يعرض 1 - 20 نتائج من 35 نتيجة بحث عن '"орогенез"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: This study was funded by the Russian Science Foundation (RSF), grant № 21-77-20018, with the fieldwork done as part of the state assignment for the Institute of Geology and Mineralogy SB RAS (122041400176-0, 122041400057-2)., Работа выполнена за счет средств гранта Российского научного фонда (проект № 21-77-20018) с дополнительной поддержкой полевых работ в рамках госзаданий ИГМ СО РАН (122041400176-0

    المصدر: Geodynamics & Tectonophysics; Том 15, № 2 (2024); 0745 ; Геодинамика и тектонофизика; Том 15, № 2 (2024); 0745 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1815/806; Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Y.A., 2008. The East European Craton (Baltica) before and during the Assembly of Rodinia. Precambrian Research 160 (1–2), 23–45. https://doi.org/10.1016/j.precamres.2007.04.024.; Bogdanova S.V., Pisarevsky S.A., Li Z.H., 2009. Assembly and Breakup of Rodinia (Some Results of IGCP Project 440). Stratigraphy and Geological Correlation 17, 259–274. https://doi.org/10.1134/S0869593809030022.; Boynton W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Developments in Geochemistry 2, 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.; Cawood P.A., Nemchin A.A., Strachan R.A., Kinny P.D., Loewy S., 2004. Laurentian Provenance and an Intracratonic Tectonic Setting for the Upper Moine Supergroup, Scotland, Constrained by Detrital Zircons from the Loch Eil and Glen Urquhart Successions. Journal of Geological Society of London 161, 861–874. https://doi.org/10.1144/16-764903-117.; Cawood P.A., Strachan R., Cutts K., Kinny P.D., Hand M., Pisarevsky S., 2010. Neoproterozoic Orogeny along the Margin of Rodinia: Valhalla Orogen, North Atlantic. Geology 38 (2), 99–102. https://doi.org/10.1130/G30450.1.; Cawood P.A., Strachan R.A., Pisarevsky S.A., Gladkochub D.P., Murphy J.B., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters 449, 118–126. https://doi.org/10.1016/j.epsl.2016.05.049.; Chernykh A.I., 2000. Geological Structure and Petrological-Geochemical Features of the Precambrian Ophiolite and Paleo-Island-Arc Complexes of the Yenisei Ridge. Brief PhD Thesis (Candidate of Geology and Mineralogy). Novosibirsk, 20 p. (in Russian) [Черных А.И. Геологическое строение и петролого-геохимические особенности докембрийских офиолитовых и палеоостроводужных комплексов Енисейского кряжа: Автореф. дис. . канд. геол.-мин. наук. Новосибирск, 2000. 20 с.].; Dalziel I.W.D., 1997. Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis and Environmental Speculation. GSA Bulletin 109 (1), 16–42. https://doi.org/10.1130/0016-7606(1997)1092.3.CO;2.; Ding J., Zhang S., Evans D.A.D., Yang T., Li H., Wu H., Chen J., 2021. North China Craton: The Conjugate Margin for Northwestern Laurentia in Rodinia. Geology 49 (7), 773–778. https://doi.org/10.1130/G48483.1.; Elming S.-Å., Salminen J., Pesonen L.J., 2021. Paleo-Mesoproterozoic Nuna Supercycle. In: L.J. Pesonen, J. Salminen, S.-Å. Elming, D.A.D. Evans, T. Veikkolainen (Eds), Ancient Supercontinents and the Paleogeography of the Earth. Vol. 16. Elsevier, p. 499‒548. https://doi.org/10.1016/B978-0-12-818533-9.00001-1.; Ernst R.E., Wingate M.T.D., Buchan K.L., Li Z.X., 2008. Global Record of 1600–700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research 160 (1–2), 159–178. https://doi.org/10.1016/j.precamres.2007.04.019.; Evans D.A.D., 2021. Meso-Neoproterozoic Rodinia Supercycle. In: L.J. Pesonen, J. Salminen, S.