يعرض 1 - 20 نتائج من 79 نتيجة بحث عن '"обмен железа"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was written within the framework of the state task No. 0287-2021-0005 “Study of moleculargenetic and regulatory-metabolic mechanisms of the functional activity of cells of the immune system in normal and immunopathological conditions”., Работа написана в рамках госзадания № 0287-2021-0005 «Исследование молекулярно-генетических и регуляторно-метаболических механизмов функциональной активности клеток иммунной системы в норме и при иммунопатологических состояниях».

    المصدر: Meditsinskiy sovet = Medical Council; № 8 (2023); 119-125 ; Медицинский Совет; № 8 (2023); 119-125 ; 2658-5790 ; 2079-701X

    مصطلحات موضوعية: обмен железа, HSD17B13, GCKR, HFE, CP, iron metabolism

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7561/6735; Vernon G., Baranova A., Younossi Z. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34(3):274–285. https://doi.org/10.1111/j.1365-2036.2011.04724.x.; Marchesini G., Mazzotti A. NAFLD incidence and remission: Only a matter of weight gain and weight loss? J Hepatol. 2015;62(1):15–17. https://doi.org/10.1016/j.jhep.2014.10.023.; Kitamoto T., Kitamoto A., Yoneda M., Hyogo H., Ochi H., Nakamura T. et. al. Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet. 2013;132(7):783–792. https://doi.org/10.1007/s00439-013-1294-3.; Speliotes E., Yerges-Armstrong L., Wu J., Hernaez R., Kim L., Palmer C. et al. Genome-Wide Association Analysis Identifies Variants Associated with Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits. PLoS Genet. 2011;7(3):e1001324. https://doi.org/10.1371/journal.pgen.1001324.; Kozlitina J., Smagris E., Stender S., Nordestgaard B., Zhou H., Tybjaerg-Hansen A. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver diseas. Nat Genet. 2014;46(4):352–356. https://doi.org/10.1038/ng.2901.; Basyte-Bacevice V., Skieceviciene J., Valentiene I., Sumskiene J., Petrenkiene V., Kondrackiene J. et al. TM6SF2 and MBOAT7 Gene Variants in Liver Fibrosis and Cirrhosis. Int J Mol Sci. 2019;20(6):1277. https://doi.org/10.3390/ijms20061277.; Krawczyk M., Rau M., Schattenberg J., Bantel H., Pathil A., Demir M. et al. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsybased study. J Lipid Res. 2017;58(1):247–255. https://doi.org/10.1194/jlr.P067454.; Chambers J., Zhang W., Sehmi J., Li X., Wass M., Van der Harst P. et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 2011;43(11):1131–1138. https://doi.org/10.1038/ng.970.; Abul-Husn N., Cheng X., Li A., Xin Y. Schurmann C., Stevis P. et al. A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease. N Engl J Med. 2018;378(12):1096–1106. https://doi.org/10.1056/NEJMoa1712191.; Nelson J., Bhattacharya R., Lindor K., Chalasani N., Raaka S., Heathcote E. et al. HFE C282Y mutations are associated with advanced hepatic fibrosis in Caucasians with nonalcoholic steatohepatitis. Hepatology. 2007;46(3):723–729. https://doi.org/10.1002/hep.21742.; Ma Y., Karki S., Brown P., Lin D.D., Podszun M.C., Zhou W. et al. Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity. J Lipid Res. 2020;61(11):1400–1409. https://doi.org/10.1194/jlr.RA120000907.; Ma Y., Belyaeva O., Brown P., Fujita K., Valles K., Karki S. et al. HSD17B13 is a Hepatic Retinol Dehydrogenase Associated with Histological Features of Non-Alcoholic Fatty Liver Disease. Hepatology. 2019;69(4):1504–1519. https://doi.org/10.1002/hep.30350.; Ma Y., Brown P., Lin D., Ma J., Feng D., Belyaeva O. et al. 17-Beta Hydroxysteroid Dehydrogenase 13 Deficiency Does Not Protect Mice From Obesogenic Diet Injury. Hepatology. 2021;73(5):1701–1716. https://doi.org/10.1002/hep.31517.; Pirola C., Garaycoechea M., Flichman D., Arrese M., Martino J., Gazzi C. et al. Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease. J Lipid Res. 2019;60(1):176–185. https://doi.org/10.1194/jlr.P089953.; Bellan M., Coletta C., Barbaglia M., Salmi L., Clerici R., Mallela V. et al. Severity of Nonalcoholic Fatty Liver Disease in Type 2 Diabetes Mellitus: Relationship between Nongenetic Factors and PNPLA3/HSD17B13 Polymorphisms. Diabetes Metab J. 2019;43(5):700–710. https://doi.org/10.4093/dmj.2018.0201.; Scheiner B., Stattermayer A., Schwabl P., Bucsics T., Paternostro R., Bauer D. et al. Impact of HSD17B13 rs72613567 genotype on hepatic decompensation and mortality in patients with portal hypertension. Liver Int. 2020;40(2):393–404. https://doi.org/10.1111/liv.14304.; Vilar-Gomez E., Pirola C., Sookoian S., Wilson L., Liang T., Chalasani N. The Protection Conferred by HSD17B13 rs72613567 Polymorphism on Risk of Steatohepatitis and Fibrosis May Be Limited to Selected Subgroups of Patients With NAFLD. Clin Transl Gastroenterol. 2021;12(9):e00400. https://doi.org/10.14309/ctg.0000000000000400.; Luukkonen P., Tukiainen T., Juuti A., Sammalkorpi H., Haridas N., Niemela O. et al. Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. JCI Insight. 2020;5(5):e132158. https://doi.org/10.1172/jci.insight.132158.; Ting Y., Kong A., Zain S., Chan W., Tan H., Mohamed Z. et al. Loss-offunction HSD17B13 variants, non-alcoholic steatohepatitis and adverse liver outcomes: Results from a multi-ethnic Asian cohort. Clin Mol Hepatol. 2021;27(3):486–498. https://doi.org/10.3350/cmh.2020.0162.; Liu W., Eslam M., Zheng K., Ma H., Rios R., Lv M. et al. Associations of Hydroxysteroid 17-beta Dehydrogenase 13 Variants with Liver Histology in Chinese Patients with Metabolic-associated Fatty Liver Disease. J Clin Transl Hepatol. 