يعرض 1 - 20 نتائج من 85 نتيجة بحث عن '"перенос тепла"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Conference

    Relation: Проблемы геологии и освоения недр : труды XXIII Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 120-летию со дня рождения академика К. И. Сатпаева, 120-летию со дня рождения профессора К. В. Радугина, Томск, 8-12 апреля 2019 г. Т. 2. — Томск, 2019.; Харламов С. Н. Современное состояние математического моделирования процессов переноса тепла, массы и импульса в задачах нефтегазовой отрасли / С. Н. Харламов, M. Kireitseu // Проблемы геологии и освоения недр : труды XXIII Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 120-летию со дня рождения академика К. И. Сатпаева, 120-летию со дня рождения профессора К. В. Радугина, Томск, 8-12 апреля 2019 г. : в 2 т. — Томск : Изд-во ТПУ, 2019. — Т. 2. — [С. 570-572].; http://earchive.tpu.ru/handle/11683/56350

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
  5. 5
    Conference

    Relation: MATEC Web of Conferences. Vol. 110 : Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment (HMTTSC 2017). — Les Ulis, 2017.; Purin M. Mathematical modeling of melting during laser heating of metal plate / M. Purin, A. V. Zakharevich, N. Yu. Gutareva // MATEC Web of Conferences. — 2017. — Vol. 110 : Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment (HMTTSC 2017) : International Youth Scientific Conference, April 26-28, 2017, Tomsk, Russia : [proceedings]. — [01070, 5 p.].; http://earchive.tpu.ru/handle/11683/42631

  6. 6
    Conference

    Relation: MATEC Web of Conferences. Vol. 110 : Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment (HMTTSC 2017). — Les Ulis, 2017.; Mathematical modeling of heat transfer in production premises heated by gas infrared emitters / V. I. Maksimov [et al.] // MATEC Web of Conferences. — 2017. — Vol. 110 : Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment (HMTTSC 2017) : International Youth Scientific Conference, April 26-28, 2017, Tomsk, Russia : [proceedings]. — [01053, 7 p.].; http://earchive.tpu.ru/handle/11683/42618

  7. 7
    Conference

    المؤلفون: Панасенко, И. А.

    المساهمون: Харламов, Сергей Николаевич

    Relation: Проблемы геологии и освоения недр : труды XXI Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 130-летию со дня рождения профессора М. И. Кучина, Томск, 3-7 апреля 2017 г. Т. 2. — Томск, 2017.; Панасенко И. А. Быстропротекающие процессы и их моделирование на основе обобщенного закона Фурье / И. А. Панасенко; науч. рук. С. Н. Харламов // Проблемы геологии и освоения недр : труды XXI Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 130-летию со дня рождения профессора М. И. Кучина, Томск, 3-7 апреля 2017 г. : в 2 т. — Томск : Изд-во ТПУ, 2017. — Т. 2. — [С. 739-741].; http://earchive.tpu.ru/handle/11683/42250

  8. 8
    Conference

    Relation: MATEC Web of Conferences. Vol. 92 : Thermophysical Basis of Energy Technologies (TBET-2016). — Les Ulis, 2017.; Ponomarenko T. Heat transfer in the FC-72 fluid rivulet flowing down a vertical heated foil / T. Ponomarenko, V. Cheverda // MATEC Web of Conferences. — 2017. — Vol. 92 : Thermophysical Basis of Energy Technologies (TBET-2016) : Proceedings of the Conference, October 26-28, 2016, Tomsk, Russia. — [01005, 5 p.].; http://earchive.tpu.ru/handle/11683/36701

  9. 9
    Conference

    Relation: MATEC Web of Conferences. Vol. 72 : Heat and Mass Transfer in the System of Thermal Modes of Energy – Technical and Technological Equipment (HMTTSC-2016). — Les Ulis, 2016.; Openyshev P. V. Influence of the Tilt Angle of Lances on the Fluid Flow Inside the Gasifier Shaft / P. V. Openyshev, M. A. Sheremet // MATEC Web of Conferences. — 2016. — Vol. 72 : Heat and Mass Transfer in the System of Thermal Modes of Energy – Technical and Technological Equipment (HMTTSC-2016) : April 19-21, 2016, Tomsk, Russia : [proceedings]. — [01078, 3 p.].; http://earchive.tpu.ru/handle/11683/33465