-Å. Elming, D.A.D. Evans, T. Veikkolainen (Eds), Ancient Supercontinents and the Paleogeography of the Earth. Vol. 17. Elsevier, p. 549–576. https://doi.org/10.1016/B978-0-12-818533-9.00006-0.; Evans D.A.D., Mitchell R.N., 2011. Assembly and Breakup of the Core of Paleoproterozoic–Mesoproterozoic Supercontinent Nuna. Geology 39 (5), 443–446. https://doi.org/10.1130/G31654.1.; Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.; Frost C.D., Frost B.R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology 52 (1), 39‒53. https://doi.org/10.1093/petrology/egq070.; Glebovitsky V.A., Khil’tova V.Ya., Kozakov I.K., 2008. Tectonics of the Siberian Craton: Interpretation of Geological, Geophysical, Geochronological, and Isotopic Geochemical Data. Geotectonics 42, 8–20. https://doi.org/10.1134/S0016852108010020.; Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICPMS. In: P.J. Sylvester (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.; Hoaglin D.C., Mosteller F., Tukey J.W., 1983. Understanding Robust and Exploratory Data Analysis. John Wiley & Sons, New York, 447 p.; Johansson Å., 2014. From Rodinia to Gondwana with the "SAMBA" Model – A Distant View from Baltica towards Amazonia and Beyond. Precambrian Research 244, 226–235. https://doi.org/10.1016/j.precamres.2013.10.012.; Kachevsky L.K., Kachevskaya G.I., Grabovskaya J.M., 1998. Geological Map of the Yenisei Ridge. Scale 1:500000. Krasnoyarsk Geological Survey, Krasnoyarsk (in Russian) [Качевский Л.К., Качевская Г.И., Грабовская Ж.М. Геологическая карта Енисейского кряжа. Масштаб 1:500000. Красноярск: Красноярскгеолсъемка, 1998].; Kachevsky L.K., Zuev V.K., 2005. State Geological Map of the Russian Federation. Scale 1:1000000. Sheet O-46 (Krasnoyarsk). Map of Prequaternary Formations. Krasnoyarsk Geological Survey, Krasnoyarsk, 1 sh. (in Russian) [Качевский Л.К., Зуев В.К. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000. Лист О-46 (Красноярск): Карта дочетвертичных образований. Красноярск: Красноярскгеолсъемка, 2005. 1 л.].; Khabarov E. M., Varaksina I.V., 2011. The Structure and Depositional Environments of Mesoproterozoic Petroliferous Carbonate Complexes in the Western Siberian Craton. Russian Geology and Geophysics 52 (8), 923–944. https://doi.org/10.1016/j.rgg.2011.07.014.; Khain V.E., Goncharov M.A., 2006. Geodynamic Cycles and Geodynamic Systems of Various Ranks: Their Relationships and Evolution in the Earth’s History. Geotectonics 40, 327–344. https://doi.org/10.1134/S0016852106050013.; Khomentovsky V.V., 2007. The Upper Riphean of the Yenisei Range. Russian Geology and Geophysics 48 (9), 711–720. https://doi.org/10.1016/j.rgg.2007.08.002.; Kirkland C.L., Daly J.S., Whitehouse M.J., 2006. Granitic Magmatism of Grenvillian and Late Neoproterozoic Age in Finnmark, Arctic Norway–Constraining Pre-Scandian Deformation in the Kalak Nappe Complex. Precambrian Research 145, 24–52. https://doi.org/10.1016/j.precamres.2005.11.012.; Kirscher U., Mitchell R.N., Liu Y., Nordsvan A.R., Cox G.M., Pisarevsky S.A., Wang C., Wu L., Murphy J.B., Li Z.-X., 2020. Paleomagnetic Constraints on the Duration of the Australia-Laurentia Connection in the Core of the Nuna Supercontinent. Geology 49 (2), 174–179. https://doi.org/10.1130/G47823.1.; Kuznetsov A.B., Kochnev B.B., Vasilyeva I.M., Ovchinnikova G.V., 2019. The Upper Riphean of the Yenisei Range: Sr Chemostratigraphy and Pb-Pb Age of Limestones of the Tungusik and Shirokaya Groups. Stratigraphy and Geological Correlation 27, 538–554. https://doi.org/10.1134/S0869593819050058.; Larionova Yu.O., Samsonov A.V., Shatagin K.N., 2007. Sources of Archean Sanukitoids (High-Mg Subalkaline Granitoids) in the Karelian Craton: Sm-Nd and Rb-Sr Isotopic-Geochemical Evidence. Petrology 15, 530–550. https://doi.org/10.1134/S0869591107060021.; Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A. et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research 160 (12), 179–210. https://doi.org/10.1016/j.precamres.2007.04.021.; Li Z.-X., Liu Y., Ernst R., 2023. A Dynamic 2000‒540 Ma Earth History: From Cratonic Amalgamation to the Age of Supercontinent Cycle. Earth-Science Reviews 238, 104336. https://doi.org/10.1016/j.earscirev.2023.104336.; Likhanov I.I., 2019. Mass-Transfer and Differential Element Mobility in Metapelites during Multistage Metamorphism of Yenisei Ridge, Siberia. In: S. Ferrero, P. Lanari, P. Goncalves, E.G. Grosch (Eds), Metamorphic Geology: Microscale to Mountain Belts. Vol. 478. Geological Society of London Special Publications, p. 89–115. https://doi.org/10.1144/SP478.11.; Likhanov I.I., 2020. Metamorphic Indicators for Collision, Extension and Shear Zones Geodynamic Settings of the Earth’s Crust. Petrology 28, 1–16. https://doi.org/10.1134/S086959112001004X.; Likhanov