-
1Academic Journal
المؤلفون: A. V. Razuvaeva, E. G. Ulyanova, E. S. Skolotneva, I. V. Andreeva, А. В. Разуваева, Е. Г. Ульянова, Е. С. Сколотнева, И. В. Андреева
المصدر: Vavilov Journal of Genetics and Breeding; Том 27, № 3 (2023); 240-249 ; Вавиловский журнал генетики и селекции; Том 27, № 3 (2023); 240-249 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-23-24
مصطلحات موضوعية: COI, species identification, allozyme analysis, MALDI-TOF MS, DNA barcoding, PCR-RFLP, ITS, молекулярная идентификация, аллозимный анализ, ДНК- штрихкодирование, ПЦР-ПДРФ
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/3735/1703; Ahmad F., Babalola O.O., Tak H.I. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms. Anal. Bioanal. Chem. 2012;40(4):1247-1255. DOI 10.1007/s00216-012-6091-7.; Ahuja A., Somvanshi V.S. Diagnosis of plant-parasitic nematodes using loop-mediated isothermal amplification (LAMP): a review. Crop Prot. 2021;147:105459. DOI 10.1016/j.cropro.2020.105459.; Akhatov A.K. Guide to the Identification of Acarids and Insects in Vegetable Greenhouses. Moscow: KMK Publ., 2016. (in Russian); Alam M.T., Das M.K., Dev V., Ansari M.A., Sharma Y.D. PCR-RFLP method for the identification of four members of the Anopheles annularis group of mosquitoes (Diptera: Culicidae). Trans. R. Soc. Trop. Med. Hyg. 2007;101(3):239-244. DOI 10.1016/j.trstmh.2006.03.007.; Altukhov Yu.P. Genetic Processes in Populations. Moscow: Akademkniga Publ., 2003. (in Russian); Arabuli T., Negm M.W., Matsuda T., Kitashima Y., Abramishvili T., Akimov I.A., Zhovnerchuk O.V., Popov S.Ya., Gotoh T. Morphological identification of Amphitetranychus species (Acari: Tetranychidae) with crossbreeding, esterase zymograms and DNA barcode data. PLoS One. 2019;14(9):e0221951. DOI 10.1371/journal.pone.0221951.; Arimoto M., Satoh M., Uesugi R., Osakabe M. PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae). J. Econ. Entomol. 2013;106(2):661-668. DOI 10.1603/EC12440.; Balykina E.B., Yagodinskaya L.P., Rybareva T.S., Balitsky N.V. Influence of acarocides on the structure of a phytovorous acarid complex. Byulleten Gosudarstvennogo Nikitskogo Botanicheskogo Sada = Bulletin of the Nikita Botanical Garden. 2017;123:58-64. (in Russian); Ben-David T., Melamed S., Gerson U., Morin S. ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Exp. Appl. Acarol. 2007;41(3):169-181. DOI 10.1007/s10493-007-9058-1.; Bikbulatova S.M., Chemeris D.А., Nikonorov Yu.М., Mashkov О.I., Garafutdinov R.R., Chemeris A.V., Vakhitov V.А. Methods for detecting polymerase chain reaction in real-time mode. Vestnik Bashkirskogo Universiteta = Herald of the Bashkir State University. 2012;17(1):59-67. (in Russian); Chaires-Grijalva M.P., Serrano-Domínguez A.K., Coronado-Blanco J.M. Mites associated with maize in Mexico. Rev. Mex. Cienc. Agríc. 2021;12(8):1497-1510. DOI 10.29312/remexca.v12i8.2718.; Chen Y., Woolley L., Nguyen D., Gupta R., Chandler G.T., Nehl D., Herron G.A. Development and use of a single real-time PCR assay to identify the three spider mite species Tetranychus urticae, Tetranychus lambi and Tetranychus ludeni (Acari: Tetranychidae). Austral. Entomol. 2020;59(3):630-638. DOI 10.1111/aen.12457.; Dermauw W., Moerkercke Y.V., Ebrahimi N., Casteels H., Bonte J., Witters J. A loop-mediated isothermal amplification (LAMP) assay for rapid identification of Ceratitis capitata and related species. Curr. Res. Insect Sci. 2022;2:100029. DOI 10.1016/j.cris.2022.100029.; Devi M., Challa N., Mahesh G. Important mite pests of temperate and sub-tropical crops: a review. J. Entomol. Zool. Stud. 2019;7(4): 1378-1384.; Enohara K., Amano H. Simple method for discriminating six common species of red Tetranychus spider mites (Acari: Tetranychidae) in Japan. Jpn. J. Appl. Entomol. Zool. 1996;40(4):311-315. DOI 10.1303/jjaez.40.311. (in Japanese); Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3(5):294-299.; Goka K., Takafuji A. Electrophoretic detection of enzyme variation among Japanese red-coloured spider mites of the genus Tetranychus (Acari: Tetranychidae). Exp. Appl. Acarol. 