  10. 10
    Conference

    Relation: MATEC Web of Conferences. Vol. 72 : Heat and Mass Transfer in the System of Thermal Modes of Energy – Technical and Technological Equipment (HMTTSC-2016). — Les Ulis, 2016.; Arukov R. N. Physical Model and Bases of Mathematical Modelling of Above-Surface Gasification of Coal / R. N. Arukov, A. N. Subbotin // MATEC Web of Conferences. — 2016. — Vol. 72 : Heat and Mass Transfer in the System of Thermal Modes of Energy – Technical and Technological Equipment (HMTTSC-2016) : April 19-21, 2016, Tomsk, Russia : [proceedings]. — [01003, 5 p.].; http://earchive.tpu.ru/handle/11683/33440

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    وصف الملف: application/pdf

    Relation: Ангдрижиевский, А. А. Методы анализа термических сопротивлений в системах сложной конфигурации / А. А. Андрижиевский, А. Г. Лукашевич, А. Г. Трифонов // XVI Минский международный форум по тепло- и массообмену : тезисы докладов и сообщений, 19-20 мая 2022 г. - Минск : Институт тепло- и массообмена, 2022. - С. 1117-1119. - Библиогр.: 6 назв.; https://elib.belstu.by/handle/123456789/56392; 621.5:519.6

  15. 15
  16. 16
  17. 17
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 10 (2014); 51-54 ; Новые огнеупоры; № 10 (2014); 51-54 ; 1683-4518 ; 10.17073/1683-4518-2014-10

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/567/571; Излучательные свойства твердых материалов : справочник / Под общ. ред. А. Е. Шейндлина. — М. : Энергия, 1974. — 472 с.; Петров, В. А. Излучательная способность высокотемпературных материалов / В. А. Петров. — М. : Наука, 1969. — 80 с.; Двуреченский, А. В. Исследование спектральных излучательных характеристик кварцевых стекол и кварцевой керамики при высоких температурах с помощью высокоскоростной экспериментальной установки : дис. . канд. техн. наук. — М., 1978. — 190 с.; Иванов, А. П. Распространение света в плотноупако-ванных дисперсных средах / А. П. Иванов, В. А. Лойко, В. П. Дик. — Минск : Наука и техника, 1988. — 343 с.; Зеге, Э. П. Отражение и пропускание света слоем большой оптической толщины / Э. П. Зеге, О. В. Бушмакова, И. Л. Кацев, Н. В. Коновалов // ЖПС. — 1979. — Т. ХХХ, вып. 5. — С. 900-907.; Миронов, Р. А. Определение показателей поглощения, рассеяния и излучательной способности кварцевой керамики по измеренным спектрам коэффициента диффузного отражения в диапазоне длин волн 0,5-5 мкм / Р. А. Миронов, М. О. Забежайлов, С. П. Бородай // Тепловые процессы в технике. — 2013. — Т. 5, № 6. — С. 262-269.; Забежайлов, М. О. Методика определения показателей поглощения и рассеяния полупрозрачных рассеивающих материалов / М. О. Забежайлов, С. П. Бородай // Новые огнеупоры. — 2009. — № 6. — С. 47-49.; Воронкова, Е. М. Оптические материалы для инфракрасной техники / Е. М. Воронкова, Б. Н. Гречушни-ков, Г. И. Дистлер [и др.] — М. : Наука, 1965. — 336 с.; https://newogneup.elpub.ru/jour/article/view/567

  18. 18
    Academic Journal
  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: Параметры газа агента-порообразователя внутри замкнутой сферической поры в состоянии равновесия / А. М. Павленко [и др.] // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Новые решения в современных технологиях. – Харьков : НТУ "ХПИ". – 2015. – № 62 (1171). – С. 28-34.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/21002

  20. 20
    Academic Journal

    المصدر: Ice and Snow; Том 54, № 2 (2014); 53-68 ; Лёд и Снег; Том 54, № 2 (2014); 53-68 ; 2412-3765 ; 2076-6734 ; 10.15356/2076-6734-2014-2

