-
1Academic Journal
المؤلفون: V. P. Erichev, E. A. Ragozina, В. П. Еричев, Е. А. Рагозина
المصدر: National Journal glaucoma; Том 20, № 1 (2021); 47-54 ; Национальный журнал Глаукома; Том 20, № 1 (2021); 47-54 ; 2311-6862 ; 2078-4104
مصطلحات موضوعية: внутриглазное давление, optical coherence tomography angiography, macular microcirculation, ocular blood flow, trabeculectomy, intraocular pressure, ОКТ-ангиография, микроциркуляция макулы, глазной кровоток, трабекулэктомия
وصف الملف: application/pdf
Relation: https://www.glaucomajournal.ru/jour/article/view/315/323; Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121(11):2081-2090. doi:10.1016/j.ophtha.2014.05.013; Yanagi M., Kawasaki R., Wang J.J., Wong T.Y., Crowston J., Kiuchi Y. Vascular risk factors in glaucoma: a review. Clin Exp Ophthalmol. 2011; 39(3):252-258. doi:10.1111/j.1442-9071.2010.02455.x; Wareham L.K., Calkins D.J. The neurovascular unit in glaucomatous neurodegeneration. Front Cell Dev Biol. 2020; 8:452. doi:10.3389/fcell.2020.00452; Newman A., Andrew N., Casson R. Review of the association between retinal microvascular characteristics and eye disease. Clin Exp Ophthalmol. 2018; 46(5):531-552. doi:10.1111/ceo.13119; Rosenfeld P.J., Durbin M.K., Roisman L., Zheng F., Miller A., Robbins G., Schaal K.B., Gregori G. ZEISS Angioplex™ spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol. 2016; 56:18-29. doi:10.1159/000442773; Coscas G., Lupidi M., Coscas F. Image analysis of optical coherence tomography angiography. Dev Ophthalmol. 2016; 56:30-36. doi:10.1159/000442774; Bekkers A., Borren N., Ederveen V., Fokkinga E., Andrade De Jesus D., Sánchez Brea L., Klein S., van Walsum T., Barbosa-Breda J., Stalmans I. Microvascular damage assessed by optical coherence tomography angiography for glaucoma diagnosis: a systematic review of the most discriminative regions. Acta Ophthalmol. 2020; 98(6):537-558. doi:10.1111/aos.14392; Spaide R.F., Klancnik J.M. Jr, Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015; 133(1):45-50. doi:10.1001/jamaophthalmol.2014.3616; Yaoeda K., Shirakashi M., Funaki S., Funaki H., Nakatsue T., Abe H. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. Am J Ophthalmol. 2000; 129(6):734-739. doi:10.1016/s0002-9394(00)00382-2; Manalastas P.I.C., Zangwill L.M., Saunders L.J., Mansouri K., Belghith A., Suh M.H., Yarmohammadi A., Penteado R.C., Akagi T., Shoji T., Weinreb R.N. Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma. 2017; 26(10):851-859. doi:10.1097/IJG.0000000000000768; Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M., Lombardi L.H., Gattey D.M., Armour R.L., Edmunds B., Kraus M.F., Fujimoto J.G., Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322-1332. doi:10.1016/j.ophtha.2014.01.021; Geyman L.S., Garg R.A., Suwan Y., Trivedi V., Krawitz B.D., Mo S., Pinhas A., Tantraworasin A., Chui T.Y.P., Ritch R., Rosen R.B. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017; 101(9):1261-1268. doi:10.1136/bjophthalmol-2016-309642; Yarmohammadi A., Zangwill L.M., Diniz-Filho A., Suh M.H., Man-lastas P.I., Fatehee N., Yousefi S., Belghith A., Saunders L.J., Medeiros F.A., Huang D., Weinreb R.N. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016; 57(9):OCT451-459. doi:10.1167/iovs.15-18944; Anctil J.L., Anderson D.R. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol. 1984; 102(3):363-370. doi:10.1001/archopht.1984.01040030281019; Curcio C.A., Allen K.A. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300(1):5-25. doi:10.1002/cne.903000103; Hood D.C., Raza A.S., de Moraes C.G., Liebmann J.M., Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013; 32:1-21. doi:10.1016/j.preteyeres.2012.08.003; Oddone F., Lucenteforte E., Michelessi M., Rizzo S., Donati S., Parravano M., Virgili G. