-
1Academic Journal
المصدر: Литосфера, Vol 0, Iss 3, Pp 31-48 (2019)
مصطلحات موضوعية: ультрамафитовые комплексы, перидотиты, хромшпинелиды, генезис, фундамент западной сибири, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, TA703-712
وصف الملف: electronic resource
-
2Academic Journal
المصدر: Литосфера, Vol 0, Iss 5, Pp 20-36 (2019)
مصطلحات موضوعية: мантийные перидотиты, мантийное плавление, взаимодействие перидотит-расплав, надсубдукционные зоны, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, TA703-712
وصف الملف: electronic resource
-
3Academic Journal
المصدر: Geodynamics & Tectonophysics; Том 11, № 1 (2020); 1-15 ; Геодинамика и тектонофизика; Том 11, № 1 (2020); 1-15 ; 2078-502X
مصطلحات موضوعية: серпентиниты, ridge-transform intersection, oceanic core complexes, peridotites, serpentinites, обусловленная разной плотностью пород, пересечение хребта и трансформного разлома, комплексы океанических ядер, перидотиты
وصف الملف: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/980/479; Agostini A., Corti G., Zeoli A., Mulugeta G., 2009. Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models. Geochemistry, Geophysics, Geosystems 10 (11), Q11015. https://doi.org/10.1029/ 2009GC002676.; Ahrens T., Schubert G., 1975. Gabbro-eclogite reaction rate and its geophysical significance. Reviews of Geophysics 13 (2), 383–400. https://doi.org/10.1029/RG013i002p00383.; Andreani M., Mevel C., Boullier A.-M., Escartin J., 2007. Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems 8 (2), Q02012. https://doi.org/10.1029/2006GC001373.; Benioff H., 1951. Global strain accumulation and release as revealed by great earthquakes. Geological Society of America Bulletin 62 (4), 331–338. https://doi.org/10.1130/ 0016-7606(1951)62[331:GSAARA]2.0.CO;2.; Bonatti E., 1968. Ultramafic rocks from the Mid-Atlantic Ridge. Nature 219 (5152), 363–364. https://doi.org/10.1038/219363a0.; Boutelier D., Beckett D., 2018. Initiation of subduction along oceanic transform faults: insights from three-dimensional analog modeling experiments. Frontiers in Earth Science 6, 204. https://doi.org/10.3389/feart.2018.00204.; Brune S., Williams S., Mueller D., 2018. Oblique rifting: the rule, not the exception. Solid Earth 9 (5), 1187–1206. https://doi.org/10.5194/se-9-1187-2018.; Cann J.R., Blackman D.K., Smith D.K., McAllister E., Janssen B., Mello S., Avgerinos E., Pascoe A.R., Escartin J., 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385 (6614), 329– 332. https://doi.org/10.1038/385329a0.; Cannat M., Bideau D., Bougault H., 1992. Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37’ N and 16°52’ N. Earth and Planetary Letters 109 (1–2), 87–106. https://doi.org/10.1016/0012-821X(92)90076-8.; Cannat. M., Bideau. D., Hebert. R., 1990. Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise). Earth and Planetary Science Letters 101 (2–4), 216–232. https://doi.org/10.1016/0012-821X(90)90155-Q.; Cannat M., Mevel C., Maia M., Deplus C., Durand C., Genite P., Agrinier P., Ballarouchi A., Dubuisson G., Hurnier E., Reynolds J., 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23 (1), 49–52. https://doi.org/10.1130/0091-7613(1995)0232.3.CO;2.; Casey J.F., Dewey J.F., 1984. Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres – implications for ophiolitic geology and obduction. In: I.G. Gass, S.J. Lippard, A.W. Shelton (Eds), Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publications, vol. 13, p. 269–290. https://doi.org/10.1144/GSL.SP.1984.013.01.22.; Chemenda A.I., Mattauer M., Malavieille J., Bokun A.N., 1995. A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modelling. Earth and Planetary Science Letters 132 (1–4), 225–232. https://doi.org/10.1016/0012-821X(95)00042-B.; Constantin M., Hekinian R., Ackermand D., Stoffers P., 1995. Mafic and ultramafic intrusions into upper mantle peridotites from fast spreading centers of the Easter Microplate (South East Pacific). In: R.L.M. Vissers, A. Nicolas (Eds), Mantle and lower crust exposed in oceanic ridges and in ophiolites. Springer, Netherlands, p. 71–120.; Dannowski A., Grevenmeyer I., Ranero C.R., Ceuleneer G., Maia M., Morgan J.P., Gente P., 2010. Seismic structure of an oceanic core complex at the Mid‐Atlantic Ridge, 22°19′N. Journal of Geophysical Research: Solid Earth 115 (B7), B07106. https://doi.org/10.1029/2009JB006943.; Dewey J.F., Casey J.F., 2011. The origin of obducted large-slab ophiolite complexes. In: D. Brown, P.D. Ryan (Eds), Arc-continent collision. Springer, Berlin, p. 431–444. https://doi.org/10.1007/978-3-540-88558-0_15.; Dick H.J.B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: A.D. Saunders, M.J. Norry (Eds), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, vol. 42, p. 71–105. https://doi.org/10.1144/GSL.SP.1989.042.01.06.; Dick H.J.B., Bullen T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86 (1), 54–76. https://doi.org/10.1007/BF00373711.; Dick H.J.B., Tivey M.A., Tucholke B.E., 2008. Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30’N, 45°40’W. Geochemistry, Geophysics, Geosystems 9 (5), Q05014. https://doi.org/10.1029/2007GC001645.; Escartin J., Smith D.K., Cann J., Schouten H., Langmuir C.H., Escrig S., 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455 (7214), 790–794. https://doi.org/10.1038/nature 07333.; Ewing J., Ewing M., 1959. Seismic refraction measurements in the Atlantic Ocean basins, in the Mediterranean Sea, on the Mid-Atlantic Ridge, and in the Norwegian Sea. Geological Society of America Bulletin 70 (3), 291–318. https://doi.org/10.1130/0016-7606(1959)70[291:SMI TAO]2.0.CO;2.; Fossen H., 2016. Structural Geology. Second Edition. Cambridge University Press, Cambridge, 503 p.; Francheteau J., Choukroune P., Hekinian R., Le Pichon X., Needham H.D., 1976. Oceanic fracture zones do not provide deep sections in the crust. Canadian Journal of Earth Sciences 13 (9), 1223–1235. https://doi.org/10.1139/e76-124.; Gerya T.V., 2011. Intra-oceanic subduction zones. In: D. Brown, P.D. Ryan (Eds.), Arc-continent collision. Springer, Berlin, p. 23–53. https://doi.org/10.1007/978-3-540-88558-0_2.; Ghose I., Cannat M., Seyler M., 1996. Transform fault effect on mantle melting in the MARK area (Mid-Atlantic Ridge south of the Kane transform). Geology 24 (12), 1139– 1142. https://doi.org/10.1130/0091-7613(1996)0242.3.CO;2.; Goren L., Aharonov E., Mulugeta G., Koyi H.A., Mart Y., 2008. Ductile deformation of passive margins: A new mechanism for subduction initiation. Journal of Geophysical Research: Solid Earth 113 (B8), B08411. https://doi.org/10.1029/2005JB004179.; Guillot S.P., Schwartz S.P., Reynard B., Agard P., Prigent C.C., 2015. Tectonic significance of serpentinites. Tectonophysics 646, 1–19. https://doi.org/10.1016/j.tecto.2015.01.020.; Hawkins J.W., 2003. Geology of supra-subduction zones: Implications for the origin of ophiolites. In: Y. Dilek, S. Newcomb (Eds.), Ophiolite concept and the evolution of geological thought. Geological Society of America Special Paper, vol. 373, p. 227–268. https://doi.org/10.1130/0-8137-2373-6.227.; Hékinian R., Bideau D., Hébert R., Niu Y., 1995. Magmatism in the Garrett transform fault (East Pacific Rise near 13 27′ S). Journal of Geophysical Research: Solid Earth 100 (B6), 10163–10185. https://doi.org/10.1029/94JB02125.; Hess H.H., 1955. Serpentinites, orogeny and epeirogeny. In: A. Poldervaart (Ed.), Crust of the Earth: A Symposium. Geological Society of America Special Paper vol. 62, p. 391–408. https://doi.org/10.1130/SPE62-p391.; Jarrard R.D., 1986. Relations among subduction parameters. Reviews of Geophysics 24 (2), 217–284. https://doi.org/10.1029/RG024i002p00217.; John B.E., Cheadle M.J., 2010. Deformation and alteration associated with oceanic and continental detachment fault systems: are they similar? In: P.A. Rona, C.W. Devey, J.D. Bramley, J. Murton (Eds.), Diversity of hydrothermal systems on slow spreading ocean ridges. Geophysical Monograph Series, vol. 188, p. 175–205. https://doi.org/10.1029/2008GM000772.; Katz R.F., Spiegelman M., Langmuir C.H., 2003. A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems 4 (9), 1073. https://doi.org/10.1029/2002GC000433.; Kelemen P.B., Kikawa E., Miller D.J., and Shipboard Scientific party, 2007. 1. Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid- Atlantic Ridge, 14°–16°N. Scientific Results, Ocean Drilling Program, College Station, TX, 209, p. 1–33.; Kessel R., Ulmer O., Pettke T., Schmidt M.W., Thompson A.B., 2005. The water–basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth and Planetary Science Letters 237 (3–4), 873–892. https://doi.org/10.1016/j.epsl.2005.06.018.; Khedr M.Z., Arai S., Python M., Tamura A., 2014. Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity. Gondwana Research 25 (3), 1242–1262. https://doi.org/10.1016/j.gr.2013.05.010.; Knott R., Fouquet Y., Honorez J., Peterson S., Bohn M., 1998. Petrology of hydrothermal mineralization: a vertical section through the TAG mound. In: P.M. Herzig, S.E. Humphris, D.J. Miller, R.A. Zierenberg (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 158, Ocean Drilling Program, Texas, A & M University, College Station, TX, p. 5–26.; Le Pichon X., Sibuet J.-C., 1981, Passive margins: A model of formation. Journal of Geophysical Research: Solid Earth 86 (B5), 3708–3720. https://doi.org/10.1029/JB086iB05p03708.; Maffione M., Thieulot C., van Hinsbergen D.J.J., Morris A., Plümper O., Spakman W., 2015. Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra‐subduction zone ophiolites. Geochemistry, Geophysics, Geosystems 16 (6), 1753–1770. https://doi.org/10.1002/2015GC005746.; Mart Y., Aharonov E., Mulugeta G., Ryan W., Tentler T., Goren L., 2005. Analogue modelling of the initiation of subduction. Geophysical Journal International 160 (3), 1081–1091. https://doi.org/10.1111/j.1365-246X.2005.02544.x.; Mart Y., Dauteuil O., 2000. Analogue experiments of propagation of oblique rifts. Tectonophysics 316 (1–2), 121–132. https://doi.org/10.1016/S0040-1951(99)00231-0.; McCaig A. M., Delacour A., Fallick A.E., Castelain T., Früh‐Green G., 2010. Detachment fault control on hydrothermal circulation systems: Interpreting the subsurface beneath the TAT hydrothermal field using the Isotopic and geological evolution of oceanic core complexes in the Atlantic. In: P.A. Rona, C.W. Devey, J. Dyment, B.J. Murton (Eds), Diversity of hydrothermal systems on slow spreading ocean ridges. Geophysical Monograph Series, vol. 188, p. 207–239. https://doi.org/10.1029/2008GM000729.; McKenzie D., 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters 40 (1), 25–32. https://doi.org/10.1016/0012-821X(78)90071-7.; Mével C., 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience 335 (10–11), 825–852. https://doi.org/10.1016/j.crte.2003.08.006.; Mortimer E., Paton D.A., Scholz C.A., Strecker M.R., Blisniuk P., 2007, Orthogonal to oblique rifting: effect of rift basin orientation in the evolution of the North basin, Malawi Rift, East Africa. Basin Research 19 (3), 393–407. https://doi.org/10.1111/j.1365-2117.2007.00332.x.; Mulugeta G., 1988. Squeeze box in a centrifuge. Tectonophysics 148 (3–4), 323–335. https://doi.org/10.1016/0040-1951(88)90139-4.; Nikolaeva K., Gerya T.V., Marques F.O., 2010. Subduction initiation at passive margins: Numerical modeling. Journal of Geophysical Research: Solid Earth 115 (B3), B03406. https://doi.org/10.1029/2009JB006549.; Ohara Y., Yoshida T., Kato Y., Kasuga S., 2001. Giant Megamullion in the Parece Vela backarc basin. Marine Geophysical Researches 22 (1), 47–61. https://doi.org/10.1023/A:1004818225642.; Parnell-Turner R., Sohn R.A., Peirce C., Reston T.J., MacLeod C.J., Searle R.C., Simão N.M., 2017. Oceanic detachment faults generate compression in extension. Geology 45 (10), 923–926. https://doi.org/10.1130/G39232.1.; Rouméjon S., Cannat M., Agrinier P., Godard M., Andreani M., 2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62–65 °E). Journal of Petrology 56 (4), 703–734. https://doi.org/10.1093/petrology/egv014.; Scholz C.H., 2002. The Mechanics of Earthquakes and Faulting. Second Edition. Cambridge University Press, Cambridge, 485 p.; Scholz C.H., Campos J., 1995. On the mechanism of seismic decoupling and the back arc spreading at subduction zones. Journal of Geophysical Research: Solid Earth 100 (B11), 22103–22115. https://doi.org/10.1029/95JB01869.; Sclater J.G., Francheteau J., 1970. The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth. Geophysical Journal of the Royal Astronomical Society 20 (5), 509–542. https://doi.org/10.1111/j.1365-246X.1970.tb06089.x.; Shemenda A.I., 1993. Subduction of the lithosphere and back arc dynamics: Insights from physical modeling. Journal of Geophysical Research: Solid Earth 98 (B9), 16167– 16185. https://doi.org/10.1029/93JB01094.; Sibuet J.-C., Tucholke B.E., 2013. The geodynamic province of transitional lithosphere adjacent to magma-poor continental margins. In: W.U. Mohriak, A. Danforth, P.J. Post, D.E. Brown, G.C. Tari, M. Nemčok, S.T. Sinha (Eds), Conjugate divergent margins. Geological Society, London, Special Publications, vol. 369, p. 429–452. https://doi.org/10.1144/SP369.15.; Smith D.K., Cann J.R., Escartin J., 2006. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442 (7101), 440– 443. https://doi.org/10.1038/nature04950.; Stein S., Stein C.A., 1996. Thermo-mechanical evolution of oceanic lithosphere: implications for the subduction process and deep earthquakes. In G.E. Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (Eds), Subduction: top to bottom. Geophysical Monograph Series, vol. 96, p. 1–18. https://doi.org/10.1029/GM096p0001.; Taylor B., Goodliffe A., Martinez F., 2009. Initiation of transform faults at rifted continental margins. Comptes Rendus Geoscience 341 (5), 428–438. https://doi.org/10.1016/j.crte.2008.08.010.; Tucholke B.E., Jian L., Kleinrock M.C., 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth 103 (B5), 9857–9866. https://doi.org/10.1029/98JB00167.; Turner F.J., Verhoogen J., 1960. Igneous and Metamorphic Rocks. McGraw – Hill Book Co., New York, 694 p.; Wernicke B., 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences 22 (1), 108–125. https://doi.org/10.1139/e85-009.; Whitney D.L., Teyssier C., Rey P., Buck W.R., 2013. Continental and oceanic core complexes. Geological Society of America Bulletin 125 (3–4), 273–298. https://doi.org/10.1130/B30754.1.; Wilson J.T., 1965. A new class of faults and their bearing on continental drift. Nature 207 (4995), 343–347. https://doi.org/10.1038/207343a0.; https://www.gt-crust.ru/jour/article/view/980