1998;22:167-176. DOI 10.1023/A:1006006129339.; Gotoh T. Separation of Panonychus ulmi, P. thelytokus and P. bambusicola (Acari: Tetranychidae) by esterase zymograms. Appl. Entomol. Zool. 1992;27(4):598-601. DOI 10.1303/aez.27.598.; Gotoh T., Gutierrez J., Navajas M. Molecular comparison of the sibling species Tetranychus pueraricola Ehara et Gotoh and T. urticae Koch (Acari: Tetranychidae). Entomol. Sci. 1998;1(1):55-57.; Gotoh T., Kitashima Y., Adachi I. Geographic variation of esterase and malate dehydrogenases in two spider mite species, Panonychus osmanthi and P. citri (Acari: Tetranychidae) in Japan. Int. J. Acarol. 2004;30(1):45-54. DOI 10.1080/01647950408684368.; Gotoh T., Kitashima Y., Goka K. Tetranychus mite species identification using esterase and phosphoglucomutase zymograms. Appl. Entomol. Zool. 2007;42(4):579-585. DOI 10.1303/aez.2007.579.; Hajibabaei M., Singer G.A.C., Hebert P.D.N., Hickey D.A. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 2007;23(4):167-172. DOI 10.1016/j.tig.2007.02.001.; Han H., Cho M.R., Jeon H.Y., Lim C.K., Jang H.I. PCR-RFLP identification of three major Meloidogyne species in Korea. J. Asia Pac. Entomol. 2004;7(2):171-175. DOI 10.1016/S1226-8615(08)60212-5.; Hillis D.M., Dixon M.T. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 1991;66(4):411-453. DOI 10.1086/417338.; Hinomoto N., Tran D.P., Pham A.T., Le T.B.N., Tajima R., Ohashi K., Osakabe M., Takafuji A. Identification of spider mites (Acari: Tetranychidae) by DNA sequences: a case study in Northern Vietnam. Int. J. Acarol. 2007;33(1):53-60. DOI 10.1080/01647950708684501.; Hsieh C.-H., Wang H.-Y., Chen Y.-F., Ko C.-C. Loop-mediated isothermal amplification for rapid identification of biotypes B and Q of the globally invasive pest Bemisia tabaci, and studying population dynamics. Pest Manag. Sci. 2012;68(8):1206-1213. DOI 10.1002/ps.3298.; Hurtado M.A., Ansaloni T., Cros-Arteil S., Jacas J.A., Navajas M. Sequence analysis of the ribosomal internal transcribed spacers region in spider mites (Prostigmata: Tetranychidae) occurring in citrus orchards in Eastern Spain: use for species discrimination. Ann. Appl. Biol. 2008;153(2):167-174. DOI 10.1111/j.1744-7348.2008.00250.x.; İnak E., Çobanoğlu S., Auger P., Migeon A. Molecular identification and phylogenetic analysis of spider mites (Prostigmata: Tetranychidae) of Turkey. Exp. Appl. Acarol. 2022;87:195-205. DOI 10.1007/s10493-022-00728-5.; Kajiwara H., Hinomoto N., Gotoh T. Mass fingerprint analysis of spider mites (Acari) by matrix-assisted laser desorption/ionization time-offlight mass spectrometry for rapid discrimination. Rapid Commun. Mass Spectrom. 2016;30(8):1037-1042. DOI 10.1002/rcm.7534.; Kamayev I.O. Oligonychus (Acari: Tetranychidae) mites occurring in conifer planting material. In: Lectures in memoriam O.A. Kataev. Dendrobiont Invertebrates and Fungi and Their Role in Forest Ecosystems. Vol. 1. Insects and other invertebrates. Proceed. of the int. conf. St. Petersburg, Oct. 22–25, 2018. St. Petersburg, 2018;44. (in Russian); Kamayev I.O. Approach to diagnostics of spider mites (Acari: Tetranychidae) in phytosanitary practice. In: Monitoring and Biological Control Methods of Woody Plant Pests and Pathogens: From theory to practice. Proceed. of Second int. conf. Moscow, April 22–26, 2019. Moscow; Krasnoyarsk, 2019;82. (in Russian); Kamayev I.O., Karpun N.N. A new data on spider mites (Acari: Trombidiformes: Tetranychidae) inhabiting ornamental plants on the Black Sea coast of Krasnodar Region, Russia. Kavkazskiy Entomologicheskiy Bulleten = Caucasian Entomological Bulletin. 