I.I., 2022a. Grenville and Valhalla Tectonic Events at the Western Margin of the Siberian Craton: Evidence from Rocks of the Garevka Complex, Northern Yenisei Range, Russia. Petrology 30, S72–S100. https://doi.org/10.1134/S0869591123010058.; Likhanov I.I., 2022b. Provenance, Age and Tectonic Settings of Rock Complexes (Transangarian Yenisey Ridge, East Siberia): Geochemical and Geochronological Evidence. Geosciences 12 (11), 402. https://doi.org/10.3390/geosciences12110402.; Likhanov I.I., Kozlov P.S., Polyansky O.P., Popov N.V., Reverdatto V.V., Travin A.V., Verschinin A.E., 2007. Neoproterozoic Age of Collisional Metamorphism in the Transangarian Yenisey Ridge (Based on 40Ar/39Ar Data). Doklady Earth Sciences 413, 234–237. https://doi.org/10.1134/S1028334X07020225.; Likhanov I.I., Nozhkin A.D., Reverdatto V.V., Kozlov P.S., 2014. Grenville Tectonic Events and Evolution of the Yenisei Ridge at the Western Margin of the Siberian Craton. Geotectonics 48, 371–389. https://doi.org/10.1134/S0016852114050045.; Likhanov I.I., Polyansky O.P., Reverdatto V.V., Memmi I., 2004. Evidence from Fe- and Al-Rich Metapelites for Thrust Loading in the Transangarian Region of the Yenisey Ridge, Eastern Siberia. Journal of Metamorphic Geology 22 (8), 743–762. https://doi.org/10.1111/j.1525-1314.2004.00546.x.; Likhanov I.I., Régnier J.-L., Santosh M., 2018. Blueschist Facies Fault Tectonites from the Western Margin of the Siberian Craton: Implications for Subduction and Exhumation Associated with Early Stages of the Paleo-Asian Ocean. Lithos 304–307, 468–488. https://doi.org//10.1016/j.lithos.2018.02.021.; Likhanov I.I., Reverdatto V.V., 2015. Evidence of Middle Neoproterozoic Extensional Tectonic Settings along the Western Margin of Siberian Craton: Implications for the Breakup of Rodinia. Geochemistry International 53, 671–689. https://doi.org/10.1134/S0016702915080030.; Likhanov I.I., Reverdatto V.V., Kozlov P.S., Khiller V.V., Sukhorukov V.P., 2015. P-T-t Constraints on Polymetamorphic Complexes of the Yenisey Ridge, East Siberia: Implications for Neoproterozoic Paleocontinental Reconstructions. Journal of Asian Earth Sciences 113 (1), 391–410. https://doi.org/10.1016/j.jseaes.2014.10.026.; Likhanov I.I., Reverdatto V.V., Kozlov P.S., Popov N.V., 2009. Kyanite-Sillimanite Metamorphism of the Precambrian Complexes, Transangarian Region of the Yenisei Ridge. Russian Geology and Geophysics 50 (12), 1034–1051. https://doi.org/10.1016/j.rgg.2009.11.003.; Likhanov I.I., Reverdatto V.V., Sheplev V.S., Verschinin A.E., Kozlov P.S., 2001. Contact Metamorphism of Fe- and Al-Rich Graphitic Metapelites in the Transangarian Region of the Yenisey Ridge, Eastern Siberia, Russia. Lithos 58 (1–2), 55–80. https://doi.org/10.1016/S0024-4937(01)00048-2.; Likhanov I.I., Reverdatto V.V., Verschinin A.E., 2008. Feand Al-Rich Metapelites of the Teya Sequence, Yenisei Range: Geochemistry, Protoliths and the Behavior of Their Matter during Metamorphism. Geochemistry International 46, 17–36. https://doi.org/10.1134/S0016702908010023.; Likhanov I.I., Santosh M., 2019. A-Type Granites in the Western Margin of the Siberian Craton: Implications for Breakup of the Precambrian Supercontinents Columbia/Nuna and Rodinia. Precambrian Research 328, 128–145. https://doi.org//10.1016/j.precamres.2019.04.018.; Lu K., Mitchell R.N., Yang C.H., Zhou J-L., Wu L-G., Wang X-C., Li X.-H., 2022. Widespread Magmatic Provinces at the Onset of the Sturtian Snowball Earth. Earth and Planetary Science Letters 594, 117736. https://doi.org/10.1016/j.epsl.2022.117736.; Ludwig K.R., 1999. User’s Manual for ISOPLOT/EX, Version 2.10. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1, 46 p.; Metelkin D.V., Vernikovsky V.A., Kazansky A.Y., 2012. Tectonic Evolution of the Siberian Paleocontinent from the Neoproterozoic to the Late Mesozoic: Paleomagnetic Record and Reconstructions. Russian Geology and Geophysics 53 (7), 675–688. https://doi.org/10.1016/j.rgg.2012.05.006.; Nikolaeva I.V., Palesskii S.V., Koz’menko O.A., Anoshin G.N., 2008. Analysis of Geologic Reference Materials for REE and HFSE by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Geochemistry International 46, 1016–1022. https://doi.org/10.1134/S0016702908100066.; Nozhkin A.D., Borisenko A.S., Nevol’ko P.A., 2011. Stages of Late Proterozoic Magmatism and Periods of Au Mineralization in the Yenisei Ridge. Russian Geology and Geophysics 52 (1), 124–143. https://doi.org/10.1016/j.rgg.2010.12.010.; Nozhkin A.D., Turkina O.M., 1989. Geochemistry and Tin Content of the Leucogranite Formation (Yenisei Ridge). In: Yu.G. Shcherbamov, V.P. Kovalev (Eds), Geochemistry of Rare, Rare Earth and Radioactive Elements in Rocks and Ore-Forming Processes. Nauka, Novosibirsk, p. 37–67 (in Russian) [Ножкин А.Д., Туркина О.М. Геохимия и оловоносность лейкогранитовой формации (Енисейский кряж) // Геохимия редких, редкоземельных и радиоактивных элементов в породах и рудообразующих процессах / Ред. Ю.Г. Щербамов, В.П. Ковалев. Новосибирск: Наука, 1989. С. 37–67].; Nozhkin A.D., Turkina O.M., 1993. Geochemistry of Granulites from Kansk and Sharyzhalgay Complexes. United Institute of Geology, Geophysics and Mineralogy SB RAS, Novosibirsk, 221 p. (in Russian) [Ножкин А.Д., Туркина О.М. Геохимия гранулитов канского и шарыжалгайского комплексов. Новосибирск: ОИГГМ СО РАН, 1993. 223 с.].; Nozhkin A.D., Turkina O.M., Bayanova T.B., Berezhnaya N.G., Larionov A.N., Postnikov A.A., Travin A.V., Ernst R.E., 2008. Neoproterozoic Rift and Within-Plate Magmatism in the Yenisei Ridge: Implications for the Breakup of Rodinia. Russian Geology and Geophysics 49 (7), 503–519. https://doi.org/10.1016/j.rgg.2008.06.007.; Nozhkin A.D., Turkina O.M., Bibikova E.B., Terleev A.A., Khomentovskii V.V., 1999. Riphean Granite-Gneiss Domes of the Yenisei Range: Geologic Structure and U-Pb Isotopic Age. Russian Geology and Geophysics 40 (9), 1284–1292.; Nozhkin A.D., Turkina O.M., Likhanov I.I., 2023. Neoproterozoic Collision Granitoids in the Southwestern Margin of the Siberian Craton: Chemical Composition, U-Pb Age, and Formation Conditions of the Gusyanka Massif. Geochemistry International 61, 484–498. https://doi.org/10.1134/S0016702923050063.; Nozhkin A.D., Turkina O.M., Likhanov I.I., Savko K.A., 2019. Paleoproterozoic Metavolcanosedimentary Sequences of the Yenisey Metamorphic Complex, Southwestern Siberian Craton (Angara-Kan Block): Subdivision, Composition, and U-Pb Zircon Age. Russian Geology and Geophysics 60 (10), 1101–1118. https://doi.org//10.15372/RGG2019112.; Pettersson C.H., Tebenkov A.M., Larionov A.N., Andresen A., Pease V., 2009. Timing of Migmatization and Granite Genesis in the Northwestern Terrane of Svalbard, Norway: Implications for Regional Correlations in the Arctic Caledonides. Journal of the Geological Society 166, 147–158. https://doi.org/10.1144/0016-76492008-023.; Pisarevsky S.A., Gladkochub D.P., Donskaya T.V., 2021. Precambrian Paleogeography of Siberia. In: L.J. Pesonen, J. Salminen, S.-Å. Elming, D.A.D. Evans, T. Veikkolainen (Eds), Ancient Supercontinents and the Paleogeography of the Earth 8, 263–275. https://doi.org/10.1016/B978-0-12-818533-9.00012-6.; Pisarevsky S.A., Natapov L.M., Donskaya T.V., Gladkochub D.P., Vernikovsky V.A., 2008. Proterozoic Siberia: A Promontory of Rodinia. Precambrian Research 160 (1–2), 66–76. https://doi.org/10.1016/j.precamres.2007.04.016.; Popov N.V., Likhanov I.I., Nozhkin A.D., 2010. Mesoproterozoic Granitoid Magmatism in the Trans-Angara Segment of the Yenisei Range: U-Pb Evidence. Doklady Earth Sciences 431, 418–423. https://doi.org/10.1134/S1028334X10040021.; Rino S., Kon Y., Sato W., Maruyama S., Santosh M., Zhao D., 2008. The Grenvillian and Pan-African Orogens: World’s Largest Orogenies through Geological Time, and Their Implications on the Origin of Superplume. Gondwana Research 14 (1–2), 51–72. https://doi.org/10.1016/j.gr.2008.01.001.; Rivers T., 2008. Assembly and Preservation of Lower, Mid, and Upper Orogenic Crust in the Grenville Province – Implications for the Evolution of Large Hot Long-Duration Orogens. Precambrian Research 167 (3–4), 237–259. https://doi.org/10.1016/j.precamres.2008.08.005.; Salminen J., Lehtonen E., Mertanen S., Pesonen L.J., Elming S.-Å., Luoto T., 2021. The Precambrian Drift History and Paleogeography of Baltica. In: L.J. Pesonen, J. Salminen, S.