    Relation: Alekseev G.V. Interrelation between ocean and atmosphere as thermodynamic process. Trudy AANII. Proc. of AARI. 1982, 383: 25–34. [In Russian].; Alekseev G.V. Studies of Arctic climate change in XX century. Trudy AANII. Proc. of AARI. 2003, 446: 6–21. [In Russian].; Alekseev G.V. Role of the atmospheric circulation and other factors in the formation of Arctic climate. Formirovanie i dinamika sovremennogo klimata Arktiki. Formation and dynamics of the present-day Arctic climate. Ed. G.V. Alexeev. Sankt-Petersburg: Hydrometeoizdat: 2004: 27–46. [In Russian].; Alekseev G.V., Podgornyi I.A., Svyashchennikov P.N. Advective and radiation changes of climate. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 1990, 315 (4): 824–827. [In Russian].; Alekseev G.V., Podgornyi I.A. Role of advection and other factors in the polar climate formation. Klimaticheskiy rezhim Arktiki na rubezhe XX i XXI vv. Climatic regime of Arctic on the boundary of XX and XXI centuries. Ed. B.A. Krutskikh. Sankt-Petersburg: Hydrometeoizdat, 1991: 4–18. [In Russian].; Alekseev G.V., Podgornyi I.A., Svyashchennikov P.N. Changes of the warming influence of oceans to the global climate. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 1991, 320 № (1): 70–73. [In Russian].; Alekseev G.V., Svyashchennikov P.N. Estestvennaya izmenchivost’ kharakteristik klimata Severnoy polyarnoy oblasti b Severnogo polushariya. Natural changeability of climate characteristics of the North Polar Region and Northern Hemisphere. Leningrad: Hydrometeoizdat, 1991: 159 p. [In Russian].; Alekseev G.V., Nagurnyi A.P. Role of sea ice in the formation of annual cycle of the carbon dioxide in Arctic. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2007, 417 (4): 541–544. [In Russian].; Alekseev G.V., Nagurnyi A.P., Makshtas A.P., Ivanov N.E., Shutilin S.V. Role of sea ice in the formation of annual cycle of the carbon dioxide in high latitude marine Arctic. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2007, 77: 28–36. [In Russian].; Alekseev G.V., Danilov A.I., Kattsov V.M., Kuz’mina S.I., Ivanov N.E. Sea ice in the Northern Hemisphere in connection with climate change in XX and XXI centuries according to the data of observation and modeling. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of RAS. Physics of Atmosphere and Ocean. 2009, 45 (6): 723–735. [In Russian].; Alexeev G.V., Ivanov N.E., Pnyushkov A.B., Kharlanenkova N.E. Climate changes in the marine Arctic during beginning of XXI century. Meteorologicheskie i geofizicyeskie issledovaniya. Meteorology and Geophysics Studies. Moscow, 2011: 3–25. [In Russian].; Blinova E.N. Hydrodynamic theory of pressure waves and centers of atmosphere action Doklady Akademii Nauk. Proc. of the Academy of Sciences. 1943, 39: 284–287. [In Russian].; Budyko M.I. Climate change. Leningrad: Hydrometeoizdat, 1974: 280 p. [In Russian].; Van Migem J. Energetic of the atmosphere. Ed. L.T. Matveeva. Leningrad: Hydrometeoizdat, 1977: 327 p. [In Russian].; Vangengeim G.Ya. On the oscillations of atmospheric circulation above the Northern Hemisphere. Izvestiya Ross. Akad. Nauk. Ser. geofizicheskaya i geiograficheskaya. Izvestiya of the Russian Academy of Sciences. Ser. Geophysics and Geography. 1946, 10 (5): 405–416. [In Russian].; Vasyuta Yu.V., Mokhov I.I., Petukhov V.K. Sensitivity of the little parametric climate models to the changes of characteristics of the meridional heat transfer. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the USSR Academy of Sciences. Physics of Atmosphere and Ocean. 1988, 24 (2): 115–125. [In Russian].; Vize V.Yu. Causes of the Arctic warming. Sovetskaya Arktika. Soviet Arctic. 1937 (1): 3–12. [In Russian].; Vittels L.A. Cyclones of the northern seas and Arctic warming. Meteorologiya i gidrologiya. Meteorology and Hydrology. 