2020;16(2):295-298. DOI 10.23885/181433262020162-295298. (in Russian); Kamayev I.O., Mironova M.K. The phytosanitary risk of herbivorous mites (Arachnida: Acariformes). Karantin Rasteniy. Nauka i Praktika = Plant Quarantine: Science and Policy. 2018;3(25):13-20. (in Russian); Khaing T.M., Lee J.-H., Lee W.-G., Lee K.-Y. A new record of Amphitetranychus quercivorus (Acari: Tetranychidae) in Korea and molecular comparison with A. viennensis. J. Asia Pac. Entomol. 2013; 16(2):155-160. DOI 10.1016/j.aspen.2012.12.003.; Khaing T.M., Shim J.-K., Lee K.-Y. Molecular identification and phylogenetic analysis of economically important acaroid mites (Acari: Astigmata: Acaroidea) in Korea. Entomol. Res. 2014;44(6):331-337. DOI 10.1111/1748-5967.12085.; Khaing T.M., Shim J.-K., Lee K.-Y. Molecular identification of four Panonychus species (Acari: Tetranychidae) in Korea, including new records of P. caglei and P. mori. Entomol. Res. 2015;45:345-353. DOI 10.1111/1748-5967.12135.; Konoplev N.D., Ignatov A.N., Popov S.Ya. To question of opportunity of Tetranychus urticae and T. atlanticus (Acari: Tetranychidae) identification using mtDNA COI gene. Vestnik Zashchity Rasteniy = Plant Protection News. 2017;4(94):43-47. (in Russian); Koshkin E.I., Andreeva I.V., Guseinov G.G., Guseinov K.G., Dzhalilov F.S.-U., Mityushev I.M. Specific aspects of the plant and phytophage interactions in agroecosystems under climate change. Agro khimiya = Agrochemistry. 2021;1:79-96. DOI 10.31857/S0002188121010063. (in Russian); Kutlunina N.A., Ermoshin A.A. Molecular Methods in Plant Studies. Yekaterinburg: Urals State Univ. Publ., 2017. (in Russian); Lampo M., Rangel Y., Mata A. Genetic markers for the identification of two tick species, Amblyomma dissimile and Amblyomma rotundatum. J. Parasitol. 1997;83(3):382-386. DOI 10.2307/3284398.; Li D., Fan Q.-H., Waite D.W., Gunawardana D., George S., Kumarasinghe L. Development and validation of a real-time PCR assay for rapid detection of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). PLoS One. 2015;10(7):e0131887. DOI 10.1371/journal.pone.0131887.; Matsuda T., Fukumoto C., Hinomoto N., Gotoh T. DNA-based identification of spider mites: molecular evidence for cryptic species of the genus Tetranychus (Acari: Tetranychidae). J. Econ. Entomol. 2013;106(1):463-472. DOI 10.1603/EC12328.; Matsuda T., Hinomoto N., Singh R.N., Gotoh T. Molecular-based identification and phylogeny of Oligonychus species (Acari: Tetranychidae). J. Econ. Entomol. 2012;105(3):1043-1050. DOI 10.1603/EC11404.; Matsuda T., Morishita M., Hinomoto N., Gotoh T. Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5′ end of the 28S rRNA genes indicates that several genera are polyphyletic. PLoS One. 2014;9(10):e108672. DOI 10.1371/journal.pone.0108672.; Migeon A., Nouguier E., Dorkeld F. Spider Mites Web: a comprehensive database for the Tetranychidae. In: Sabelis M., Bruin J. (Eds.) Trends in Acarology. Dordrecht: Springer, 2010;557-560. DOI 10.1007/978-90-481-9837-5_96.; Mitrofanov V.I., Strunkova Z.I., Livshits I.Z. Guide to Spider Mites in the Fauna of the USSR and Neighboring Countries. Dushanbe: Donish Publ., 1987. (in Russian); Morphological Identification of Spider Mites (Tetranychidae) Affecting Imported Fruits. The Secretariat of the North American Plant Protection Organization, Canada, 2014.; Murugaiyan J., Roesler U. MALDI-TOF MS profiling-advances in species identification of pests, parasites, and vectors. Front. Cell Infect. Microbiol. 