يعرض 1 - 20 نتائج من 25 نتيجة بحث عن '"нервно-мышечный синапс"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The research was funded by Russian Foundation for Basic Research, project number 19-04-00616a., Настоящее исследование выполнено при фи-нансовой поддержке Российского фонда фундамен-тальных исследований (проект № 19-04-00616a).

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 76, № 1 (2021); 3-9 ; Вестник Московского университета. Серия 16. Биология; Том 76, № 1 (2021); 3-9 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/963/540; Hillard C.J. Circulating endocannabinoids: From whence do they come and where are they going? // Neuropsychopharmacology. 2018. Vol. 43. N 1. P. 155–172.; Heifets B.D., Castillo P.E. Endocannabinoid signaling and long-term synaptic plasticity // Annu. Rev. Physiol. 2009. Vol. 71. P. 283–306.; Ohno-Shosaku T., Tanimura A., Hashimotodani Y., Kano M. Endocannabinoids and retrograde modulation of synaptic transmission // Neuroscientist. 2012. Vol. 18. N 2. P. 119–132.; Morsch M., Protti D.A., Cheng D., Braet F., Chung R.S., Reddel S.W., Phillips W.D. Cannabinoidinduced increase of quantal size and enhanced neuromuscular transmission // Sci. Rep. Nature Publishing Group. 2018. Vol. 8. N 1: 4685.; Gaydukov A.E., Dzhalagoniya I.Z., Tarasova E.O., Balezina O.P. The participation of endocannabinoid receptors in the regulation of spontaneous synaptic activity at neuromuscular junctions of mice // Biochem. Suppl. Ser. A Membr. Cell Biol. 2020. Vol. 14. N 1. P. 7–16.; Ge D., Odierna G.L., Phillips W.D. Influence of cannabinoids upon nerve-evoked skeletal muscle contraction // Neurosci. Let. 2020. Vol. 725: 134900; Cavuoto P., McAinch A.J., Hatzinikolas G., Janovska´ A., Game P., Wittert G.A. The expression of receptors for endocannabinoids in human and rodent skeletal muscle // Biochem. Biophys. Res. Commun. 2007. Vol. 364. N 1. P. 105–110.; Crespillo A., Suarez J., Bermudez-Silva F.J., Rivera P., Vida M., Alonso M., Palomino A., Lucena M.A., Serrano A., Perez-Martin M., Macias M., Fernandez-Llebrez P., Rodriguez de Fonseca F. Expression of the cannabinoid system in muscle: Eff of a high-fat diet and CB1 receptor blockade // Biochem. J. 2011. Vol. 433. N 1. P. 175–185.; Hutchins-Wiese H.L., Li Y., Hannon K., Watkins B.A. Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle // J. Nutr. Biochem. 2012. Vol. 23. N 8. P. 986–993.; Maccarrone M., Bab I., Biro T., Cabral G.A., Dey S.K., Di Marzo V., Konje J.C., Kunos G., Mechoulam R., Racher P., Sharkey K.A., Zimmer A. Endocannabinoid signaling at the periphery: 50 years after THC // Trends Pharmacol. Sci. 2015. Vol. 36. N 5. P. 277–296.; Oláh T., Bodnar D., Toth A., Vincze J., Fodor J., Reischl B., Kovaks A., Ruzsnavszky O., Dienes B., Szentesi P., Friedrich O., Csernoch L. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation– contraction coupling in mammalian skeletal muscle // J. Physiol. 