1946, (5): 32–40. [In Russian].; Girs A.A. Mnogoletnie kolebaniya atmosfernoy tsirkulyatsii i dolgosrochnye meteorologicheskie prognozy. Multy years oscillations of atmospheric circulation and long-term hydrometeorological predictions. Leningrad: Hydrometeoizdat, 1971: 280 p. [In Russian].; Gruza G.V. Integralnye kharakteristiki obshchey tsirkulyatsii atmosfery. Integral characteristics of the general circulation of atmosphere. Leningrad: Hydrometeoizdat, 1965: 146 p. [In Russian].; Demchenko P.F. Analytic model of the latitude course of dispersion and of zonal temperature spectra. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the USSR Academy of Sciences. Physics of Atmosphere and Ocean. 1984, 20: 144–150. [In Russian].; Demchenko P.F., Zubarev A.P. Estimations the low frequency variability of average zonal temperatures produced by fluctuations of the meridional heat transfer. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the USSR Academy of Sciences. Physics of Atmosphere and Ocean. 1989, 25: 917–924. [In Russian].; Dzerdzeevskyi B.L. On the Arctic warming. Izvestiya Ross. Akad. Nauk. Ser. Geophysicheskaya i geograficheskaya. Izvestiya of the USSR Academy of Sciences. Series of Geophysics and Geography. 1943; 2: 60–69. [In Russian].; Dzerdzeevskyi B.L., Monin A.S. Standard schemes of general atmospheric circulation and circulation index. Izvestiya Ross. Akad. Nauk. Ser. Geophysicheskaya i geograficheskaya. Izvestiya of the USSR Academy of Sciences. Series of Geophysics and Geography. 1954, 6: 6–12. [In Russian].; Zakharov V.F. Intracenturies changes of Arctic sea ice spreading in XX century. Formirovanie i dinamika sovremennogo klimata Arktiki. Formation and Dynamics of the Present-day Arctic Clymate. Ed. G.V. Alexeev. Sankt-Petersburg: Hydrometeoizdat, 2004: 112–159. [In Russian].; Konstantinov Yu.B., Grachev K.I. Vysokoshirotnye vozdushnye ekspetsii “Sever”. High latitudinal air expeditions “Sever” (1937, 1941–1993). Ed. V.T. Sokolov. Sankt-Petersburg: Hydrometeoizdat, 2000: 176 p. [In Russian].; Kulakov M.Yu., Makshtas A.P., Shutilin S.V. AARI–IOCM – join model of water and ice circulation in the Arctic Ocean. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2012, 2 (92): 6–18. [In Russian].; Lorenz E.N. Priroda i teoriya obshchey tsirkulyatsii atmosfery. Nature and theory of general atmospheric circulation. Leningrad: Hydrometeoizdat, 1970: 259 p. [In Russian].; Marchuk G.I., Skiba Yu.N. Numerical computation of the conjugate problem for the models of thermal interaction the atmosphere with ocean and continent. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the USSR Academy of Sciences. Physics of Atmosphere and Ocean. 1976, 12 (5): 16–24. [In Russian].; Marchuk G.I., Kondratiev K.Ya., Kozoderov V.V. Radiatsionnyi balans Zemli, klyuchevye aspekty. Radiation balance of the Earth, the main aspects. Moscow: Nauka, 1988: 216 p. [In Russian].; Mokhov I.I., Petukhov V.K. Parametrizatsiya ukhodyashchey dlinnovolnovoy radiatsii dlya klimaticheskikh modeley. Parameterization of the outgoing long wave radiation for the climate models. Moscow: Institute of the Atmospheric Physics. 1978: 34 p. [In Russian].; Mokhov I.I., Mokhov O.I., Petukhov V.K., Khairulin R.R. Influence of global climate changes for vortical activity in the atmosphere. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the USSR Academy of Sciences. Physics of Atmosphere and Ocean. 1992, 28 (1): 11–26. [In Russian].; Nedashkovskyi A.P., Makshtas A.P. Emission of СО2 to the atmosphere as a result of the Arctic sea ice formation. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2010, 3 (86): 35–44. [In Russian].; Nikolaev Yu.V. Krupnomasshtabnoe vzaimodeystvie okeana i atmosfery i formirovanir anomaliy pogody. Large scale interrelation of the ocean and atmosphere and formation of weather anomaly. Leningrad: Hydrometeoizdat, 1981: 51 p. [In Russian].; Semenov V.G. Vliyanie Atlanticheskogo okeana na reghim temperatury i osadkov na Evropeyskoy territorii SSSR. Influence of the Atlantic ocean to the regime of temperature and precipitation at the European territory of the USSR. Leningrad: Hydrometeoizdat, 1960: 146 p. [In Russian].; Timofeev V.T. Vodnye massy Arkticheskogo basseyna. Water masses of the Arctic basin. Leningrad: Hydrometeoizdat, 1960: 190 p. [In Russian].; Treshnikov A.F., Baranov G.I. Struktura tsirkulyatsii vod v Arkticheskom basseyne. Structure of water circulation in the Arctic basin. Leningrad: Hydrometeoizdat, 1972. [In Russian].; Frolov I.E. Okeanografiya i morskoy led. Oceanography and sea ice. Series: Contribution of Russia to the International Polar Year 2007/2008. Moscow – Sankt-Petersburg: “Paulsen”, 2011: 431 p. [In Russian].; Frolov I.E., Gudkovich Z.V., Karklin V.P., Kovalev E.G., Smolyanitskyi V.M. Klimaticheskie izmeneniya ledyanogo pokrova morey Evropeyskogo shelfa. Climate changes of the sea ice in seas of the European shelf. Sankt-Petersburg: Nauka, 2007: 135 p. [In Russian].; Frolov I.E., Fedyakov V.E., Tret’yakov V.Yu., Klein A.E., Alexeev G.V. New data on changes of ice thickness in the Arctic basin. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2009, 425 (1): 104–108. [In Russian].; Frolov I.E., Ashik I.M., Kassens H., Polyakov I.V., Proshutinskiy A.Yu., Sokolov V.T., Timokhov L.A. Anomaly changes of thermohaline structure of the Arctic ocean. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2009, 429 (5): 688–690. [In Russian].; Khrol V.P. Atlas energeticheskogo balansa severnoy polyarnoy oblasti. Atlas of the energetic balance of the North Polar Region. Leningrad: Hydrometeoizdat, 1992: 52 p. [In Russian].; Agee E.M. Trends in cyclone and anticyclone frequency and comparison with periods of warming and cooling over the Northern Hemisphere. Journ. of Climate. 1991, 4 (2): 263–267.; Alekseev G.V., Podgorny I.A. Simulation of advective global climate fluctuations. Research activities in atmospheric and oceanic modeling. C.J. Boer. GAS/JSC Working Group in Numerical Experimentation. 1990. Report 14. WMO/TD. 332: 7.24–7.25.; Alekseev G.V., Podgorny I.A. Modelling the effect of ocean’s heating on global climate fluctuations. Research activities in atmospheric and oceanic modeling. C.J. Boer. GAS/JSC Working Group in Numerical Experimentation. 1992. Report 17. WMO/TD. 467: 7.62–7.63.; Alexeev V.A., Langen P.L., Bates J.R. Polar amplification of surface warming on an aquaplanet in «ghost forcing» experiments without sea ice feedbacks. Climate Dynamics. 2005. doi 10.1007/s00382-005-0018-3.; Anderson L.G., Falck E., Jones E.P., Jutterström S., Swif J. Enhanced uptake of atmospheric CO2 during freezing of seawater: A field study in Storfjorden, Svalbard. Journ. of Geophys. Research. 2004. № 109. C06004. doi:10.1029/2003JC002120.; Bengtsson L., Semenov V.A., Johannessen O.M. The early-twentieth-century warming in the Arctic – A possible mechanism. Journ. of Climate. 2004; 17: 4045–4057.; Brinck Løyning T., Dick C., Goodwin H., Pavlova O., Vinje T., Kjærnli G., Villinger T. ACSYS historical ice chart archive (1553–2002). International ACSYS/CliC Project Office. 2003.; Budyko M.I. The effect of solar radiation variations on the climate of the Earth. Tellus. 1969, 212: 611–619.; Cai M. Dynamical amplification of polar warming. Geophys. Research Letters. 2005, 32. L22710. doi:10.1029/2005GL024481.; Cai M. Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative-transportive climate model. Climate Dynamics. 2006, 26: 661–675. doi 10.1007/s00382-005-0104-6.; Dickson R.R., Osborn T.J., Hurrel J.W., Meincke J., Blindheim J., Adlandsvik B., Vinje T., Alekseev G., Maslowsky T. The Arctic Ocean response to the North Atlantic oscillation. Journ. of Climate. 