2017;7:184. DOI 10.3389/fcimb.2017.00184.; Musolin D.L., Saulich A.K. Responses of insects to the current climate change: from physiology and behavior to range shifts. Entomological Review. 2012;92(7):715-740. DOI 10.1134/S0013873812070019.; Navajas M., Fenton B. The application of molecular markers in the study of diversity in acarology: a review. Exp. Appl. Acarol. 2000; 24(10-11):751-774. DOI 10.1023/a:1006497906793.; Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63. DOI 10.1093/nar/28.12.e63.; Obasa K., Alabi O.J., Sétamou M. Wheat curl mite: a new source of the Eriophyoid mite in wheat fields identified. PhytoFrontiers. 2022;2(4):342-346. DOI 10.1094/PHYTOFR-04-22-0038-SC.; Osakabe Mh. Difference of esterase isozymes between non-diapausing and diapausing strains of the citrus red mite, Panonychus citri (McGregor) (Acarina: Tetranychidae). Appl. Entomol. Zool. 1987; 22(4):577-584. DOI 10.1303/aez.22.577.; Osakabe Mh., Hirose T., Satô M. Discrimination of four Japanese Tetranychus species (Acari: Tetranychidae) using PCR-RFLP of the inter-transcribed spacer region of nuclear ribosomal DNA. Appl. Entomol. Zool. 2002;37(3):399-407. DOI 10.1303/aez.2002.399.; Osakabe Mh., Kotsubo Yu., Tajima R., Hinomoto N. Restriction fragment length polymorphism catalog for molecular identification of Japanese Tetranychus spider mites (Acari: Tetranychidae). J. Econ. Entomol. 2008;101(4):1167-1175. DOI 10.1093/jee/101.4.1167.; Osakabe Mh., Sakagami Y. RFLP analysis of ribosomal DNA in sibling species of spider mite, genus Panonychus (Acari: Tetranychidae). Insect Mol. Biol. 1994;3(1):63-66. DOI 10.1111/j.1365-2583.1994.tb00152.x.; Ovalle T.M., Vásquez-Ordóñez A.A., Jimenez J., Parsa S., Cuellar W.J., Lopez-Lavalle L.A.B. A simple PCR-based method for the rapid and accurate identification of spider mites (Tetranychidae) on cassava. Sci. Rep. 2020;10(1):19496. DOI 10.1038/s41598-020-75743-w.; Petrov D.L., Zhorov D.G., Sautkin F.V. Leaf gall mite Aceria erinea (Nalepa, 1891) (Acariformes: Eriophyidae) – a new invasive species of pests of walnut (Juglans regia L.) in Belarus. Vestnik Belorusskogo Gosudarstvennogo Unversiteta = Vestnik BGU. 2016;2:75(in Russian); Popov S.Ya. The Ecological Aspect of Controlling the Harm of Insect and Mite Populations: A collection of articles. Moscow: RGAUMSKhA Publ., 2013. (in Russian); Rak N.S., Litvinova S.V. Hazardous organisms migration and acclimatization during the plant introduction in the Far North Russia greenhouses. Hortus Botanicus. 2010;5:2. (in Russian); Ratcliffe S.T., Webb D.W., Weinzievr R.A., Robertson H.M. PCRRFLP identification of Diptera (Calliphoridae, Muscidae and Sarcophagidae) – a generally applicable method. J. Forensic Sci. 2003; 48(4):783-785. DOI 10.1520/JFS2002136.; Ros V.I.D., Breeuwer J.A.J. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp. Appl. Acarol. 2007;42(4):239-262. DOI 10.1007/s10493-007-9092-z.; Sakamoto H., Gotoh T. Non-destructive direct polymerase chain reaction (direct PCR) greatly facilitates molecular identification of spider mites (Acari: Tetranychidae). Appl. Entomol. Zool. 2017;52: 661-665. DOI 10.1007/s13355-017-0512-1.; Shim J.-K., Khaing T.M., Seo H.-E., Ahn J.-Y., Jung D.-O., Lee J.-H., Lee K.-Y. Development of species-specific primers for rapid diagnosis of Tetranychus urticae, T. kanzawai, T. phaselus and T. truncatus (Acari: Tetranychidae). Entomol. Res. 2016;46(2):162-169. DOI 10.1111/1748-5967.12154.; Sinaie S., Sadeghi Namaghi H., Fekrat L. A multiplex PCR assay for simultaneous discrimination of two predominant spider mites of the genus Tetranychus (Acari: Tetranychidae) in greenhouses of Iran. J. Agr. Sci. Tech. 2018;20(4):733-744.; Sinaie S., Sadeghi-Namaghi H., Fekrat L. Loop-mediated isothermal amplification combined with PCR for specific identification of injurious mite, Tetranychus urticae (Trombidiformes: Tetranychidae). Biologia. 