2016. Vol. 594. N 24. P. 7381–7398.; Gaydukov A., Bogacheva P., Tarasova E., Molchanova A., Miteva A., Pravdivceva E., Balezina O. Regulation of acetylcholine quantal release by coupled thrombin/BDNF signaling in mouse motor synapses // Cells. 2019. Vol. 8. N 7: 762.; Балезина О.П., Гайдуков А.Е. Пресинаптическая регуляция размера квантов медиатора // Усп. физиол. наук. 2018. № 2. С. 20–44.; Losavio A., Muchnik S. Role of L-type and N-type voltage-dependent calcium channels (VDCCs) on spontaneous acetylcholine release at the mammalian neuromuscular junction // Ann. N.Y. Acad. Sci. 1998. Vol. 841. P. 636–645.; Tarasova E.O., Miteva A.S., Gaydukov A.E., Balezina O.P. The role of adenosine receptors and L-type calcium channels in the regulation of the mediator secretion in mouse motor synapses // Biochem. Suppl. Ser. A Membr. Cell Biol. 2015. Vol. 9. N 4. P. 318–328.; Urbano F.J., Depetris R.S., Uchitel O.D. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals // Pflugers Archiv. Eur. J. Physiol. 2001. Vol. 441. N 6. P. 824–831.; Atchison W.D., O’Leary S.M. Bay K 8644 increases release of acetylcholine at the murine neuromuscular junction // Brain Res. 1987. Vol. 419. N 1–2. P. 315–319.; Chevaleyre V., Heifets B.D., Kaeser P.S., Südhof T.C., Castillo P.E. Endocannabinoid-Mediated Long-Term Plasticity Requires cAMP/PKA Signaling and RIM1α // Neuron. 2007. Vol. 54. N 5. P. 801–812.; Glass M., Felder C.C. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: Evidence for a G(s) linkage to the CB1 receptor // J. Neurosci.1997. Vol. 17. N 14. P. 5327–5333.; Eldeeb K., Leone-Kabler S., Howlett A.C. CB1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function // J. Basic Clin. Physiol. Pharmacol. 2016. Vol. 27. N 3. P. 311–322.; Delgado-Peraza F., Ahn K.H., Nogueras-Ortiz C., Mungrue I.N., Mackie K., Kendall D.A., Yudowski G.A. Mechanisms of biased β-arrestin-mediated signaling downstream from the cannabinoid 1 receptor // Mol. Pharmacol. 2016. Vol. 89. N 6. P. 618–629.; Ibsen M.S., Connor M., Glass M. Cannabinoid CB 1 and CB 2 receptor signaling and bias // Cannabis Cannabinoid Res. 2017. Vol. 2. N 1. P. 48–60.; Piette C., Cui Y., Gervasi N., Venance L. Lights on endocannabinoid-mediated synaptic potentiation // Front. Mol. Neurosci. 2020. Vol. 13: 132.; Haspula D., Clark M.A. Cannabinoid receptors: An update on cell signaling, pathophysiological roles and therapeutic opportunities in neurological, cardiovascular, and inflammatory diseases // Int. J. Mol. Sci. 2020. Vol. 21. N 20: 7693.; Gonzalez-Islas C., Garcia-Bereguiain M.A., Wenner P. Tonic and transient endocannabinoid regulation of AMP aergic miniature postsynaptic currents and homeostatic plasticity in embryonic motor networks // J. Neurosci. 2012. Vol. 32. N 39. P. 13597–13607.; https://vestnik-bio-msu.elpub.ru/jour/article/view/963