2021;9(2):194–202. https://doi.org/10.14218/JCTH.2020.00151.; Jansson-Knodell C., Gawrieh S., McIntyre A., Liang T., Hegele R., Chalasani N. APOB and PNPLA3 Double Heterozygosity in a Father-Son Pair with Advanced Nonalcoholic Fatty Liver Disease. Hepatology. 2020;71(1):383–385. https://doi.org/10.1002/hep.30874.; Kallwitz E., Tayo B., Kuniholm M., Daviglus M., Zeng D., Isasi C., Cotler S. Association of HSD17B13 rs72613567:TA with non-alcoholic fatty liver disease in Hispanics/Latinos. Liver Int. 2020;40(4):889–983. https://doi.org/10.11/11/liv.14387.; Pautsch A., Stadler N., Lohle A., Rist W., Berg A., Glocker L. et al. Crystal Structure of Glucokinase Regulatory Protein. Biochemistry. 2013;52(20):3523–3531. https://doi.org/10.1021/bi4000782.; Choi J., Seo M., Kyeong H., Kim E., Kim H. Molecular basis for the role of glucokinase regulatory protein as the allosteric switch for glucokinase. Proc Natl Acad Sci. USA. 2013;110(25):10171–10176. https://doi.org/10.1073/pnas.1300457110.; Costanzo A., Belardinilli F., Bailetti D., Sponziello M., D’Erasmo L., Polimeni L. et al. Evaluation of Polygenic Determinants of Non-Alcoholic Fatty Liver Disease (NAFLD) By a Candidate Genes Resequencing Strategy. Sci Rep. 2018;8(1):3702. https://doi.org/10.1038/s41598-018-21939-0.; Xu L., Yin L., Qi Y., Tan X., Gao M., Peng J. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing. Acta Pharm Sin B. 2021;11(10):3150–3164. https://doi.org/10.1016/j.apsb.2021.03.022.; Kawaguchi T., Shima T., Mizuno M., Mitsumoto Y., Umemura A., Kanbara Y. et al. Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers. PLoS ONE. 2018;13(1):e0185490. https://doi.org/10.1371/journal.pone.0185490.; Petta S., Miele L., Bugianesi E., Camma C., Rosso C., Boccia S. et al. Glucokinase Regulatory Protein Gene Polymorphism Affects Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. PLoS ONE. 2014;9(2):e87523. https://doi.org/10.1371/journal.pone.0087523.; Pirola C., Flichman D., Dopazo H., Gianotti T., Martino J., Rohr C. et al. A Rare Nonsense Mutation in the Glucokinase Regulator Gene Is Associated With a Rapidly Progressive Clinical Form of Nonalcoholic Steatohepatitis. Hepatol Commun. 2018;2(9):1030–1036. https://doi.org/10.1002/hep4.1235.; Petit J., Masson D., Guiu B., Rollot F., Duvillard L., Bouillet B. et al. GCKR polymorphism influences liver fat content in patients with type 2 diabetes. Acta Diabetol. 2016;53(2):237–242. https://doi.org/10.1007/s00592-015-0766-4.; Lin Y., Chang P., Chang M., Ni Y. Genetic variants in GCKR and PNPLA3 confer susceptibility to nonalcoholic fatty liver disease in obese individuals. Am J Clin Nutr. 2014;99(4):869–874. https://doi.org/10.3945/ajcn.113.079749.; Rees M., Raimondo A., Wang J., Ban M., Davis M., Barret A. et al. Inheritance of rare functional GCKR variants and their contribution to triglyceride levels in families. Hum Mol Genet. 2014;23(20):5570–5578. https://doi.org/10.1093/hmg/ddu269.; Kitamoto A., Kitamoto T., Nakamura T., Ogawa Y., Yoneda M., Hyogo H. et al. Association of polymorphisms in GCKR and TRIB1 with nonalcoholic fatty liver disease and metabolic syndrome traits. Endocr J. 2014;61(7):683–689. https://doi.org/10.1507/endocrj.ej14-0052.; Yang Z., Wen J., Tao X., Lu B., Du Y., Wang M. et al. Genetic variation in the GCKR gene is associated with non-alcoholic fatty liver disease in Chinese people. Mol Biol Rep. 2011;38(2):1145–1150. https://doi.org/10.1007/s11033-010-0212-1.; Kaliora A., Kalafati I., Gioxari A., Diolintzi A., Kokkinos A., Dedoussis G. A modified response of NAFLD patients with non-significant fibrosis in nutritional counseling according to GCKR rs1260326. Eur J Nutr. 2018;57(6):2227–2235. https://doi.org/10.1007/s00394-017-1499-7.; Costanzo A., Pacifico L., Chiesa C., Perla F., Ceci F., Angeloni A. et al. Genetic and metabolic predictors of hepatic fat content in a cohort of Italian children with obesity. Pediatr Res. 2019;85(5):671–677. https://doi.org/10.1038/s41390-019-0303-1.; Hudert C., Selinski S., Rudolph B., Blaker H., Loddenkemper C., Thielhorn R. et al. Genetic determinants of steatosis and fibrosis progression in paediatric non‐alcoholic fatty liver disease. Liver Int. 2019;39(3):540–556. https://doi.org/10.1111/liv.14006.; Cid-Soto M., Martinez-Hernandez A., Garcia-Ortiz H., Cordova E., Barajas-Olmos F., Centeno-Cruz F. et al. Gene variants in AKT1, GCKR and SOCS3 are differentially associated with metabolic traits in Mexican Amerindians and Mestizos. Gene. 2018;679:160–171. https://doi.org/10.1016/j.gene.2018.08.076.; Fallo F., Pozza A., Sonino N., Lupia M., Tona F., Federspil G. et al. Nonalcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in essential hypertension. Nutr Metab Cardiovasc Dis. 2009;19(9)646–653. https://doi.org/10.1016/j.numecd.2008.12.007.; Wu S., Wu F., Ding Y., Hou J., Bi J., Zhang Z. Association of non-alcoholic fatty liver disease with major adverse cardiovascular events: A systematic review and meta-analysis. Sci Rep. 2016;6:33386. https://doi.org/10.1038/srep33386.; Sung K., Wild S., Byrne C. Resolution of Fatty Liver and Risk of Incident Diabetes. Clin Endocrinol Metab. 2013;98(9):3637–3643. https://doi.org/10.1210/jc.2013-1519.; Sun D., Jin Y., Wang T., Zheng K., Rios R., Zhang H. et al. MAFLD and risk of CKD. Metabolism. 