-Å. Elming, D.A.D. Evans, T. Veikkolainen (Eds), Ancient Supercontinents and the Paleogeography of the Earth. Vol. 5. Elsivier, p. 155‒206. https://doi.org/10.1016/B978-0-12-818533-9.00015-1.; Semikhatov M.A., Kuznetsov A.B., Gorokhov I.M., Konstantinova G.V., Melnikov N.N., Podkovyrov V.N., Kutyavin E.P., 2002. Low 87Sr/86Sr Ratios in Seawater of the Grenville and Post-Grenville Time: Determining Factors. Stratigraphy and Geological Correlation 10 (1), 1–41.; Shatagin K.N., Volkov V.N., 1998. Rb-Sr System in Hydrothermally Altered Acid Volcanics: A Case Study. Geochemistry International 36 (2), 128–133.; Shenfil V.Yu., 1991. Late Precambrian of the Siberian Platform. Nauka, Novosibirsk, 183 p. (in Russian) [Шенфиль В.Ю. Поздний докембрий Сибирской платформы. Новосибирск: Наука, 1991. 183 с.].; Sklyarov E.V. (Ed.), 2001. Metamorphism and Tectonics. Textbook. Intermet Engineering, Moscow, 216 p. (in Russian) [Метаморфизм и тектоника: Учебное пособие / Ред. Е.В. Скляров. М.: Интермет Инжиниринг, 2001. 216 с.].; Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plešovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.; State Geological Map of the Russian Federation, 2009. Angara-Yenisei Series. Scale 1:1000000. Sheet O-46 (Krasnoyarsk). Explanatory Note. VSEGEI, Saint Petersburg, 500 p. (in Russian) [Государственная геологическая карта Российской Федерации. Масштаб 1:1000000. Серия Ангаро-Енисейская. Лист О-46 (Красноярск): Объяснительная записка. СПб.: ВСЕГЕИ, 2009. 500 с.].; Strachan R.A., Nutman A.P., Friderichsen J.D., 1995. SHRIMP U-Pb Geochronology and Metamorphic History of the Smallefjord Sequence, NE Greenland Caledonides. Journal of the Geological Society 152, 779–784. https://doi.org/10.1144/gsjgs.152.5.0779.; Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.; Sylvester P.J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos 45 (1–4), 29–44. https://doi.org/10.1016/S0024-4937(98)00024-3.; Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.; Thirlwall M.F., 1991. Long-Term Reproducibility of Multicollector Sr and Nd Isotope Ratio Analysis. Chemical Geology: Isotope Geoscience Section 94 (2), 85–104. https://doi.org/10.1016/0168-9622(91)90002-E.; Torsvik T.H., 2003. The Rodinia Jigsaw Puzzle. Science 300 (5624), 1379–1381. https://doi.org/10.1126/science.1083469.; Vance D., Strachan R.A., Jones K.A., 1998. Extensional versus Compressional Settings for Metamorphism: Garnet Chronometry and Pressure-Temperature-Time Histories in the Moine Supergroup, Northwest Scotland. Geology 26 (10), 927–930. https://doi.org/10.1130/0091-7613(1998)026%3C0927:EVCSFM%3E2.3.CO;2.; Vernikovskaya A.E., Vernikovsky V.A., Sal’nikova E.B., Datsenko V.M., Kotov A.B., Kovach V.P., Travin A.V., Yakovleva S.Z., 2002. Yeruda and Cherimba Granitoids (Yenisey Ridge) as Indicators of Neoproterozoic Collisions. Russian Geology and Geophysics 43 (3), 245–259.; Vernikovskaya A.E., Vernikovsky V.A., Sal’nikova E.B., Kotov A.B., Kovach V.P., Travin A.V., Palessky S.V., Yakovleva S.Z., Yasenev A.M., Fedoseenko A.M., 2003. Neoproterozoic Postcollisional Granitoids of the Glushikha Complex, Yenisey Ridge. Petrology 11 (1), 54–68.; Vernikovsky V.A., Vernikovskaya A.E., 2006. Tectonics and Evolution of Granitoid Magmatism in the Yenisei Ridge. Russian Geology and Geophysics 47 (1), 32–50.; Vernikovsky V.A., Vernikovskaya A.E., Wingate M.T.D., Popov N.V., Kovach V.P., 2007. The 880–864 Ma Granite of the Yenisey Ridge, Western Siberian Margin: Geochemistry, Shrimp Geochronology, and Tectonic Implications. Precambrian Research 154 (3–4), 175–191. https://doi.org/10.1016/j.precamres.2006.12.006.; Whalen J.B., Currie K.L., Chappell B.W., 1987. A-Type Granite: Geochemical Characteristics, Discrimination and Petrogenesis. Contribution to Mineralogy and Petrology 95, 407‒419. https://doi.org/10.1007/BF00402202.; Yarmolyuk V.V., Kovalenko V.I., Salnikova E.B., Nikiforov A.V., Kotov A.B., Vladykin N.V., 2005. Late Riphean Rifting and Breakup of Laurasia: Data on Geochronological Studies of Ultramafic Alkaline Complexes in the Southern Framing of the Siberian Craton. Doklady Earth Sciences 404 (7), 1031–1036.; Zhang S., Chang L., Zhao H., Ding J., Xian H., Li H., Wu H., Yang T., 2021. The Precambrian Drift History and Paleogeography of the Chinese Cratons. In: L.J. Pesonen, J. Salminen, S.-Å. Elming, D.A.D. Evans, T. Veikkolainen (Eds), Ancient Supercontinents and the Paleogeography of the Earth. Vol. 11. Elsivier, p. 333‒376. https://doi.org/10.1016/B978-0-12-818533-9.00005-9.; https://www.gt-crust.ru/jour/article/view/1815