2019;74(5):477-485. DOI 10.2478/s11756-018-00187-7.; Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. DOI 10.3389/fmicb.2015.00791.; Tomita N., Mori Y., Kanda H., Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008;3(5):877-882. DOI 10.1038/nprot.2008.57.; Turak E., Hales D.F. An allozyme method for identifying individual aphids of morphologically similar taxa (Hemiptera: Aphididae). J. Aust. Ent. Soc. 1994;33(1):57-59. DOI 10.1111/j.1440-6055.1994.tb00920.x.; Ulyanova E., Andreeva I., Shatalova E. The species composition of herbivorous acarofauna in the south of Western Siberia. Persian J. Acarol. 2022;11(2):365-370. DOI 10.22073/pja.v11i2.72456.; Vásquez C., Colmenárez Y. Invasive mite species in the Americas: bioecology and impact. In: Haouas D., Hufnagel L. (Eds.) Pests Control and Acarology. London: IntechOpen, 2020. DOI 10.5772/intechopen.86127.; Volkova M.V., Matveikina E.A. Structural changes in the phytophagous mite complex in the commercial vineyards of the Crimea. Plodovodstvo i Vinogradarstvo Yuga Rossii = Fruit Growing and Viticulture of South Russia. 2016;38(2):130-139. (in Russian); Walter D.E., Krantz G.W. Collecting, rearing and preparing specimens. In: Krantz G.W., Walter D.E. (Eds.) A Manual of Acarology. Texas Tech Univ. Press, 2009;91-92.; Zeynalov A.S. Ecological and phytosanitary consequences of climate change in the plantings of fruit cultures. Uspekhi Sovremennoy Nauki = Modern Science Success. 2017;2(9):94-100. (in Russian); Zeynalov A.S., Orel D.S. Change in species composition, bioecology and harmfulness of main applian phytophages in the Central Region of the Non-Black Earth Zone of Russia under the influence of climate factors. Vestnik Kazanskogo GAU = Vestnik of the Kazan State Agrarian University. 2021;16(1):15-21. DOI 10.12737/2073-0462-2021-15-21. (in Russian); Zélé F., Weill M., Magalhães S. Identification of spider-mite species and their endosymbionts using multiplex PCR. Exp. Appl. Acarol. 2018;74(2):123-138. DOI 10.1007/s10493-018-0224-4.; https://vavilov.elpub.ru/jour/article/view/3735
-
2Academic Journal
المؤلفون: T. A. Poliakova, E. V. Banaev, M. A. Tomoshevich, Т. А. Полякова, Е. В. Банаев, М. А. Томошевич
المساهمون: This research was supported by the Project VI.52.1.2 “Analysis of the intraspecific structure of resource plants in Asian Russia, selection and conservation of the gene pool” (АААА-А17-117012610054-6) and is carried out within the framework of the topic “Genomic research and genetic polymorphism of cells, organisms and populations” (0112-2020-0001)
المصدر: Vavilov Journal of Genetics and Breeding; Том 24, № 5 (2020); 481-488 ; Вавиловский журнал генетики и селекции; Том 24, № 5 (2020); 481-488 ; 2500-3259 ; 2500-0462 ; 10.18699/VJ20.637
مصطلحات موضوعية: транзиция, N. schoberi, N. sibirica, N. komarovii, genetic variability, taxonomy, molecular identification, ITS, transition, генетическая изменчивость, таксономия, молекулярная идентификация
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2712/1405; Banaev E.V., Tomoshevich M.A., Ak-Lama T.A. Nitrariaceae. In: Marhold K., Breitwieser I. IAPT Chromosome Data 27. Taxon. 