  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    المصدر: Neuromuscular Diseases; № 2 (2012); 52-58 ; Нервно-мышечные болезни; № 2 (2012); 52-58 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2012-0-2

    وصف الملف: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/79/75; Dalakas M.C. Pathophysiology of inflammatory and autoimmune myopathies. Presse Med 2011;40:237−47.; Behan W.M., Behan P.O., Durward W.F., McQueen A. The inflammatory process in polymyositis: monoclonal antibody analysis of muscle and peripheral blood immunoregulatory lymphocytes. J Neurol Neurosurg Psychiatry 1987;50(11):1468−74.; Rose A.L., Walton J.N., Pearce G.W. Polymyositis: an ultramicroscopic study of muscle biopsy material. J Neurol Sci 1967;5(3):457−72.; Mintz G., González‑Angulo A., Fraga A. Tubuloreticular structures in different types of myositis: implications for pathogenesis. Ultrastructure of muscle in polymyositis. Am J Med 1968;44(2):216−24.; Mastaglia F.L., Walton J.N. An ultrastructural study of skeletal muscle in polymyositis. J Neurol Sci 1971;12(4):473−504.; Matsubara S., Mair W.G. Ultrastructural changes in polymyositis. Brain 1979; 102(4):701−25.; De Visser M., Emslie‑Smith A.M., Engel A.G. Early ultrastructural alterations in adult dermatomyositis. Capillary abnormalities precede other structural changes in muscle. J Neurol Sci 1989;94(1−3):181−92.; Никитин С.С. Воспалительные заболевания мышц (полимиозиты). В кн.: Б.М. Гехт и др. Электромиография в диагностике нервно-мышечных заболеваний. Таганрог: ТРТУ, 1997; с.111−20.; Henriksson K.G., Stålberg E. The terminal innervation pattern in polymyositis: a histochemical and SFEMG study. Muscle Nerve 1978;1(1):3−13.; Partanen J., Lang H. EMG dynamics in polymyositis. A quantitative single motor unit potential study. J Neurol Sci 1982;57(2−3):221−34.; Pestronk A., Drachman D. Polymyositis: reduction of acetylcholine receptors in skeletal muscle. Muscle Nerve 1985;8:233– 9.; Barkhaus P.E., Nandedkar S.D.Electromyogr Clin Neurophysiol. Serial quantitative electrophysiologic studies in sporadic inclusion body myositis. 2007; 47(2):97−104.; Sun A.P., Ohtsuki Y., Yano T. et al. Typical nemaline bodies presenting in a patient with polymyositis. Med Electron Microsc 2002;35(3):167−72.; Morizumi H., Hizawa K., Nunomura S., Ii K. Comparative study of alterations of skeletal muscle in Duchenne muscular dystrophy and polymyositis. Acta Pathol Jpn 1984;34(6):1221−42.; Watkins S.C., Cullen M.J. A quantitative study of myonuclear and satellite cell nuclear size in Duchenne’s muscular dystrophy, polymyositis and normal human skeletal muscle. Anat Rec 1988;222(1):6−11.; Watkins S.C., Cullen M.J. A qualitative and quantitative study of the ultrastructure of regenerating muscle fibres in Duchenne muscular dystrophy and polymyositis. J Neurol Sci 1987;82(1−3):181−92.; Sprott Н., Salemi S., Gay R. et al. Increased DNA fragmentation and ultrastructural changes in fibromyalgic muscle fibres. Ann Rheum Dis 2004;63(3):245–51.; Leff R.L., Love L.A., Miller F.W. et al. Viruses in the idiopathic inflammatory myopathies: absence of candidate viral genomes in muscle. Lancet 1992; (339):1192–5.; Kanetaka Y., Kano Y., Hirahara K. et al. Relationship between cytomegalovirus reactivation and dermatomyositis. Eur J Dermatol 2011;21(2):248−53.; Dalakas M.C., Pezeshkpour G.H., Gravell M., Sever J.L. Polymyositis associated with AIDS retrovirus. JAMA 1986;256(17):2381−3.; https://nmb.abvpress.ru/jour/article/view/79

  6. 6
    Academic Journal

    المصدر: Neuromuscular Diseases; № 4 (2013); 19-23 ; Нервно-мышечные болезни; № 4 (2013); 19-23 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2013-0-4