  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المساهمون: РФФИ (проекты № 18-35-00482 и № 16-05-01115) и в рамках Государственного задания ИФЗ РАН

    المصدر: Geodynamics & Tectonophysics; Том 10, № 1 (2019); 21-41 ; Геодинамика и тектонофизика; Том 10, № 1 (2019); 21-41 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/767/423; Ahnert F., 1970. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. American Journal of Science 268 (3), 243–263. https://doi.org/10.2475/ajs.268.3.243.; Белоусов В.В. Основы геотектоники. М.: Недра, 1989. 382 с.; Blatt H., Middleton G., Murray R., 1972. Origin of Sedimentary Rock. Prentice-Hall, Inc., New Jersey, 634 p.; Bobrov A.M., Baranov A.A., 2011. Horizontal stresses in the mantle and in the moving continent for the model of two-dimensional convection with varying viscosity. Izvestiya, Physics of the Solid Earth 47 (9), 801–815. https://doi.org/10.1134/S1069351311090023.; Bobrov A.M., Trubitsyn V.P., 2003. Evolution of viscous stresses in the mantle and in moving continents in the process of the formation and breakup of a supercontinent. Izvestiya, Physics of the Solid Earth 39 (12), 963–973.; Буртман В.С. Тянь-Шань и Высокая Азия. Геодинамика в кайнозое. М.: ГЕОС, 2012. 188 с.; Cloetingh S., Burov E., Beekman F., Andeweg B., Andriessen P.A.M., García-Castellanos D., de Vicente G., Vegas R., 2002. Lithospheric folding in Iberia. Tectonics 21 (5), 1041. https://doi.org/10.1029/2001TC901031.; Culling W.E.H., 1960. Analytical theory of erosion. The Journal of Geology 68 (3), 336–344. https://doi.org/10.1086/626663.; Добрецов Н.Л., Берзин Н.А., Буслов М.М., Ермиков В.Д. Общие проблемы эволюции Алтайского региона и взаимоотношения между строением фундамента и развитием неотектонической структуры // Геология и геофизика. 1995. Т. 36. № 10. С. 5–19; Dobretsov N.L., Koulakov I.Y., Polyansky O.P., 2013. Geodynamics and stress-strain patterns in different tectonic settings. Russian Geology and Geophysics 54 (4), 357–380. https://doi.org/10.1016/j.rgg.2013.03.001.; England P., Houseman G., 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. Journal of Geophysical Research: Solid Earth 91 (B3), 3664–3676. https://doi.org/10.1029/JB091iB03p03664.; García-Castellanos D., Cloetingh S.I.E.R.D., Busby C., Azor A., 2012. Modeling the interaction between lithospheric and surface processes in foreland basins. In: C. Busby, A. Azor (Eds.), Tectonics of sedimentary basins: recent advances. Wiley-Blackwell, Oxford, p. 152–181. https://doi.org/10.1002/9781444347166.ch8.; Horowitz D.H., 1976. Mathematical modeling of sediment accumulation in prograding deltaic systems. In: D.F. Merriam (Ed.), Quantitative techniques for the analysis of sediments. Pergamon, Oxford, p. 105–119. https://doi.org/10.1016/B978-0-08-020613-4.50015-X.; Хаин В.Е., Ломизе М.Г. Геотектоника с основами геодинамики. М.: Изд-во Московского госуниверситета, 1995. 480 с.; Крестников В.Н., Белоусов Т.П., Ермилин В.И., Чигарев Н.В., Штанге Д.В. Четвертичная тектоника Памира и Тянь-Шаня. М.: Наука, 1979. 116 с.; Ландау Л.Д., Лифшиц Е.М. Гидромеханика. Теоретическая физика. Том 6. 3-е изд., перераб. М.: Наука, 1986. 736 с.; Liu J., Liu Q.-Y., Guo B., Yuen D.A., Song H.-Z., 2007. Small-scale convection in the upper mantle beneath the Chinese Tian Shan Mountains. Physics of the Earth and Planetary Interiors 163 (1–4), 179–190. https://doi.org/10.1016/j.pepi.2007.04.019.; Love A.E.H., 1911. Some Problems of Geodynamics. Cambridge University Press, London, 180 p.; Современная геодинамика областей внутриконтинентального коллизионного горообразования (Центральная Азия) / Ред. В.И. Макаров. М.: Научный мир, 2005. 