2021;115:154433. https://doi.org/10.1016/j.metabol.2020.154433.; Paik J., Golbali P., Younoszai Z., Mishra A., Trimble G., Younossi Z. Chronic kidney disease is independently associated with increased mortality in patients with nonalcoholic fatty liver disease. Liver Int. 2019;39(2):342–352. https://doi.org/10.1111/liv.13992.; Sun D., Wang T., Zheng K., Zhang H., Wang X., Targher G. et al. The HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2021;31(6):1822–1831. https://doi.org/10.1016/j.numecd.2021.02.018.; Sessa A., Umano G., Cirilo G., Passaro A., Verde V., Cozzolino D. et al. Pediatric non-alcoholic fatty liver disease and kidney function: Effect of HSD17B13 variant. World J Gastroenterol. 2020;26(36):5474–5483. https://doi.org/10.3748/wjg.v26.i36.5474.; Dekkers I., Vries A., Smit R., Rosendaal F., Rabelink T., Lamb H., de Mutsert R. The Separate Contributions of Visceral Fat and Liver Fat to Chronic Kidney Disease-Related Renal Outcomes. J Ren Nutr. 2020;30(4):286–295. https://doi.org/10.1053/j.jrn.2019.09.002.; Costanzo A., Pacifico L., D’Erasmo L., Polito L., Di Martino M., Perla F. et al. Nonalcoholic Fatty Liver Disease (NAFLD), But not Its Susceptibility Gene Variants, Influences the Decrease of Kidney Function in Overweight/Obese Children. Int J Mol Sci. 2019;20(18):4444. https://doi.org/10.3390/ijms20184444.; Sun D., Zheng K., Xu G., Ma H., Zhang H., Pan X. et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury in NAFLD patients with persistently normal ALT levels. Liver Int. 2020;40(1):107–119. https://doi.org/10.1111/liv.14251.; Musso G., Cassader M., Gambino R. PNPLA3 rs738409 and TM6SF2 rs58542926 Gene Variants Affect Renal Disease and Function in Nonalcoholic Fatty Liver Disease. Hepatology. 2015;62(2):658–659. https://doi.org/10.1002/hep.27643.; Ryan E., Ryan J., Russell J., Coughlan B., Tjalsma H., Swinkels D. et. al. Correlates of Hepcidin and NTBI according to HFE Status in Patients Referred to a Liver Centre. Acta Haematol. 2015;133(2):155–161. https://doi.org/10.1159/000363490.; Powell E., Ali A., Clouston A., Dixon J., Lincoln D., Purdie D. et al. Steatosis Is a Cofactor in Liver Injury in Hemochromatosis. Gastroenterology. 2006;129(6):1937–1943. https://doi.org/10.1053/j.gastro.2005.09.015.; Walsh A., Dixon J., Ramm G., Hewett D., Lincoln D., Anderson G. et al. The Clinical Relevance of Compound Heterozygosity for the C282Y and H63D Substitutions in Hemochromatosis. Clin Gastroenterol Hepatol. 2006;4(11):1403–1410. https://doi.org/10.1016/j.cgh.2006.07.009.; Lebron J., Bennett M., Vaughn D., Chirino A., Snow P., Minter G. et al. Crystal Structure of the Hemochromatosis Protein HFE and Characterization of Its Interaction with Transferrin Receptor. Cell. 1998;93(1):111–123. https://doi.org/10.1016/S0092-8674(00)81151-4.; Traeger L., Schnittker J., Dogan D., Oguama D., Kuhlmann T., Muckenthaler M. et al. HFE and ALK3 act in the same signaling pathway. Free Radic Biol Med. 2020;160:501–505. https://doi.org/10.1016/j.freeradbiomed.2020.08.023.; Nelson J., Brunt E., Kowdley K. Lower serum hepcidin and greater parenchymal iron in nonalcoholic fatty liver disease patients with C282Y HFE mutations. Hepatology. 2012;56(5):1730–1740. https://doi.org/10.1002/hep.25856.; Tan T., Crawford D., Jaskowski L., Murphy T., Heritage M., Subramaniam N. et al. Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G865–G876. https://doi.org/10.1152/ajpgi.00150.2011.; Wagner J., Fillebeen C., Haliotis T., Charlebois E., Katsarou A., Mui J. et. al. Mouse models of hereditary hemochromatosis do not develop early liver fibrosis in response to a high fat diet. PLoS ONE. 2019;14(8):e0221455. https://doi.org/10.1371/journal.pone.0221455.; Britton L., Jaskowski L., Bridle K., Santrampurwala N., Reiling J., Musgrave N. et al. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet. Physiol Rep. 2016;4(12) :e12837. https://doi.org/10.14814/phy2.12837.; Кривошеев А.Б., Максимов В.Н., Воевода М.И, Куимов A.Д., Кондратова М.А., Тугулева Т.А. и др. Аллели С282Y и Н63D гена HFE, инсулинорезистентность и предрасположенность к нарушению порфиринового обмена при неалкогольной жировой болезни печени. Экспериментальная и клиническая гастроэнтерология. 2015;(3):39–44. Режим доступа: https://cyberleninka.ru/article/n/alleli-s282y-i-n63d-gena-hfeinsulinorezistentnost-i-predraspolozhennost-k-narusheniyuporfirinovogo-obmena-pri-nealkogolnoy-zhirovoy/viewer.; Ye Q., Qian B., Yin W., Wang F., Han T. Association between the HFE C282Y, H63D Polymorphisms and the Risks of Non Alcoholic Fatty Liver Disease, Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis of 5,758 Cases and 14,741 Controls. PLoS ONE. 2016;11(9):e0163423. https://doi.org/10.1371/journal.pone.0163423.; Corridani E., Buzzetti E., Dongiovanni P., Scarlini S., Caleffi A., Pelusi S. et. al. Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD. J Hepatol. 2021;75(3):506–513. https://doi.org/10.1016/j.jhep.2021.03.014.; Bento I., Peixoto C., Zaitsev V., Lindley P. Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. Acta Crystallogr D Biol Crystallogr. 2007;D63:240–248. https://doi.org/10.1107/S090744490604947X.; Nobili V., Siotto M., Bedogni G., Rava L., Pietrobattista A., Panera N. et al. Levels of Serum Ceruloplasmin Associate With Pediatric Nonalcoholic Fatty Liver Disease. J Pediatr Gastroenterol Nutr. 2013;56(4):370–375. https://doi.org/10.1097/MPG.0b013e31827aced41.; https://www.med-sovet.pro/jour/article/view/7561

