يعرض 1 - 20 نتائج من 1,053 نتيجة بحث عن '"пептиды"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المساهمون: The authors declare that sequencing within the framework of this study was carried out with the support of JSC “Valenta Pharm”, without the participation of any employees or authorized representatives of this organization in the statistical analysis of the data obtained, the main part of the study, statistical analysis and preparation of the publication was carried out in the absence of external funding, Авторы декларируют, что секвенирование в рамках данного исследования было осуществлено при поддержке АО «Валента Фарм», без участия каких-либо сотрудников или уполномоченных данной организации в статистическом анализе полученных данных, проведение основной части исследования, статистический анализ и подготовка публикации осуществлены при отсутствии внешнего финансирования.

    المصدر: Meditsinskiy sovet = Medical Council; № 1 (2024); 25–38 ; Медицинский Совет; № 1 (2024); 25–38 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8074/7136; Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103. https://doi.org/10.1186/s40168-020-00875-0.; Давыдов БН, Самоукина АМ, Михайлова ЕС, Гаврилова ОА, Алексеева ЮА. Варианты микрофлоры ротовой жидкости у практически здоровых детей и подростков. Стоматология. 2017;96(1):56–59. https://doi.org/10.17116/stomat201796156-59.; Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464(7290):908–912. https://doi.org/10.1038/nature08937.; Najmanová L, Vídeňská P, Cahová M Healthy microbiome – a mere idea or a sound concept? Physiol Res. 2022;71(6):719–738. https://doi.org/10.33549/physiolres.934967.; Захарова ИН, Кузнецова ИС, Чередникова ТА, Махаева АВ, Кошечкин СИ, Романов ВА, Одинцова ВЕ. Результаты комплексной оценки местной этиотропной терапии инфекционно-в оспалительных заболеваний глотки у детей дошкольного и младшего школьного возраста. Педиатрия. Consilium Medicum. 2023;(3):135–146. https://doi.org/10.26442/26586630.2023.3.202304.; Edouard S, Million M, Bachar D, Dubourg G, Michelle C, Ninove L et al. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur J Clin Microbiol Infect Dis. 2018;37(9):1725–1733. https://doi.org/10.1007/s10096-018-3305-8.; Thors V, Christensen H, Morales-Aza B, Oliver E, Sikora P, Vipond I et al. High-density Bacterial Nasal Carriage in Children Is Transient and Associated With Respiratory Viral Infections-Implications for Transmission Dynamics. Pediatr Infect Dis J. 2019;38(5):533–538. https://doi.org/10.1097/INF.0000000000002256.; DeMuri GP, Gern JE, Eickhoff JC, Lynch SV, Wald ER. Dynamics of Bacterial Colonization With Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis During Symptomatic and Asymptomatic Viral Upper Respiratory Tract Infection. Clin Infect Dis. 2018;66(7):1045–1053. https://doi.org/10.1093/cid/cix941.; Козырев ЕА, Бабаченко ИВ, Сидоренко СВ. Современные аспекты изучения респираторной микробиоты и ее роль в развитии инфекций нижних дыхательных путей. Инфекционные болезни. 2022;20(1):99–106. https://doi.org/10.20953/1729-9225-2022-1-99-106.; Elgamal Z, Singh P, Geraghty P. The Upper Airway Microbiota, Environmental Exposures, Inflammation, and Disease. Medicina (Kaunas). 2021;57(8):823. https://doi.org/10.3390/medicina57080823.; Santacroce L, Passarelli PC, Azzolino D, Bottalico L, Charitos IA, Cazzolla AP et al. Oral microbiota in human health and disease: A perspective. Exp Biol Med (Maywood). 2023;248(15):1288–1301. https://doi.org/10.1177/15353702231187645.; Степанова ТЮ, Тимофеева АВ. Микробиом ротовой полости человека. Современные проблемы науки и образования. 2016;(5):308. Режим доступа: https://science-education.ru/ru/article/view?id=25212.; Sakanaka A, Kuboniwa M, Shimma S, Alghamdi SA, Mayumi S, Lamont RJ. Fusobacterium nucleatum Metabolically Integrates Commensals and Pathogens in Oral Biofilms. mSystems. 2022;7(4):e0017022. https://doi.org/10.1128/msystems.00170-22.; Караулов АВ, Афанасьев СС, Алешкин ВА, Воропаева ЕА, Афанасьев МС, Несвижский ЮВ и др. Микрофлора, колонизационная резистентность слизистых и мукозальный иммунитет. Иммунология. 2015;36(5):290–295. Режим доступа: https://www.immunologiya-journal.ru/patrns/pdf/2015/Immunology_05-15.pdf.; Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. Microb Ecol. 2023;87(1):8. https://doi.org/10.1007/s00248-023-02313-8.; Lee H, Kim HY. Lantibiotics, class I bacteriocins from the genus Bacillus. J Microbiol Biotechnol. 2011;21(3):229–235. Available at: https://pubmed.ncbi.nlm.nih.gov/21464591.; Miljkovic M, Jovanovic S, O’Connor PM, Mirkovic N, Jovcic B, Filipic B et al. Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials. PLoS ONE. 2019;14(5):e0216773. https://doi.org/10.1371/journal.pone.0216773.; Berditsch M, Afonin S, Reuster J, Lux H, Schkolin K, Babii O et al. Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Sci Rep. 2019;9(1):17938. https://doi.org/10.1038/s41598-019-54212-z.; Shu Y, Upara C, Ding Q, Zhu M, Zeng E, Banas JA, Hong L. Spent culture supernatant of Streptococcus gordonii mitigates inflammation of human periodontal cells and inhibits proliferation of pathogenic oral microbes. J Periodontol. 2023;94(4):575–585. https://doi.org/10.1002/JPER.22-0333.; Kaci G, Goudercourt D, Dennin V, Pot B, Doré J, Ehrlich SD et al. Antiinflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014;80(3):928–934. https://doi.org/10.1128/AEM.03133-13.; Zhang G, Rudney JD. Streptococcus cristatus attenuates Fusobacterium nucleatum-induced cytokine expression by influencing pathways converging on nuclear factor-κB. Mol Oral Microbiol. 2011;26(2):150–163. https://doi.org/10.1111/j.2041-1014.2010.00600.x.; Козлов ИГ. Микробиота, мукозальный иммунитет и антибиотики: тонкости взаимодействия. РМЖ. 2018;26(8-1):19–27. Режим доступа: https://www.rmj.ru/articles/allergologiya/Mikrobiota_mukozalynyy_immunitet_iantibiotiki_tonkosti_vzaimodeystviya.; De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666–2669. https://doi.org/10.1093/bioinformatics/bty149.; Curry KD, Wang Q, Nute MG, Tyshaieva A, Reeves E, Soriano S et al. Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nat Methods. 2022;19(7):845–853. https://doi.org/10.1038/s41592-022-01520-4.; Кройдер АС, Комарова МВ. Использование индексов биологического разнообразия для анализа микробиоты человека. Universum: медицина и фармакология. 2022;3(86):27–31. Режим доступа: https://7universum.com/ru/med/archive/item/13192. Kroider AS, Komarova MV. The use of biological diversity indices for the analysis of human microbiota. Universum: Medicine and Pharmacology. 2022;3(86):27–31. (In Russ.) Available at: https://7universum.com/ru/med/archive/item/13192.; Клименко ЕС, Белькова НЛ, Рычкова ЛВ, Даренская МА, Тугаринова ОА, Семенова НВ и др. Индексы альфа-разнообразия как показатели вариативности кишечной микробиоты у подростков разных этносов с ожирением. Бюллетень экспериментальной биологии и медицины. 2023;176(11):606–610. https://doi.org/10.47056/0365-9615-2023-176-11-606-610.; Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7(6):1092–1101. https://doi.org/10.1038/ismej.2013.10.; Pérez-Castro S, D’Auria G, Llambrich M, Fernández-B arrés S, Lopez-Espinosa MJ, Llop S et al. Influence of perinatal and childhood exposure to tobacco and mercury in children’s gut microbiota. Front Microbiol. 2024;14:1258988. https://doi.org/10.3389/fmicb.2023.1258988.; Odintsova VE, Klimenko NS, Tyakht AV. Approximation of a Microbiome Composition Shift by a Change in a Single Balance Between Two Groups of Taxa. mSystems. 