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies. Ophthalmology. 2016; 123(5):939-949. doi:10.1016/j.ophtha.2015.12.041; Курышева Н.И., Маслова Е.В., Трубилина А.В., Арджевнишвили Т.Д., Фомин А.В. Особенности макулярного кровотока при глаукоме. Вестник офтальмологии. 2017; 133(2):29-38.; Курышева Н.И., Маслова Е.В., Трубилина А.В., Лагутин М.Б. Роль оптической когерентной томографии с функцией ангиографии в ранней диагностике и мониторинге глаукомы. Национальный журнал глаукома. 2016; 14(2):20–32.; Hou H., Moghimi S., Zangwill L.M., Shoji T., Ghahari E., Penteado R.C., Akagi T., Manalastas P.I.C., Weinreb R.N. Macula vessel density and thickness in early primary open-angle glaucoma. Am J Ophthalmol. 2019; 199:120-132. doi:10.1016/j.ajo.2018.11.012; Wang X., Jiang C., Ko T., Kong X., Yu X., Min W., Shi G., Sun X. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015; 253(9):1557-1564. doi:10.1007/s00417-015-3095-y; Rao H.L., Pradhan Z.S., Weinreb R.N., Reddy H.B., Riyazuddin M., Dasari S., Palakurthy M., Puttaiah N.K., Rao D.A., Webers C.A. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016; 171:75-83. doi:10.1016/j.ajo.2016.08.030; Patel N., McAllister F., Pardon L., Harwerth R. The effects of graded intraocular pressure challenge on the optic nerve head. Exp Eye Res. 2018; 169:79-90. doi:10.1016/j.exer.2018.01.025; Zhang Q., Jonas J.B., Wang Q., Chan S.Y., Xu L., Wei W.B., Wang Y.X. Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation. Sci Rep. 2018; 8(1):6024. doi:10.1038/s41598-018-24520-x; Holló G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017; 26(1):e7-e10. doi:10.1097/IJG.0000000000000527; Chihara E., Dimitrova G., Chihara T. Increase in the OCT angiographic peripapillary vessel density by ROCK inhibitor ripasudil instillation: a comparison with brimonidine. Graefes Arch Clin Exp Ophthalmol. 2018; 256(7):1257-1264. doi:10.1007/s00417-018-3945-5; Trible J.R., Sergott R.C., Spaeth G.L., Wilson R.P., Katz L.J., Moster M.R., Schmidt C.M. Trabeculectomy is associated with retrobulbar hemodynamic changes. A color Doppler analysis. Ophthalmology. 1994; 101(2):340-351. doi:10.1016/s0161-6420(13)31332-3; Synder A., Augustyniak E., Laudańska-Olszewska I., Wesołek-Czernik A. Evaluation of blood-flow parameters in extraocular arteries in patients with primary open-angle glaucoma before and after surgical treatment. Klin Oczna. 2004; 106(1-2 Suppl):206-208.; Berisha F., Schmetterer K., Vass C., Dallinger S., Rainer G., Findl O., Kiss B., Schmetterer L. Effect of trabeculectomy on ocular blood flow. Br J Ophthalmol. 2005; 89(2):185-188. doi:10.1136/bjo.2004.048173; Kuerten D., Fuest M., Koch E.C., Remky A., Plange N. Long term effect of trabeculectomy on retrobulbar haemodynamics in glaucoma. Ophthalmic Physiol Opt. 2015; 35(2):194-200. doi:10.1111/opo.12188; Januleviciene I., Siaudvytyte L., Diliene V., Barsauskaite R., Siesky B., Harris A. Effect of trabeculectomy on ocular hemodynamic parameters in pseudoexfoliative and primary open-angle glaucoma patients. J Glaucoma. 2015; 24(5):e52-6. doi:10.1097/IJG.0000000000000055; Zéboulon P., Lévêque P.M., Brasnu E., et al. Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: an optical coherence tomography angiography study. J Glaucoma. 2017; 26(5):466-472. doi:10.1097/IJG.0000000000000652; Shin J.W., Sung K.R., Uhm K.B. et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017; 58(13):5993-5999. doi:10.1167/iovs.17-22787; Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., Mari J.M. Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2018; 59(11):4614-4621. doi:10.1167/iovs.18-25038; Lee E.J., Kim T.W. Lamina cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve fiber layer thinning. Ophthalmology. 2015; 122(11):2234-2242. doi:10.1016/j.ophtha.2015.07.020; Lommatzsch C., Rothaus K., Koch J.M., Heinz C., Grisanti S. Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography. Int Ophthalmol. 2019; 39(11): 2583-2594. doi:10.1007/s10792-019-01107-7; Ch'ng T.W., Gillmann K., Hoskens K., Rao H.L., Mermoud A., Mansouri K. Effect of surgical intraocular pressure lowering on retinal structures — nerve fibre layer, foveal avascular zone, peripapillary and macular vessel density: 1 year results. Eye (Lond). 2020; 34(3): 562-571. doi:10.1038/s41433-019-0560-6; Zhao Z., Wen W., Jiang C., Lu Y. Changes in macular vasculature after uncomplicated phacoemulsification surgery: Optical coherence tomography angiography study. J Cataract Refract Surg. 2018; 44(4): 453-458. doi:10.1016/j.jcrs.2018.02.014; Raghu N., Pandav S.S., Kaushik S., Ichhpujani P., Gupta A. Effect of trabeculectomy on RNFL thickness and optic disc parameters using optical coherence tomography. Eye (Lond). 2012; 26(8):1131-1137. doi:10.1038/eye.2012.115; Alnawaiseh M., Müller V., Lahme L., Merté R.L., Eter N. Changes in flow density measured using optical coherence tomography angiography after iStent insertion in combination with phacoemulsification in patients with open-angle glaucoma. J Ophthalmol. 2018; 2018:2890357. doi:10.1155/2018/2890357; https://www.glaucomajournal.ru/jour/article/view/315
-
2Academic Journal
المؤلفون: N. I . Kurysheva, E. V. Maslova, I. V. Zolnikova, A. V. Fomin, M. B. Lagutin, Н. И. Курышева, Е. В. Маслова, И. В. Зольникова, А. В. Фомин, М. Б. Лагутин
المصدر: National Journal glaucoma; Том 18, № 4 (2019); 15-34 ; Национальный журнал Глаукома; Том 18, № 4 (2019); 15-34 ; 2311-6862 ; 2078-4104
مصطلحات موضوعية: паттерн ЗВП, open-angle glaucoma, ocular blood flow, optical coherence tomography angiography, оптическая когерентная томография (ОКТ), ОКТ с функцией ангиографии, микроциркуляция макулы, ДЗН и перипапиллярная сетчатка, паттерн ЭРГ
وصف الملف: application/pdf
Relation: https://www.glaucomajournal.ru/jour/article/view/239/247; Hood D.C., Anderson S.C., Wall M., Kardon R.H., Raza A.S. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurement. Invest Ophthalmol Vis Sci. 2009; 50:4254-4255. https://doi. org/10.1167/iovs.08-2697; Ojima T., Tanabe T., Hangai M., Yu.S., Morishita S., Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Japan J Ophthalmol. 2007; 51:197-203. https://doi.org/10.1007/ s10384-006-0433-y; Nakatani Y., Higashide T., Ohkubo S., Hisashi T.H., Sugiya K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. Glaucoma. 2011; 20:252-259. https://doi. org/10.1097/IJG.0b013e3181e079ed; Kurysheva N.I., Parshunina O.A., Shatalova E.O., Kiseleva T.N., Lagutin M.B., et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res. 2016; 24:1-7. https://doi.org/10.1080/02713683.2016.1184281; Hayreh S.S. Blood flow in the optic head and factors that may influence it. Progress in Retinal and Eye Research. 2001; 20(5):595-624. https://doi.org/10.1016/S1350-9462(01)00005-2; Grieshaber M.C., Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005; 16:79-83. https://doi.org/10.1136/bjo.2006.103010; Kurysheva N.I., Kiseleva T.N., Hodak N.A. The study of bioelectricactivity and regional hemodynamics in glaucoma. Klinicheskaya oftalmologiya. 2012; 3:91-94. https://doi.org/10.1371/journal. pone.0201599; Flammer J., Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Progress in Retinal and Eye Research. 1998; 17:267-289. https:// doi.org/10.21037/qims.2016.03.05; Grunwald J.E., Piltz J., Hariprasad S.M., DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998; 39:232-233.; Tobe L.A., Harris A., Hussain R.M., Eckert G., Huck A., Park J., et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fiber layer structure in subjects with open-angle glaucoma over an 18-month period. Brit J Ophthalmol. 