-
4Academic Journal
المؤلفون: I. V. Ashchepkov, A. S. Ivanov, S. I. Kostrovitsky, M. A. Vavilov, S. A. Babushkina, N. V. Vladykin, N. S. Tychkov, N. S. Medvedev, И. В. Ащепков, А. С. Иванов, С. И. Костровицкий, М. А. Вавилов, С. А. Бабушкина, Н. В. Владыкин, Н. С. Тычков, Н. С. Медведев
المساهمون: Работа выполнена при поддержке РФФИ (проект № 19‐05‐00788) и по государственному заданию ИГМ СО РАН (г. Новосибирск), а также НИГП АК «Алроса» ПАО (г. Якутск), ИГХ СО РАН (г. Иркутск), ИГАБМ СО РАН (г. Якутск) и ИЗК СО РАН (г. Иркутск)
المصدر: Geodynamics & Tectonophysics; Том 10, № 2 (2019); 197-245 ; Геодинамика и тектонофизика; Том 10, № 2 (2019); 197-245 ; 2078-502X
مصطلحات موضوعية: взаимодействие, terrane, Siberian craton, thermobarometry, peridotite, eclogite, garnet, kimberlite, transect, geochemistry of rare elements, stratification/layering, oxidative potential, plume, interaction, террейн, Сибирский кратон, термобарометрия, перидотиты, эклогиты, гранаты, кимберлиты, трансект, геохимия редких элементов, слоистость, окислительный потенциал, плюм
وصف الملف: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/839/433; Afanasiev V.P., Ashchepkov I.V., Verzhak V.V., O’Brien H., Palessky S.V., 2013. PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia. Journal of Asian Earth Sciences 70–71, 45–63. https://doi.org/10.1016/j.jseaes.2013.03.002.; Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I.S., 2013. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161, 201–215. https://doi.org/10.1016/j.lithos.2012.11.014.; Agashev A.M., Pokhilenko N.P., Tolstov A.V., Polyanichko V.G., Mal’kovets V.G., Sobolev N.V., 2004. New age data on kimberlites from the Yakutian diamondiferous province. Doklady Earth Sciences 399 (8), 1142–1145.; Agee C.B., 1998. Crystal-liquid density inversions in terrestrial and lunar magmas. Physics of the Earth and Planetary Interiors 107 (1–3), 63–74 https://doi.org/10.1016/S0031-9201(97)00124-6.; Artemieva I.M., Thybo H., Cherepanova Y., 2019. Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth and Planetary Science Letters 505, 13–19. https://doi.org/10.1016/j.epsl.2018.09.034.; Ащепков И.В. Программа мантийных термометров и барометров, использование: реконструкции и калибровки PT методов // Вестник ОНЗ РАН. 2011. Т. 3. NZ6008 https://doi.org/10.2205/2011NZ000138.; Ashchepkov I.V., Alymova N.V., Logvinova A.M., Vladykin N.V., Kuligin S.S., Mityukhin S.I., Downes H., Stegnitsky Y.B., Prokopiev S.A., Salikhov R.F., Palessky S.V., Khmelnikova O.S., 2014. Picroilmenites in Yakutian kimberlites: Variations and genetic models. Solid Earth 5 (2), 915–938. https://doi.org/10.5194/se-5-915-2014.; Ashchepkov I.V., Kuligin S.S., Vladykin N.V., Downes H., Vavilov M.A., Nigmatulina E.N., Babushkina S.A., Tychkov N.S., Khmelnikova O.S., 2016. Comparison of mantle lithosphere beneath Early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts. Geoscience Frontiers 7 (4), 639–662. https://doi.org/10.1016/j.gsf.2015.06.004.; Ashchepkov I.V., Logvinova A.M., Ntaflos T., Vladykin N.V., Kostrovitsky S.I., Spetsius Z., Mityukhin S.I., Prokopyev S.A., Medvedev N.S., Downes H., 2017b. Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle subterranes beneath central Yakutia? Geoscience Frontiers 8 (4), 671–692. https://doi.org/10.1016/j.gsf.2016.08.004.; Ashchepkov I.V., Logvinova A.M., Reimers L.F., Ntaflos T., Spetsius Z.V., Vladykin N.V., Downes H., Yudin D.S., Travin A.V., Makovchuk I.V., Palesskiy V.S., Khmel'nikova O.S., 2015. The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geoscience Frontiers 6 (5), 687–714. https://doi.org/10.1016/j.gsf.2014.08.005.; Ashchepkov I.V., Ntaflos T., Kuligin S.S., Malygina E.V., Agashev A.M., Logvinova A.M., Mityukhin S.I., Alymova N.V., Vladykin N.V., Palessky S.V., Khmelnikova O.S., 2013b. Deep-seated xenoliths from the Brown Breccia of the Udachnaya Pipe, Siberia. In: D. Graham Pearson, H.S. Grütter, J.W. Harris, B.A. Kjarsgaard, H. O’Brien, N.V. Chalapathi Rao, S. Sparks (Eds.), Proceedings of 10th International Kimberlite Conference. Vol. 1 (Special Issue of the Journal of the Geological Society of India), Springer, New Delhi, p. 59–73. https://doi.org/10.1007/978-81-322-1170-9_5.; Ashchepkov I.V., Ntaflos T., Logvinova A.M., Spetsius Z.V., Downes H., Vladykin N.V., 2017а. Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems. Geoscience Frontiers 8 (4), 775–795 https://doi.org/10.1016/j.gsf.2016.06.012.; Ashchepkov I.V., Ntaflos T., Spetsius Z.V., Salikhov R.F., Downes H., 2017c. Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia (Russia). Geoscience Frontiers 8 (4), 693–710. https://doi.org/10.1016/j.gsf.2016.05.008.; Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Afanasiev V.P., Pokhilenko L.N., Kuligin S.S., Malygina E.V., Alymova N.A., Kostrovitsky S.I., Rotman A.Y., Mityukhin S.I., Karpenko M.A., Stegnitsky Y.B., Khemelnikova O.S., 2010. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485 (1–4), 17–41. https://doi.org/10.1016/j.tecto.2009.11.013.; Ashchepkov I.V., Vladykin N.N., Ntaflos T., Kostrovitsky S.I., Prokopiev S.A., Downes H., Smelov A.P., Agashev A.M., Logvinova A.M., Kuligin S.S., Tychkov N.S., Salikhov R.F., Stegnitsky Yu.B., Alymova N.V., Vavilov M.A., Minin V.A., Babushkina S.A., Ovchinnikov Yu.I., Karpenko M.A., Tolstov A.V., Shmarov G.P., 2014a. Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics 634 (1–4), 55–75. https://doi.org/10.1016/j.tecto.2014.07.017.; Ashchepkov I.V., Vladykin N.V., Nikolaeva I.V., Palessky S.V., Logvinova A.M., Saprykin A.I., Khmel’nikova O.S., Anoshin G.N., 2004. Mineralogy and geochemistry of mantle inclusions and mantle column structure of the Yubileinaya kimberlite pipe, Alakit field, Yakutia. Doklady Earth Sciences 395 (3), 378–384.; Ashchepkov I.V., Vladykin N.V., Ntaflos T., Downes H., Mitchell R., Smelov A.P., Alymova N.V., Kostrovitsky S.I., Rotman A.Ya, Smarov G.P., Makovchuk I.V., Stegnitsky Yu.B., Nigmatulina E.N., Khmelnikova O.S., 2013a. Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons. Gondwana Research 23 (1), 4–24. https://doi.org/10.1016/j.gr.2012.03.009.; Ashchepkov I.V., Vladykin N.V., Saprykin A.I., Khmelnikova O.S., Anoshin G.N., 2001. Composition and thermal structure of the mantle in peripheral parts of Siberian craton. Revista Brasileira de Geociências 31 (4), 493–496.; Aulbach S., Griffin W.L., Pearson N.J., O'Reilly S.Y., Kivi K., Doyle B.J., 2004. Mantle formation and evolution, Slave craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology 208 (1–4), 61–88. https://doi.org/10.1016/j.chemgeo.2004.04.006.; Бабушкина С.А. Типоморфизм гранатов трубки Запретная // Разведка и охрана недр. 2013. № 12. С. 13–16.; Bascou J., Doucet L.S., Saumet S., Ionov D.A., Ashchepkov I.V., Golovin A.V., 2011. Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth and Planetary Science Letters 304 (1–2), 71–84. https://doi.org/10.1016/j.epsl.2011.01.016.; Batumike J.M., Griffin W.L., O'Reilly S.Y., 2009. Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos 112 (Supplement 1), 166–176. https://doi.org/10.1016/j.lithos.2009.04.020.; Beard B.L., Fraracci K.N., Taylor L.A., Snyder G.A., Clayton R.N., Mayeda T.K., Sobolev N.V., 1996. Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contributions to Mineralogy and Petrology 125 (4), 293–310. https://doi.org/10.1007/s004100050223.; Boyd F.R., 1973. A pyroxene geotherm. Geochimica et Cosmochimica Acta 37 (12), 2533–2546. https://doi.org/10.1016/0016-7037(73)90263-9.; Boyd F.R., Nixon P.H., 1978. Ultramafic nodules from the Kimberley pipes, South Africa. Geochimica et Cosmochimica Acta 42 (9), 1367–1382. https://doi.org/10.1016/0016-7037(78)90042-X.; Boyd F.R., Pokhilenko N.P., Pearson D.G., Mertzman S.A., Sobolev N.V., Finger L.W., 1997. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology 128 (2–3), 228–246. https://doi.org/10.1007/s004100050305.; Brey G.P., Köhler T., 1990. Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.; Bushenkova N., Tychkov S., Koulakov I., 2002. Tomography on PP-P waves and its application for investigation of the upper mantle in central Siberia. Tectonophysics 358 (1–4), 57–76. https://doi.org/10.1016/S0040-1951(02)00417-1.; Condie K.C., 2004. Supercontinents and superplume events: distinguishing signals in the geologic record. Physics of the Earth and Planetary Interiors 146 (1–2), 319–332. https://doi.org/10.1016/j.pepi.2003.04.002.; Dawson J.B., 1980. Kimberlites and Their Xenoliths. Springer-Verlag, Berlin, New York, 208 p.; Deschamps F., Godard M., Guillot S., Hattori K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96–127. https://doi.org/10.1016/j.lithos.2013.05.019.; Egorov K.N., Kiselev A.I., Men’shagin Y.V., Minaeva Y.A., 2010. Lamproite and kimberlite of the Sayany area: Composition, sources, and diamond potential. Doklady Earth Sciences 435 (2), 1670–1675. https://doi.org/10.1134/S1028334X10120251.; Egorov K.N., Solov’eva L.V., Kovach V.P., Men’shagin Yu.V., Maslovskaya M.N., Sekerin A.P., Bankovskaya E.V., 2006. Petrological features of olivine-phlogopite lamproites of the Sayan region: Evidence from Sr-Nd isotope and ICP-MS trace-element data. Geochemistry International 44 (7), 729–735. https://doi.org/10.1134/S0016702906070093.; Ernst W.G., 2017. Earth’s thermal evolution, mantle convection, and Hadean onset of plate tectonics. Journal of Asian Earth Sciences 145 (Part B), 334–348 https://doi.org/10.1016/j.jseaes.2017.05.037.; Evensen N.M., Hamilton P.J., O'Nions R.K., 1978. Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42 (8), 1199–1212. https://doi.org/10.1016/0016-7037(78)90114-X.; Foley S.F., Pintér Z., 2018. Chapter 1 – Primary melt compositions in the Earth's mantle. In: Y. Kono, C. Sanloup (Eds.), Magmas Under Pressure. Advances in High-Pressure Experiments on Structure and Properties of Melts. Elsevier, Amsterdam, p. 3–42. https://doi.org/10.1016/B978-0-12-811301-1.00001-0.; Foley S.F., Yaxley G.M., Rosenthal A., Buhre S., Kiseeva E.S., Rapp R.P., Jacob D.E., 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112 (Supplement 1), 274–283. https://doi.org/10.1016/j.lithos.2009.03.020.; Гаранин В.К, Звездин A.B., Округин Г.В. Минералогия оксидных минералов из кимберлитов трубки Моркока в связи с оценкой ее алмазоносности (Якутская алмазоносная провинция) // Вестник Московского университета. Серия 4: Геология. 1998. № 4. С. 39–46.; Gaul O.F., Griffin W.L., O'Reilly S.Y., Pearson N.J., 2000. Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters 182 (3–4), 223–235. https://doi.org/10.1016/S0012-821X(00)00243-0.; Gerya T., 2014. Precambrian geodynamics: Concepts and models. Gondwana Research 25 (2), 442–463. https:// doi.org/10.1016/j.gr.2012.11.008.; Gladkochub D.P., DonskayaT.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H., 2019. U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of Paleo-Asian Ocean. Gondwana Research 65, 1–16. https://doi.org/10.1016/j.gr.2018.07.007.; Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Natapov L.M., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., 2006. Siberian Craton and its evolution in terms of Rodinia hypothesis. Episodes 29 (3), 169–174.; Gornova M.A., Belyaev V.A., Belozerova O.Yu., 2013. Textures and geochemistry of the Saramta peridotites (Siberian craton): Melting and refertilization during early evolution of the continental lithospheric mantle. Journal of Asian Earth Sciences 62, 4–17. https://doi.org/10.1016/j.jseaes.2012.10.004.; Граханов А.С., Зарукин Р.А., Богуш И.Н., Ядренкин А.Б. Открытие верхнетриасовых россыпей алмазов в Оленекском заливе моря Лаптевых // Отечественная геология. 2009. № 1. C. 53–61.; Grégoire M., Bell D., Le Roex A., 2002. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contributions to Mineralogy and Petrology 142 (5), 603–625. https://doi.org/10.1007/s00410-001-0315-8.; Grégoire M., Bell D.R., Le Roex A.P., 2003. Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. Journal of Petrology 44 (4), 629–657. https://doi.org/10.1093/petrology/44.4.629.; Griffin W.L., Fisher N.I., Friedman J., Ryan C.G., O’Reilly S.Y., 1999а. Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. Journal of Petrology 40 (5), 679–704. https://doi.org/10.1093/petroj/40.5.679.; Griffin W.L., Natapov L.M., O'Reilly S.Y., van Achterbergh E., Cherenkova A.F., Cherenkov V.G., 2005. The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos 81 (1–4), 167–187. https://doi.org/10.1016/j.lithos.2004.10.001.; Griffin W.L., O’Reilly S.Y., 2007. Cratonic lithospheric mantle: is anything subducted? Episodes 30 (1), 43–53.; Griffin W.L., O’Reilly S.Y., Abe N., Aulbach S., Davies R.M., Pearson N.J., Doyle B.J., Kivi K., 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Research 127 (1–3), 19–41. https://doi.org/10.1016/S0301-9268(03)00180-3.; Griffin W.L., O’Reilly S.Y., Afonso J.C., Begg G.C., 2009. The composition and evolution of lithospheric mantle: a reevaluation and its tectonic implications. Journal of Petrology 50 (7), 1185–1204. https://doi.org/10.1093/petrology/egn033.; Griffin W.L., Ryan C.G., Kaminsky F.V., O'Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999c. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.; Griffin W.L., Shee S.R., Ryan C.G., Win T.T., Wyatt B.A., 1999b. Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology 134 (2–3), 232–250. https://doi.org/10.1007/s004100050481.; Gudmundsson G., Wood B.J., 1995. Experimental tests of garnet peridotite oxygen barometry. Contributions to Mineralogy and Petrology 119 (1), 56–67. https://doi.org/10.1007/BF00310717.; Helmstaedt H., 2009. Crust–mantle coupling revisited: the Archean Slave craton, NWT, Canada. Lithos 112 (Supplement 2), 1055–1068. https://doi.org/10.1016/j.epsl.2011.04.034.; Herzberg C., 2004. Geodynamic information in peridotite petrology. Journal of Petrology 45 (12), 2507–2530. https://doi.org/10.1093/petrology/egh039.; Ionov D.A., Doucet L.S., Ashchepkov I.V., 2010. Composition of the lithospheric mantle in the Siberian Craton: new constraints from fresh peridotites in the Udachnaya-East Kimberlite. Journal of Petrology 51 (11), 2177–2210. https://doi.org/10.1093/petrology/egq053.; Ionov D.A., Doucet L.S., Carlson R.W., Golovin A.V., Korsakov A.V., 2015. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochimica et Cosmochimica Acta 165, 466–483. https://doi.org/10.1016/j.gca.2015.06.035.; Ionov D.A., Doucet L.S., Xu Y., Golovin A.V., Oleinikov O.B., 2018. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochimica et Cosmochimica Acta 224, 132–153. https://doi.org/10.1016/j.gca.2017.12.028.; Jagoutz E., Lowry D., Mattey D., Kudrjavtseva G., 1994. Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust. Geochimica et Cosmochimica Acta 58 (23), 5191–5207. https://doi.org/10.1016/0016-7037(94)90304-2.; Karato S.I., 2010. Rheology of the Earth's mantle: A historical review. Gondwana Research 18 (1), 17–45. https:// doi.org/10.1016/j.gr.2010.03.004.; Kopylova M.G., Caro G., 2004. Mantle xenoliths from the Southeastern Slave craton: Evidence for chemical zonation in a thick, cold lithosphere. Journal of Petrology 45 (5), 1045–1067. https://doi.org/10.1093/petrology/egh003.; Koreshkova M.Yu., Downes H., Nikitina L.P., Vladykin N.V., Larionov A.N., Sergeev S.A., 2009. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambrian Research 168 (3–4), 197–212. https://doi.org/10.1016/j.precamres.2008.09.007.; Корнилова В.П., Специус З.В., Помазанскией Б.С. Петрографо-минералогические особенности и целесообразность переоценки алмазоносности кимберлитовых трубок Лорик и Светлана (Западно-Укукитское поле, Якутия) // Региональная геология и металлогения. 2016. № 68. C. 92–99.; Kostrovitsky S.I., Alymova N.V., Yakovlev D.A., Serov I.V., Ivanov A.S., Serov V.P., 2006. Specific features of picroilmenite composition in various diamondiferous fields of the Yakutian province. Doklady Earth Sciences 406 (1), 19–23. https://doi.org/10.1134/S1028334X06010065.; Kostrovitsky S.I., Morikiyo T., Serov I.V., Yakovlev D.A., Amirzhanov A.A., 2007. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russian Geology and Geophysics 48 (3), 272–290. https:// doi.org/10.1016/j.rgg.2007.02.011.; Koulakov I., Bushenkova N., 2010. Upper mantle structure beneath the Siberian craton and surrounding areas based on fieldal tomographic inversion of P and PP travel times. Tectonophysics 486 (1–4), 81–100. https://doi.org/10.1016/j.tecto.2010.02.011.; Krogh E.J., 1988. The garnet-clinopyroxene Fe-Mg geothermometer – a reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology 99 (1), 44–48. https://doi.org/10.1007/BF00399364.; Кулигин С.С. Комплекс ксенолитов пироксенитов различных регионов Сибирской платформы: Дис. … канд. геол.-мин. наук. Новосибирск: ОИГГМ СО РАН, 1997. 190 с.; Kuskov O.L., Kronrod V.A., Prokof’ev A.A., 2011. Thermal structure and thickness of the lithospheric mantle underlying the Siberian Craton from the kraton and kimberlit superlong seismic profiles. Izvestiya, Physics of the Solid Earth 47 (3), 155–175. https://doi.org/10.1134/S1069351310111011.; Kuskov O.L., Kronrod V.A., Prokof’ev A.A., Pavlenkova N.I., 2014a. Lithospheric mantle structure of the Siberian craton inferred from the superlong Meteorite and Rift seismic profiles. Russian Geology and Geophysics 55 (7), 892–906. https://doi.org/10.1016/j.rgg.2014.06.008.; Kuskov O.L., Kronrod V.A., Prokofyev A.A., Pavlenkova N.I., 2014b. Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics 615–616, 154–166. https://doi.org/10.1016/j.tecto.2014.01.006.; Лаврентьев Ю.Г., Усова Л.В. Новая версия программы «Карат» для количественного рентгеноспектрального микроанализа // Журнал аналитической химии. 1994. Т. 46. № 5. С. 462–468.; Лаврентьев Ю.Г., Усова Л.В., Кузнецова А.И., Летов С.В. Рентгеноспектральный квантометрический микроанализ важнейших минералов кимберлитов // Геология и геофизика. 1987. Т. 28. № 5. С. 75–81.; Лазько Е.Е., Роден М.Ф. Гранатовые перидотиты и пироксениты в субконтинентальной литосфере центральной части Сибирского кратона (ксенолиты из трубки Мир) // Проблемы прогнозирования, поисков и изучения месторождений полезных ископаемых на пороге ХХI века. Воронеж: Изд-во Воронежского государственного университета, 2003. С. 307–318.; Lazarov M., Brey G.P., Weyer S., 2012. Evolution of the South African mantle – A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: Inter-mineral trace element and isotopic equilibrium. Lithos 154, 193–209. https://doi.org/10.1016/j.lithos.2012.07.013.; Lee C.T.A., Luffi P., Chin E.J., 2011. Building and destroying continental mantle. Annual Review of Earth and Planetary Sciences 39, 59–90. https://doi.org/10.1146/annurev-earth-040610-133505.; Lehtonen M.L., O'Brien H.E., Peltonen P., Johanson B.S., Pakkanen L.K., 2004. Layered mantle at the Karelian Craton margin: P–T of mantle xenocrysts and xenoliths from the Kaavi–Kuopio kimberlites, Finland. Lithos 77 (1–4), 593–608. https://doi.org/10.1016/j.lithos.2004.04.026.; Liu J., Rudnick R.L., Walker R.J., Gao S., Wu F.-Y., Piccoli P.M., Yuan H., Xu W.-L., Xu Y.-G., 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochimica et Cosmochimica Acta 75 (13), 3881–3902. https://doi.org/10.1016/j.lithos.2004.04.026.; Logvinova A.M., Taylor L.A., Floss C., Sobolev N.V., 2005. Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. International Geology Review 47 (12), 1223–1233. https://doi.org/10.2747/00206814.47.12.1223.; Malkovets V.G., Griffin W.L., O'Reilly S.Y., Wood B.J., 2007. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35 (4), 339–342. https://doi.org/10.1130/G23092A.1.; Малыгина Е.В. Минералогия ксенолитов зернистых перидотитов из кимберлитовой трубки Удачная в связи с проблемой состава верхней мантии Сибирской платформы: Дис. … канд. геол.-мин. наук. Новосибирск: ИГМ СО РАН, 2000. 195 с.; Manikyamba C., Kerrich R., 2012. Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geoscience Frontiers 3 (3), 225–240. https://doi.org/10.1016/j.gsf.2011.11.009.; Manning C.E., 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters 223 (1–2), 1–16. https://doi.org/10.1016/j.epsl.2004.04.030.; McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chemical Geology 120 (3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4.; McGregor I.D., 1974. The system MgO-SiO2–Al2O3: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. American Mineralogist 59 (11), 110–119.; McKenzie D., Priestley K., 2008. The influence of lithospheric thickness variations on continental evolution. Lithos 102 (1–2), 1–11. https://doi.org/10.1016/j.lithos.2007.05.005.; Mei S., Bai W., Hiraga T., Kohlstedt D.L., 2002. Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth and Planetary Science Letters 201 (3–4), 491–507. https://doi.org/10.1016/S0012821X(02)00745-8.; Misra K.C., Anand M., Taylor L.A., Sobolev N.V., 2004. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contributions to Mineralogy and Petrology 146 (6), 696–714. https://doi.org/10.1016/j.lithos.2004.03.026.; Nickel K.G., Green D.H., 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters 73 (1), 158–170. https://doi.org/10.1016/0012-821X(85)90043-3.; Nicolas A., Dupuy C., 1984. Origin of ophiolitic and oceanic lherzolites. Tectonophysics 110 (3–4), 177–187. https:// doi.org/10.1016/0040-1951(84)90259-2.; Nimis P., Kuzmin D.V., Malkovets V., 2016. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. American Mineralogist 101 (10), 2222–2232. https://doi.org/10.2138/am-2016-5540.; Nimis P., Taylor W.R., 2000. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology 139 (5), 541–554. https://doi.org/10.1007/s004100000156.; Nimis P., Zanetti A., Dencker I., Sobolev N.V., 2009. Major and trace element composition of chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): Metasomatic processes, thermobarometry and diamond potential. Lithos 112 (3–4), 397–412. https://doi.org/10.1016/j.lithos.2009.03.038.; Олейников О.Б. Ксенолиты глубинных серпентинизированных щелочно-ультраосновных пород из кимберлитовой трубки Юбилейная // Отечественная геология. 2000. № 5. С. 74–76.; O'Neill H.S.C., Pownceby M.I., Wall V.J., 1988. Ilmenite-rutile-iron and ulvospinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvospinel (Fe2TiO4). Geochimica et Cosmochimica Acta 52 (8), 2065–2072. https://doi.org/10.1016/0016-7037(88)90185-8.; O’Neill H.St.C., Wall V.J., 1987. The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. Journal of Petrology 28 (6), 1169–1191. https://doi.org/10.1093/petrology/28.6.1169.; O'Neill H.S.C., Wood B.J., 1979. An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contributions to Mineralogy and Petrology 70 (1), 59–70. https://doi.org/10.1007/BF00371872.; O'Reilly S.Y., Zhang M., Griffin W.L., Begg G., Hronsky J., 2009. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos 112 (Supplement 2), 1043–1054. https://doi.org/10.1016/j.lithos.2009.04.028.; Овчинников Ю.И. Глубинные ксенолиты кимберлитовой трубки Обнаженная и базальтов Минусинской впадины: Дис. … канд. геол.-мин. наук. Новосибирск: ОИГГМ СО РАН, 1990. 225 с.; Parkinson I.J., Pearce J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology 39 (9), 1577–1618. https://doi.org/10.1093/petroj/39.9.1577.; Pavlenkova N.I., 2011. Seismic structure of the upper mantle along the long-range PNE profiles – rheological implication. Tectonophysics 508 (1–4), 85–95. https://doi.org/10.1016/j.tecto.2010.11.007.; Pearson D.G., 1999. The age of continental roots. In: R.D. van der Hilst, W.F. McDonough (Eds.), Composition, deep structure and evolution of continents. Developments in Geotectonics, vol. 24, p. 171–194. https://doi.org/10.1016/S0024-4937(99)00026-2.; Pearson D.G., Irvine G.J., Carlson R.W., Kopylova M.G., Ionov D.A., 2002. The development of lithospheric keels beneath the earliest continents: time constraints using PGE and Re-Os isotope systematics. In: C.M.R. Fowler, C.J. Ebinger, C.J. Hawkesworth (Eds.), The Early Earth: physical, chemical and biological development. Geological Society, London, Special Publications, vol. 199, p. 65–90. https://doi.org/10.1144/GSL.SP.2002.199.01.04.; Pearson D.G., Snyder G.A., Shirey S.B., Taylor L.A., Carlson R.W., Sobolev N.V., 1995. Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374 (6524), 711–713. https://doi.org/10.1038/374711a0.; Perchuk A.L., Safonov O.G., Smit C.A., van Reenen D.D., Zakharov V.S., Gerya T.V., 2018. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust. Tectonophysics 746, 572–586. https://doi.org/10.1016/j.tecto.2016.11.041.; Pernet-Fisher J.F., Howarth G.H., Liu Y., Barry P.H., Carmody L., Valley J.W., Bodnar R.J., Spetsius Z.V., Taylor L.A., 2014. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology 167 (3), 981. https://doi.org/10.1007/s00410-014-0981-y.; Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N., 2015. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russian Geology and Geophysics 56 (1–2), 280–295. https://doi.org/10.1016/j.rgg.2015.01.020.; Pokhilenko N.P., Pearson D.G., Boyd F.R., Sobolev N.V., 1991. Megacrystalline dunites: sources of Siberian diamonds. Carnegie Institute Washington Yearbook 90, 11–18.; Pokhilenko N.P., Sobolev N.V., Chernyi S.D., Yanygin Yu.T., 2000. Pyropes and chromites from kimberlites in the Nakyn Field (Yakutia) and Snipe Lake District (Slave River Region, Canada): evidence for anomalous structure of the lithosphere. Doklady Earth Sciences 372 (4), 638–642.; Похиленко Н.П., Соболев Н.В., Соболев В.С., Лаврентьев Ю.Г. Ксенолит алмазоносных ильменитовых пироповых лерцолитов из кимберлитовой трубки Удачная // Доклады АН СССР. 1976. Т. 231. № 2. С. 438–441.; Pollack H.N., Chapman D.S., 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38 (3–4), 279–296. https://doi.org/10.1016/0040-1951(77)90215-3.; Пономаренко А.И., Соболев Н.В., Похиленко Н.П., Лаврентьев Ю.Г., Соболев В.С. Алмазоносный гроспидит и алмазоносные дистеновые эклогиты из кимберлитовой трубки «Удачная», Якутия // Доклады АН СССР. 1976. Т. 226. № 4. С. 927–930.; Pouchou J.L., Pichoir F., 1984. A new model for quantitative X-ray microanalysis. Part I: application to the analysis of homogeneous samples. Recherche Aerospatiale 3, 167–192.; Riches A.J.V., Liu Y., Day J.M.D., Spetsius Z.V., Taylor L.A., 2010. Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120 (3–4), 368–378. https://doi.org/10.1016/j.lithos.2010.09.006.; Roden M.F., Patiño-Douce A.E., Jagoutz E., Laz'ko E.E., 2006. High pressure petrogenesis of Mg-rich garnet pyroxenites from Mir kimberlite, Russia. Lithos 90 (1–2), 77–91. https://doi.org/10.1016/j.lithos.2006.01.005.; Родионов А.С., Похиленко Н.П., Соболев Н.В. Сравнительная характеристика главнейших минералов концентрата двух разновидностей кимберлита трубки Дальняя // Геология и геофизика. 1984. Т. 25. № 5. С. 38–50.; Rosen O.M., 2003. The Siberian craton: tectonic zonation and stages of evolution. Geotectonics 37 (3), 175–192.; Rosen O.M., Levskii L.K., Zhuravlev D.Z., Rotman A.Ya., Spetsius Z.V., Makeev A.F., Zinchuk N.N., Manakov A.V., Serenko V.P., 2006. Paleoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigraphy and Geological Correlation 14 (6), 581–601. https://doi.org/10.1134/S0869593806060013.; Розен О.М., Манаков А.В., Зинчук Н.Н. Сибирский кратон: формирование, алмазоносность. М.: Научный мир, 2006. 212 с.; Rosen O.M., Serenko V.P., Spetsius Z.V., Manakov A.V., Zinchuk N.N., 2002. Yakutian kimberlite province: position in the structure of the Siberian craton and composition of the upper and lower crust. Geologiya i Geofizika (Russian Geology and Geophysics) 43 (1), 3–26.; Ryan C.G., Griffin W.L., Pearson N.J., 1996. Garnet geotherms: Pressure‐temperature data from Cr‐pyrope garnet xenocrysts in volcanic rocks. Journal of Geophysical Research: Solid Earth 101 (B3), 5611–5625. https://doi.org/10.1029/95JB03207.; Santosh M., Maruyama S., Yamamoto S., 2009. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research 15 (3–4), 324–341. https://doi.org/10.1016/j.gr.2008.11.004.; Секерин А.П., Меньшагин Ю.В., Лащенов В.А. Щелочноультраосновные породы и карбонатиты Восточного Саяна // Доклады АН СССР. 1988. T. 299. № 3. С. 711–714.; Секерин А.П., Меньшагин Ю.В., Лащенов В.А. Докембрийские лампроиты Присаянья // Доклады АН. 1993. T. 329. № 3. С. 328–331.; Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V., 2015. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Research 28 (1), 106–120. https://doi.org/10.1016/j.gr.2014.03.018.; Smelov A.P., Andreev A.P., Altukhova Z.A., Babushkina S.A., Bekrenev K.A., Zaitsev A.I., Izbekov E.D., Koroleva O.V., Mishnin V.M., Okrugin A.V., Oleinikov O.B., Surnin A.A., 2010. Kimberlites of the Manchary pipe: a new kimberlite field in Central Yakutia. Russian Geology and Geophysics 51 (1), 121–126. https://doi.org/10.1016/j.rgg.2009.12.012.; Смелов А.П., Ащепков И.В., Олейников О.Б., Сурнин А.А., Бабушкина С.А., Полуфунтикова Л.И., Королева О.В. Химический состав и Р-Т условия образования барофильных минералов из кимберлитовой трубки Манчары (Центральная Якутия) // Отечественная геология. 2009. № 5. С. 27–31.; Смелов А.П., Биллер А.Я., Зайцев А.И. Соотношение различных кристалломорфологических типов алмаза в туффитах карнийского яруса северо-восточной части Якутской кимберлитовой провинции // Отечественная геология. 2011. № 5. C. 50–55.; Smelov A.P., Kotov A.B., Sal’nikova E.B., Kovach V.P., Beryozkin V.I., Kravchenko A.A., Dobretsov V.N., Velikoslavinskii S.D., Yakovleva S.Z., 2012. Age and duration of the formation of the Billyakh tectonic melange zone, Anabar shield. Petrology 20 (3), 286–300. https://doi.org/10.1134/S0869591112030058.; Смелов А.П., Ковач В.П., Габышев В.Д. Тектоническое строение и возраст фундамента восточной части Северо-Азиатского кратона // Отечественная геология. 1998. № 6. С. 6–10.; Smelov A.P., Zaitsev A.I., 2013. The age and localization of kimberlite magmatism in the Yakutian kimberlite province: constraints from isotope geochronology – an overview. In: D.G. Pearson et al. (Eds.), Proceedings of 10th International Kimberlite Conference, vol. 1 (Special Issue of the Journal of the Geological Society of India), p. 225–234. https://doi.org/10.1007/978-81-322-1170-9_14.; Smith C.B., Pearson D.G., Bulanova G.P., Beard A.D., Carlson R.W., Wittig N., Sims K., Chimuka L., Muchemwa E., 2009. Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton. Lithos 112 (Supplement 2), 1120–1132. https://doi.org/10.1016/j.lithos.2009.05.013.; Snyder D.B., 2008. Stacked uppermost mantle layers within the Slave craton of NW Canada as defined by anisotropic seismic discontinuities. Tectonics 27 (4), TC4006. https://doi.org/10.1029/2007TC002132.; Snyder D.B., Humphreys E., Pearson D.G., 2017. Construction and destruction of some North American cratons. Tectonophysics 694, 464–485. https://doi.org/10.1016/j.tecto.2016.11.032.; Snyder G.A., Taylor L.A., Crozaz G., Halliday A.N., Beard B.L., Sobolev V.N., Sobolev N.V., 1997. The origins of Yakutian eclogite xenoliths. Journal of Petrology 38 (1), 85–113. https://doi.org/10.1093/petroj/38.1.85.; Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 264 с.; Sobolev N.V., Lavrent'ev Y.G., Pokhilenko N.P., Usova L.V., 1973. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contributions to Mineralogy and Petrology 40 (1), 39–52. https://doi.org/10.1007/BF00371762.; Sobolev N.V., Logvinova A.M., Nikolenko E.I., Lobanov S.S., 2013. Mineralogical criteria for the diamond potential of Upper Triassic placers on the northeastern margin of the Siberian Platform. Russian Geology and Geophysics 54 (8), 903–916. https://doi.org/10.1016/j.rgg.2013.07.010.; Sobolev N.V., Logvinova A.M., Zedgenizov D.A., Seryotkin Y.V., Yefimova E.S., Floss C., Taylor L.A., 2004. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77 (1–4), 225–242. https://doi.org/10.1016/j.lithos.2004.04.001.; Соболев Н.В., Похиленко Н.П., Ефимова Э.С. Ксенолиты алмазоносных перидотитов в кимберлитах и проблема происхождения алмазов // Геология и геофизика. 1984. Т. 25. № 12. С. 63–80.; Sobolev N.V., Pustyntsev V.I., Kuznetsova I.K., Khar'kiv A.D., 1970. New data on the mineralogy of the diamond-bearing eclogites from the “Mir” pipe (Yakutia). International Geology Review 12 (6), 657–659. https://doi.org/10.1080/00206817009475272.; Sobolev N.V., Sobolev V.N., Snyder G.A., Yefimova E.S., Taylor L.A., 1999. Significance of eclogitic and related parageneses of natural diamonds. International Geology Review 41 (2), 129–140. https://doi.org/10.1080/0020681990 9465135.; Соболев В.С., Соболев Н.В. О хроме и хромсодержащих минералах в глубинных ксенолитах кимберлитовых трубок // Геология рудных месторождений. 1967. № 2. С. 18–37.; Spetsius Z.V., 2004. Petrology of highly aluminous xenoliths from kimberlites of Yakutia. Lithos 77 (1–4), 525–538. https://doi.org/10.1016/j.lithos.2004.04.021.; Spetsius Z.V., Belousova E.A., Griffin W.L., O’Reilly S.Y., Pearson N.J., 2002. Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth and Planetary Science Letters 199 (1–2), 111–126. https://doi.org/10.1016/j.lithos.2004.04.021.; Специус З.В., Серенко В.П. Состав континентальной мантии и нижней коры под Сибирской платформой. М.: Наука, 1990. 271 с.; Spetsius Z.V., Taylor L.A., Valley J.W., Deangelis M.T., Spicuzza M., Ivanov A.S., Banzeruk V.I., 2008. Diamondiferous xenoliths from crustal subduction: garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia. European Journal of Mineralogy 20 (3), 375–385. https://doi.org/10.1127/0935-1221/2008/0020-1828.; Stachel T., Viljoen K.S., McDade P., Harris J.W., 2004. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton – the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contributions to Mineralogy and Petrology 147 (1), 32–47. https://doi.org/10.1007/s00410-003-0535-1.; Sun J., Liu C.-Z., Tappe S., Kostrovitsky S.I., Wu F.-Y., Yakovlev D., Yang Y.-H., Yang J.-H., 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth and Planetary Science Letters 404, 283–295. https://doi.org/10.1016/j.epsl.2014.07.039.; Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Y., Wu F.-Y., 2018. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chemical Geology 479, 228–240. https://doi.org/10.1016/j.chemgeo.2018.01.013.; Suvorov V.D., Mel’nik E.A., Mishen’kina Z.R., Pavlov E.V., Kochnev V.A., 2013. Seismic inhomogeneities in the upper mantle beneath the Siberian craton (Meteorite profile). Russian Geology and Geophysics 54 (9), 1108–1120. https://doi.org/10.1016/j.rgg.2013.07.023.; Suvorov V.D., Melnik E.A., Thybo H., Perchuć E., Parasotka B.S., 2006. Seismic velocity model of the crust and uppermost mantle around the Mirnyi kimberlite field in Siberia. Tectonophysics 420 (1–2), 49–73. https://doi.org/10.1016/j.tecto.2006.01.009.; Суворов В.Д., Юрин Ю.А., Парасотка Б.С. Структура нижней части земной коры и верхов мантии западной части Якутской кимберлитовой провинции (по данным ГСЗ) // Геология и геофизика. 1994. Т. 35. № 11. С. 126–133.; Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., Romer R.L., Stracke A., Joyce N., Hoefs J., 2006. Genesis of ultramafic lamprophyres and carbonatites at AillikBay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology 47 (7), 1261–1315. https://doi.org/10.1093/petrology/egl008.; Taylor L.A., Snyder G.A., Keller R., Remley D.A., Anand M., Wiesli R., Valley J., Sobolev N.V., 2003. Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contributions to Mineralogy and Petrology 145 (4), 424–443. https://doi.org/10.1007/s00410-003-0465-y.; Taylor W.R., Kammerman M., Hamilton R., 1998. New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. In: 7th International kimberlite conference. Extended abstracts. Cape Town, p. 891–901.; Tolstov A.V., Minin V.A., Vasilenko V.B., Kuznetsova L.G., Razumov A.N., 2009. A new body of highly diamondiferous kimberlites in the Nakyn field of the Yakutian kimberlite province. Russian Geology and Geophysics 50 (3), 162–173. https://doi.org/10.1016/j.rgg.2008.09.001.; Van Hunen J, van den Berg A.P., 2008. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103 (1–2), 217–235. https://doi.org/10.1016/j.lithos.2007.09.016.; Владимиров Б.М., Волянюк Н.Я., Пономаренко А.И. Глубинные включения из кимберлитов, базальтов и кимберлитоподобных пород. М.: Наука, 1976. 284 с.; Wyllie P.J., Ryabchikov I.D., 2000. Volatile components, magmas and critical fluids in upwelling mantle. Journal of Petrology 41 (7), 1195–1206. https://doi.org/10.1093/petrology/41.7.1195.; Зайцев А.И., Смелов А.П. Изотопная геохронология пород кимберлитовой формации Якутской провинции. Якутск: Институт геологии алмаза и благородных металлов СО РАН, 2010. 105 с.; https://www.gt-crust.ru/jour/article/view/839