  2. 2
    Academic Journal

    المساهمون: Исследование выполнено при поддержке гранта Российского научного фонда № 23-75-01057, https://rscf.ru/project/23-75-01057/.

    المصدر: Complex Issues of Cardiovascular Diseases; Том 12, № 4 (2023); 29-42 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4 (2023); 29-42 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1376/834; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1376/1421; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1376/1422; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1376/1423; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1376/1424; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1376/1452; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1376/1453; Konstantinides S.V., Meyer G., Becattini C., Bueno H., Geersing G.J., Harjola V.P., Huisman M.V., Humbert M., Jennings C.S., Jiménez D., Kucher N., Lang I.M., Lankeit M., Lorusso R., Mazzolai L., Meneveau N., Ní Áinle F., Prandoni P., Pruszczyk P., Righini M., Torbicki A., Van Belle E., Zamorano J.L.; ESC Scientific Document Group. 2019 ESC Guidelines on the Diagnosis and Management of Acute Pulmonary Embolism. Eur Heart J. 2019; 40(42):3453-3455. doi:10.1093/eurheartj/ehz726; Moser K.M., Bloor C.M. Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension. Chest. 1993; 103(3):685-692. doi:10.1378/chest.103.3.685; Simonneau G., Torbicki A., Dorfmüller P., Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2017; 26(143):160112. doi:10.1183/16000617.0112-2016; Pietra G.G., Capron F., Stewart S., Leone O., Humbert M., Robbins I.M., Reid L.M., Tuder R.M. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol. 2004; 43(12 Suppl S):25S-32S. doi:10.1016/j.jacc.2004.02.033; Lang I.M., Dorfmüller P., Vonk Noordegraaf A. The Pathobiology of Chronic Thromboembolic Pulmonary Hypertension. Ann Am Thorac Soc. 2016; 13 Suppl 3:S215-S221. doi:10.1513/AnnalsATS.201509-620AS; Otani N., Watanabe R., Tomoe T., Toyoda S., Yasu T., Nakamoto T. Pathophysiology and Treatment of Chronic Thromboembolic Pulmonary Hypertension. Int J Mol Sci. 2023; 24(4):3979. doi:10.3390/ijms24043979; Simonneau G., Dorfmüller P., Guignabert C., Mercier O., Humbert M. Chronic thromboembolic pulmonary hypertension: the magic of pathophysiology. Ann Cardiothorac Surg. 2022; 11(2):106-119. doi:10.21037/acs-2021-pte-10; Vrigkou E., Tsantes A., Konstantonis D., Rapti E., Maratou E., Pappas A., Halvatsiotis P., Tsangaris I. Platelet, Fibrinolytic and Other Coagulation Abnormalities in Newly-Diagnosed Patients with Chronic Thromboembolic Pulmonary Hypertension. Diagnostics (Basel). 2022; 12(5):1238. doi:10.3390/diagnostics12051238; Yan L., Li X., Liu Z., Zhao Z., Luo Q., Zhao Q., Jin Q., Yu X., Zhang Y. Research progress on the pathogenesis of CTEPH. Heart Fail Rev. 2019; 24(6):1031-1040. doi:10.1007/s10741-019-09802-4; Quarck R., Wynants M., Verbeken E., Meyns B., Delcroix M. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2015; 46(2):431-443. doi:10.1183/09031936.00009914; Koudstaal T., Boomars K.A., Kool M. Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: An Immunological Perspective. J Clin Med. 2020; 9(2):561. doi:10.3390/jcm9020561; Zabini D., Heinemann A., Foris V., Nagaraj C., Nierlich P., Bálint Z., Kwapiszewska G., Lang I.M., Klepetko W., Olschewski H., Olschewski A. Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. Eur Respir J. 2014; 44(4):951-962. doi:10.1183/09031936.00145013; Koudstaal T., van Uden D., van Hulst J.A.C., Heukels P., Bergen I.M., Geenen L.W., Baggen V.J.M., van den Bosch A.E., van den Toorn L.M., Chandoesing P.P., Kool M., Boersma E., Hendriks R.W., Boomars K.A. Plasma markers in pulmonary hypertension subgroups correlate with patient survival. Respir Res. 2021; 22(1):137. doi:10.1186/s12931-021-01716-w; Reesink H.J., Meijer R.C., Lutter R., Boomsma F., Jansen H.M., Kloek J.J., Bresser P. Hemodynamic and clinical correlates of endothelin-1 in chronic thromboembolic pulmonary hypertension. Circ J. 2006; 70(8):1058-1063. doi:10.1253/circj.70.1058; Yang M., Deng C., Wu D., Zhong Z., Lv X., Huang Z., Lian N., Liu K., Zhang Q. The role of mononuclear cell tissue factor and inflammatory cytokines in patients with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis. 2016; 42(1):38-45. doi:10.1007/s11239-015-1323-2; Авдеев С.Н., Барбараш О.Л., Баутин А.Е., Волков А.В., Веселова Т.Н., Галявич А.С., Гончарова Н.С., Горбачевский С.В., Данилов Н.М., Еременко А.А., Мартынюк Т.В., Моисеева О.М., Саидова М.А., Сергиенко В.Б., Симакова М.А., Стукалова О.В., Чазова И.Е., Чернявский А.М., Шалаев С.В., Шмальц А.А., Царева Н.А. Легочная гипертензия, в том числе хроническая тромбоэмболическая легочная гипертензия. Клинические рекомендации 2020. Российский кардиологический журнал. 2021; 26(12):4683. doi:10.15829/1560-4071-2021-4683; Rudski L.G., Lai W.W., Afilalo J., Hua L., Handschumacher M.D., Chandrasekaran K., Solomon S.D., Louie E.K., Schiller N.B. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010; 23(7):685-788. doi:10.1016/j.echo.2010.05.010; ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002; 166(1):111-117. doi:10.1164/ajrccm.166.1.at1102; White C.A., Akbari A., Doucette S., Fergusson D., Knoll G.A. Estimating glomerular filtration rate in kidney transplantation: is the new chronic kidney disease epidemiology collaboration equation any better? Clin Chem. 2010; 56(3):474-477. doi:10.1373/clinchem.2009.135111; Humbert M., Kovacs G., Hoeper M.M., Badagliacca R., Berger R.M.F., Brida M., Carlsen J., Coats A.J.S., Escribano-Subias P., Ferrari P., Ferreira D.S., Ghofrani H.A., Giannakoulas G., Kiely D.G., Mayer E., Meszaros G., Nagavci B., Olsson K.M., Pepke-Zaba J., Quint J.K., Rådegran G., Simonneau G., Sitbon O., Tonia T., Toshner M., Vachiery J.L., Vonk Noordegraaf A., Delcroix M., Rosenkranz S.; ESC/ERS Scientific Document Group. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022; 43(38):3618-3731. doi:10.1093/eurheartj/ehac237; Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003; 284(4):L566-L577. doi:10.1152/ajplung.00233.2002; Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021; 101(Pt B):107598. doi:10.1016/j.intimp.2021.107598; Kimura H., Okada O., Tanabe N., Tanaka Y., Terai M., Takiguchi Y., Masuda M., Nakajima N., Hiroshima K., Inadera H., Matsushima K., Kuriyama T. Plasma monocyte chemoattractant protein-1 and pulmonary vascular resistance in chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2001; 164(2):319-324. doi:10.1164/ajrccm.164.2.2006154; Smolders V.F.E.D., Lodder K., Rodríguez C., Tura-Ceide O., Barberà J.A., Jukema J.W., Quax P.H.A., Goumans M.J., Kurakula K. The Inflammatory Profile of CTEPH-Derived Endothelial Cells Is a Possible Driver of Disease Progression. Cells. 2021; 10(4):737. doi:10.3390/cells10040737; Xiao L., Liu Y., Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2014; 306(3):H317-H325. doi:10.1152/ajpheart.00182.2013; Wu D., Chen Y., Wang W., Li H., Yang M., Ding H., Lv X., Lian N., Zhao J., Deng C. The role of inflammation in a rat model of chronic thromboembolic pulmonary hypertension induced by carrageenan. Ann Transl Med. 2020; 8(7):492. doi:10.21037/atm.2020.02.86; Åberg M., Björklund E., Wikström G., Christersson C. Platelet-leukocyte aggregate formation and inflammation in patients with pulmonary arterial hypertension and CTEPH. Platelets. 2022; 33(8):1199-1207. doi:10.1080/09537104.2022.2087867; Magoń W., Stępniewski J., Waligóra M., Jonas K., Przybylski R., Podolec P., Kopeć G. Changes in Inflammatory Markers in Patients with Chronic Thromboembolic Pulmonary Hypertension Treated with Balloon Pulmonary Angioplasty. Cells. 2022; 11(9):1491. doi:10.3390/cells11091491; Itoh T., Nagaya N., Ishibashi-Ueda H., Kyotani S., Oya H., Sakamaki F., Kimura H., Nakanishi N. Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension. Respirology. 2006; 11(2):158-163. doi:10.1111/j.1440-1843.2006.00821.x; Liu K., Zhang C., Chen B., Li M., Zhang P. Association between right atrial area measured by echocardiography and prognosis among pulmonary arterial hypertension: a systematic review and meta-analysis. BMJ Open. 2020; 10(9):e031316. doi:10.1136/bmjopen-2019-031316; Zhang M., Zhang Y., Pang W., Zhai Z., Wang C. Circulating biomarkers in chronic thromboembolic pulmonary hypertension. Pulm Circ. 2019; 9(2):2045894019844480. doi:10.1177/2045894019844480; Wynants M., Quarck R., Ronisz A., Alfaro-Moreno E., Van Raemdonck D., Meyns B., Delcroix M. Effects of C-reactive protein on human pulmonary vascular cells in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2012; 40(4):886-894. doi:10.1183/09031936.00197511; Quarck R., Nawrot T., Meyns B., Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol. 2009; 53(14):1211-1218. doi:10.1016/j.jacc.2008.12.038; Skoro-Sajer N., Gerges C., Gerges M., Panzenböck A., Jakowitsch J., Kurz A., Taghavi S., Sadushi-Kolici R., Campean I., Klepetko W., Celermajer D.S., Lang I.M. Usefulness of thrombosis and inflammation biomarkers in chronic thromboembolic pulmonary hypertension-sampling plasma and surgical specimens. J Heart Lung Transplant. 2018; 37(9):1067-1074. doi:10.1016/j.healun.2018.04.003; Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010; 30:105-122. doi:10.1146/annurev.nutr.012809.104804; Anand I.S., Gupta P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation. 2018; 138(1):80-98. doi:10.1161/CIRCULATIONAHA.118.030099; Nemeth E., Rivera S., Gabayan V., Keller C., Taudorf S., Pedersen B.K., Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004; 113(9):1271-1276. doi:10.1172/JCI20945; Lee P., Peng H., Gelbart T., Wang L., Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A. 2005; 102(6):1906-1910. doi:10.1073/pnas.0409808102; Sow F.B., Florence W.C., Satoskar A.R., Schlesinger L.S., Zwilling B.S., Lafuse W.P. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol. 2007; 82(4):934-945. doi:10.1189/jlb.0407216; Quatredeniers M., Mendes-Ferreira P., Santos-Ribeiro D., Nakhleh M.K., Ghigna M.R., Cohen-Kaminsky S., Perros F. Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells. 2021; 10(2):477. doi:10.3390/cells10020477; Valenti L., Dongiovanni P., Motta B.M., Swinkels D.W., Bonara P., Rametta R., Burdick L., Frugoni C., Fracanzani A.L., Fargion S. Serum hepcidin and macrophage iron correlate with MCP-1 release and vascular damage in patients with metabolic syndrome alterations. Arterioscler Thromb Vasc Biol. 2011; 31(3):683-690. doi:10.1161/ATVBAHA.110.214858; https://www.nii-kpssz.com/jour/article/view/1376