2005; 99:609-612. http://dx.doi.org/10.1136/bjophthalmol-2014-305780; Martinez A., Sanchez M. Predictive value of colour Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. Acta Ophthalmol Scand. 2005; 83:716-722. https://doi. org/10.1111/j.1600-0420.2005.00567.x; Mokbel T.H., Ghanem A.A. Diagnostic value of color doppler imaging and pattern visual evoked potential in primary open-angle glaucoma. J Clin Exper Ophthalmol/ 20112:127. https://doi.org/10.4172/21559570.1000127; Jia Y., Morrison J.C., Tokayer J., Tan O., Lombardi L., Baumann B. et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Optics Exp. 2012; 3:3127-3137. https://doi.org/10.1364/ BOE.3.003127; Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M. et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322-1332. https://doi.org/10. 1016/j.ophtha.2014.01.021; Wang X., Jiang C., Ko T., Kong X., Yu X., Min W. et al. Correlation between optic disc perfusion and glaucomatous severity in subjects with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015; 253:15571564. https://doi.org/10.1007/s00417- 015-3095-y; Liu L., Jia Y., Takusagawa H.L., Morrison J.C., Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133(9):1045-1052. https://doi.org/10. 1001/jamaophthalmol.2015.2225; Lee E.J., Lee K.M., Lee S.H., Kim T.W. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:6265-6270. https://doi.org/10.1167/iovs.16-20287 18. Kurysheva N.I. Macula in Glaucoma: Vascularity Evaluated by OCT Angiography. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(5):651-662.; Levêque P.M. Optic disc vascularization in glaucoma: value of spectral domain optical coherence tomography angiography. Ophthalmol. 2016, Article ID 6956717. https://doi.org/10.1155/2016/6956717; Yarmohammadi A., Zangwill L.M., Diniz-Filho A., Suh M.H., Manalastas P.I., Fatehee N. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016; 57:451-459. https://doi.org/10.1167/ iovs.15-18944; Rao H.L., Kadambi S.V., Weinreb R.N., Puttaiah N.K., Pradhan Z.S., Rao D.A. et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017; 101(8):1066-1070. https://doi.org/10.1136/bjophthalmol-2016- 309377; Hood D. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Progress in Retinal and Eye Research. 2017; 57:46-75. doi:10.1016/j.preteyeres.2016.12.002; Hood D.C., Raza A.S., de Moraes C.G.V., Johnson C.A., Liebmann J.M., Ritch R. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Trans Vis Sci Tech. 2012; 1:1-15. https://doi.org/10.1167/tvst.1.1.3; Bowd C., Tafreshi A., Zangwill L.M., Medeiros F.A., Sample P.A., Weinreb R.N. Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye (Lond). 2011; 25(2):224-232. https://doi.org/10.1038/eye.2010.203; May J.G., Ralston J.V., Reed J.L., Van Dyk H.J.L. Loss in pattern-elicited electroretinograms in optic nerve dysfunction. Am J Ophthalmol. 1982; 93:418-422. https://doi.org/10.1016/0002-9394(82)90131-3 26. Bobak P., Bodis W.I, Harnois C., Maffei L., Mylin L. Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol. 1983; 96:72-83. https://doi. org/10.1016/0002-9394(83)90457-9; Wanger P., Persson H.E. Pattern-reversal electroretinograms in unilateral glaucoma. Invest Ophthalmol Vis Sci. 1983; 24:749-753. https:// doi.org/10.1007/978-94-009-7275-9_41; Bach M., Hiss P., Ro êver J. Check-size specific changes of pattern electroretinogram in subjects with early open-angle glaucoma. Doc Ophthalmol. 1988; 69:315-322.; Parisi V., Miglior S., Manni G., Centofanti M., Bucci M.G. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology. 2016; 113:216-228. https://doi.org/10.1016/j.ophtha.2005.10.044; Rejdak R., Toczolowski J., Kurkowski J., Kaminski M.L., Rejdak K., Stelmasiak Z. et al. Oral citicoline treatment improves visual pathway function in glaucoma. Med Sci Monit. 