-
5Academic Journal
المصدر: Литосфера, Vol 0, Iss 3, Pp 31-48 (2019)
مصطلحات موضوعية: ультрамафитовые комплексы, перидотиты, хромшпинелиды, генезис, фундамент западной сибири, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, TA703-712
-
6Academic Journal
المصدر: Литосфера, Vol 0, Iss 5, Pp 20-36 (2019)
مصطلحات موضوعية: мантийные перидотиты, мантийное плавление, взаимодействие перидотит-расплав, надсубдукционные зоны, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, TA703-712
-
7Academic Journal
المؤلفون: Симонов, Владимир Александрович, Котляров, Алексей Васильевич, Чернышов, Алексей Иванович, Юричев, Алексей Николаевич
المصدر: Геосферные исследования. 2022. № 2. С. 57-77
مصطلحات موضوعية: ультраосновные породы, перидотиты, пикриты, Западно-Сибирский бассейн, осадочные бассейны, клинопироксены, хромшпинелиды, кристаллизация минералов
وصف الملف: application/pdf
Relation: koha:000898301; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000898301
-
8
المصدر: Геосферные исследования. 2022. № 2. С. 57-77
مصطلحات موضوعية: осадочные бассейны, клинопироксены, ультраосновные породы, перидотиты, хромшпинелиды, Западно-Сибирский бассейн, кристаллизация минералов, пикриты
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: Войтеховский, Юрий, Нерадовский, Юрий, Гришин, Николай, Ракитина, Елена, Касиков, Александр
مصطلحات موضوعية: ТИТАНОМАГНЕТИТОВЫЕ РУДЫ, СУЛЬФИДНЫЕ МЕДНО-НИКЕЛЕВЫЕ РУДЫ, КЛИНОПИРОКСЕНИТЫ, ПЕРИДОТИТЫ, КРИСТАЛЛОСЛАНЦЫ, ОСНОВНЫЕ ГРАНУЛИТЫ, КОЛВИЦКОЕ МЕСТОРОЖДЕНИЕ
وصف الملف: text/html
-
10Academic Journal
المؤلفون: Селятицкий, Александр
مصطلحات موضوعية: ПЕРИДОТИТЫ, UHP КОЛЛИЗИОННЫЕ ЗОНЫ, ОЛИВИН, ОРТОПИРОКСЕН, КЛИНОПИРОКСЕН, ГРАНАТ, ШПИНЕЛЬ
وصف الملف: text/html
-
11Academic Journal
المؤلفون: Кульков, Сергей, Суворов, Владимир, Похиленко, Людмила, Стефанов, Юрий, Буякова, Светлана, Кульков, Алексей, Чернышов, Алексей
مصطلحات موضوعية: ПЕРИДОТИТЫ, МЕХАНИЧЕСКИЕ СВОЙСТВА, ПЕТРОГРАФИЯ
وصف الملف: text/html
-
12Academic Journal
المؤلفون: Маракушев, Алексей
مصطلحات موضوعية: АЛМАЗ, МЕТЕОРИТЫ, ХОНДРИТЫ, ВЗРЫВНЫЕ СТРУКТУРЫ, ЭКЛОГИТЫ, ПИРОПОВЫЕ ПЕРИДОТИТЫ, КИМБЕРЛИТОВЫЕ ТРУБКИ, ЛАМПРОИТОВЫЕ ТРУБКИ
وصف الملف: text/html
-
13Academic JournalРудная минерализация перидотитов и габброидов кулибинского комплекса (северо-запад Восточного Саяна)
المؤلفون: Юричев, А. Н., Чернышов, А. И.
المصدر: Известия Томского политехнического университета
مصطلحات موضوعية: перидотиты, габброиды, рудная минерализация, хромшпинелиды, пирротин, пентландит
وصف الملف: application/pdf
Relation: Известия Томского политехнического университета [Известия ТПУ]. 2011. Т. 319, № 1 : Науки о Земле; Юричев А. Н. Рудная минерализация перидотитов и габброидов кулибинского комплекса (северо-запад Восточного Саяна) / А. Н. Юричев, А. И. Чернышов // Известия Томского политехнического университета [Известия ТПУ]. — 2011. — Т. 319, № 1 : Науки о Земле. — [С. 64-70].; http://earchive.tpu.ru/handle/11683/3814
-
14Academic Journal
المؤلفون: Мугахед, М., Алидодов, Б.
مصطلحات موضوعية: Гишунская интрузия, петрохимические классификации, фракционное накопление, ультраосновные кумуляты, альпинотипные перидотиты
وصف الملف: text/html
-
15Academic Journal
المؤلفون: Коробейников, Александр Феопенович
المصدر: Известия Томского политехнического университета
مصطلحات موضوعية: условия, золоторудные месторождения, положения, формирование, эндогенные месторождения, золото, блоки, плюмтектоника, палеодиапиризм, рифтогенез, метасоматизм, благородные металлы, перераспределение, вынос, дуниты, перидотиты, амфиболизация, нагретые флюиды, внутримантийные системы, магмо-термофлюидные системы, динамические системы, рудные объекты, земная кора, признаки, проникновение, расплавы, термофлюидопотоки, коровые зоны, рудолокализация, запасы
وصف الملف: application/pdf
Relation: Известия Томского политехнического университета [Известия ТПУ]. 2005. Т. 308, № 2; Коробейников А. Ф. Условия образования крупных и гигантских золоторудных месторождений / А. Ф. Коробейников // Известия Томского политехнического университета [Известия ТПУ]. — 2005. — Т. 308, № 2. — [С. 14-22].; http://earchive.tpu.ru/handle/11683/596
-
16
مصطلحات موضوعية: минеральная ассоциация, серпентин, кортландит-норитовая формация, карбонат, mineral association, carbonate, условия формирования, cortlandites, chlorite, кортландиты, sulfi des, хлорит, serpentine, роговообманковые перидотиты, сульфиды, hornblende peridotites, formation conditions, cortlandite-norite formation
-
17
المصدر: Visnyk of V.N. Karazin Kharkiv National University, series "Geology. Geography. Ecology"; No. 51 (2019)
Вестник Харьковского национального университета имени В. Н. Каразина, серия "Геология. География. Экология"; № 51 (2019)
Вісник Харківського національного університету імені В.Н. Каразіна, cерія "Геологія. Географія. Екологія"; № 51 (2019)مصطلحات موضوعية: Внутренняя зона Восточных Украинских Карпат, серпентины, перидотити, α- і β-лизардиты, перидотиты, β-lizardite, peridotites, Internal zone of the Ukrainian Carpathians, α- і β-лізардити, антигорит, serpentine, серпентини, antigorite, serpentinites, α-lizardite, Внутрішня зона Східних Українських Карпат
وصف الملف: application/pdf
-
18Academic Journal
المؤلفون: Krylova, V. A., Gertner, Igor F.
المصدر: IOP Conference Series: Earth and Environmental Science. 2019. Vol. 319. P. 012012 (1-7)
مصطلحات موضوعية: оливин, ксенолиты, перидотиты, базальты, Канарские острова, Кузнецкий Алатау, горы, Йоко-Довыренский массив
وصف الملف: application/pdf
Relation: vtls:000723350; http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000723350
-
19
مصطلحات موضوعية: ULTRAMAFITES, ГИПЕРБАЗИТОВЫЕ ПОЯСА, ASBESTOS BEARING, МАГМАТИЗМ, ХРОМИТИТЫ, АСБЕСТОНОСНОСТЬ, НЕМЕТАЛЛИЧЕСКИЕ ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ, ПЕТРОЛОГИЯ, HYPERBASITE BELTS, УЛЬТРАМАФИТЫ, ПЛАТИНОИДЫ, ПЕРИДОТИТЫ, CHROMITITES, PETROLOGY, MAGMATISM, NONMETALLIC MINERALS, PERIDOTITES, PLATINOIDS
-
20
مصطلحات موضوعية: ДУНИТОВЫЙ РАСПЛАВ, CUMULATE, OPHIOLITES, DUNITE MELT, MANTLE PERIDOTITE, CHROME ORE, ОФИОЛИТЫ, GENESIS, ДУНИТ-ВЕРЛИТ-КЛИНОПИРОКСЕНИТ-ГАББРОВЫЙ КОМПЛЕКС, ПИРОКСЕНИЗАЦИЯ, МАНТИЙНЫЕ ПЕРИДОТИТЫ, ГЕНЕЗИС, DUNITE-WEHRLITE-CLINOPYROXENITE-GABBRO COMPLEX, RESTITE, PYROXENIZATION, КУМУЛЯТЫ, РЕСТИТЫ, ХРОМОВЫЕ РУДЫ