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 2 (2021); 259-267 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 2 (2021); 259-267 ; 2541-8017 ; 2223-9022

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1153/944; Henry BM, Santos de Oliveira MH, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021– 1028. PMID: 32286245 http://doi.org/10.1515/cclm-2020-0369; Bolondi G, Russo E, Gamberini E, Circelli A, Meca MCC, Brogi E, et al. Iron metabolism and lymphocyte characterisation during Covid-19 infection in ICU patients: an observational cohort study. World J Emerg Surg. 2020;15(1):41. PMID: 32605582 http://doi.org/10.1186/s13017-020-00323-2; Shah A, Frost JN, Aaron L, Donovan K, Drakesmith H. Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID19. Crit Care. 2020;24(1):320. PMID: 32517773 http://doi.org/10.1186/s13054-020-03051-w; Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open Forum Infect Dis. 2020;7(7):ofaa250. PMID: 32661499 http://doi.org/10.1093/ofid/ofaa250 eCollection 2020 Jul.; Zhou C, Chen Y, Ji Y, He X, Xue D. Increased Serum Levels of Hepcidin and Ferritin Are Associated with Severity of COVID-19. Med Sci Monit. 2020;26:e926178. PMID: 32978363 http://doi.org/10.12659/MSM.926178; Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(11):7811–7819. PMID: 11113132 http://doi.org/10.1074/jbc.M008923200; Nairz M, Haschka D, Demetz E, Weiss G. Iron at the interface of immunity and infection. Front Pharmacol. 2014;5:152. PMID: 25076907 http://doi.org/10.3389/fphar.2014.00152 eCollection 2014.; Wenzhong L, Hualan L. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv 2020. Preprint. http://doi.org/10.26434/chemrxiv.11938173.v4 Corpus ID: 214621531; Ehsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biol Direct. 2020;15(1):19. PMID: 33066821 http://doi.org/10.1186/s13062-020-00275-2; McLaughlin K, Bechtel M, Bojkova D, Münch C, Ciesek S, Wass M, et al. COVID-19-Related Coagulopathy-Is Transferrin a Missing Link? Diagnostics (Basel). 2020;10(8):539. PMID: 32751741 http://doi.org/10.3390/diagnostics10080539; Luck A, Mason A. Transferrin-mediated cellular iron delivery. Curr Top Membr. 2012;69:3–35. PMID: 23046645 http://doi.org/10.1016/B978-0-12-394390-3.00001-X; Tang X, Zhang Z, Fang M, Han Y, Wang G, Wang S, et al. Transferrin plays a central role in coagulation balance by interacting with clotting factors. Cell Res. 2020;30(2):119–132. PMID: 31811276 http://doi.org/10.1038/s41422-019-0260-6; Gordon D, Jang G, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468. PMID: 32353859 http://doi.org/10.1038/s41586-020-2286-9; Vlahakos D, Arkadopoulos N, Kostopanagiotou G, Siasiakou S, Kaklamanis L, Degiannis D, et al. Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif Organs. 2012;36(4):400–408. PMID: 22187937 http://doi.org/10.1111/j.1525-1594.2011.01385.x; Конькова Т.В., Каталевич А.М., Гуриков П.А., Рысев А.П., Меньшутина Н.В. Гетерогенные катализаторы Фентона на основе мезопористых силикагелей, полученные сушкой в среде сверхкритического диоксида углерода. Сверхкритические флюиды: теория и практика. 2012;8(4):29–35.; Kim J, Wessling-Resnick M. The Role of Iron Metabolism in Lung Inflammation and Injury. J Allergy Ther. 2012;3(Suppl 4):004. PMID: 29226014 http://doi.org/10.4172/2155-6121.S4-004; Koo S, Casper K, Otto K, Gira A, Swerlick R. Iron chelators inhibit VCAM-1 expression in human dermal microvascular endothelial cells. J Invest Dermatol. 2003;120(5):871–879. PMID: 12713595 http://doi.org/10.1046/j.1523-1747.2003.12144.x; Lipinski B, Pretorius E. Iron-induced fibrin in cardiovascular disease. Curr Neurovasc Res. 2013;10(3):269-274. PMID: 23721262 http://doi.org/10.2174/15672026113109990016; Gill D, Brewer C, Monori G, Trégouët D, Franceschini N, Giambartolomei C. Effects of Genetically Determined Iron Status on Risk of Venous Thromboembolism and Carotid Atherosclerotic Disease: A Mendelian Randomization Study. J Am Heart Assoc. 2019;8(15):e012994 PMID: 31310728 http://doi.org/10.1161/JAHA.119.012994; Praticó D, Pasin M, Barry O, Ghiselli A, Sabatino G, Iuliano L, et. al. Irondependent human platelet activation and hydroxyl radical formation: involvement of protein kinase C. Circulation. 1999;99(24):3118–3124. PMID: 10377074 http://doi.org/10.1161/01.cir.99.24.3118; Gordan R, Fefelova N, Gwathmey J, Xie L. Iron Overload, Oxidative Stress and Calcium Mishandling in Cardiomyocytes: Role of the Mitochondrial Permeability Transition Pore. Antioxidants (Basel). 2020;9(8):758. PMID: 32824344 http://doi.org/10.3390/antiox9080758; Gordan R, Wongjaikam S, Gwathmey J, Chattipakorn N, Chattipakorn S, Xie L. Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev. 2018;23(5):801–816. PMID: 29675595 http://doi.org/10.1007/s10741-018-9700-5; Сависько А.А., Лагутеева Н.Е., Теплякова Е.Д., Шестопалов А.В. Роль нарушения метаболизма железа в развитии нарушений ритма и проводимости у детей с острым лейкозом. Медицинский вестник Юга России. 2015;(3):94–100.; Ребров В.Г., Громова О.А. Витамины, макро- и микроэлементы. Москва: ГЭОТАР-Медиа; 2008.; Bannerman R, Callender S, Williams D. Effect of Desferrioxamine and D.T.P.A. in Iron Overload. Br Med J. 1962;2(5319):1573–1577. PMID: 20789564 http://doi.org/10.1136/bmj.2.5319.1573; Balcerzak S, Westerman M, Heinle E, Taylor F. Measurement of iron stores using deferoxamine. Ann Intern Med. 1968;68(3):518–525. PMID: 5643675 http://doi.org/10.7326/0003-4819-68-3-518; Nelson LS, Howland MA, Lewin NA, Smith SW, Goldfrank LR, Hoffman RS. Goldfrank’s Toxicologic Emergencies. 10th ed. New York: McGrawHill; 2015. p. 1503-1513.; Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303–305. PMID: 32497811 http://doi.org/10.1016/j.ijid.2020.05.110; Vlahakos V, Marathias K, Arkadopoulos N, Vlahakos D. Hyperferritinemia in patients with COVID-19: An opportunity for iron chelation? Artif Organs. 2021;45(2):163–167. PMID: 32882061 https://doi.org/10.1111/aor.13812; Liu W, Zhang Sh, Nekhai S, Liu S. Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival. Curr Clin Microbiol Rep. 2020 Apr 20:1–7. PMID: 32318324 http://doi.org/10.1007/s40588-020-00140-w Online ahead of print.; Лодягин А.Н., Батоцыренов Б.В., Шикалова И.А., Вознюк И.А. Ацидоз и токсический гемолиз – цели патогенетического лечения полиорганной патологии при COVID-19. Вестник восстановительной медицины. 2020;97(3):25–30. http://doi.org/10.38025/2078-1962-2020-97-3-25-30; https://www.jnmp.ru/jour/article/view/1153