2000, 13: 2671–2696.; Enfield D. B., Mestas-Nunez A.M., Trimble P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Research Letters. 2001, 28: 2077–2080.; Flannery B.P. Energy-balance models incorporating transport of thermal and latent energy. Journ. of Atmospheric Sciences. 1984, 41: 414–421.; Francis J.A., Hunter E., Key J.R., Wang X. Clues to variability in Arctic minimum sea ice extent. Geophys. Research Letters. 2005, 32. L21501. doi:10.1029/ 2005GL024376.; Hurrell J.W., Van Loon H. Decadal variations in climate associated with the North Atlantic oscillation. Climatic Change. 1997, 36: 301–326.; Hurrell J.W., Kushnir Y., Ottersen G., Visbeck M. An Overview of the North Atlantic Oscillation, in The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Еds.: J.W. Hurrell, Y. Kushnir, G. Ottersen, M. Visbeck. Washington: American Geophysical Union, D.C., 2013: 1–35. doi:10.1029/134GM01.; Inoue Jun, Masatake E. Hori, Koutarou Takaya. The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly. Journ. of Climate. 2012, 25: 2561–2568. URL: http://dx.doi.org/10.1175/JCLI-D-11-00449.1.; Jeffries M.O., Richter-Menge J.A., Overland J.E. Arctic Report Card. 2012. http://www.arctic.noaa.gov/reportcard.; Laxon S., Peacock N., Smith D. High interannual variability of sea ice thickness in the Arctic region. Nature. 2013, 425: 947–950.; Lenn Y.D., Wiles P.J., Torres-Valdes S., Abrahamsen E.P., Rippeth T.P., Simpson J.H., Bacon S., Laxon S.W., Polyakov I., Ivanov V., Kirillov S. Vertical mixing at intermediate depths in the Arctic boundary current. Geophys. Research Letters. 2009, 36. L05601. doi:10.1029/2008GL036792.; Liu Y., Key J.R., Wang X. The Influence of Changes in Cloud Cover on Recent Surface Temperature Trends in the Arctic. Journ. of Climate. 2008, 21: 705–715.; Mahoney A.R., Barry R.G., Smolyanitsky V., Fetterer F. Observed sea ice extent in the Russian Arctic, 1933–2006. Journ. of Geophys. Research. 2008, 113. C11005. doi:10.1029/2008JC004830.; Maslanik J., Drobot S., Fowler C., Emery W., Barry R. On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys. Research Letters. 2007, 34. L03711. doi:10.1029/2006GL028269.; Miller L.A., Carnat G., Else B.G.T., Sutherland N., Papakyriakou T.N. Carbonate system evolution at the Arctic Ocean surface during autumn freeze-up. Journ. of Geophys. Research. 2011, 116. C00G04. doi:10.1029/2011JC007143.; Morison J.H., Aagaard K., Falkner K.K., Hatakeyama K., Moritz R., Overland J.E., Perovich D., Shimada K., Steele M., Takizawa T., Woodgate R. North Pole Environmental Observatory Delivers Early Results. Transactions. American Geophysical Union. 13 August 2002,83 (33): 357, 360–361.; Nakamura N., Oort A.H. Atmospheric heat budgets of the Polar Regions. Journ. of Geophys. Research. 1988, 93 (D8): 9510–9524.; North G.R., Cahalan R.F., Coakley J.A. Energy balance climate models. Review Geophysics and Space Physics. 1981, 19 (1): 91–121.; North G.R., Moeng F.J., Bell T.L., Cahalan R.F. Latitudinal dependence of the variability of sonal mean.MWR. 1982; 110 (5): 319–326.; Ogi M., Rigor I.G., McPhee M.G., Wallace J.M. Summer retreat of Arctic sea ice: Role of summer winds. Geophys. Research Letters. 2008, 35. L24701. doi:10.1029/2008GL035672.; Petoukhov V., Semenov V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. Journ. of Geophys. Research. 2010, 115, D21111. doi.10.1029/2009JD013568.; Polyakov I.V., Timokhov L., Walsh D., Dmitrenko I., Colony R.L., Johnson M., Carmack E., Hutchings J.K. A long-term circulation and water mass monitoring program for the Arctic Ocean. EOS Transactions. 2003, 84: 281–285.; Polyakov I.V., Alekseev G.V., Timokhov L.A., Bhatt U.S., Colony R.L., Simmons H.L., Walsh D., Walsh J.E., Zakharov V.F. Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years. Journ. of Climate. 