    وصف الملف: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/63/59; Lambert E.H., Eaton L.M., Rooke E.D. Defect of neuromuscular conduction associated with malignant neoplasms. Am J Physiol 1956;187:612– 3.; Eaton L.M., Lambert E.H. Electromyography and electrical stimulation of nerves in diseases of the motor unit: observations on a myasthenic syndrome associated with malignant tumours. JAMA 1957;163:1117–24.; Seneviratne U., de Silva R. Lambert–Eaton myasthenic syndrome. Postgrad Med J 1999;75:516–20.; Kim J.-A., Lim Y.-M., Jang E.-H., Kim K.-K. A patient with coexisting myasthenia gravis and Lambert–Eaton myasthenic syndrome. J Clin Neurol (Seoul, Korea), 2012; 8 (3):235–7.; Newsom-Davis J. Lambert–Eaton myasthenic syndrome. Rev Neurol (Paris). 2004;160(2):177–80; Donald B. Sanders, Vern C. Juel. Chapter 9 The Lambert–Eaton myasthenic syndrome. Handbook of Clinical Neurology 2008;91:273–83.; van Sonderen A., Wirtz P.W., Verschuuren J.J., Titulaer M.J. Paraneoplastic syndromes of the neuromuscular junction: therapeutic options in myasthenia gravis, lambert-eaton myasthenic syndrome, and neuromyotonia. Curr Treat Options Neurology 2013;15 (2):224–39.; Wu X., Wang J., Liu Y., Liu K. Clinical presentation and differential diagnosis of Lambert– Eaton myasthenic syndrome. Neurosciences (Riyadh, Saudi Arabia) 2013;18(2):169–72.; Engel A.G., Santa T. Histometric analysis of the ultrastructure of the neuromuscular junction in myasthenia gravis and in the myasthenic syndrome. Ann N Y Acad Sci 1971;183:46–63.; Santa T., Engel A.G., Lambert E.G. Histometric study of neuromuscular junction ultrastructure. II. Myasthenic syndrome. Neurology 1972;22(4):370–6.; Бабакова Л.Л., Коломенская Е.А., Островская Н.В., Поздняков О.М. Исследование ультраструктуры нервно-мышечных синапсов при миастеническом синдроме Ламберта–Итона. Бюлл экспер биол и мед 1976;1:79–80.; Tsujihata M., Kinoshita I., Mori M. et al. Ultrastructural study of the motor end-plate in botulism and Lambert–Eaton myasthenic syndrome. J Neurol Sci 1987;81(2–3):197– 213.; Hesselmans L.F., Jennekens F.G., Kartman J. et al. Secondary changes of the motor endplate in Lambert–Eaton myasthenic syndrome: a quantitative study. Acta Neuropathol 1992;83(2):202–6.; Бабакова Л.Л., Коломенская Е.А., Кузьмин Н.В., Поздняков О.М. Ультраструктурная характеристика трубчатых агрегатов в скелетных мышцах человека. Арх патол 1974;36(4):50–6.; O’Neill J.H., Murray N.M., Newsom-Davis J. The Lambert–Eaton myasthenic syndrome. A review of 50 cases. Brain 1988;111:577–96.; Snutch T.P., Reiner P.B. Ca2+ channels: diversity of form and function. Curr Opin Neuorbiol 1992;2:247–53.; Varadi G, Mori Y, Mikala G, Schwartz A. Molecular determinants of Ca2+ channel function and drug action. Trends Pharmacol Sci 1995;16:43–9.; Hong S.J., Chang C.C. Inhibition of ace - tylcholine release from mouse motor nerve by a P-type calcium channel blocker omega-agatoxin IVA. J Physiol (Lond) 1995;482: 283–90.; Bowersox S.S., Miljanich G.P., Sugiura Y. et al. DiVerential blockade of voltage-sensitive calcium channels at the mouse neuromuscular junction by novel omega-cono peptides and Aga IVA. J Pharmacol Exp Ther 1995;273:248–56.; Lennon V.A., Kryzer T.J., Griesmann G.E. et al. Calcium-channel antibodies in the Lambert– Eaton syndrome and other paraneoplastic syndromes. N Engl J Med 1995;332:1467–74.; Oguro-Okano M., Griesmann G.E., Wieben E.D. et al. Molecular diversity of neuronal- type calcium channels identified in small cell lung carcinoma. Mayo Clin Proc 1992;67:1150–9.; Meriney S.D., Hulsizer S.C., Lennon V.A., Grinnel A.D. Lambert–Eaton myasthenic syndrome immunoglobulins react with multiple types of calcium channels in small-cell lung carcinoma. Ann Neurol 1996;40:739–49.; https://nmb.abvpress.ru/jour/article/view/63

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Report

    Relation: Самохвалов В. Г. Физиология возбудимых тканей : методические указания к самостоятельной работе студентов II курса / В. Г. Самохвалов, Н. И. Пандикидис; Харк. нац. мед. ун-т. - Х.: ХНМУ, 2012. - 121с.; http://repo.knmu.edu.ua/handle/123456789/2533

  20. 20