400 с.; Makarov V.I., Alekseev D.V., Batalev V.Y., Bataleva E.A., Belyaev I.V., Bragin V.D., Dergunov N.T., Efimova N.N., Leonov M.G., Munirova L.M., Pavlenkin A.D., Roecker S., Roslov Yu.V., Rybin A.K., Shchelochkov G.G., 2010. Underthrusting of Tarim beneath the Tien Shan and deep structure of their junction zone: Main results of seismic experiment along MANAS Profile Kashgar-Song-Köl. Geotectonics 44 (2), 102–126.; Макаров В.И., Рыбин А.К., Матюков В.Е., Пушкарев П.Ю., Щербина Ф.А. Особенности глубинной структуры депрессионных областей Центрального Тянь-Шаня // Инженерные изыскания. 2011. № 1. С. 42–51.; Михайлов В.О. Математическая модель эволюции структур, образующихся в результате вертикальных движений // Известия АН СССР, серия Физика Земли. 1983. № 6. С. 3–18.; Mikhailov V.O., 1999. Modeling the Extension and Compression of the Lithosphere by Intraplate Forces. Izvestiya, Physics of the Solid Earth 35 (3), 228–238.; Mikhailov V.O., Timoshkina E.P., Polino R., 1999. Foredeep basins: the main features and model of formation. Tectonophysics 307 (3–4), 345–359. https://doi.org/10.1016/S0040-1951(99)00052-9.; Мягков Д.С., Ребецкий Ю.Л. Эволюция структуры течения и рельефа коры эпиплатформенных орогенов под воздействием мелкомасштабной астеносферной конвекции // Вестник КРАУНЦ. 2016. № 1. С. 89–100.; Николаевский В.Н. Механика геоматериалов и землетрясения // Итоги науки и техники, серия Механика деформируемого твердого тела. 1983. Т. 15. С. 817–821.; Русский перевод: Оллиер К. Тектоника и рельеф. М.: Недра, 1984. 460 с.; [Работнов Ю.Н. Механика деформируемого твердого тела. M.: Наука, 1988. 712 с.; Ребецкий Ю.Л. Об одной новой форме неустойчивости континентальной коры // Осадочные бассейны и геологические предпосылки прогноза новых объектов, перспективных на нефть и газ: Материалы XLIV тектонического совещания. Т. II. М.: ГЕОС, 2012. С. 355–359.; Ребецкий Ю.Л. Об особенности напряженного состояния коры внутриконтинентальных орогенов // Геодинамика и тектонофизика. 2015. Т. 6. № 4. С. 437–466. https://doi.org/10.5800/GT-2015-6-4-0189.; Ребецкий Ю.Л., Алексеев Р.С. Поле современных тектонических напряжений Средней и Юго-Восточной Азии // Геодинамика и тектонофизика. 2014. Т. 5. № 1. С. 257–290. https://doi.org/10.5800/GT-2014-5-1-0127.; Rebetsky Y.L., Kuchai O.A., Marinin A.V., 2013. Stress state and deformation of the Earth's crust in the Altai–Sayan mountain region. Russian Geology and Geophysics 54 (2), 206–222. https://doi.org/10.1016/j.rgg.2013.01.011.; Rebetsky Y.L., Kuchai O.A., Sycheva N.A., Tatevossian R.E., 2012. Development of inversion methods on fault slip data: Stress state in orogenes of the Central Asia. Tectonophysics 581, 114–131. https://doi.org/10.1016/j.tecto.2012.09.027.; Ребецкий Ю.Л., Погорелов В.В. Тектонофизическая модель механизма нагружения и эволюции напряженно-деформированного состояния литосферы континентальных горно-складчатых областей // Геологическая история, возможные механизмы и проблема формирования впадин с субокеанической и аномально тонкой корой в провинциях с континентальной литосферой: Материалы XLV тектонического совещания. Т. II. М.: ГЕОС, 2013. С. 181–185.; Rebetsky Y.L., Sycheva N.A., Sychev V.N., Kuzikov S.I., Marinin A.V., 2016. The stress state of the northern Tien Shan crust based on the KNET seismic network data. Russian Geology and Geophysics 57 (3), 387–408. https://doi.org/10.1016/j.rgg.2016.03.003.; Schubert B., Turcotte D.L., Olson P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge, 940 p.; Thieulot C., Steer P., Huismans R.S., 2014. Three-dimensional numerical simulations of crustal systems undergoing orogeny and subjected to surface processes. Geochemistry, Geophysics, Geosystems 15 (12), 4936–4957. https:// doi.org/10.1002/2014GC005490.; Timoshkina E.P., Leonov Y.G., Mikhailov V.O., 2010. Formation of the orogen-foredeep system: A geodynamic model and comparison with the data of the northern Forecaucasus. Geotectonics 44 (5), 371–387. https://doi.org/10.1134/S0016852110050018.; Trubitsyn V.P., Simakin A.G., Baranov A.A., 2006. The effect of spatial variations in viscosity on the structure of mantle flows. Izvestiya, Physics of the Solid Earth 42 (1), 1–12. https://doi.org/10.1134/S1069351306010010.; Turcotte D.L., Schubert G., 1982. Geodynamics: Application of Continuum Physics to Geological Problems. John Wiley & Sons, New York, 464 p.; https://www.gt-crust.ru/jour/article/view/767

  9. 9
    Academic Journal

    المصدر: Geodynamics & Tectonophysics; Том 10, № 1 (2019); 181-188 ; Геодинамика и тектонофизика; Том 10, № 1 (2019); 181-188 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/776/431; Флоренсов Н.А. Мезозойские и кайнозойские впадины Прибайкалья. М.–Л.: Изд-во АН СССР, 1960. 258 с.; Флоренсов Н.А. Геоморфологические формации // Проблемы эндогенного рельефообразования / Ред. Н.А. Флоренсов. М.: Наука, 1976. С. 399–419.; Проблемы эндогенного рельефообразования / Ред. Н.А. Флоренсов. М.: Наука, 1976. 452 с.; Флоренсов Н.А. Очерки структурной геоморфологии. М.: Наука, 1978. 238 с.; Флоренсов Н.А. Тропы моей памяти. Иркутск: ИЗК СО РАН, 2009. 215 с.; Флоренсов Н.А., Хилько С.Д. Рельеф и сейсмичность // Проблемы эндогенного рельефообразования / Ред. Н.А. Флоренсов. М.: Наука, 1976. С. 259–279.; Геоморфология Монгольской Народной Республики / Ред. Н.А. Флоренсов, С.С. Коржуев. М.: Наука, 1982. 259 с.; Гоби-Алтайское землетрясение / Ред. Н.А. Флоренсов, В.П. Солоненко. М.: Изд-во АН СССР, 1963. 392 с.; Логачев Н.А. Николай Александрович Флоренсов (1909–1986) // Флоренсов Н.А. Рельеф и неотектоника. Избранные труды. М., 1989. C. 3–19.; Николай Александрович Флоренсов: Сборник воспоминаний / Ред. Н.А. Логачев. Новосибирск: Изд-во СО РАН, 2003. 170 с.; Лопатин Д.В. Геоморфология восточной части Байкальской рифтовой зоны. Новосибирск: Наука, 1972. 112 с.; Лопатин Д.В. Концепция геоморфологических формаций и пути ее развития // Геоморфология. 2005. № 3. С. 10–23.; Лопатин Д.В., Томилов Б.В. Иркутские научные школы геологии, геоморфологии, палеогеографии и геодинамики кайнозоя. СПб.: НИКА, 2011. 144 с.; Новиков И.С. Морфотектоника Алтая. Новосибирск: Изд-во СО РАН, филиал «Гео», 2004. 313 с.].; Шульц С.С. Анализ новейшей тектоники и рельеф Тянь-Шаня. Записки Всесоюзного географического общества. Новая серия. Т. 3. М.: Географгиз, 1948. 222 с.; Уфимцев Г.Ф. Морфотектоника Байкальской рифтовой зоны. Новосибирск: Наука, 1992. 216 с.; https://www.gt-crust.ru/jour/article/view/776

  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    المصدر: South of Russia: ecology, development; Том 5, № 3 (2010); 39-45 ; Юг России: экология, развитие; Том 5, № 3 (2010); 39-45 ; 2413-0958 ; 1992-1098 ; 10.18470/1992-1098-2010-3

    وصف الملف: application/pdf

    Relation: https://ecodag.elpub.ru/ugro/article/view/646/637; Агаханянц О.Е. Аридные горы СССР. - М.: Мысль, 1981. - 270 с.; Богоявленская О.В., Пучков В.Н., Федоров М.В. Геология СССР. - М.: Недра, 1991. - 240 с.; Великовская Е.М. О древних продольных речных долинах Большого Кавказа. Научные докл. высшей школы. Геол. - географ. науки, №4, 1958.; Гроссгейм А.А. Анализ флоры Кавказа. - Баку: Красный Восток, 1936. - 260 с.; Еленевский А.Г. О некоторых замечательных особенностях флоры Внутреннего Дагестана // Бюлл. МОИП. Отд. биол. - 1966. - Т. 71, вып. 5. - С 107-118.; Каталог ископаемых растений Кавказа. - Тбилиси: «Мецниереба», 1973. Ч. I. - 316 с.; Кузнецов Н.И. Принципы деления Кавказа на ботанико-географические провинции // Зап. Имп. АН по физ.-мат., 1909. - Т. 24, N 1. - 174 с.; Никитин М.Ю. Неотектоника Восточного Кавказа. - Бюл. МОИП, Отдел геол., 1987, т. 62, № 3, с. 21-36. 9. Милановский Е.Е., Хаин В.Е., Думитрашко Н.В. Геологическая история и формирование рельефа // Природные условия и естественные ресурсы СССР: Кавказ. - М.: Наука, 1966. - С. 35-42.; Сафронов И.Н. Палеогеоморфология Северного Кавказа. - М.: Недра, 1972. - 158 с.; Тумаджанов И.И. Древняя пустыня в Нагорном Дагестане // Бот. журнал. - 1966. - Т. 51, N 6. - С. 784-791.; Тумаджанов И.И. Ботанико-географические особенности высокогорного Дагестана в связи с палеогеографией плейстоцена и голоцена // Бот. журнал. - 1971. - Т. 56, N 9. - С. 1239-1251.; https://ecodag.elpub.ru/ugro/article/view/646

  14. 14
    Academic Journal
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal
  19. 19
  20. 20