2022;7(3):e0015522. https://doi.org/10.1128/msystems.00155-22.; Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135. https://doi.org/10.1038/s41392-022-00974-4.; Wen Z, Xie G, Zhou Q, Qiu C, Li J, Hu Q et al. Distinct Nasopharyngeal and Oropharyngeal Microbiota of Children with Influenza A Virus Compared with Healthy Children. Biomed Res Int. 2018;2018:6362716. https://doi.org/10.1155/2018/6362716.; Lee KH, Gordon A, Shedden K, Kuan G, Ng S, Balmaseda A, Foxman B. The respiratory microbiome and susceptibility to influenza virus infection. PLoS ONE. 2019;14(1):e0207898. https://doi.org/0.1371/journal.pone.0207898.; Skevaki CL, Tsialta P, Trochoutsou AI, Logotheti I, Makrinioti H, Taka S et al. Associations Between Viral and Bacterial Potential Pathogens in the Nasopharynx of Children With and Without Respiratory Symptoms. Pediatr Infect Dis J. 2015;34(12):1296–1301. https://doi.org/10.1097/INF.0000000000000872.; Hu Q, Dai W, Zhou Q, Fu D, Zheng Y, Wang W et al. Dynamic oropharyngeal and faecal microbiota during treatment in infants hospitalized for bronchiolitis compared with age-matched healthy subjects. Sci Rep. 2017;7(1):11266. https://doi.org/10.1038/s41598-017-11311-z.; Liu T, Chen YC, Jeng SL, Chang JJ, Wang JY, Lin CH et al. Short-term effects of Chlorhexidine mouthwash and Listerine on oral microbiome in hospitalized patients. Front Cell Infect Microbiol. 2023;13:1056534. https://doi.org/10.3389/fcimb.2023.1056534.; Сабанцева ЕГ, Дмитриева НА, Авраменко ЕА, Иванова ЕВ, Ежова ЕГ, Почивалин ВП. Оценка эффективности применения ополаскивателя, содержащего антисептик октенидина дигидрохлорид. Стоматология. 2021;100(2):32–39. https://doi.org/10.17116/stomat202110002132.; Sharma A, Singh P, Sarmah BK, Nandi SP. Quorum sensing: its role in microbial social networking. Res Microbiol. 2020;171(5-6):159–164. https://doi.org/10.17116/stomat20211000213210.1016/j.resmic.2020.06.003.; Wenzel M, Kohl B, Münch D, Raatschen N, Albada HB, Hamoen L et al. Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane. Antimicrob Agents Chemother. 2012;56(11):5749–5757. https://doi.org/10.1128/AAC.01380-12.; Захарова ИН, Геппе НА, Сугян НГ, Денисова АР, Бережная ИВ. Топические этиотропные препараты в терапии инфекционно-воспалительных заболеваний глотки у детей дошкольного возраста. Результаты многоцентрового рандомизированного клинического исследования. Российская оториноларингология. 2021;20(1):99–113. https://doi.org/10.18692/18104800-2021-1-102-117.; Радциг ЕЮ, Гуров АВ. Боль в горле. Перекрестье проблем и поиски решений. РМЖ. Мать и дитя. 2022;5(3):228–236. https://doi.org/10.32364/2618-8430-2022-5-3-228-236.; https://www.med-sovet.pro/jour/article/view/8074

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2023); 144-148 ; Медицинский Совет; № 23 (2023); 144-148 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8012/7104; Аверьянова ЮВ, Батыршин ИМ, Демко АЕ, Иванова ГЕ, Ивашкин ВТ, Костюченко ЛН и др. Синдром короткой кишки с кишечной недостаточностью у взрослых: клинические рекомендации. 2022. 106 с. Режим доступа: gastro.ru›userfiles/R_СиндрКорКишПРОЕКТ.pdf.; Сухотник ИГ. Синдром короткой кишки у детей. Российский вестник детской хирургии, анестезиологии и реаниматологии. 2017;7(3):99–116. Режим доступа: https://www.elibrary.ru/zxhmtn.; Никонов ЕЛ, Чубарова АИ, Аверьянова ЮВ, Полевиченко ЕВ, Скворцова ТА, Витковская ИП и др. Синдром короткой кишки у пациентов детского возраста. Текущее состояние проблемы и лечения пациентов в России. Доказательная гастроэнтерология. 2020;9(3):5–15. https://doi.org/10.17116/dokgastro202090315.; Jeppesen PB. The long road to the development of effective therapies for the short gut syndrome: a personal perspective. Dig Dis Sci. 2019;64(10):2717–2735. https://doi.org/10.1007/s10620-019-05779-0.; Парфенов АИ, Сабельникова ЕА, Кузьмина ТН. Синдром короткой кишки. Терапевтический архив. 2017;12(2):144–149. https://doi.org/10.17116/terarkh20178912144-149.; Pironi L, Arends J, Baxter J, Bozzetti F, Peláez RB, Cuerda C et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr. 2015;34(2):171–180. https://doi.org/10.1016/j.clnu.2014.08.017.; Norsa L, Lambe C, Abi Abboud S, Barbot-Trystram L, Ferrari A, Talbotec C et al. The Colon as an Energy Salvage Organ for Children with Short Bowel Syndrome. Am J Clin Nutr. 2019;109(4):1112–1118. https://doi.org/10.1093/ajcn/nqy367.; Галеева ЗМ, Гималетдинова ИА, Абсалямова ЛР, Галиханов ВР, Белалова АФ, Гайнеева РГ. Синдром короткой кишки в общеклинической практике. Вестник современной клинической медицины. 2011;4(2):36–43. Режим доступа: https://vskmjournal.org/images/Files/Issues_Archive/2011/Issue_2/VSKM_2011_N_2_p36-43.pdf.; Луфт ВМ, Демко АЕ, Лейдерман ИН, Лапицкий АВ, Батыршин ЭМ, Сергеева АМ. Синдром короткой кишки у взрослых: диагностика и лечение. СПб.; 2023. 78 с. Режим доступа: https://vzk-life.ru/upload/iblock/de1/de1c012ac0e6788638431d251d2b6cb9.pdf?ysclid=lqgsrgok3k139441960.; Nightingale J, Woodward JM. Guidelines for management of patients with a short bowel. Gut. 2006;55(4):l–12. https://doi.org/10.1136/gut.2006.091108; Сосновская ЕВ. Cовременные возможности фармакотерапии пациентов с синдромом короткой кишки. Вестник СурГУ. Медицина. 2021;4(50):26–30. https://doi.org/10.34822/2304-9448-2021-4-26-30.; Kocoshis SA, Merritt R J, Hill S, Protheroe S, Carter BA, Horslen S et al. Safety and Efficacy of Teduglutide in Pediatric Patients with Intestinal Failure Due to Short Bowel Syndrome: A 24-Week, Phase III Study. JPEN J Parenter Enteral Nutr. 2019;44(4):621–631. https://doi.org/10.1002/jpen.1690.; Jeppesen PB, Pertkiewicz M, Messing B, Iyer K, Seidner DL, O’keefe SJD et al. Teduglutide Reduces Need for Parenteral Support Among Patients with Short Bowel Syndrome with Intestinal Failure. Gastroenterology. 2012;143(6):1473–1481.e3. https://doi.org/10.1053/j.gastro.2012.09.007.; Amiot A, Messing B, Corcos O, Yves P, Francisca J. Determinants of Home Parenteral Nutrition Dependence and Survival of 268 Patients with Non-Malignant Short Bowel Syndrome. Clin Nutr. 2013;32(3):368–374. https://doi.org/10.1016/j.clnu.2012.08.007.; Bioletto F, D’Eusebio Ch, Merlo F, Aimasso U, Ossola M, Pellegrini M et al. Efficacy of Teduglutide for parenteral support reduction in patients with short bowel syndrome: a systematic review and meta-analysis. Nutrients. 2022;14(4):796. https://doi.org/10.3390/nu14040796.; Harpain F, Schlager L, Hutterer E, Dawoud C, Kirchnawy S, Stift J et al. Teduglutide in short bowel syndrome patients: a way back to normal life? JPEN J Parenter Enteral Nutr. 2022;46(2):300–309. https://doi.org/10.1002/jpen.2272.; Drucker DJ. The discovery of GLP-2 and development of Teduglutide for short bowel syndrome. ACS Pharmacol Transl Sci. 2019;2(2):134–142. https://doi.org/10.1021/acsptsci.9b00016.; Lam K, Schwartz L, Batisti J, Iyer KR. Single-Center Experience with the Use of Teduglutide in Adult Patients with Short Bowel Syndrome. JPEN J Parenter Enteral Nutr. 2018;42(1):225–230. https://doi.org/10.1002/jpen.1011.; Premkumar MH, Soraisham A, Bagga N, Massieu LA, Maheshwari A. Nutritional management of short bowel syndrome. Clin Perinatol. 2022;49(2):557–572. https://doi.org/10.1016/j.clp.2022.02.016.; Bering J, DiBaise JK. Short bowel syndrome: complications and management. Nutr Clin Pract. 2023;38(1):46–58. https://doi.org/10.1002/ncp.10978.; Vaz Ch, Shannon M, Zaloom J. Short bowel syndrome with intestinal failure in adults. Nursing. 2023;53(6):29–35. https://doi.org/10.1097/01.nurse.0000927448.14302.ab.; https://www.med-sovet.pro/jour/article/view/8012

  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: Food systems; Vol 7, No 2 (2024); 188-197 ; Пищевые системы; Vol 7, No 2 (2024); 188-197 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-2