2018;67(5):1042. DOI 10.12705/675.24.; Banaev E.V., Tomoshevich M.A., Yamtyrov M.B. Variability of metric and qualitative traits of Nitraria species in relation to ecological and climatic conditions of Siberian habitats. Contemp. Probl. Ecol. 2017;10(6):664-673. DOI 10.1134/S1995425517060038.; Banaev E.V., Voronkova M.S., Vysochina G.I., Tomoshevich M.A. Population structure and differentiation of the Siberian representatives of the genus Nitraria L. (Nitrariaceae) based on the composition and content of phenolic compounds in leaves. Contemp. Probl. Ecol. 2015;8(6):735-742. DOI 10.1134/S1995425515060025.; Bolson M., Smidt E.C., Brotto M.L., Silva-Pereira V. ITS and trnHpsbA as efficient DNA barcodes to identify threatened commercial woody angiosperms from southern Brazilian Atlantic Rainforests. PLoS One. 2015;10(12):e0143049. DOI 10.1371/journal.pone.0143049.; CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA. 2009;106:12794-12797.; Darriba D., Taboada G.L., Doallo R., Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9(8):772. DOI 10.1038/nmeth.2109.; Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990;12:12-15.; Efimova A.P., Poliakova T.A., Belokon M.M., Belokon Y.S., Politov D.V. Morphological and molecular genetic verification of interspecific hybrid Salix×zhataica (Salicaceae) from Central Yakutia. Russ. J. Genet. 2019;55(5):551-556. DOI 10.1134/S1022795419050053.; Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783-791.; Feng Sh., Jiang M., Shi Yu., Jiao K., Shen Ch., Lu J., Ying Q., Wang H. Application of the ribosomal DNA ITS2 region of Physalis (Solanaceae): DNA barcoding and phylogenetic study. Front. Plant Sci. 2016;7:1047. DOI 10.3389/fpls.2016.01047.; Gao T., Yao H., Song J., Zhu Y., Liu C., Chen S. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evol. Biol. 2010; 10:324. DOI 10.1186/1471-2148-10-324.; Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Ser. 1999;41:95-98.; Hollingsworth P.M. Refining the DNA barcode for land plants. Proc. Natl. Acad. Sci. USA. 2011;108(49):19451-19452. DOI 10.1073/pnas.1116812108.; Guindon S., Gascuel O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 2003;52:696-704.; Koropachinskii I.Y. Tree Flora of Siberia. Novosibirsk, 2016. (in Russian); Kovtonyuk N.K., Tomoshevich M.A., Banaev E.V. Typification of the name Nitraria komarovii (Nitrariaceae). Bot. Pac. 2019; 8(2):115-118. DOI 10.17581/bp.2019.08210.; Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35(6):1547-1549. DOI 10.1093/molbev/msy096.; Li D.Z., Gao L.M., Li H.T., Wang H., Ge X.J., Liu J.Q., Chen Z.D., Zhou S.L., Chen S.L., Yang J.B., Fu C.X., Zeng C.X., Yan H.F., Zhu Y.J., Sun Y.S., Chen S.Y., Zhao L., Wang K., Yang T., Duan G.W. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA. 2011; 108(49):19641-19646. DOI 10.1073/pnas.1104551108.; Muratova E.N., Goryachkina O.V., Banaev E.V. Karyological studies on Siberian species of Nitraria L. (Nitrariaceae). Turczaninowia. 2013;16(4):50-54. DOI 10.14258/turczaninowia.16.4.9. (in Russian); Peshkova G.A. Family Nitrariaceae. In: Flora of Siberia. Novosibirsk, 1996;10:34-35. (in Russian); Polyakova T.A., Shatokhina A.V., Shirmanov M.V., Bondarenko G.N. Assessment of taxonomy relationships among the Siberian representatives of Spiraea L. (section Chamaedryon Ser., Rosaceae Juss.) based on the ITS sequence polymorphism. In: Problems of Botany of South Siberia and Mongolia: Proceedings of the 14th Scientific and Practical Conference, May 25–29, 2015, Barnaul. Barnaul, 2015;353-358. (in Russian); Potter D., Still S.M., Grebenc T., Ballian D., Božič G., Franjiæ J., Kraigher H. Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Plant Syst. Evol. 2007;266:105-118. DOI 10.1007/s00606-007-0544-z.; Rauscher J.T., Doyle J.J., Brown A.H.D. Internal transcribed spacer repeat-specific primers and the analysis of hybridization in the Glycine tomentella (Leguminosae) polyploid complex. Mol. Ecol. 2003;11(12):2691-2702. DOI 10.1046/j.1365-294X.2002.01640.x.; Ren B.Q., Xiang X.G., Chen Z.D. Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers. Mol. Ecol. Resour. 