  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal

    المصدر: Bukovinian Medical Herald; Vol. 21 No. 2 (82) p.2 (2017); 115-119 ; Буковинский медицинский вестник; Том 21 № 2 (82) p.2 (2017); 115-119 ; Буковинський медичний вісник; Том 21 № 2 (82) p.2 (2017); 115-119 ; 2413-0737 ; 1684-7903

    وصف الملف: application/pdf

  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: General Reanimatology; Том 12, № 1 (2016); 26-34 ; Общая реаниматология; Том 12, № 1 (2016); 26-34 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2016-1

    وصف الملف: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/1508/959; https://www.reanimatology.com/rmt/article/view/1508/970; Владимиров Ю.А., Проскурнина Е.В. Свободные радикалы и клеточная хемилюминесценция. Факультет фундаментальной медицины МГУ им. М.В. Ломоносова. М.; 2009: 220.; Симоненков А.П., Федоров В.Г. О генезе нарушений микроциркуляции при тканевой гипоксии, шоке и диссеминированном внутрисосудистом свертывании крови. Анестезиология и реаниматология. 1998; 3: 32—35. PMID: 9693431; Соколов В.А. Множественные и сочетанные травмы. М.: ГЭОТАР Медиа; 2006: 17—21.; Орлов Ю.П., Иванов А.В., Долгих В.Т., Лукач В.Н., Чеснокова М.В., Притыкина Т.В., Петрова Ю.А., Вербицкая В.С., Синеоков С.А. Нарушения обмена железа в патогенезе критических состояний (экспериментальное исследование). Общая реаниматология. 2011; 7 (5): 15—19. http://dx.doi.org/10.15360/181397792011515; Donovan A., Roy C.N., Andrews N.C. The ins and outs of iron homeostasis. Physiology (Bethesda). 2006; 21: 115—123. http://dx.doi.org/10.1152/physiol.00052.2005. PMID: 16565477; Балуда В.П., Баркаган З.С., Гольдберг Е.Д. Лабораторные методы исследования системы гемостаза. Томск: Медицина; 1980: 26—29.; Рутберг Р.А. Простой и быстрый метод определения содержания фибриногена плазмы. Лабораторное дело. 1961; 6: 6—7.; Cadet E., Gadenne M., Capron D., Rochette J. Advances in iron metabolism: a transition state. Rev. Med. Interne. 2005; 26 (4): 315—324. PMID: 15820567; Иванов А.В. Дисбаланс в системе свободнорадикального окисления у пациентов с травматической болезнью и пути его коррекции. Омский науч. вестник. 2013; 1: 33—36.; Иванов А.В., Орлов Ю.П., Лукач В.Н., Притыкина Т.В., Иванова А.М. Расстройства микроциркуляции и антиоксидантного потенциала как следствие нарушенного обмена железа при травматической болезни (клиникоэкспериментальное исследование). Вестн. травматологии и ортопедии им. Н.Н. Приорова. 2012; 1: 64—69.; Fantini G.A., Yoshioka T. Deferoxamine prevents lipid peroxidation and attenuates reoxygenation injury in postischemic skeletal muscle. Am. J. Physiol. 1993; 264 (6 Pt 2): H1953—H1959. PMID: 8322925; Азизова О.А., Швачко А.Г., Асейчев А.В. Влияние ионов железа на функциональную активность тромбина. Бюл. эксперим. биологии и медицины. 2009; 148 (11): 529—532. PMID: 20396790; Накашидзе И., Чиковани Т., Саникидзе Т., Бахутвшвили В. Проявления оксидантного стресса и его коррекция при травматическом шоке. Анестезиология и реаниматология. 2003; 5: 22—24. PMID: 14671904; Gordon W. Simulated blood circulation during hemolysis. Perfusion. 2001; 16: 345—351.; Пасечник И.Н., Крылов В.В., Скобелев Е.И., Мещеряков А.А. Роль окислительного стресса в формировании респираторного дистресссиндрома у хирургических больных в критических состояниях. Вестн. интенс. терапии. 2008; 3: 65—68.; https://www.reanimatology.com/rmt/article/view/1508