2004, 17: 4485–4497.; Proshutinsky A.Y., Johnson M.A. Two circulation regimes of the wind-driven Arctic Ocean. Journ. of Geophys. Research. 1997, 102 (C6): 12,493–12,514. doi:10.1029/97JC00738.; Rossby C.G. Relations between variations in the intensity of the zonal circulation and displacement of the semipermanent centers of action. Journ. of Marine Research. 1939, 2: 38–55.; Rothrock D.A., Yu Y., Maykut G.A. Thinning of the Arctic sea ice cover. Geophys. Research Letters. 1999, 26 (23): 3469–3472.; Rysgaard S., Glud R.N., Sejr M.N, Bendtsen J., Christensen P.B. Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas.Journ. of Geophys. Research. 2007, 112. C03016. doi:10.1029/2006JC003572.; Schlesinger M. E., Ramankutty N. An oscillation in the global climate system of period 65–70 years. Nature. 1994, 367: 723–726.; Sellers W.D. A climate model based on the energy balance of the earth-atmosphere system. Journ. of Applied Meteorology. 1969, 8: 392–400.; Semiletov I., Makshtas A., Akasofu S.-I., Andreas E. L. Atmospheric CO2 balance: The role of Arctic sea ice. Geophys. Research Letters. 2004; 31. L05121. doi:10.1029/2003GL017996.; Serreze M.C., Barrett A.P., Slater A.G., Steele M., Zhang J., Trenberth K.E. The large-scale energy budget of the Arctic. Journ. of Geophys. Research. 2007, 112. D11122. doi:10.1029/2006JD008230.; Serreze M., Barry R. Processes and impacts of Arctic Amplification: A research synthesis. Global and Planetary Change. 2011, 77 (1–2): 85–96.; Stroeve J.C., Maslanik J., Serreze M.C., Rigor I., Meier W., Fowler C. Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys. Research Letters. 2011, 38. L02502. doi:10.1029/2010GL045662.; Thompson D.W.J., Wallace J.M. The Arctic Oscillations signature in the wintertime geopotential height and temperature fields. Geophys. Research Letters. 1998, 25: 1297–1300.; Timmermans M.-L., Toole J., Krishfield R., Winsor P. Ice-Tethered Profiler observations of the doublediffusive staircase in the Canada Basin thermocline. Journ. of Geophys. Research. 2008, 113.; Van Loon H., Williams J. The connection between trends of mean temperature and circulation at the surface: Part 1. Winter Mon. Weather Review. 1976, 104: 365–380.; Vinje T. Anomalies and trends of sea ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. Journ. of Climate. 2001, 14 (3): 255–267.; Wallace J.M., Zhang Y., Renwick J.A. Dynamic contribution to hemispheric mean temperature trends. Science. 1995, 270: 780–783.; Wallace J.M., Zhang Y., Bajuk L. Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. Journ. of Climate. 1996, 9: 249–260.; Wang J., Zhang J., Watanabe E., Ikeda M., Mizobata K., Walsh J.E., Bai X., Wu B. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? .Geophys. Research Letters. 2009, 36. L05706. doi:10.1029/2008GL036706.; Weston S.T., Bailey W.G., McArthur L.J.B., Hertzman O. Interannual solar and net radiation trends in the Canadian Arctic. Journ. of Geophys. Resеarch. 2007, 112. D10105. doi:10.1029/2006JD008000.; Wu Bingyi, Wang Jia, Walsh John E. Dipole Anomaly in the Winter Arctic Atmosphere and Its Association with Sea Ice Motion. Journ. of Climate. 2006, 19: 210–225.; Zhang X., Sorteberg A., Zhang J., Gerdes R., Comiso J.C. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Research Letters. 2008, 35. L22701. doi. 10.1029/2008GL035607.; http://www.mpimet.mpg.de. ECHAM. The atmospheric general circulation model ECHAM-4. 2009.; http://ds.data.jma.go.jp/gmd/wdcgg. WDCGG. World Data Centre for Greenhouse Gases. 2009.; http://data-portal.ecmwf.int/data/d/interim_daily. ECMWF Interim Reanalysis Data Archive. 2010.; http://www.esrl.noaa.gov/psd. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. 2010.; http://nsidc.org/data/seaice_index/index.html. NSIDC. National Snow and Ice Data Center. Sea Ice Index. 2013.; https://ice-snow.igras.ru/jour/article/view/41