2010;10(4):594-605. DOI 10.1111/j.1755-0998.2009.02815.x.; Rodionov A.V., Gnutikov A.A., Kotsinyan A.R., Kotseruba V.V., Nosov N.N., Punina E.O., Raiko M.P., Tyupa N.B., Kim E.S. Sequence ITS1–5.8S rDNA–ITS2 in 35S rRNA genes as a marker in grass (Poaceae) molecelar phylogeny. Uspekhi Sovremennoy Biologii = Advances in Current Biology. 2016;136(5):419-437. (in Russian); Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12): 1572-1574. DOI 10.1093/bioinformatics/btg180.; Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61(3): 539-542. DOI 10.1093/sysbio/sys029.; Schneyer V.S. DNA barcoding is a new approach in comparative genomics of plants. Russ. J. Genet. 2009;45(11):1267-1278. DOI 10.1134/S1022795409110027.; Schneyer V.S., Rodionov A.V. Plant DNA barcodes. Uspekhi Sovremennoy Biologii = Advances in Current Biology. 2018;138(6): 531-538. DOI 10.7868/S0042132418060017. (in Russian); Song J., Shi L., Li D., Sun Y., Niu Yu., Chen Z., Luo H., Pang X., Sun Z., Liu Ch., Lv A., Deng Y., Larson-Rabin Z., Wilkinson M., Chen Sh. Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA. PLoS One. 2012;7(8):e43971. DOI 10.1371/journal.pone.0043971.; Srikulnath K., Sawasdichai S., Jantapanon T.K., Pongtongkam P., Peyachoknagul S. Phylogenetic relationship of Dendrobium species in Thailand inferred from chloroplast matK gene and nuclear rDNA ITS region. Hort. J. 2015. DOI 10.2503/hortj.MI-028.; Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 1992;9:678-687.; Temirbayeva K., Zhang M.-L. Molecular phylogenetic and biogeographical analysis of Nitraria based on nuclear and chloroplast DNA sequences. Plant Syst. Evol. 2015;301:1897-1906. DOI 10.1007/s00606-015-1202-5.; Tomoshevich M.A., Banaev E.V., Ak-Lama T.A. Nitraria komarovii Iljin & Lava ex Bobrov (Nitrariaceae), a new record for the flora of Kazakhstan. Check List. 2019;15(5):891-897. DOI 10.15560/15.5.891.; Wang X.-Y., Zheng S.-H., Liu Y., Han J.-P. ITS2, a better DNA barcode than ITS in identification of species in Artemisia L. Chin. Herb. Med. 2016;8(4):352-358. DOI 10.1016/S1674-6384(16)60062-X.; Xu B., Zeng X.-M., Gao X.-F., Jin D.-P., Zhang L.-B. ITS non-concerted evolution and rampant hybridization in the legume genus Lespedeza (Fabaceae). Sci. Rep. 2017;7:e40057. DOI 10.1038/srep40057.; Zhang Zh.-L., Song M.-F., Guan Y.-H., Li H.-T., Niu Y.-F., Zhang L.-X., Ma X.-J. DNA barcoding in medicinal plants: testing the potential of a proposed barcoding marker for identification of Uncaria species from China. Biochem. Syst. Ecol. 2015;60:8-14. DOI 10.1016/j.bse.2015.02.017.; https://vavilov.elpub.ru/jour/article/view/2712
-
3Academic Journal
المؤلفون: Firsov Gennady, Yarmishko Vasily, Volchanskaya Alexandra, Varfolomeeva Elizaveta, Malysheva Ekaterina, Malysheva Vera
المصدر: Hortus Botanicus, Vol 14, Iss 1 (2019)
مصطلحات موضوعية: интродукция растений, древесные растения, молекулярная идентификация, ботанический сад петра великого, санкт-петербург, биологические особенности, биологическая защита, phytophthora, pythium, Botany, QK1-989
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: K. A. Shibzukhova, O. V. Gavrilova, O. B. Chivkunova, R. A. Sidorov, A. E. Solovchenko, E. S. Lobakova, К. А. Шибзухова, О. В. Гаврилова, О. Б. Чивкунова, Р. А. Сидоров, А. Е. Соловченко, Е. С. Лобакова
المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 72, № 3 (2017); 158-163 ; Вестник Московского университета. Серия 16. Биология; Том 72, № 3 (2017); 158-163 ; 0137-0952
مصطلحات موضوعية: молекулярная идентификация, Parietochloris, Lobosphaera, Deasonia, arachidonic acid, molecular identification, арахидоновая кислота