    وصف الملف: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/480/308; Pison, G. (2022). World population: 8 billion today, how many tomorrow? Population and Societies, 604(9), 1-4. https://doi.org/10.3917/popsoc.604.0001; Berners-Lee, M., Kennelly, C., Watson, R., Hewitt, C. N. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene, 6, Article 52. https://doi.org/10.1525/elementa.310; Bozsik, N., Cubillos T, J. P., Stalbek, B., Vasa, L., Magda, R. (2022). Food security management in developing countries: Influence of economic factors on their food availability and access. PloS One, 17(7), Article e0271696. https://doi.org/10.1371/journal.pone.0271696; Колпакова, В. В., Уланова, Р. В., Куликов, Д. С., Гулакова, В. А., Семенов, Г. В., Шевякова, Л. В. (2022). Показатели качества гороховых и нутовых белковых концентратов. Техника и технология пищевых производств, 52(4), 650-664. https://doi.org/10.21603/2074-9414-2022-4-2394; Дериглазова, Г. М. (2022). Современные тенденции возделывания сои в России. АгроЗооТехника, 5(3), статья 1. https://doi.org/10.15838/alt.2022.5.3.1; Рождественская, Л. Н., Бычкова, Е. С., Бычков, А. Л. (2018). Анализ вызовов и современных тенденций развития технологий на рынке белков. Пищевая промышленность, 5, 42-47.; Доморощенкова, М. Л., Демьяненко, Т. Ф., Крылова, И. В., Камышева, И. М. (2020). Белковый потенциал семян подсолнечника. Исследования процессов получения пищевых белков из подсолнечного шрота. Вестник Всероссийского научно-исследовательского института жиров, 1-2, 24-29.; Kotecka-Majchrzak, K., Sumara, A., Fornal, E., Montowska, M. (2020). Oilseed proteins — Properties and application as a food ingredient. Trends in Food Science and Technology, 106, 160-170. https://doi.org/10.1016/j.tifs.2020.10.004; Singh, R., Langyan, S., Sangwan, S., Rohtagi, B., Khandelwal, A., Shrivastava, M. (2022). Protein for human consumption from oilseed cakes: A review. Frontiers in Sustainable Food Systems, 6, Article 856401. https://doi.org/10.3389/fsufs.2022.856401; Salami, S. A., Martinelli, F., Giovino, A., Bachari, A., Arad, N., Mantri, N. (2020). It is our turn to get cannabis high: Put cannabinoids in food and health baskets. Molecules, 25(18), Article 4036. https://doi.org/10.3390/molecules25184036; Rathi, V., Singh, G., Kumar, P., Chaudhary, M., Singh, P., Mishra, M. (2022). Legality of worldwide cannabis use and associated economic benefits. Chapter in a book: Revolutionizing the Potential of Hemp and Its Products in Changing the Global Economy. Springer Cham, 2022. https://doi.org/10.1007/978-3-031-05144-9_3; Manaia, J. P., Manaia, A. T., Rodriges, L. (2019). Industrial hemp fibers: An overview. Fibers, 7(12), Article 106. https://doi.org/10.3390/fib7120106; Shen, P., Gao, Z., Fang, B., Rao, J., Chen, B. (2021). Ferreting out the secrets of industrial hemp protein as emerging functional food ingredients. Trends in Food Science and Technology, 112, 1-15. https://doi.org/10.1016/j.tifs.2021.03.022; Crini, G., Lichtfouse, E., Chanet, G., Morin-Crini, N. (2020). Traditional and new applications of hemp. Chapter in a book: Sustainable Agriculture Reviews 42: Hemp Production and Applications. Springer Cham, 2020. https://doi.org/10.1007/978-3-030-41384-2_2; Santos-Sánchez, G., Álvarez-López, A. I., Ponce-Espana, E., Carrillo-Vico, A., Bollati, C., Bartolomei, M. et al. (2022). Hempseed (Cannabis sativa) protein hydrolysates: A valuable source of bioactive peptides with pleiotropic health-promoting effects. Trends in Food Science and Technology, 127, 303-318. https://doi.org/10.1016/j.tifs.2022.06.005; Серков, В. А., Кабунина, И. В. (2022). К аспекту нормативно-правового регулирования выращивания и переработки конопли посевной в России. Международный сельскохозяйственный журнал, 1(385), 99-102. https://doi.org/10.55186/25876740_2022_65_1_99; Rizzo, G., Storz, M. A., Calapai, G. (2023). The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods, 12(18), Article 3505. https://doi.org/10.3390/foods12183505; Лиходеевский, А. В. (2021). К вопросу о возрождении незаслуженно забытых технологий: техническая конопля. Теория и практика мировой науки, 3, 29-38.; Kotecka-Majchrzak, K., Kasałka-Czarna, N., Spychaj, A., Mikołajczak, B., Montowska, M. (2021). The effect of hemp cake (Cannabis sativa L.) on the characteristics of meatballs stored in refrigerated conditions. Molecules, 26(17), Article 5284. https://doi.org/10.3390/molecules26175284; Karabulut, G., Feng, H., Yemi§, O. (2022). Physicochemical and antioxidant properties of industrial hemp seed protein isolate treated by high-intensity ultrasound. Plant Foods for Human Nutrition, 77(4), 577-583. https://doi.org/10.1007/s11130-022-01017-7; Кабунина, И. В. (2021). Современная структура мирового рынка производства конопли. Международный сельскохозяйственный журнал, 4, 40-44. https://doi.org/10.24412/2587-6740-2021-4-40-44; Попов, Р. А. (2019). Состояние, проблемы и возможности для развития отечественного коноплеводства. Агротехника и энергообеспечение, 4(25), 42-52.; Бакулова, И. В. (2023). Влияние способа уборки конопли посевной на урожайность и качество семян в условиях Среднего Поволжья. Аграрный научный журнал, 8, 17-23. https://doi.org/10.28983/asj.y2023i8pp17-23; Серков, В. А., Кабунина, И. В. (2023). Конопля посевная-перспективный сырьевой ресурс для масложировой промышленности России. Международный сельскохозяйственный журнал, 2(392), 188-191.; Великанова, И. В., Пучков, Е. М. (2023). Формирование системы машин нового поколения для возделывания технической конопли в условиях модернизации отрасли. Вестник АПК Верхневолжья, 3(63), 78-84. https://doi.org/10.35694/YARCX.2023.63.3.010; Федеральная служба государственной статистики (РОССТАТ) (2023). Сельское хозяйство в России 2023. Электронный ресурс: https://rosstat.gov.ru/folder/210/document/13226. Дата обращения: 28 декабря 2023 г.; Бакулова, И. В., Кабунина, И. В. (2022). Основные приемы семеноводства конопли посевной среднерусского экотипа. Международный сельскохозяйственный журнал, 6(390), 632-635. https://doi.org/10.55186/25876740_2022_65_6_632; Давыдова, С. А., Чаплыгин, М. Е., Попов, Р. А. (2021). Техническая оснащенность селекции и семеноводства при возделывании льна-долгунца и конопли посевной. Аграрный научный журнал, 4, 72-78. https://doi.org/10.28983/asj.y2021i4pp72-78; Yazici, L. (2023). Optimizing plant density for fiber and seed production in industrial hemp (Cannabis sativa L.). Journal of King Saud University-Science, 35(1), Article 102419. https://doi.org/10.1016/j.jksus.2022.102419; Serkov V. A., Belousov R. O., Alexandrov R. M., Davydova O. K. (2019). Latest directions of common hemp selection for solving modern problems of domestic economy and import substitution. Volga Region Farmland, 3, 24-30. https://doi.org/10.26177/VRF.2019.3.3.005; Базанов, Т. А., Ущаповский, И. В., Логинова, Н. Н., Смирнова, Е. В., Михайлова, П. Д. (2021). Изучение генетического полиморфизма сортов конопли посевной российской селекции с применением ISSR-маркеров. Таврический вестник аграрной науки, 3(27), 9-19. https://doi.org/10.33952/2542-0720-2021-3-27-9-19; Karche, T. (2019). The application of hemp (Cannabis sativa L.) for a green economy: A review. Turkish Journal of Botany, 43(6), 710-723. https://doi.org/10.3906/bot-1907-15; Rehman, M., Fahad, S., Du, G., Cheng, X., Yang, Y., Tang, K. et al. (2021). Evaluation of hemp (Cannabis sativa L.) as an industrial crop: A review. Environmental Science and Pollution Research, 28(38), 52832-52843. https://doi.org/10.1007/s11356-021-16264-5; Crini, G., Lichtfouse, E., Chanet, G., Morin-Crini, N. (2020). Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environmental Chemistry Letters, 18, 1451-1476. https://doi.org/10.1007/s10311-020-01029-2; Дубровин, М. С. (2022). Развитие современного производства продукции из технической конопли. Международный научно-исследовательский журнал, 4-4(118), 120-124. https://doi.org/10.23670/IRJ.2022.118.4.001; Dawadi, P., Syangtan, G., Siddiqui, M. A., Lama, B., Nepal, K., Joshi, D. R. et al. (2022). Nutritional value and antioxidant properties of Cannabis seeds from Makwanpur district of central Nepal. Scientific World, 15(15), 103-112. https://doi.org/10.3126/sw.v15i15.45657; Sharma, S., Kaur, M., Goyal, R., Gill, B. S. (2014). Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. Journal of Food Science and Technology, 51, 551-557. https://doi.org/10.1007/s13197-011-0517-7; Морозова, И. М., Мазурова, Н. Н., Морозов, И. М. (2022). Биохимический состав семян масличных культур, используемых при производстве кормовой продукции. Веснік Віцебскага дзяржаўнага універсітэта, 1(114), 48-53.; Курдюков, Е. Е., Семенова, Е. Ф., Гаврилова, Н. А., Пономарева, Т. А., Шелудякова, Ю. Б. (2019). Особенности химического состава льна семян. Вестник Пензенского государственного университета, 4(28), 81-84.; Савченко, И. В., Медведев, А. М., Лукомец, B. M., Зотиков, В. И., Карпачев, В. В., Косолапов, В. М. (2009). Пути увеличения производства растительного белка в России. Вестник Российской академии сельскохозяйственных наук, 1, 11-13.; Leming, R., Lember, A. (2005). Chemical composition of expeller-extracted and cold-pressed rapeseed cake. Agraarteadus, 16(2), 103-109.; Снегирева, Н. В., Янова, М. А. (2022). Пищевая ценность льняной обезжиренной муки как функционального ингредиента для кондитерской промышленности. Агропродовольственная политика России, 2-3, 25-28.; Пономарева, С. В., Селехов, В. В. (2022). Влияние метеоусловий на качество зерна и корреляционная взаимосвязь между компонентами химического состава гороха полевого (Pisum arvense L.) в Нижегородской области. Международный сельскохозяйственный журнал, 6(390), 669-672. https://doi.org/10.55186/25876740_2022_65_6_669; Виноградов, Д. В., Кунцевич, А. А., Поляков, А. В. (2012). Жирнокислотный состав семян льна масличного сорта Санлин. Международный технико-экономический журнал, 3, 71-75.; Rabrenović, B. B., Vujasinović, V. B. (2022). Industrial hempseed oil and lipids: Processing and properties. Chapter in a book: Industrial Hemp. Academic Press, 2022. https://doi.org/10.1016/B978-0-323-90910-5.00003-8; Ancuta, P., Sonia, A. (2020). Oil press-cakes and meals valorization through circular economy approaches: A review. Applied Sciences, 10(21), Article 7432. https://doi.org/10.3390/app10217432; Burton, R. A., Andres, M., Cole, M., Cowley, J. M., Augustin, M. A. (2022). Industrial hemp seed: From the field to value-added food ingredients. Journal of Cannabis Research, 4, Article 45. https://doi.org/10.1186/s42238-022-00156-7; Risoluti, R., Gullifa, G., Battistini, A., Materazzi, S. (2020). Development of a “single-click” analytical platform for the detection of cannabinoids in hemp seed oil. RSC Advances, 10(71), 43394-43399. https://doi.org/10.1039/D0RA07142K; Esposito, M., Piazza, L. (2022). Ultrasound-assisted extraction of oil from hempseed (Cannabis sativa L.): Part 1. Journal of the Science of Food and Agriculture, 102(2), 732-739. https://doi.org/10.1002/jsfa.11404; Baldino, N., Carnevale, I., Mileti, O., Aiello, D., Lupi, F. R., Napoli, A. et al. (2022). Hemp seed oil extraction and stable emulsion formulation with hemp protein isolates. Applied Sciences, 12(23), Article 11921. https://doi.org/10.3390/app122311921; Oliveira, E. R., Silva, R. F., Santos, P. R., Queiroz, F. (2019). Potential of alternative solvents to extract biologically active compounds from green coffee beans and its residue from the oil industry. Food and Bioproducts Processing, 115, 47-58. https://doi.org/10.1016/j.fbp.2019.02.005; Cravotto, C., Fabiano-Tixier, A.-S., Claux, O., Abert-Vian, M., Tabasso, S., Cravotto, G. et al. (2022). Towards substitution of hexane as extraction solvent of food products and ingredients with no regrets. Foods, 11(21), Article 3412. https://doi.org/10.3390/foods11213412; Valizadehderakhshan, M., Shahbazi, A., Kazem-Rostami, M., Todd, M. S., Bhowmik, A., Wang, L. (2021). Extraction of cannabinoids from Cannabis sativa L. (Hemp) — Review. Agriculture, 11(5), Article 384. https://doi.org/10.3390/agriculture11050384; Tura, M., Ansorena, D., Astiasaran, I., Mandrioli, M., Toschi, T. G. (2022). Evaluation of hemp seed oils stability under accelerated storage test. Antioxidants, 11(3), Article 490. https://doi.org/10.3390/antiox11030490; Farinon, B., Molinari, R., Costantini, L., Merendino, N. (2020). The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients, 12(7), Article 1935. https://doi.org/10.3390/nu12071935; Akkaya, M. R. (2018). Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. Journal of Food Science and Technology, 55, 2318-2325. https://doi.org/10.1007/s13197-018-3150-x; Izzo, L., Pacifico, S., Piccolella, S., Castaldo, L., Narvaez, A., Grosso, M. et al. (2020). Chemical analysis of minor bioactive components and cannabidiolic acid in commercial hemp seed oil. Molecules, 25(16), Article 3710. https://doi.org/10.3390/molecules25163710; Vodolazska, D., Lauridsen, C. (2020). Effects of dietary hemp seed oil to sows on fatty acid profiles, nutritional and immune status of piglets. Journal of Animal Science and Biotechnology, 11, Article 28. https://doi.org/10.1186/s40104-020-0429-3; Sheppe, A. E. F., Edelmann, M. J. (2021). Roles of eicosanoids in regulating inflammation and neutrophil migration as an innate host response to bacterial infections. Infection and Immunity, 89(8), Article e0009521. https://doi.org/10.1128/iai.00095-21; Nigro, E., Pecoraro, M. T., Formato, M., Piccolella, S., Ragucci, S., Mallardo, M. et al. (2022). Cannabidiolic acid in hemp seed oil table spoon and beyond. Molecules, 27(8), Article 2566. https://doi.org/10.3390/molecules27082566; Faugno, S., Piccolella, S., Sannino, M., Principio, L., Crescente, G., Baldi, G. M. et al (2019). Can agronomic practices and cold-pressing extraction parameters affect phenols and polyphenols content in hempseed oils? Industrial Crops and Products, 130, 511-519. https://doi.org/10.1016/j.indcrop.2018.12.084; Cerino, P., Buonerba, C., Cannazza, G., D'Auria, J., Ottoni, E., Fulgione, A. et al. (2021). A review of hemp as food and nutritional supplement. Cannabis and Cannabinoid Research, 6(1), 19-27. https://doi.org/10.1089/can.2020.0001; Xu, J., Bai, M., Song, H., Yang, L., Zhu, D., Liu, H. (2022). Hemp (Cannabis sativa subsp. sativa) Chemical composition and the application of hempseeds in food formulations. Plant Foods for Human Nutrition, 77(4), 504-513. https://doi.org/10.1007/s11130-022-01013-x; Irakli, M., Tsaliki, E., Kalivas, A., Kleisiaris, F., Sarrou, E., Cook, C. M. (2019). Effect of genotype and growing year on the nutritional, phytochemical, and antioxidant properties of industrial hemp (Cannabis sativa L.) seeds. Antioxidants, 8(10), Article 491. https://doi.org/10.3390/antiox8100491; Montero, L., Ballesteros-Vivas, D., Gonzalez-Barrios, A. F., Sanchez-Camargo, A. D. P. (2023). Hemp seeds: Nutritional value, associated bioactivities and the potential food applications in the Colombian context. Frontiers in Nutrition, 9, Article 1039180. https://doi.org/10.3389/fnut.2022.1039180; He, Y., Wang, B., Wen, L., Wang, F., Yu, H., Chen, D. et al. (2022). Effects of dietary fiber on human health. Food Science and Human Wellness, 11(1), 1-10. https://doi.org/10.1016/j.fshw.2021.07.001; Visković, J., Zheljazkov, V. D., Sikora, V., Noller, J., Latković, D., Ocamb, C. M. et al. (2023) Industrial hemp (Cannabis sativa L.) agronomy and utilization: A review. Agronomy, 13(3), Article 931. https://doi.org/10.3390/agronomy13030931; Ущаповский, В. И., Гончарова, А. А., Миневич, И. Э. (2022). Влияние переработки на белковый комплекс семян конопли. Вестник Воронежского государственного университета инженерных технологий, 84(1), 66-72. https://doi.org/10.20914/2310-1202-2022-1-66-72; Potin, F., Saurel, R. (2020). Hemp seed as a source of food proteins. Chapter in a book: Sustainable Agriculture Reviews 42: Hemp Production and Applications. Springer Cham, 2020. https://doi.org/10.1007/978-3-030-41384-2_9; Yano, H., Fu, W. (2023). Hemp: A sustainable plant with high industrial value in food processing. Foods, 12(3), Article 651. https://doi.org/10.3390/foods12030651; Wang, Q., Xiong, Y. L. (2019). Processing, nutrition, and functionality of hempseed protein: A review. Comprehensive Reviews in Food Science and Food Safety, 18(4), 936-952. https://doi.org/10.1111/1541-4337.12450; Chen, H., Xu, B., Wang, Y., Li, W., He, D., Zhang, Y. et al. (2023). Emerging