  13. 13
  14. 14
  15. 15
    Academic Journal

    المصدر: PULMONOLOGIYA; № 2 (2014); 5-9 ; Пульмонология; № 2 (2014); 5-9 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2014-0-2

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/233/232; Krause A., Neitz S., Magert H. J. et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibit antimicrobial activity. FEBS Lett. 2000; 480 (2): 147–150.; Park C.H., Valore E.V., Waring A.J., Ganz T. Hepcidin, urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 2001; 276 (11): 7806–7810.; Hepcidin G.T. A key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003; 102 (3):783–788.; Nemeth E. Hepcidin: the principal regulator of systemic iron metabolism. Hematology (EHA Educ. Program). 2006; 2:36–41.; Левина А.А., Казюкова Т.В., Цветаева Н.В. и др. Гепсидин как регулятор гомеостаза железа. Педиатрия. 2008; 87 (1): 67–74. / Levina A.A., Kazyukova T.V., Tsvetaeva N.V et al. Hepcidin as a regulator of iron homeostasis. Pediatriya. 2008; 87 (1): 67–74 (in Russian).; Павлов А.Д., Морщакова Е.Ф., Румянцев А.Г. Эритропоэз, эритропоэтин, железо. М.: ГЭОТАР-Медиа; 2011. / Pavlov A.D., Morshchakova E.F., Rumyantsev A.G. Erythropoiesis, erythrypoietin, iron [Eritropoez, eritropoetin, zhelezo]. Moscow: GEOTAR-Media; 2011 (in Russian).; Демихов В.Г. Роль гепсидина в патогенезе анемии хронических болезней. Гематология и трансфузиология. 2006; 51(5): 31–34. / Demikhov V.G. A role of hepcidin for pathogenesis of chronic anaemia. Gematologiya i transfusiologiya. 2006; 51 (5): 31–34 (in Russian).; Wrighting D.M., Andrews N.C. Interleukin-6 induces hepcidin expression through STAT 3. Blood. 2006; 108 (9):3204–3209.; Peyssonnaux C., Zinkemagel A., Schuepbach R., Johnson R. Regulation of iron homeostasis by the hypoxia-inducible factors (HIFs). J. Clin. Invest. 2007; 117 (7): 1926–1932.; Yoon D., Pastore Y.D., Divoky V. et al. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse. J. Biol. Chem. 2006; 281 (35): 25703–25711.; Merle U. The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology. 2007; 148 (6): 2663–2668.; Kim H.R., Kim K.W., Yoon S.Y. et al. Serum pro-hepcidin could reflect disease activity in patients with rheumatoid arthritis. J. Korean Med. Sci. 2010; 25 (3): 348–352.; Галушко Е.А., Беленький Д.А., Александрова Е.Н., Кашникова Л.Н. Роль гепсидина в развитии анемии у больных ревматоидным артритом. Научно-практическая ревматология. 2012; 52 (3): 19–24. / Galushko E.A., Belen'kiy D.A., Aleksandrova E.N., Kashnikova L.N. A role of hepcidin for anaemia development in patients with rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya. 2012; 52 (3): 19–24 (in Russian).; Никифорович И.И., Литвинов А.В., Иванян А.Н. Роль гепсидина в развитии анемии у беременных. Российский вестник акушера-гинеколога. 2010; 1: 11–14. / Nikiforovich I.I., Litvinov A.V., Ivanyan A.N. A role of hepcidin for anaemia development in pregnant women. Rossiyskiy vestnik akushera-ginekologa. 2010; 1: 11–14 (in Russian).; Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Внебольничная пневмония у взрослых: практические рекомендации по диагностике, лечению и профилактике: Пособие для врачей. М.; 2010. / Chuchalin A.G., Sinopalnikov A.I., Kozlov R.S. et al. Community-Acquired Pneumonia in Adults: Practical Guidelines on Diagnosis, Treatment And Prevention. [Vnebol'nichnaya pnevmoniya u vzroslykh: prakticheskie rekomendatsii po diagnostike, lecheniyu i profilaktike: Posobie dlya vrachey]. Moscow; 2010 (in Russian).; Симбирцева А.С. Цитокины: классификация и биологические функции. Цитокины и воспаление. 2004; 3 (2):16–21. / Simbirtseva A.S. Cytokines: characterization and biological funcrtions. Tsitokiny i vospalenie. 2004; 3 (2): 16–21 (in Russian).; Mehr S., Doyle L. Cytokines as markers of bacterial sepsis in newborn infants: a review. Pediatr. Infect. Dis. J. 2007; 19:879–887.; https://journal.pulmonology.ru/pulm/article/view/233

  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20