وصف الملف: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/472/396; Weber P.C., Fischer S., von Schaky C., Lorenz R., Strasser T. Dietary omega-3 polyunsaturated fatty acids and eicosanoids formation in man // Health effects of polyunsaturated fatty acid in seafood’s / Eds. A.P. Simopoulos, R.R. Kifer, and R.E. Martin. Orlando: Academic press, 1986. P. 227–238.; Solovchenko A.E., Khozin-Goldberg I., Didi-Cohen S., Cohen Z., Merzlyak M.N. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa // J. Appl. Phycol. 2008. Vol. 20. N 3. P. 245–251.; Dumancas G.G., Murdianti B.S., Lucas E.A. Arachidonic acid. Dietary sources and general functions. N.Y.: Nova Science Publishers, 2013. 255 pp.; Громов Б.В., Титова Н.Н. Коллекция культур водорослей лаборатории микробиологии Биологического института Ленинградского университета (CALU) // Культивирование коллекционных штаммов водорослей. Межвуз. сб. / Под ред. Б.В. Громова. Л: Из-во Ленингр. ун-та, 1983. С. 3–27.; Solovchenko A., Khozin Goldberg I., Recht L., Boussiba S. Stress induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: Implications for non- destructive assay of total fatty acids // Mar. Biotechnol. 2011. Vol. 13. N 3. P. 527–535.; Ветчинникова Л.В., Серебрякова О.С., Ильинова М.К. Динамика содержания липидов и жирнокислотного состава отдельных фракций в женских сережках березы повислой (Betula pendula Roth) // Труды Карельского научного центра РАН. 2013. № 3. С. 74–81.; White T.J., Bruns T.D, Lee S.B., Taylor J.W. Amplification and direct sequencing of fungal ribosomal RNA for phylogenetics // PCR protocols: a guide to methods and applications. A guide to methods and applications / Eds. M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White. N.Y.: Academic Press, 1990. P. 315–322.; Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs // Nucleic Acids Res. 1997. Vol. 25. N 17. P. 3389–3402.; Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees // Mol. Biol. Evol. 1987. Vol. 4. N 4. P. 406–425.; Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap // Evolution. 1985. Vol. 39. N 4. P. 783–791.; Gorelova O.A., Kosevich I.A., Baulina O.I., Fedorenko T.A., Torshkhoeva A.Z., Lobakova E.S. Associations between the White Sea invertebrates and oxygen-evolving phototrophic microorganisms // Moscow Univ. Biol. Sci. Bull. 2009. Vol. 64. N 1. P. 16–22.; https://vestnik-bio-msu.elpub.ru/jour/article/view/472
-
5
المؤلفون: Т А Poliakova, M. A. Tomoshevich, E. V. Banaev
المصدر: Vavilovskij Žurnal Genetiki i Selekcii, Vol 24, Iss 5, Pp 481-488 (2020)
Vavilov Journal of Genetics and Breedingمصطلحات موضوعية: 0106 biological sciences, 0301 basic medicine, Nitrariaceae, molecular identification, QH426-470, nitraria, транзиция, 010603 evolutionary biology, 01 natural sciences, General Biochemistry, Genetics and Molecular Biology, Nitraria, 03 medical and health sciences, chemistry.chemical_compound, taxonomy, таксономия, Molecular marker, parasitic diseases, genetic variability, Genetics, n. komarovii, Genetic variability, its, Transversion, Ribosomal DNA, n. sibirica, biology, Phylogenetic tree, молекулярная идентификация, n. schoberi, transition, biology.organism_classification, 030104 developmental biology, chemistry, Original Article, генетическая изменчивость, General Agricultural and Biological Sciences, GC-content
-
6Academic Journal
المؤلفون: Menkis, A.
مصطلحات موضوعية: лесные питомники Швеции, грибковые болезни, саженцы деревьев, грибные патогены, молекулярная идентификация, контроль грибныx патогенов, методы идентификации
وصف الملف: application/pdf
Relation: Menkis, А. Detection Methods and Incidences of Fungal Diseases in Swedish Forest Nurseries / А. Menkis // Современные проблемы лесозащиты и пути их решения : материалы II Междунар. науч.-практ. конф., посвящ. 95-летию со дня рождения проф. Николая Ильича Федорова и 90-летию каф. лесозащиты и древесиноведения, Минск, 30 ноября – 4 декабря 2020 г. – Минск : БГТУ, 2020. – C. 160-161.; https://elib.belstu.by/handle/123456789/37211
-
7