natural hemp seed proteins and their functions for nutraceutical applications. Food Science and Human Wellness, 12(4), 929-941. https://doi.org/10.1016/j.fshw.2022.10.016; Oseyko, M., Sova, N., Lutsenko, M., Kalyna, V. (2019). Chemical aspects of the com-position of industrial hemp seed products. Ukrainian Food Journal, 8(3), 544-559.; Kalaydzhiev, H., Ivanova, P., Stoyanova, M., Pavlov, A., Rustad, T., Silva, C. L. et al. (2020). Valorization of rapeseed meal: Influence of ethanol antinutrients removal on protein extractability, amino acid composition and fractional profile. Waste and Biomass Valorization, 11, 2709-2719. https://doi.org/10.1007/s12649-018-00553-1; Смольникова, Я. В., Бопп, В. Л., Коломейцев, А. В., Стутко, О. В., Ханипова, В. А., Брошко, Д. В. (2022). Применение ферментативного гидролиза для получения белковых концентратов из жмыха Camelina sativa. Техника и технология пищевых производств, 52(1), 199-209. https://doi.org/10.21603/2074-9414-2022-1-199-209; Akande, K. E. (2011). Proximate and amino acid analyses of full-fat sunflower (Helianthus annuus L.) seed meal. Singapore Journal of Scientific Research, 1(2), 179-183. http://dx.doi.org/10.3923/sjsres.2011.179.183; Arrutia, F., Binner, E., Williams, P., Waldron, K. W. (2020). Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends in Food Science and Technology, 100, 88-102. https://doi.org/10.1016/j.tifs.2020.03.044; Nasrollahzadeh, F., Roman, L., Swaraj, V. J. S., Ragavan, K. V., Vidal, N. P., Dutcher, J. R. et al. (2022). Hemp (Cannabis sativa L.) protein concentrates from wet and dry industrial fractionation: Molecular properties, nutritional composition, and anisotropic structuring. Food Hydrocolloids, 131, Article 107755. https://doi.org/10.1016/j.foodhyd.2022.107755; Mamone, G., Picariello, G., Ramondo, A., Nicolai, M. A., Ferranti, P. (2019). Production, digestibility and allergenicity of hemp (Cannabis sativa L.) protein isolates. Food Research International, 115, 562-571. https://doi.org/10.1016/j.foodres.2018.09.017; Wang, X.-S., Tang, C.-H., Yang, X.-Q., Gao, W.-R. (2008). Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chemistry, 107(1), 11-18. https://doi.org/10.1016/j.food-chem.2007.06.064; Hadnađev, M., Dapčević-Hadnađev, T., Lazaridou, A., Moschakis, T., Michaelidou, A.-M., Popović, S. et al. (2018). Hempseed meal protein isolates prepared by different isolation techniques. Part I. Physicochemical properties. Food Hydrocolloids, 79, 526-533. https://doi.org/10.1016/j.foodhyd.2017.12.015; Dapčević-Hadnađev, T., Hadnađev, M., Dizdar, M., Lješković, N. J. (2020). Functional and bioactive properties of hemp proteins. Chapter in a book: Sustainable Agriculture Reviews 42: Hemp Production and Applications. Springer Cham, 2020. https://doi.org/10.1007/978-3-030-41384-2_8; Plati, F., Ritzoulis, C., Pavlidou, E., Paraskevopoulou, A. (2021). Complex coacervate formation between hemp protein isolate and gum Arabic: Formulation and characterization. International Journal of Biological Macromolecules, 182, 144-153. https://doi.org/10.1016/j.ijbiomac.2021.04.003; Красильников, В. Н., Мехтиев, В. С., Доморощенкова, М. Л., Демьяненко, Т. Ф., Гаврилюк, И. П., Кузнецова, Л. И. (2010). Перспективы использования белков из семян люпина узколистного. Пищевая промышленность, 2, 40-43.; Kalman, D. S. (2014). Amino acid composition of an organic brown rice protein concentrate and isolate compared to soy and whey concentrates and isolates. Foods, 3(3), 394-402. https://doi.org/10.3390/foods3030394; Rodriguez-Martin, N. M., Toscano, R., Villanueva, A., Pedroche, J., Millan, F., Montserrat-de la Paz, S. et al. (2019). Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds. Food and Function, 10(10), 6732-6739. https://doi.org/10.1039/C9FO01904A; Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R. et al. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28-38. https://doi.org/10.1016/j.scienta.2015.08.037; Liceaga, A. M. (2019). Approaches for utilizing insect protein for human consumption: Effect of enzymatic hydrolysis on protein quality and functionality. Annals of the Entomological Society of America, 112(6), 529-532. https://doi.org/10.1093/aesa/saz010; Tang, T., Wu, N., Tang, S., Xiao, N., Jiang, Y., Tu, Y. et al. (2023). Industrial ap-plication of protein hydrolysates in food. Journal of Agricultural and Food Chemistry, 71(4), 1788-1801. https://doi.org/10.1021/acs.jafc.2c06957; Jeewanthi, R. K. C., Lee, N.-K., Paik, H.-D. (2015). Improved functional char-acteristics of whey protein hydrolysates in food industry. Korean Journal for Food Science of Animal Resources, 35(3), 350-359. https://doi.org/10.5851/kosfa.2015.35.3.350; Tultabayeva, T., Tokysheva, G., Zhakupova, G., Konysbaeva, D., Mukhtarkhanova, R., Matibayeva, A. et al. (2023). Enhancing nutrition and palatability: The development of cooked sausages with protein hydrolysate from secondary raw materials for the elderly. Applied Sciences, 13(18), Article 10462. https://doi.org/10.3390/app131810462; Montserrat-de la Paz, S., Carrillo-Berdasco, G., Rivero-Pino, F., Villanueva-Lazo, A., Millan-Linares, M. C. (2022). Hemp protein hydrolysates modulate inflammasome-related genes in microglial cells. Biology, 12(1), Article 49. https://doi.org/10.3390/biology12010049; Tang, C.-H., Wang, X.-S., Yang, X.-Q. (2009). Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chemistry, 114(4), 1484-1490. https://doi.org/10.1016/j.foodchem.2008.11.049; Xu, Y., Zhao, J., Hu, R., Wang, W., Griffin, J., Li, Y. et al. (2021). Effect of genotype on the physicochemical, nutritional, and antioxidant properties of hempseed. Journal of Agriculture and Food Research, 3, Article 100119. https://doi.org/10.1016/j.jafr.2021.100119; Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6, 384-394. https://doi.org/10.1016/j.jff.2013.11.005; Mills, K. T., Stefanescu, A., He, J. (2020). The global epidemiology of hypertension. Nature Reviews Nephrology, 16(4), 223-237. https://doi.org/10.1038/s41581-019-0244-2; Ames, M. K., Atkins, C. E., Pitt, B. (2019). The renin-angiotensin-aldosterone system and its suppression. Journal of Veterinary Internal Medicine, 33(2), 363-382. https://doi.org/10.1111/jvim.15454; Girgih, A. T., Alashi, A. M., He, R., Malomo, S. A., Raj, P., Netticadan, T. et al. (2014). A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats. Nutrients, 6(12), 5652-5666. https://doi.org/10.3390/nu6125652; Kaushal, N., Dhadwal, S., Kaur, P. (2020). Ameliorative effects of hempseed (Cannabis sativa) against hypercholesterolemia associated cardiovascular changes. Nutrition, Metabolism and Cardiovascular Diseases, 30(2), 330-338. https://doi.org/10.1016/j.numecd.2019.09.006; Malomo, S. A., Aluko, R. E. (2019). Kinetics of acetylcholinesterase inhibition by hemp seed protein-derived peptides. Journal of Food Biochemistry, 43(7), Article e12897. https://doi.org/10.1111/jfbc.12897; Garmidolova, A., Desseva, I., Mihaylova, D., Fidan, H., Terziyska, M., Pavlov, A. (2022). Papain hydrolysates of lupin proteins with antioxidant, antimicrobial, and acetylcholinesterase inhibitory activities. Applied Sciences, 12(23), Article 12370. https://doi.org/10.3390/app122312370; Aluko, R. E. (2021). Food-derived acetylcholinesterase inhibitors as potential agents against Alzheimer's Disease. eFood, 2(2), 49-58. https://doi.org/10.2991/efood.k.210318.001; Cai, L., Wu, S., Jia, C., Cui, C. (2023). Hydrolysates of hemp (Cannabis sativa L.) seed meal: Characterization and their inhibitory effect on a-glucosidase activity and glucose transport in Caco-2 cells. Industrial Crops and Products, 205, Article 117559. https://doi.org/10.1016/j.indcrop.2023.117559; https://www.fsjour.com/jour/article/view/480

  8. 8
    Academic Journal

    المساهمون: The study was supported by the Russian Science Foundation (Grant No. 23-45-10031)., Исследование выполнено за счет гранта Российского научного фонда № 23-45-10031.