2003; 9:124-128.; Tong Y., Wang P., Xia Z., Xia X., Xu X. Color pattern reversal visual evoked potentials in primary open angle and angle closure glaucoma. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009; 34:771-775.; Mills R.P., Budenz D.L., Lee P.P., Noecker R.J., Walt J.G., Evans S.J. et al. Categorizing the stage of glaucoma from pre-diagnosis to endstage disease. Am J Ophthalmol. 2006; 141:24-30. https://doi. org/10. 1016/j.ajo.2005.07.044; Chang E., Goldberg J. Glaucoma 2.0: Neuroprotection, Neuroregeneration, Neuroenhancement. Ophthalmology. 2012; 119(5):979-986. https://doi.org/10.1016/j.ophtha.2011.11.003; Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia. 1988; 8(1):96. https://doi.org/10.1177/0333102417738202; Garway-Heath D.F., Poinoosawmy D., Fitzke F.W., Hitchings R.A. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000; 107(10):1809-1815. https://doi. org/10.1016/S0161-6420(00)00284-0; Odom J.V., Bach M., Brigell M., Holder G.E., McCulloch D.L.L., Mizota A. et al. ISCEV standard for clinical visual evoked potentials. Doc Ophthalmol. 2016; 133(1):1-9. https://doi.org/10.1007/s10633-016- 9553-y; Bach M., Brigell M.G., Hawlina M., Holder G.E., Johnson M.A., McCulloch D.L. et al. ISCEV standard for clinical pattern electroretinography (PERG) – 2012 update. Doc Ophthalmol. 2013; 126:1-7. https://doi.org/ 10.1007/s10633-012-9353; Ventura L.M., Porciatti V. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology. 2005; 112(1):20-27. https://doi.org/10.1016/j. ophtha.2004.09.002; Bach M., Hoffmann M.B. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008; 85:386-395. https://doi. org/10.1097/OPX.0b013e318177ebf3; Bach M., Poloschek C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013; 353:287-296. https://doi.org/10.1007/s00441-013-1598-6; Bach M., Ramharter-Sereinig A. Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols. Doc Ophthalmol. 2013; 127:227-238. https://doi.org/10.1007/ s10633- 013-9412-z; Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015; 141:164-170. https://doi.org/10.1016/j. exer.2015.05.008; Bode S.F., Jehle T., Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci. 2011; 52:4300-4306. https://doi.org/10.1167/iovs.10-6381 44. Porciatti V., Bosse B., Parekh P.K., Shuf O.A., Feuer W.J., Venture L.M. Adaptation of the Steady-state PERG in early glaucoma. J Glaucoma. 2014; 23(8):494-500. https://doi.org/10.1097/IJG. 0b013e318285fd95; Pfeiffer N., Tillmon B., Bach M. Predictive value of the pattern electroretinogram in high risk ocular hypertension. Invest Ophthalmol Vis Sci. 1993; 34:1710-1715; He Z.J. The qualitative and quantitative diagnostic significance of P-VEP in the evaluation of glaucomatous visual function damage. Zhonghua Yan KeZaZhi. 1991; 27(1):25-29.; Holder G.E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001; 20:531-561. https://doi.org/10.1016/S1350-9462(00)00030-6; Viswanathan S., Frishman L.J., Robson J.G. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci. 2000; 41:2797-2810.; Luo X., Frishman L. Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci. 2011; 52(12):8571-8584. https://doi.org/10.1167/iovs.11-8376; Xu H., Yu J., Kong X., Sun X., Jiang C. Macular microvasculature alterations in subjects with primary open-angle glaucoma. Medicine (Baltimore). 