يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"паккерные состояния"', وقت الاستعلام: 0.29s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The research was funded by the Russian Science Foundation, project number 22-74-00012, Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-74- 00012).

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 1 (2024); 50-56 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 1 (2024); 50-56 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1335/664; Britton G., Liaaen-Jensen S., Pfander H. Carotenoids: Handbook. Springer Science & Business Media; 2004. 708 pp.; Cunningham F.X., Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases. Proc. Natl. Acad. Sci. U.S.A. 2001;98(5):2905–2910.; Niedzwiedzki D., Koscielecki J.F., Cong H., Sullivan J.O., Gibson G.N., Birge R.R., Frank H.A. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J. Phys. Chem. B. 2007;111(21):5984–5998.; Balevičius V., Abramavicius D., Polívka T., Galestian Pour A., Hauer J. A unified picture of s* in carotenoids. J. Phys. Chem. Lett. 2016;7(17):3347–3352.; Wei T., Balevičius V., Polívka T., Ruban A.V., Duffy C.D.P. How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein. Phys. Chem. Chem. Phys. 2019;21(41):23187–23197.; Pishchalnikov R.Y., Yaroshevich I.A., Zlenko D.V., Tsoraev G.V., Osipov E.M., Lazarenko V.A., Parshina E.Y., Chesalin D.D., Sluchanko N.N., Maksimov E.G. The role of the local environment on the structural heterogeneity of carotenoid β-ionone rings. Photosynth. Res. 2023;156(1):3–17.; Yaroshevich I.A., Krasilnikov P.M., Rubin A.B. Functional interpretation of the role of cyclic carotenoids in photosynthetic antennas via quantum chemical calculations. Comput. Theor. Chem. 2015;1070:27–32.; Mostofian B., Johnson Q.R., Smith J.C., Cheng X. Carotenoids promote lateral packing and condensation of lipid membranes. Phys. Chem. Chem. Phys. 2020;22(21):12281–12293.; Gruszecki W.I., Strzałka K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta BBA – Mol. Basis Dis. 2005;1740(2):108–115.; El-Agamey A., Edge R., Navaratnam S., Land E.J., Truscott T.G. Carotenoid radical anions and their protonated derivatives. Org. Lett. 2006;8(19):4255–4258.; Liguori N., Xu P., Van Stokkum I.H.M., Van Oort B., Lu Y., Karcher D., Bock R., Croce R. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat. Commun. 2017;8(1):1994.; Moldenhauer M., Sluchanko N.N., Buhrke D., Zlenko D.V., Tavraz N.N., Schmitt F.J., Hildebrandt P., Maksimov E.G., Friedrich T. Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism. Photosynth. Res. 2017;133(1–3):327–341.; Kirilovsky D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical- quenching mechanism. Photosynth. Res. 2007;93(1–3):7.; Bondanza M., Cupellini L., Faccioli P., Mennucci B. Molecular mechanisms of activation in the orange carotenoid protein revealed by molecular dynamics. J. Am. Chem. Soc. 2020;142(52):21829–21841.; Arcidiacono A., Accomasso D., Cupellini L., Mennucci B. How orange carotenoid protein controls the excited state dynamics of canthaxanthin. Chem. Sci. 2023;14(40):11158–11169.; Chesalin D.D., Pishchalnikov R.Y. Searching for a unique exciton model of photosynthetic pigment–protein complexes: photosystem II reaction center study by differential evolution. Mathematics. 2022;10(6):959.; Leccese S., Wilson A., Kirilovsky D., Spezia R.; Jolivalt C., Mezzetti A. Light-induced infrared difference spectroscopy on three different forms of orange carotenoid protein: focus on carotenoid vibrations. Photochem. Photobiol. Sci. 2023;22(6):1379–1391.; Makuch K., Markiewicz M., Pasenkiewicz-Gierula M. Asymmetric spontaneous intercalation of lutein into a phospholipid bilayer, a computational study. Comput. Struct. Biotechnol. J. 2019;17:516–526.; Sterling T., Irwin J.J. ZINC 15 – ligand discovery for everyone. J. Chem. Inf. Model. 2015;55(11):2324–2337.; Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.; Robertson M.J., Tirado-Rives J., Jorgensen W.L. Improved peptide and protein torsional energetics with the OPLS-AA force field. J. Chem. Theory Comput. 2015;11(7):3499–3509.; Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31(3):1695–1697.; Cremer D., Pople J.A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975;97(6):1354–1358.; MacSurmak. MacSurmak/pucker_visualizer [Электронный ресурс]. 2023. URL: https://github.com/MacSurmak/pucker_visualizer (дата обращения: 25.01.2024).; Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018;8(1):e1327.; Neese F. Software update: The ORCA program system— Version 5.0. WIREs Comput. Mol. Sci. 2022;12(5):e1606.; Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110(13):6158–6170.; Ditchfield R., Hehre W.J., Pople J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian- type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971;54(2):724–728.; Kendall R.A., Dunning T.H., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96(9):6796–6806.; Calbo J., Sancho-García J.C., Ortí E., Aragó J. DLPNO-CCSD(T) scaled methods for the accurate treatment of large supramolecular complexes. J. Comput. Chem. 2017;38(21):1869–1878.; https://vestnik-bio-msu.elpub.ru/jour/article/view/1335