane E., Rigo M., “Nonhomogeneous beatty sequences leading to invariant games” // SIAM Journal on Discrete Mathematics 30, pp. 1798–1829, 2016. (https://doi.org/10.1137/130948367); Kimberling C., “Beatty sequences and trigonometric functions” // INTEGERS 16, 2016.; (https://www.emis.de/journals/INTEGERS/papers/ q15/q15.pdf); Deraman F. , Sapar S. H., Johari M. A. M., Atan K. A. M., Rasedee A. F. N., “Extended Bounds of Beatty Sequence Associated with Primes” // International Journal of Engineering and Advanced Technology, pp. 115-118, 2019.; Polya G., “Uher die Verteilung der quadratischen Reste und Nichtreste” // Nachrichten Knigl. Ges. Wiss. Gttingen, pp. 21-29, 1918.; Vinogradov I. M., “Uber die Verteilung der quadratischen Reste und Nichtrete” // J. Soc. Phys. Math. Univ., 2, pp. 1-14, 1919.; Friedlander J., Iwaniec H., “Estimates for character sums” // Proceedings of The American Mathematical Society, vol. 119, no. 2 (Oct., 1993), pp. 365-372.; Cassaigne J., Duchlne E., Rigo M., “Nonhomogeneous Beatty sequencesleading to invariant games” // SIAM Journal on Descrete Mathematics, vol. 30:3, pp. 1798-1829, 2016. (https://doi.org/10.1137/130948367); Fraenkel A. S., “How to beat your Wythoff games opponents on three fronts” // Amer. Math. Monthly, 89, pp. 353-361, 1982.; Cassaigne J., Duchene E., Rigo M., “Invariant games and non-homogeneous Beatty sequences” // Arxiv, vol. abs/1312.2233, 2013. (https://arxiv.org/abs/1312.2233); Lidl R., Niederreiter H., “Uniform distribution of sequences” // New York, John Wiley Sons, 1974.; Hlawka E., Taschner R., Schoißengeier J., “Geometric and Analytic Number Theory” // Springer-Verlag, 1991.; Lidl R. and Niederreiter H., "Introduction To Finite Fields and Their Applications” // Cambridge University Press, 1983.; https://www.chebsbornik.ru/jour/article/view/1617
-
2Academic Journal
المؤلفون: Alexander Vladimirovich Begunts, Dmitry Victorovich Goryashin, Александр Владимирович Бегунц, Дмитрий Викторович Горяшин
المصدر: Chebyshevskii Sbornik; Том 23, № 5 (2022); 145-151 ; Чебышевский сборник; Том 23, № 5 (2022); 145-151 ; 2226-8383 ; 10.22405/2226-8383-2022-23-5
مصطلحات موضوعية: однородная последовательность Битти, тригонометрические суммы, асимптотическая формула, exponential sums, asymptotic formula
وصف الملف: application/pdf
Relation: https://www.chebsbornik.ru/jour/article/view/1413/1032; Beatty S. Problem 3173 // American Mathematical Monthly, 33 (3), 1926, p. 159.; Бегунц А. В., Горяшин Д. В. Актуальные задачи, связанные с последовательностями Бит-; ти // Чебышевский сборник. 18. Вып. 4. 2017. 97—105. doi:10.22405/2226-8383-2017-18-4-; 105; Technau, M., 2018, “On Beatty sets and some generalisations thereof”, W¨urzburg, W¨urzburg; University Press. doi:10.25972/WUP-978-3-95826-089-4; Skolem, Th. On certain distributions of integers in pairs with given differences // Math. Scand.; (1957), 57–68.; Bang, T. On the sequence [𝑛𝛼], 𝑛 = 1, 2, 3 . . . Supplementary note to the preceding paper by; Th. Skolem // Math. Scand. 5 (1957), 69–76.; Архипов Г. И., Садовничий В. А., Чубариков В. Н. Лекции по математическому анализу; е изд., перераб. и доп. — М.: Дрофа, 2004. 640 c.; Шмидт, Вольфганг М. О совместных приближениях двух алгебраических чисел рациональ-; ными // Математика, 1971, том 15, выпуск 3, 3–25.; Кейперс Л., Нидеррейтер Г. Равномерное распределение последовательностей: Пер. с ан-; гл. — М.: Наука, 1985. — 408 с.; Beck, J. Probabilistic Diophantine Approximation, I. Kronecker Sequences // Annals of; Mathematics, Sep., 1994, Second Series, Vol. 140, No. 2 (Sep., 1994), pp. 449+451-502.; https://www.chebsbornik.ru/jour/article/view/1413