    المصدر: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024): Высокотехнологичные лекарственные препараты; 157-171 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024): Высокотехнологичные лекарственные препараты; 157-171 ; 2619-1156 ; 2221-996X

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/575/860; https://www.biopreparations.ru/jour/article/view/575/842; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/866; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/867; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/975; Тимотиевич ЕД, Шиловский ИП, Хаитов МР. Пептидные носители как средства доставки терапевтических нуклеиновых кислот. Механизмы и потенциал применения в медицине. Биохимия. 2023;88(11):2183–205. https://doi.org/10.31857/S032097252311012X; Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003;67(4):657–85. https://doi.org/10.1128/MMBR.67.4.657-685.2003; Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39. https://doi.org/10.1146/annurev-biophys-083012-130404; Gangopadhyay S, Gore KR. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. RNA Biol. 2022;19(1):452–67. https://doi.org/10.1080/15476286.2022.2052641; Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, et al. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci. 2023;30(1):88. https://doi.org/10.1186/S12929-023-00981-9; Wang Y, Zhang R, Tang L, Yang L. Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics. 2022;14(3):512. https://doi.org/10.3390/pharmaceutics14030512; Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release. 2022;342:241–79. https://doi.org/10.1016/J.JCONREL.2022.01.008; Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94. https://doi.org/10.1038/S41573-020-0075-7; An G. Pharmacokinetics and pharmacodynamics of GalNAc-Conjugated siRNAs. J Clin Pharmacol. 2024;64(1):45–57. https://doi.org/10.1002/JCPH.2337; Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: a versatile vector for co-delivery of drug and genes in cancer. J Control Release. 2021;330:1220–8. https://doi.org/10.1016/j.jconrel.2020.11.028; Falato L, Gestin M, Langel Ü. Cell-penetrating peptides delivering siRNAs: an overview. Methods Mol Biol. 2021;2282:329–52. https://doi.org/10.1007/978-1-0716-1298-9_18; Kozhikhova KV, Shilovskiy IP, Shatilov AA, Timofeeva AV, Turetskiy EA, Vishniakova LI, et al. Linear and dendrimeric antiviral peptides: Design, chemical synthesis and activity against human respiratory syncytial virus. J Mater Chem B. 2020;8:2607–17. https://doi.org/10.1039/c9tb02485a; Shilovskiy I, Nikonova A, Barvinskaia E, Kaganova M, Nikolskii A, Vishnyakova L, et al. Anti-inflammatory effect of siRNAs targeted IL-4 and IL-13 in a mouse model of allergic rhinitis. Allergy. 2022;77(9):2829–32. https://doi.org/10.1111/ALL.15366; Никольский АА, Шиловский ИП, Юмашев КВ, Вишнякова ЛИ, Барвинская ЕД, Ковчина ВИ и др. Влияние локального подавления экспрессии гена Stat3 на нейтрофильное воспаление легких в экспериментальной модели на мышах. Иммунология. 2021;42(6):600–14. https://doi.org/10.33029/0206-4952-2021-42-6-600-614; Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, et al. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021;76(9):2840–54. https://doi.org/10.1111/ALL.14850; Friedrich M, Aigner A. Therapeutic siRNA: state-of-the-art and future perspectives. Biodrugs. 2022;36(5):549–71. https://doi.org/10.1007/S40259-022-00549-3; Badri P, Jiang X, Borodovsky A, Najafian N, Kim J, Clausen VA, et al. Pharmacokinetic and pharmacodynamic properties of cemdisiran, an RNAi therapeutic targeting complement component 5, in healthy subjects and patients with paroxysmal nocturnal hemoglobinuria. Clin Pharmacokinet. 2021;60(3):365–78. https://doi.org/10.1007/S40262-020-00940-9; Barratt J, Liew A, Yeo SC, Fernström A, Barbour SJ, Sperati CJ, et al. Phase 2 trial of cemdisiran in adult patients with IgA nephropathy: a randomized controlled trial. Clin J Am Soc Nephrol. 2024;19(4):452–62. https://doi.org/10.2215/CJN.0000000000000384; Pasi KJ, Lissitchkov T, Mamonov V, Mant T, Timofeeva M, Bagot C, et al. Targeting of antithrombin in hemophilia A or B with investigational siRNA therapeutic fitusiran: results of the phase 1 inhibitor cohort. J Thromb Haemost. 2021;19(6):1436–46. https://doi.org/10.1111/JTH.15270; Srivastava A, Rangarajan S, Kavakli K, Klamroth R, Kenet G, Khoo L, et al. Fitusiran prophylaxis in people with severe haemophilia A or haemophilia B without inhibitors (ATLAS-A/B): a multicentre, open-label, randomised, phase 3 trial. Lancet Haematol. 2023;10(5):322–32. https://doi.org/10.1016/S2352-3026(23)00037-6; Gane EJ, Kim W, Lim TH, Tangkijvanich P, Yoon JH, Sievert W, et al. First-in-human randomized study of RNAi therapeutic RG6346 for chronic hepatitis B virus infection. J Hepatol. 2023;79(5):1139–49. https://doi.org/10.1016/J.JHEP.2023.07.026; Gottlieb J, Zamora MR, Hodges T, Musk AW, Sommerwerk U, Dilling D, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016;35(2):213–21. https://doi.org/10.1016/J.HEALUN.2015.08.012; DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA. 2010;107(19):8800–5. https://doi.org/10.1073/PNAS.0912186107; Zamora MR, Budev M, Rolfe M, Gottlieb J, Humar A, DeVincenzo J, et al. RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med. 2011;183(4):531–8. https://doi.org/10.1164/RCCM.201003-0422OC; Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, et al. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021;13(584):3945. https://doi.org/10.1126/SCITRANSLMED.ABB3945; Singerman L. Combination therapy using the small interfering RNA bevasiranib. Retina. 2009;29(6 Suppl):49–50. https://doi.org/10.1097/IAE.0B013E3181AD2341; Garba AO, Mousa SA. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol Eye Dis. 2010;2:75–83. https://doi.org/10.4137/OED.S4878; Cho WG, Albuquerque RJC, Kleinman ME, Tarallo V, Greco A, Nozaki M, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA. 2009;106(17):7137–42. https://doi.org/10.1073/PNAS.0812317106; Lu LJ, Tsai JC, Liu J. Novel pharmacologic candidates for treatment of primary open-angle glaucoma. Yale J Biol Med. 2017;90(1):111–18. PMCID: PMC5369028; Moreno-Montañés J, Bleau AM, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investig Drugs. 2018;27(4):421–6. https://doi.org/10.1080/13543784.2018.1457647; Ahn I, Kang CS, Han J. Where should siRNAs go: applicable organs for siRNA drugs. Exp Mol Med. 2023;55(7):1283–92. https://doi.org/10.1038/s12276-023-00998-y; Thielmann M, Corteville D, Szabo G, Swaminathan M, Lamy A, Lehner LJ, et al. Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation. 2021;144(14):1133–44. https://doi.org/10.1161/CIRCULATIONAHA.120.053029; Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265–80. https://doi.org/10.1038/s41576-021-00439-4; Zhang X, Goel V, Robbie GJ. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J Clin Pharmacol. 2019;60(5):573–85. https://doi.org/10.1002/jcph.1553; Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109. https://doi.org/10.1186/s13023-015-0326-6; Taylor L, Gidal B, Blakey G, Tayo B, Morrison G. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs. 2018;32(11):1053–67. https://doi.org/10.1007/s40263-018-0578-5; Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019;9(1):5–23. https://doi.org/10.2217/nmt-2018-0033; Solomon SD, Adams D, Kristen A, Grogan M, González-Duarte A, Maurer MS, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation. 2019;139(4):431–43. https://doi.org/10.1161/CIRCULATIONAHA.118.035831; Sardh E, Harper P. RNAi therapy with givosiran significantly reduces attack rates in acute intermittent porphyria. J Intern Med. 2022;291(5):593–610. https://doi.org/10.1111/joim.13443; Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380(6):549–58. https://doi.org/10.1056/NEJMOA1807838; Balwani M, Sardh E, Ventura P, Peiró PA, Rees DC, Stölzel U, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med. 2020;382(24):2289–301. https://doi.org/10.1056/nejmoa1913147; Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O’Riordan WD, Cochat P, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021;384(13):1216–26. https://doi.org/10.1056/nejmoa2021712; Frishberg Y, Deschenes G, Groothoff JW, Hulton SA, Magen D, Harambat J, et al. Phase 1/2 study of lumasiran for treatment of primary hyperoxaluria type 1: a placebocontrolled randomized clinical trial. Clin J Am Soc Nephrol. 2021;16(7):1025–36. https://doi.org/10.2215/CJN.14730920; Sas DJ, Magen D, Hayes W, Shasha-Lavsky H, Michael M, Schulte I, et al. Phase 3 trial of lumasiran for primary hyperoxaluria type 1: a new RNAi therapeutic in infants and young children. Genet Med. 2022;24(3):654–62. https://doi.org/10.1016/j.gim.2021.10.024; Scott LJ, Keam SJ. Lumasiran: first approval. Drugs. 2021;81(2):277–82. https://doi.org/10.1007/s40265-020-01463-0; Bardolia C, Amin NS, Turgeon J. Emerging non-statin treatment options for lowering low-density lipoprotein cholesterol. Front Cardiovasc Med. 2021;8:789931. https://doi.org/10.3389/fcvm.2021.789931; Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. https://doi.org/10.1038/ng1161; Nair JK, Willoughby JLS, Chan A, Charisse K, Alam MR, Wang Q, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–61. https://doi.org/10.1021/ja505986a; Lamb YN. Inclisiran: first approval. Drugs. 2021;81(3):389–95. https://doi.org/10.1007/s40265-021-01473-6; Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51. https://doi.org/10.1056/nejmoa1609243; Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–19. https://doi.org/10.1056/nejmoa1912387; Reijman MD, Schweizer A, Peterson ALH, Bruckert E, Stratz C, Defesche JC, et al. Rationale and design of two trials assessing the efficacy, safety, and tolerability of inclisiran in adolescents with homozygous and heterozygous familial hypercholesterolaemia. Eur J Prev Cardiol. 2022;29(9):1361–8. https://doi.org/10.1093/eurjpc/zwac025; Syed YY. Nedosiran: first approval. Drugs. 2023;83(18):1729–33. https://doi.org/10.1007/s40265-023-01976-4; Lai C, Pursell N, Gierut J, Saxena U, Zhou W, Dills M, et al. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Mol Ther. 2018;26(8):1983–95. https://doi.org/10.1016/J.YMTHE.2018.05.016; Hoppe B, Koch A, Cochat P, Garrelfs SF, Baum MA, Groothoff JW, et al. Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria. Kidney Int. 2022;101(3):626–34. https://doi.org/10.1016/J.KINT.2021.08.015; Habtemariam BA, Karsten V, Attarwala H, Goel V, Melch M, Clausen VA, et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther. 2021;109(2):372–82. https://doi.org/10.1002/CPT.1974; Mullard A. FDA approves fifth RNAi drug—Alnylam’s next-gen hATTR treatment. Nat Rev Drug Discov. 2022;21(8):548–9. https://doi.org/10.1038/D41573-022-00118-X; Хаитов МР, Никонова АА, Кофиади ИА, Шиловский ИП, Смирнов ВВ, Елисютина ОГ и др. Результаты I и II фазы клинических исследований препарата МИР 19®. Иммунология. 2023;44(3):291–316. https://doi.org/10.33029/1816-2134-2023-44-3-291-316; Khaitov M, Nikonova A, Kofiadi I, Shilovskiy I, Smirnov V, Elisytina O, et al. Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation. Allergy. 2023;78(6):1639–53. https://doi.org/10.1111/ALL.15663; https://www.biopreparations.ru/jour/article/view/575

  9. 9
    Academic Journal

    المساهمون: The work had financial support of the Ministry of Science and Higher Education of the Russian Federation as part of the research “Creation and development of a bioresource collection of genetically and phenotypically characterized cell lines and primary human tumors”. Research registration No. 075-15-2021-1060., Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках научно-исследовательской работы № 075-15-2021-1060 «Создание и развитие биоресурсной коллекции генетически и фенотипически охарактеризованных клеточных линий и первичных опухолей человека».