2016; 95(33):e434. https://doi.org/10.1097/ MD.0000000000004341; Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., Likhvantseva V.G., Lagutin M.B. OCT angiography and color doppler imaging in glaucoma diagnostics. J Pharm Sci Res. 2017; 9(5):527-536.; Chihara E., Dimitrova G., Amano H., Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci. 2017; 58:690-697. https://doi. org/10.1167/iovs.16-20709; Yu D.Y., Cringle S.J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res. 2001; 20:175-208. https://doi. org/10.1016/S1350-9462(00)00027-6; Takusagawa H.L., Liu L., Ma K., Jia Y., Zhang M., Gao S., et al. Projection-resolved optical coherence angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017; 124(11):1589-1599. doi:10.1016/j.ophtha.2017.06.002; Rao H.L., Pradhan Z.S., Weinreb R.N., Reddy H.B., Riyazuddin M., Dasari S. et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016; 171:75-83. https://doi.org/10.1016/j. ajo.2016.08.030; Hollo G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017; 26:7-10. https://doi.org/10.1097/ IJG.0000000000000527; Scripsema N.K., Garcia P.M., Bavier R.D., Chui T.Y., Krawitz B.D., Mo S., et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal — tension glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:611620. https://doi.org/10.1167/iovs.15-18783; Bowd C., Zangwill L.M., Berry C.C., Blumenthal E.Z., Vasile C., Snachez-Galeana C. et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci. 2001; 42:1993-2003.; Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol Chic. 1981; 99:635-649. https://doi. org/10.1001/archopht.1981.03930010635009; Pechauer A.D., Jia Y., Liu L., Gao S., Jiang C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci. 2015; 56:3287-3291. https://doi.org/10.1167/iovs.15-16655; Falsini B., Colotto A., Porciatti V., Bolzani R., Porrello G., Giudiceandrea A. Follow-up study with pattern ERG in ocular hypertension and glaucoma subjects under timolol maleate treatment. Clin Vis Sci. 1992; 7:341-347.; Ventura L., Porciatti V., Ishida K., Feuer W.J., Parrish R.K. Pattern electroretinogram abnormality and glaucoma. Ophthalmology. 2005; 1:20-27. https://doi.org/10.1016/j.ophtha.2004.07.018; Papst N., Bopp M., Schnaudigel O. The pattern evoked electroretinogram associated with elevated intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 1984; 222:34-37. https://doi.org/10.1007/ BF02133775; Nesher R., Trick G.L., Kass M.A., Gordon M.O. Steady-state pattern electroretinogram following long term unilateral administration of timolol to ocular hypertensive subjects. Doc Ophthalmol. 1990; 75:101-109. https://doi.org/10.1007/BF00146546; Colotto A., Salgarello T., Giudiceandrea A., De Luca L.A., Coppe A., Buzzonetti L. et al. Pattern electroretinogram in treated ocular hypertension: a cross-sectional study after timolol maleate the- rapy. Ophthalmic Res. 1995; 27:168-177. https://doi.org/10.1159/ 000267663; Banitt M., Ventura L., Feuer W.J., Savatovsky E., Luna G., Shif O. et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. 2013; 54:2346-2352. https://doi.org/10.1167/iovs.12-11026; Kremmer S., Tolksdorf-Kremmer A., Stodtmeister R. Simultaneous registration of VECP and pattern ERG during artificially raised intraocular pressure. Ophthalmologica. 1995; 209(5):233-241 https://doi. org/10.1159/000310622; Bowd C., Tafreshi A., Zangwill L.M., Medeiros F.A., Sample P.A., Weinreb R.N. Pattern electroretinogram association with spectral domainOCT structural measurements in glaucoma. 2011; 25:224. https:// doi.org/10.1038/eye.2010.203 Поступила / Received / 18.07.2019; https://www.glaucomajournal.ru/jour/article/view/239
-
3
مصطلحات موضوعية: трабекулэктомия, глазной кровоток, primary open-angle glaucoma, внутриглазное давление, ОКТ-ангиография, микроциркуляция макулы, ocular blood flow, trabeculectomy, macular microcirculation, первичная открытоугольная глаукома, optical coherence tomography angiography, intraocular pressure
-
4
مصطلحات موضوعية: паттерн ЗВП, macular microvasculature, ОКТ с функцией ангиографии, диагностика первичной открытоугольной глаукомы, микроциркуляция макулы, паттерн ЭРГ, ocular blood flow, open-angle glaucoma, ДЗН и перипапиллярная сетчатка, optical coherence tomography angiography, оптическая когерентная томография (ОКТ)