    المصدر: Siberian journal of oncology; Том 23, № 3 (2024); 86-99 ; Сибирский онкологический журнал; Том 23, № 3 (2024); 86-99 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3117/1236; Blass E., Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021; 18(4): 215–29. doi:10.1038/s41571-020-00460-2.; Lybaer L., ThielemansK., FeldmanS.A, van der BurgS.H., Bogaert C., Ott P.A. Neoantigen-directed therapeutics in the clinic: where are we? Trends Cancer. 2023; 9(6): 503–19. doi:10.1016/j.trecan.2023.02.004.; Gouttefangeas C., Rammensee H.G. Personalized cancer vaccines: adjuvants are important, too. Cancer Immunol Immunother. 2018; 67(12): 1911–8. doi:10.1007/s00262-018-2158-4.; de Faria I.J., Olmo R.P., Silva E.G., Marques J.T. dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals. J. Interferon Cytokine Res. 2013; 33(5): 239–53. doi:10.1089/jir.2013.0026.; Hur S. Double-Stranded RNA Sensors and Modulators in Innate Immunity. Annu Rev Immunol. 2019; 37: 349–75. doi:10.1146/annurevimmunol-042718-041356.; Matsumoto M., Seya T. TLR3: interferon induction by doublestranded RNA including poly(I:C). Adv Drug Deliv Rev. 2008; 60(7): 805–12. doi:10.1016/j.addr.2007.11.005.; Ammi R., De Waele J., Willemen Y., Yan Brussel I., Schrijvers D.M., Lion E., Smits E.L.J. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther. 2015; 146: 120–31. doi:10.1016/j.pharmthera.2014.09.010.; Jasani B., Navabi H., Adams M. Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer Vaccine. 2009; 27(25–26): 3401–4. doi:10.1016/j.vaccine.2009.01.071.; Sultan H., Fesenkova V.I., Addis D., Fan A.E., Kumai T., Wu J., Salazar A.M., Celis E. Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunol Immunother. 2017; 66(2): 203–13. doi:10.1007/s00262-016-1834-5.; Akazawa T., Ebihara T., Okuno M., Okuda Y., Shingai M., Tsujimura K., Takahashi T., Ikawa M., Okabe M., Inoue N., Okamoto-Tanaka M., Ishizaki H., Miyoshi J., Matsumoto M., Seya T. Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc Natl Acad Sci U S A. 2007; 104(1): 252–7. doi:10.1073/pnas.0605978104.; Azuma M., Ebihara T., Oshiumi H., Matsumoto M., Seya T. Crosspriming for antitumor CTL induced by soluble Ag + polyI:C depends on the TICAM-1 pathway in mouse CD11c(+)/CD8α(+) dendritic cells. Oncoimmunology. 2012; 1(5): 581–92. doi:10.4161/onci.19893.; Robinson R.A., DeVita V.T., Levy H.B., Baron S., Hubbard S.P., Levine A.S. A phase I–II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J Natl Cancer Inst. 1976; 57(3): 599–602. doi:10.1093/jnci/57.3.599.; Levy H.B., Baer G., Baron S., Buckler C.E., Gibbs C.J., Iadarola M.J., London W.T., Rice J. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J Infect Dis. 1975; 132(4): 434–9. doi:10.1093/infdis/132.4.434.; Salazar A.M., Levy H.B., Ondra S., Kende M., Scherokman B., Brown D., Mena H., Martin N., Schwab K., Donovan D., Dougherty D., Pulliam M., Ippolito M., Graves M., Brown H., Ommaya A. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery. 1996; 38(6): 1096–103; discussion 1103–4.; De Waele J., Verhezen T., van der Heijden S., Berneman Z.N., Peeters M., Lardon F., Wouters A., Smits E.L.J.M. A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. J Exp Clin Cancer Res. 2021; 40(1): 213. doi:10.1186/s13046-021-02017-2.; Ott P.A., Hu Z., Keskin D.B., Shukla S.A., Sun J., Bozym D.J., Zhang W., Luoma A., Giobbie-Hurder A., Peter L., Chen C., Olive O., Carter T.A., Li Sh., Lieb D.J., Eisenhaure T., Gjini E., Stevens J., Lane W.J., Javeri I., Nellaiappan K., Salazar A., Daley H., Seaman M., Buchbinder E.I., Yoon C.H., Harden M., Lennon N., Gabriel S., Rodig S.J., Barouch D.H., Aster J.C., Getz G., Wucherpfennig K., Neuberg D., Ritz J., Lander E.S, Fritsch E.F., Hacohen N., Wu C.J. An Immunogenic Personal Neoantigen Vaccine for Melanoma Patients. Nature. 2017; 547(7662): 217–21. doi:10.1038/nature22991.; Ott P.A., Hu-Lieskovan S., Chmielowski B., Govindan R., Naing A., Bhardwaj N., Margolin K., Awad M.M., Hellmann M.D., Lin J.J., Friedlander T., Bushway M.E., Balogh K.N., Sciuto T.E., Kohler V., Turnbull S.J., Besada R., Curran R.R., Trapp B., Scherer J., Poran A., Harjanto D., Barthelme D., Ting Y.S., Dong J.Z., Ware Y., Huang Y., Huang Z., Wanamaker A., Cleary L.D., Moles M.A., Manson K., Greshock J., Khondker Z.S., Fritsch E., Rooney M.S., DeMario M., Gaynor R.B., Srinivasan L. A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell. 2020; 183(2): 347–62. doi:10.1016/j.cell.2020.08.053.; Барышникова М.А., Пономарев А.В., Рудакова А.А., Соколова З.А., Голубцова Н.В., Царапаев П.В., Левагина Г.М., Даниленко Е.Д., Косоруков В.С. Сравнение Ридостина Про и Poly(I:C) в качестве адъюванта для противоопухолевой неоантигенной вакцины. Российский биотерапевтический журнал. 2022; 21(3): 82–9. doi:10.17650/1726-9784-2022-21-3-82-89.; Каплина О.Н., Гамалей С.Г., Иванова О.С., Даниленко Е.Д. Двуспиральные РНК – перспективные адъюванты для повышения иммуногенности вакцин. Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99(6): 661–8. doi:10.36233/0372-9311-342.; Bloom M.B., Perry-Lalley D., Robbins P.F., Li Y., el-Gamil M., Rosenberg S.A., Yang J.C. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med. 1997; 185(3): 453–9. doi:10.1084/jem.185.3.453.; Пономарев А.В., Рудакова А.А., Соколова З.А., Барышникова М.А., Косоруков В.С. Влияние Poly(I:C) и меланомы В16-F10 на иммунофенотип клеток селезенки мышей. Российский биотерапевтический журнал 2021; 20(4): 51–8. doi:10.17650/1726-9784-2021-20-4-51-58.; Castle J.C., Kreiter S., Diekmann J., Lower M., van de Roemer N., de Graaf J., Selmi A., Diken M., Boegel S., Paret C., Koslowski M., Kuhn A.N., Britten C.M., Huber C., Tureci O., Sahin U. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012; 72(5): 1081–91. doi:10.1158/0008-5472.CAN-11-3722.; Lam H., McNeil L.K., Starobinets H., Cohen R.B., Twardowski P., Johnson M.L., Gillison M.L., Stein M.N., Vaishampayan U.N., DeCillis A.P., Foti J.J., Vemulapalli V., Tjon E., Ferber K., DeOliveira D.B., Broom W., Agnihotri P., Jaffee E.M., Wong K.K., Drake C.G., Carroll P.M., Davis T.A., Flechtner J.B. An Empirical Antigen Selection Method Identifies Neoantigens That Either Elicit Broad Antitumor T-cell Responses or Drive Tumor Growth. Cancer Discov. 2021; 11(3): 696–713. doi:10.1158/2159-8290.CD-20-0377.; Heil F., Hemmi H., Hochrein H., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004; 303(5663): 1526–9. doi:10.1126/science.1093620.; Levine A.S., Levy H.B. Phase I-II trials of poly IC stabilized with poly-L-lysine. Cancer Treat Rep. 1978; 62(11): 1907–12.; Takeda Y., Kataoka K., Yamagishi J., Ogawa S., Seya T., Matsumoto M. A TLR3-Specific Adjuvant Relieves Innate Resistance to PD-L1 Blockade without Cytokine Toxicity in Tumor Vaccine Immunotherapy. Cell Rep. 2017; 19(9): 1874–87. doi:10.1016/j.celrep.2017.05.015.; Cossarizza A., Chang H.-D., Radbruch A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol. 2019; 49(10): 1457–973. doi:10.1002/eji.201970107.; Bahl K., Hüebner A., Davis R.J., Welsh R.M. Analysis of apoptosis of memory T cells and dendritic cells during the early stages of viral infection or exposure to toll-like receptor agonists. J Virol. 2010; 84(10): 4866–77. doi:10.1128/JVI.02571-09.; Tough D.F., Borrow P., Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science. 1996; 272(5270): 1947–50. doi:10.1126/science.272.5270.1947.; Bardhan K., Anagnostou T., Boussiotis V.A. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation Front Immunol. 2016; 7: 550. doi:10.3389/fimmu.2016.00550.; Kythreotou A., Siddique A., Mauri F.A. Bower M., Pinato D.J. PD-L1. J Clin Pathol. 2018; 71(3): 189–94. doi:10.1136/jclinpath-2017-204853.; Kinter A.L., Godbout E.J., McNally J.P. Sereti I., Roby G.A., O’Shea M.A., Fauci A.S. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol. 2008; 181(10): 6738–46. doi:10.4049/jimmunol.181.10.6738.; Cibrián D., Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017; 47(6): 946–53. doi:10.1002/eji.201646837.; Testi R., Phillips J.H., Lanier L.L. T cell activation via Leu-23 (CD69). J Immunol. 1989; 143(4): 1123–8.; Esplugues E., Sancho D., Vega-Ramos J., Martínez C., Syrbe U., Hamann A., Engel P., Sánchez-Madrid F., Lauzurica P. Enhanced antitumor immunity in mice deficient in CD69. J Exp Med. 2003; 197(9): 1093–106. doi:10.1084/jem.20021337.; Radulovic K., Manta C., Rossini V., Holzmann K., Kestler H.A., Wegenka U.M., Nakayama T., Niess J.H. CD69 regulates type I IFNinduced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. J Immunol. 2012; 188(4): 2001–13. doi:10.4049/jimmunol.1100765.; Shiow L.R., Rosen D.B., Brdicková N., Xu Y., An J., Lanier L.L., Cyster J.G., Matloubian M. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature. 2006; 440(7083): 540–4. doi:10.1038/nature04606.; Walzer T., Bléry M., Chaix J., Fuseri N., Chasson L., Robbins S.H., Jaeger S., André P., Gauthier L., Daniel L., Chemin K., Morel Y., Dalod M., Imbert J., Pierres M., Moretta A., Romagné F., Vivier E. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci USA. 2007; 104(9): 3384–9. doi:10.1073/pnas.0609692104.; https://www.siboncoj.ru/jour/article/view/3117

  10. 10
    Academic Journal
  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14
  15. 15
    Report
  16. 16
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal