-
1Academic Journal
المؤلفون: Polina Vladimirovna Grebenkina, Varvara Alekseevna Jukhina, Ananstasia Maksimovna Gulina, Sergey Alekseevich Selkov, Lyudmila Alexandrovna Kraeva, Dmitriy Igorevich Sokolov, Полина Владимировна Гребенкина, Варвара Алексеевна Юхина, Анастасия Максимовна Гулина, Сергей Алексеевич Сельков, Людмила Александровна Краева, Дмитрий Игоревич Соколов
المصدر: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0
مصطلحات موضوعية: устойчивость, antibiotics, ESKAPE, microvesicles, bacteria, resistance, антибиотики, микровезикулы, бактерии
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2945/1928; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13321; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13322; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13323; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13324; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13325; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13326; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13475; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13476; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13477; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2945/13569; Abraham E.P.,Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis, 1988, Vol.10, no 4, pp. 677-8. -; Ananthan S.,Subha A. Cefoxitin Resistance Mediated by Loss of a Porin in Clinical Strains of Klebsiella Pneumoniae and Escherichia Coli. Indian Journal of Medical Microbiology, 2005, Vol.23, no 1, pp. 20-23. - 10.1016/s0255-0857(21)02706-7; Anderl J.N., Franklin M.J.,Stewart P.S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother, 2000, Vol.44, no 7, pp. 1818-24. - 10.1128/AAC.44.7.1818-1824.2000; Ayobami O., Brinkwirth S., Eckmanns T.,Markwart R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis. Emerging Microbes & Infections, 2022, Vol.11, no 1, pp. 443-451. - 10.1080/22221751.2022.2030196; Azevedo-Barbosa H., Dias D.F., Franco L.L., Hawkes J.A.,Carvalho D.T. From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides. Mini Rev Med Chem, 2020, Vol.20, no 19, pp. 2052-2066. - 10.2174/1389557520666200905125738; Baroud M., Dandache I., Araj G.F., Wakim R., Kanj S., Kanafani Z., Khairallah M., Sabra A., Shehab M., Dbaibo G.,Matar G.M. Underlying mechanisms of carbapenem resistance in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents, 2013, Vol.41, no 1, pp. 75-9. - 10.1016/j.ijantimicag.2012.08.010; Baumler A.J., Ivin M., Dumigan A., de Vasconcelos F.N., Ebner F., Borroni M., Kavirayani A., Przybyszewska K.N., Ingram R.J., Lienenklaus S., Kalinke U., Stoiber D., Bengoechea J.A.,Kovarik P. Natural killer cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae growth during lung infection. PLOS Pathogens, 2017, Vol.13, no 11. - 10.1371/journal.ppat.1006696; Bhattacharjee M.K., Antimetabolites: Antibiotics That Inhibit Nucleotide Synthesis, in Chemistry of Antibiotics and Related Drugs. 2022. p. 109-123. -; Binda E., Marinelli F.,Marcone G.L. Old and New Glycopeptide Antibiotics: Action and Resistance. Antibiotics (Basel), 2014, Vol.3, no 4, pp. 572-94. - 10.3390/antibiotics3040572; Bisacchi G.,Hale M. A “Double-Edged” Scaffold: Antitumor Power within the Antibacterial Quinolone. Current Medicinal Chemistry, 2016, Vol.23, no 6, pp. 520-577. - 10.2174/0929867323666151223095839; Bisacchi G.S. Origins of the Quinolone Class of Antibacterials: An Expanded "Discovery Story". J Med Chem, 2015, Vol.58, no 12, pp. 4874-82. - 10.1021/jm501881c; Blair J.M.A., Webber M.A., Baylay A.J., Ogbolu D.O.,Piddock L.J.V. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 2014, Vol.13, no 1, pp. 42-51. - 10.1038/nrmicro3380; Blake F.G.,Craige B. Penicillin in Suppurative Disease of the Lungs: A Report of Three Cases. Yale J Biol Med, 1943, Vol.15, no 3, pp. 507-516 7.; Blaskovich M.A.T., Hansford K.A., Butler M.S., Jia Z., Mark A.E.,Cooper M.A. Developments in Glycopeptide Antibiotics. ACS Infect Dis, 2018, Vol.4, no 5, pp. 715-735. - 10.1021/acsinfecdis.7b00258; Bourne C.R. Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Antibiotics (Basel), 2014, Vol.3, no 1, pp. 1-28. - 10.3390/antibiotics3010001; Boyiadzis M., Agha M., Redner R.L., Sehgal A., Im A., Hou J.-Z., Farah R., Dorritie K.A., Raptis A., Lim S.H., Wang H., Lapteva N., Mei Z., Butterfield L.H., Rooney C.M.,Whiteside T.L. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy, 2017, Vol.19, no 10, pp. 1225-1232. - 10.1016/j.jcyt.2017.07.008; Breijyeh Z., Jubeh B.,Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 2020, Vol.25, no 6. - 10.3390/molecules25061340; Brockmann H.,Henkel W. Pikromycin, ein bitter schmeckendes Antibioticum aus Actinomyceten (Antibiotica aus Actinomyceten, VI. Mitteil. Chemische Berichte, 2006, Vol.84, no 3, pp. 284-288. - 10.1002/cber.19510840306; Brooks L.E., Ul-Hasan S., Chan B.K.,Sistrom M.J. Quantifying the Evolutionary Conservation of Genes Encoding Multidrug Efflux Pumps in the ESKAPE Pathogens To Identify Antimicrobial Drug Targets. mSystems, 2018, Vol.3. - 10.1128/mSystems.00024-18; Bryan L.E.,Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother, 1983, Vol.23, no 6, pp. 835-45. - 10.1128/AAC.23.6.835; Camussi G., Deregibus M.C., Bruno S., Cantaluppi V.,Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int, 2010, Vol.78, no 9, pp. 838-48. - 10.1038/ki.2010.278; Chalifour A., Jeannin P., Gauchat J.F., Blaecke A., Malissard M., N'Guyen T., Thieblemont N.,Delneste Y. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood, 2004, Vol.104, no 6, pp. 1778-83. - 10.1182/blood-2003-08-2820; Chen N.,Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. European Journal of Medicinal Chemistry, 2023, Vol.255, no. 7; 10.1016/j.ejmech.2023.11537; Comin F., Speziali E., Martins-Filho O.A., Caldas I.R., Moura V., Gazzinelli A., Correa-Oliveira R.,Faria A.M.C. Ageing and Toll-like receptor expression by innate immune cells in chronic human schistosomiasis. Clinical and Experimental Immunology, 2007, Vol.149, no 2, pp. 274-284. - 10.1111/j.1365-2249.2007.03403.x; Crespo Â.C., Mulik S., Dotiwala F., Ansara J.A., Sen Santara S., Ingersoll K., Ovies C., Junqueira C., Tilburgs T., Strominger J.L.,Lieberman J. Decidual NK Cells Transfer Granulysin to Selectively Kill Bacteria in Trophoblasts. Cell, 2020, Vol.182, no 5, pp. 1125-1139.e18. - 10.1016/j.cell.2020.07.019; Demerec M.,Fano U. Bacteriophage-Resistant Mutants in Escherichia Coli. Genetics, 1945, Vol.30, no 2, pp. 119-136. - 10.1093/genetics/30.2.119; Dinos G.P. The macrolide antibiotic renaissance. Br J Pharmacol, 2017, Vol.174, no 18, pp. 2967-2983. - 10.1111/bph.13936; El-Badawy M.F., Tawakol W.M., El-Far S.W., Maghrabi I.A., Al-Ghamdi S.A., Mansy M.S., Ashour M.S.,Shohayeb M.M. Molecular Identification of Aminoglycoside-Modifying Enzymes and Plasmid-Mediated Quinolone Resistance Genes among Klebsiella pneumoniae Clinical Isolates Recovered from Egyptian Patients. International Journal of Microbiology, 2017, Vol.2017, no, pp. 1-12. - 10.1155/2017/8050432; El-Sayed Ahmed M.A.E.-G., Zhong L.-L., Shen C., Yang Y., Doi Y.,Tian G.-B. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerging Microbes & Infections, 2020, Vol.9, no 1, pp. 868-885. - 10.1080/22221751.2020.1754133; Emelianova A.G., Petrova N.V., Fremez C., Fontanié M., Tarasov S.А.,Epstein О.I. Therapeutic potential of highly diluted antibodies in antibiotic-resistant infection. European Journal of Pharmaceutical Sciences, 2022, Vol.173, no. - 10.1016/j.ejps.2022.106161; Eriksson M., Meadows S.K., Basu S., Mselle T.F., Wira C.R.,Sentman C.L. TLRs mediate IFN-gamma production by human uterine NK cells in endometrium. J Immunol, 2006, Vol.176, no 10, pp. 6219-24. - 10.4049/jimmunol.176.10.6219; Eyler R.F.,Shvets K. Clinical Pharmacology of Antibiotics. Clinical Journal of the American Society of Nephrology, 2019, Vol.14, no 7, pp. 1080-1090. - 10.2215/cjn.08140718; Fazly Bazzaz B.S., Khameneh B., Zarei H.,Golmohammadzadeh S. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microbial Pathogenesis, 2016, Vol.93, no, pp. 137-144. - 10.1016/j.micpath.2015.11.031; Fernández-Martínez M., Ruiz del Castillo B., Lecea-Cuello M.J., Rodríguez-Baño J., Pascual Á., Martínez-Martínez L., Michaus L., Martínez Peinado C., Yagüe A., Torreblanca A., Fleites A., Ordás J.F., Moreno J.J., Garduño E., Gil J., Oliver A., Domínguez M.A., Marco F., del Valle O., Navarro F., Prats G., Corcoy F., Ojeda E., Marín P., Fernández C., Martínez L., Carranza R., Rodríguez F., García Tejero C., Artiles F., Álamo I., Palop B., De la Rosa M., Gutiérrez J., Gomáriz M., Cuesta I., Cartelle M., Rodríguez M., Fernández I., Ugalde E., Picazo J.J., Chaves F., Cantón R., Cercenado E., Folgueira L., Delgado Iribarren A., Guerrero C., Torroba L., García Irure J.J., Fernández B., García M., Lueiro F., Otero I., García Sánchez E., Elías J., Treviño M., Hernández J.R., Ruiz M., Díaz M.A., Moreno A., Lara M., Aspiroz C., Torres L., García Leoni E., Navarro D., Gobernado M., Tenorio A., Ezpeleta C., Castillo J.,García Moya J. Prevalence of Aminoglycoside-Modifying Enzymes in Escherichia coli and Klebsiella pneumoniae Producing Extended Spectrum β-Lactamases Collected in Two Multicenter Studies in Spain. Microbial Drug Resistance, 2018, Vol.24, no 4, pp. 367-376. - 10.1089/mdr.2017.0102; Ferreira M., Pinto S.N., Aires-da-Silva F., Bettencourt A., Aguiar S.I.,Gaspar M.M. Liposomes as a Nanoplatform to Improve the Delivery of Antibiotics into Staphylococcus aureus Biofilms. Pharmaceutics, 2021, Vol.13, no 3. - 10.3390/pharmaceutics13030321; Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Organ, 2001, Vol.79, no 8, pp. 780-90. - 10.3390/molecules26144280; Foti C., Piperno A., Scala A.,Giuffrè O. Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules, 2021, Vol.26, no 14. -; Fouts J.R., Kamm J.J.,Brodie B.B. Enzymatic reduction of prontosil and other azo dyes. J Pharmacol Exp Ther, 1957, Vol.120, no 3, pp. 291-300. -; Gautier-Bouchardon A.V., Aarestrup F.M., Schwarz S., Shen J.,Cavaco L. Antimicrobial Resistance in; Mycoplasma; spp. Microbiology Spectrum, 2018, Vol.6, no 4. - 10.1128/microbiolspec.ARBA-0030-2018; Geigenmuller U.,Nierhaus K.H. Tetracycline can inhibit tRNA binding to the ribosomal P site as well as to the A site. Eur J Biochem, 1986, Vol.161, no 3, pp. 723-6. - 10.1111/j.1432-1033.1986.tb10499.x; González-Paredes A., Sitia L., Ruyra A., Morris C.J., Wheeler G.N., McArthur M.,Gasco P. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. European Journal of Pharmaceutics and Biopharmaceutics, 2019, Vol.134, no, pp. 166-177. - 10.1016/j.ejpb.2018.11.017; Hahn A., Sami I., Chaney H., Koumbourlis A.C., Del Valle Mojica C., Cochrane C., Chan B.K.,Koff J.L. Bacteriophage Therapy for Pan-Drug-Resistant Pseudomonas aeruginosa in Two Persons With Cystic Fibrosis. Journal of Investigative Medicine High Impact Case Reports, 2023, Vol.11, no. - 10.1177/23247096231188243; Haney E., Trimble M., Cheng J., Vallé Q.,Hancock R. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules, 2018, Vol.8, no 2. - 10.3390/biom8020029; Hilliard J.J., Datta V., Tkaczyk C., Hamilton M., Sadowska A., Jones-Nelson O., O'Day T., Weiss W.J., Szarka S., Nguyen V., Prokai L., Suzich J., Stover C.K.,Sellman B.R. Anti-Alpha-Toxin Monoclonal Antibody and Antibiotic Combination Therapy Improves Disease Outcome and Accelerates Healing in a Staphylococcus aureus Dermonecrosis Model. Antimicrobial Agents and Chemotherapy, 2015, Vol.59, no 1, pp. 299-309. - 10.1128/aac.03918-14; Hoffman L.R., D'Argenio D.A., MacCoss M.J., Zhang Z., Jones R.A.,Miller S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 2005, Vol.436, no 7054, pp. 1171-5. - 10.1038/nature03912; Høiby N., Bjarnsholt T., Givskov M., Molin S.,Ciofu O. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 2010, Vol.35, no 4, pp. 322-332. - 10.1016/j.ijantimicag.2009.12.011; Hooper D.C.,Jacoby G.A. Mechanisms of drug resistance: quinolone resistance. Annals of the New York Academy of Sciences, 2015, Vol.1354, no 1, pp. 12-31. - 10.1111/nyas.12830; Horton D., Wander J.D.,Foltz R.L. Chemical-ionization mass spectrometry of lincomycin and clindamycin. Analytical Biochemistry, 1974, Vol.59, no 2, pp. 452-461. - 10.1016/0003-2697(74)90298-x; Ichikawa M., Nakamoto N., Kredo-Russo S., Weinstock E., Weiner I.N., Khabra E., Ben-Ishai N., Inbar D., Kowalsman N., Mordoch R., Nicenboim J., Golembo M., Zak N., Jablonska J., Sberro-Livnat H., Navok S., Buchshtab N., Suzuki T., Miyamoto K., Teratani T., Fujimori S., Aoto Y., Konda M., Hayashi N., Chu P.-S., Taniki N., Morikawa R., Kasuga R., Tabuchi T., Sugimoto S., Mikami Y., Shiota A., Bassan M.,Kanai T. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nature Communications, 2023, Vol.14, no 1. - 10.1038/s41467-023-39029-9; Jong A.Y., Wu C.H., Li J., Sun J., Fabbri M., Wayne A.S.,Seeger R.C. Large‐scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. Journal of Extracellular Vesicles, 2017, Vol.6, no 1. - 10.1080/20013078.2017.1294368; Kang H.-K.,Park Y. Glycopeptide Antibiotics: Structure and Mechanisms of Action. Journal of Bacteriology and Virology, 2015, Vol.45, no 2. - 10.4167/jbv.2015.45.2.67; Kannan K., Vazquez-Laslop N.,Mankin A.S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell, 2012, Vol.151, no 3, pp. 508-20. - 10.1016/j.cell.2012.09.018; Karballaei Mirzahosseini H., Hadadi-Fishani M., Morshedi K.,Khaledi A. Meta-Analysis of Biofilm Formation, Antibiotic Resistance Pattern, and Biofilm-Related Genes in Pseudomonas aeruginosa Isolated from Clinical Samples. Microbial Drug Resistance, 2020, Vol.26, no 7, pp. 815-824. - 10.1089/mdr.2019.0274; Kishk R., Soliman N., Nemr N., Eldesouki R., Mahrous N., Gobouri A., Azab E.,Anani M. Prevalence of Aminoglycoside Resistance and Aminoglycoside Modifying Enzymes in Acinetobacter baumannii Among Intensive Care Unit Patients, Ismailia, Egypt. Infection and Drug Resistance, 2021, Vol.Volume 14, no, pp. 143-150. - 10.2147/idr.S290584; Klingemann H. The NK-92 cell line—30 years later: its impact on natural killer cell research and treatment of cancer. Cytotherapy, 2023, Vol.25, no 5, pp. 451-457. - 10.1016/j.jcyt.2022.12.003; Korenevsky A.V., Shcherbitskaia A.D., Berezkina M.E., Markova K.L., Alexandrova E.P., Balabas O.A., Selkov S.A.,Sokolov D.I. MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line. Medical Immunology (Russia), 2020, Vol.22, no 4, pp. 633-646. - 10.15789/1563-0625-mms-1976; Lamichhane T.N., Raiker R.S.,Jay S.M. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol Pharm, 2015, Vol.12, no 10, pp. 3650-7. - 10.1021/acs.molpharmaceut.5b00364; Ledger E.V.K., Sabnis A.,Edwards A.M. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. Microbiology, 2022, Vol.168, no 2. - 10.1099/mic.0.001136; León D.L., Fellay I., Mantel P.-Y.,Walch M., Killing Bacteria with Cytotoxic Effector Proteins of Human Killer Immune Cells: Granzymes, Granulysin, and Perforin, in Bacterial Pathogenesis. 2017. p. 275-284. -; Lin Q., Deslouches B., Montelaro R.C.,Di Y.P. Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. Int J Antimicrob Agents, 2018, Vol.52, no 5, pp. 667-672. - 10.1016/j.ijantimicag.2018.04.019; Luo G., Zhang J., Wang H., Sun Y., Cheng B., Xu Z., Zhang Y., Li H., Lu W., Nemeth E., Ganz T.,Fang X. Human defensin-inspired discovery of peptidomimetic antibiotics. Proc Natl Acad Sci U S A, 2022, Vol.119, no 10, pp. e2117283119. - 10.1073/pnas.2117283119; Luquero A., Vilahur G., Crespo J., Badimon L.,Borrell‐Pages M. Microvesicles carrying LRP5 induce macrophage polarization to an anti‐inflammatory phenotype. Journal of Cellular and Molecular Medicine, 2021, Vol.25, no 16, pp. 7935-7947. - 10.1111/jcmm.16723; Mankin A.S. Nascent peptide in the "birth canal" of the ribosome. Trends Biochem Sci, 2006, Vol.31, no 1, pp. 11-3. - 10.1016/j.tibs.2005.11.007; Matzov D., Eyal Z., Benhamou R.I., Shalev-Benami M., Halfon Y., Krupkin M., Zimmerman E., Rozenberg H., Bashan A., Fridman M.,Yonath A. Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. Nucleic Acids Research, 2017, Vol.45, no 17, pp. 10284-10292. - 10.1093/nar/gkx658; Mingeot-Leclercq M.P., Glupczynski Y.,Tulkens P.M. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother, 1999, Vol.43, no 4, pp. 727-37. - 10.1128/AAC.43.4.727; Mohr K.I. History of Antibiotics Research. Curr Top Microbiol Immunol, 2016, Vol.398, no, pp. 237-272. - 10.1007/82_2016_499; Morin A.M., Kerwat K.M., Klotz M., Niestolik R., Ruf V.E., Wulf H., Zimmermann S.,Eberhart L.H. Risk factors for bacterial catheter colonization in regional anaesthesia. BMC Anesthesiol, 2005, Vol.5, no 1, pp. 1. - 10.1186/1471-2253-5-1; Nasser M., Palwe S., Bhargava R.N., Feuilloley M.G.J.,Kharat A.S. Retrospective Analysis on Antimicrobial Resistance Trends and Prevalence of beta-lactamases in Escherichia coli and ESKAPE Pathogens Isolated from Arabian Patients during 2000-2020. Microorganisms, 2020, Vol.8, no 10. - 10.3390/microorganisms8101626; National Nosocomial Infections Surveillance S. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control, 2004, Vol.32, no 8, pp. 470-85. - 10.1016/S0196655304005425; Nelson M.L.,Levy S.B. The history of the tetracyclines. Ann N Y Acad Sci, 2011, Vol.1241, no, pp. 17-32. - 10.1111/j.1749-6632.2011.06354.x; Neu H.C. Relation of structural properties of beta-lactam antibiotics to antibacterial activity. Am J Med, 1985, Vol.79, no 2A, pp. 2-13. - 10.1016/0002-9343(85)90254-2; Nikaido H.,Rosenberg E.Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol, 1983, Vol.153, no 1, pp. 241-52. - 10.1128/jb.153.1.241-252.1983; Pathania R., Sharma A.,Gupta V. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian Journal of Medical Research, 2019, Vol.149, no 2. - 10.4103/ijmr.IJMR_2079_17; Pham T.D.M., Ziora Z.M.,Blaskovich M.A.T. Quinolone antibiotics. Medchemcomm, 2019, Vol.10, no 10, pp. 1719-1739. - 10.1039/c9md00120d; Pirnay J.-P., Djebara S., Steurs G., Griselain J., Cochez C., De Soir S., Glonti T., Spiessens A., Berghe E.V., Green S., Wagemans J., Lood C., Schrevens E., Chanishvili N., Kutateladze M., de Jode M., Ceyssens P.-J., Draye J.-P., Verbeken G., De Vos D., Rose T., Onsea J., Van Nieuwenhuyse B., Soentjens P., Lavigne R.,Merabishvili M. 2023 no. - 10.1101/2023.08.28.23294728; Plé C., Tam H.-K., Vieira Da Cruz A., Compagne N., Jiménez-Castellanos J.-C., Müller R.T., Pradel E., Foong W.E., Malloci G., Ballée A., Kirchner M.A., Moshfegh P., Herledan A., Herrmann A., Deprez B., Willand N., Vargiu A.V., Pos K.M., Flipo M.,Hartkoorn R.C. Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Nature Communications, 2022, Vol.13, no 1. - 10.1038/s41467-021-27726-2; Postma D.F., van Werkhoven C.H., van Elden L.J., Thijsen S.F., Hoepelman A.I., Kluytmans J.A., Boersma W.G., Compaijen C.J., van der Wall E., Prins J.M., Oosterheert J.J., Bonten M.J.,Group C.-S.S. Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med, 2015, Vol.372, no 14, pp. 1312-23. - 10.1056/NEJMoa1406330; Poulou A., Voulgari E., Vrioni G., Koumaki V., Xidopoulos G., Chatzipantazi V., Markou F.,Tsakris A. Outbreak caused by an ertapenem-resistant, CTX-M-15-producing Klebsiella pneumoniae sequence type 101 clone carrying an OmpK36 porin variant. J Clin Microbiol, 2013, Vol.51, no 10, pp. 3176-82. - 10.1128/JCM.01244-13; Pradel E.,Pages J.M. The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother, 2002, Vol.46, no 8, pp. 2640-3. - 10.1128/AAC.46.8.2640-2643.2002; Rice L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis, 2008, Vol.197, no 8, pp. 1079-81. - 10.1086/533452; Sahly H., Schubert S., Harder J., Kleine M., Sandvang D., Ullmann U., Schroder J.M.,Podschun R. Activity of human beta-defensins 2 and 3 against ESBL-producing Klebsiella strains. J Antimicrob Chemother, 2006, Vol.57, no 3, pp. 562-5. - 10.1093/jac/dkl003; Santajit S.,Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International, 2016, Vol.2016, no, pp. 1-8. - 10.1155/2016/2475067; Sauer K., Stoodley P., Goeres D.M., Hall-Stoodley L., Burmølle M., Stewart P.S.,Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology, 2022, Vol.20, no 10, pp. 608-620. - 10.1038/s41579-022-00767-0; Spížek J.,Řezanka T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochemical Pharmacology, 2017, Vol.133, no, pp. 20-28. - 10.1016/j.bcp.2016.12.001; Stephens C.R., Conover L.H., Hochstein F.A., Regna P.P., Pilgrim F.J., Brunings K.J.,Woodward R.B. Terramycin. Viii. Structure of Aureomycin and Terramycin. Journal of the American Chemical Society, 2002, Vol.74, no 19, pp. 4976-4977. - 10.1021/ja01139a533; Suresh M.K., Biswas R.,Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. International Journal of Medical Microbiology, 2019, Vol.309, no 1, pp. 1-12. - 10.1016/j.ijmm.2018.11.002; Sutterwala Fayyaz S., Secher T., Fas S., Fauconnier L., Mathieu M., Rutschi O., Ryffel B.,Rudolf M. The Anti-Pseudomonas aeruginosa Antibody Panobacumab Is Efficacious on Acute Pneumonia in Neutropenic Mice and Has Additive Effects with Meropenem. PLoS ONE, 2013, Vol.8, no 9. - 10.1371/journal.pone.0073396; Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., Ouellette M., Outterson K., Patel J., Cavaleri M., Cox E.M., Houchens C.R., Grayson M.L., Hansen P., Singh N., Theuretzbacher U., Magrini N.,Group W.H.O.P.P.L.W. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis, 2018, Vol.18, no 3, pp. 318-327. - 10.1016/S1473-3099(17)30753-3; Tai K.P., Kamdar K., Yamaki J., Le V.V., Tran D., Tran P., Selsted M.E., Ouellette A.J.,Wong-Beringer A. Microbicidal effects of alpha- and theta-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immun, 2015, Vol.21, no 1, pp. 17-29. - 10.1177/1753425913514784; Tehrani K.H.M.E.,Martin N.I. β-lactam/β-lactamase inhibitor combinations: an update. MedChemComm, 2018, Vol.9, no 9, pp. 1439-1456. - 10.1039/c8md00342d; Tu D., Blaha G., Moore P.B.,Steitz T.A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell, 2005, Vol.121, no 2, pp. 257-70. - 10.1016/j.cell.2005.02.005; Valore E.V., Park C.H., Quayle A.J., Wiles K.R., McCray P.B., Jr.,Ganz T. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest, 1998, Vol.101, no 8, pp. 1633-42. - 10.1172/JCI1861; Vazquez-Laslop N.,Mankin A.S. How Macrolide Antibiotics Work. Trends Biochem Sci, 2018, Vol.43, no 9, pp. 668-684. - 10.1016/j.tibs.2018.06.011; Velkov T., Gallardo-Godoy A., Swarbrick J.D., Blaskovich M.A.T., Elliott A.G., Han M., Thompson P.E., Roberts K.D., Huang J.X., Becker B., Butler M.S., Lash L.H., Henriques S.T., Nation R.L., Sivanesan S., Sani M.-A., Separovic F., Mertens H., Bulach D., Seemann T., Owen J., Li J.,Cooper M.A. Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, Vol.25, no 4, pp. 380-391.e5. - 10.1016/j.chembiol.2018.01.005; Verma P., Tiwari M.,Tiwari V. Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microbial Pathogenesis, 2021, Vol.152, no. - 10.1016/j.micpath.2021.104766; Waksman S.A. What is an Antibiotic or an Antibiotic Substance? Mycologia, 2018, Vol.39, no 5, pp. 565-569. - 10.1080/00275514.1947.12017635; Walch M., Dotiwala F., Mulik S., Thiery J., Kirchhausen T., Clayberger C., Krensky Alan M., Martinvalet D.,Lieberman J. Cytotoxic Cells Kill Intracellular Bacteria through Granulysin-Mediated Delivery of Granzymes. Cell, 2014, Vol.157, no 6, pp. 1309-1323. - 10.1016/j.cell.2014.03.062; Waxman D.J.,Strominger J.L. Penicillin-Binding Proteins and the Mechanism of Action of Beta-Lactam Antibiotics. Annual Review of Biochemistry, 1983, Vol.52, no 1, pp. 825-869. - 10.1146/annurev.bi.52.070183.004141; Wei Z., Zhang X., Yong T., Bie N., Zhan G., Li X., Liang Q., Li J., Yu J., Huang G., Yan Y., Zhang Z., Zhang B., Gan L., Huang B.,Yang X. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nature Communications, 2021, Vol.12, no 1. - 10.1038/s41467-020-20723-x; Williams B.A., Law A.D., Routy B., denHollander N., Gupta V., Wang X.-H., Chaboureau A., Viswanathan S.,Keating A. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget, 2017, Vol.8, no 51, pp. 89256-89268. - 10.18632/oncotarget.19204; Wilson D.N., Schluenzen F., Harms J.M., Starosta A.L., Connell S.R.,Fucini P. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc Natl Acad Sci U S A, 2008, Vol.105, no 36, pp. 13339-44. - 10.1073/pnas.0804276105; Wozniak A., Villagra N.A., Undabarrena A., Gallardo N., Keller N., Moraga M., Roman J.C., Mora G.C.,Garcia P. Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and intermediate levels of carbapenem resistance in Chile. J Med Microbiol, 2012, Vol.61, no Pt 9, pp. 1270-1279. - 10.1099/jmm.0.045799-0; Xiong Z., Zhu D., Wang F., Zhang Y., Okamoto R.,Inoue M. Investigation of extended-spectrum beta-lactamase in Klebsiellae pneumoniae and Escherichia coli from China. Diagn Microbiol Infect Dis, 2002, Vol.44, no 2, pp. 195-200. - 10.1016/s0732-8893(02)00441-8; Xu X., Weiss I.D., H. Zhang H., Singh S.P., Wynn T.A., Wilson M.S.,Farber J.M. Conventional NK Cells Can Produce IL-22 and Promote Host Defense in Klebsiella pneumoniae Pneumonia. The Journal of Immunology, 2014, Vol.192, no 4, pp. 1778-1786. - 10.4049/jimmunol.1300039; Yan F., He S., Han X., Wang J., Tian X., Wang C., James T.D., Cui J., Ma X.,Feng L. High-throughput fluorescent screening of beta-lactamase inhibitors to improve antibiotic treatment strategies for tuberculosis. Biosens Bioelectron, 2022, Vol.216, no, pp. 114606. - 10.1016/j.bios.2022.114606; Zárate S., De la Cruz Claure M., Benito-Arenas R., Revuelta J., Santana A.,Bastida A. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. Molecules, 2018, Vol.23, no 2. - 10.3390/molecules23020284; Zhang F., Zhuang J., Li Z., Gong H., de Avila B.E., Duan Y., Zhang Q., Zhou J., Yin L., Karshalev E., Gao W., Nizet V., Fang R.H., Zhang L.,Wang J. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat Mater, 2022, Vol.21, no 11, pp. 1324-1332. - 10.1038/s41563-022-01360-9; Zhao H., Shao D., Jiang C., Shi J., Li Q., Huang Q., Rajoka M.S.R., Yang H.,Jin M. Biological activity of lipopeptides from Bacillus. Applied Microbiology and Biotechnology, 2017, Vol.101, no 15, pp. 5951-5960. - 10.1007/s00253-017-8396-0; Zhao W.H.,Hu Z.Q. Epidemiology and genetics of CTX-M extended-spectrum beta-lactamases in Gram-negative bacteria. Crit Rev Microbiol, 2013, Vol.39, no 1, pp. 79-101. - 10.3109/1040841X.2012.691460; https://www.mimmun.ru/mimmun/article/view/2945
-
2Academic Journal
المؤلفون: M. Yu. Konoshenko, P. P. Laktionov, Yu. A. Lancuhaj, S. V. Pak, S. E. Krasilnikov, O. E. Bryzgunova, М. Ю. Коношенко, П. П. Лактионов, Ю. А. Ланцухай, С. В. Пак, С. Э. Красильников, О. Е. Брызгунова
المساهمون: The study was carried out within the framework of the basic budget financing projects of the Ministry of Education and Science of Russia (No. 121030200173-6) and the Ministry of Health of Russia (No. 121031300227-2)., Исследование выполнено в рамках проектов базового бюджетного финансирования Минобрнауки России (№ 121030200173-6) и Минздрава России (№ 121031300227-2).
المصدر: Advances in Molecular Oncology; Том 10, № 2 (2023); 78-89 ; Успехи молекулярной онкологии; Том 10, № 2 (2023); 78-89 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-2
مصطلحات موضوعية: плазма крови, non-small cell lung cancer, miRNA, diagnostic markers, liquid biopsy, microvesicles, blood plasma, немелкоклеточный рак легкого, микроРНК, диагностические маркеры, жидкостная биопсия, микровезикулы
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/543/302; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI:10.3322/caac.21660; Eberhardt W.E., Pöttgen C., Gauler T.C. et al. Phase III study of surgery versus definitive concurrent chemoradiotherapy boost in patients with resectable stage IIIA(N2) and selected IIIB non-small-cell lung cancer after induction chemotherapy and concurrent chemoradiotherapy (ESPATUE). J Clin Oncol 2015;33(35):4194–201. DOI:10.1200/JCO.2015.62.6812; Chang K., Wang H. The cancer genome atlas pan-cancer analysis project. Nat Genet 2013;45(10):1113–20. DOI:10.3779/j.issn.1009-3419.2015.04.02; Sempere L.F., Azmi A.S., Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA 2021;12(6):e1662. DOI:10.1002/wrna.1662; Dhawan A., Scott J.G., Harris A.L., Buffa F.M. Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun 2018;9(1):5228. DOI:10.1038/s41467-018-07657-1; He B., Zhao Z., Cai Q. et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020;16(14):2628–47. DOI:10.7150/ijbs.4720; Fredsøe J., Rasmussen A.K.I., Thomsen A.R. et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus 2018;4(6):825–33. DOI:10.1016/j.euf.2017.02.018; Hu C., Meiners S., Lukas C. et al. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif 2020;53(6):e12828. DOI:10.1111/cpr.12828; Yi M., Liao Z., Deng L. et al. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med 2021;53(1):2178–93. DOI:10.1080/07853890.2021.2000634; Gao S., Guo W., Liu T. et al. Plasma extracellular vesicle microRNA profiling and the identification of a diagnostic signature for stage I lung adenocarcinoma. Cancer Sci 2022;113(2):648–59. DOI:10.1111/cas.15222; Osipov I.D., Zaporozhchenko I.A., Bondar A.A. et al. Cell-free miRNA-141 and miRNA-205 as prostate cancer biomarkers. Adv Exp Med Biol 2016;924:9–12. DOI:10.1007/978-3-319-42044-8_2; Zaporozhchenko I.A., Morozkin E.S., Ponomaryova A.A. et al. Profiling of 179 miRNA expression in blood plasma of lung cancer patients and cancer-free individuals. Sci Rep 2018;8(1):6348. DOI:10.1038/s41598-018-24769-2; Li C., Yin Y., Liu X. et al. Non-small cell lung cancer associated microRNA expression signature: integrated bioinformatics analysis, validation and clinical significance. Oncotarget 2017;8(15):24564–78. DOI:10.18632/oncotarget.15596; Huang W., Huang W., Hu J. et al. Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens. Am J Respir Crit Care Med 2012;186(11):1160–7. DOI:10.1164/rccm.201203-0534OC; Wu C., Cao Y., He Z. et al. Serum levels of miR-19b and miR-146a as prognostic biomarkers for non-small cell lung cancer. Tohoku J Exp Med 2014;232(2):85–95. DOI:10.1620/tjem.232.85; Boeri M., Verri C., Conte D. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 2011;108(9):3713–8. DOI:10.1073/pnas.1100048108; Zhou X., Wen W., Shan X. et al. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 2016;8(4):6513–25. DOI:10.18632/oncotarget.14311; Liu M., Gao J., Huang Q. et al. Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression. Oncol Lett 2016;11(6):3772–6. DOI:10.3892/ol.2016.4468; Pan H.L., Wen Z.S., Huang Y.C. et al. Down-regulation of microRNA-144 in air pollution-related lung cancer. Sci Rep 2015;5:14331. DOI:10.1038/srep14331; Zhang G., An H., Fang X. MicroRNA-144 regulates proliferation, invasion, and apoptosis of cells in malignant solitary pulmonary nodule via zinc finger E-box-binding homeobox 1. Int J Clin Exp Pathol 2015;8(5):5960–7.; Ling B., Wang G.X., Long G. et al. Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3. J Cancer Res Clin Oncol 2012;138(8):1355–61. DOI:10.1007/s00432-012-1194-2; Xin M., Qiao Z., Li J. et al. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 2014;7(28):44252–65. DOI:10.18632/oncotarget.10020; Hosseini S.A., Seidi M., Yaghoobi H. Designed miR-19a/b sponge induces apoptosis in lung cancer cells through the PI3K-PTEN-Akt pathway regulation. Mol Biol Rep 2022;49(9):8485–93. DOI:10.1007/s11033-022-07670-0; Zhang X., Wang X., Chai B. et al. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4. Bioengineered 2022;13(4):11281–95. DOI:10.1080/21655979.2022.2066755; Reis P.P., Drigo S.A., Carvalho R.F. et al. Circulating miR-16-5p, miR-92a-3p, and miR-451a in plasma from lung cancer patients: potential application in early detection and a regulatory role in tumorigenesis pathways. Cancers 2020;12(8):2071. DOI:10.3390/cancers12082071; Wang Z., Pan L., Yang L. et al. Long non-coding RNA GATA6-AS1 sponges miR-324-5p to inhibit lung cancer cell proliferation and invasion. Onco Targets Ther 2020;13:9741–51. DOI:10.2147/OTT.S256336; Zhang Y., Xu H. Serum exosomal miR-378 upregulation is associated with poor prognosis in non-small-cell lung cancer patients. J Clin Lab Anal 2020;34(6):e23237. DOI:10.1002/jcla.23237; Ji K.X., Cui F., Qu D. et al. MiR-378 promotes the cell proliferation of non-small cell lung cancer by inhibiting FOXG1. Eur Rev Med Pharmacol Sci 2018;22(4):1011–9. DOI:10.26355/eurrev_201802_14383; Cao X., Zhong W., Guo S. et al. Low expression of miR-27b in serum exosomes of non-small cell lung cancer facilitates its progression by affecting EGFR. Open Med (Wars) 2022;17(1):816–25. DOI:10.1515/med-2022-0472; Zhong S., Golpon H., Zardo P. et al. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021;230:164–96. DOI:10.1016/j.trsl.2020.11.012; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. Isolation of extracellular vesicles from biological fluids via the aggregation-precipitation approach for downstream miRNAs detection. Diagnostics 2012;11(3):384. DOI:10.3390/diagnostics11030384; Lekchnov E.A., Zaporozhchenko I.A., Morozkin E.S. et al. Protocol for miRNA isolation from biofluids. Anal Biochem 2016;499:78–84. DOI:10.1016/j.ab.2016.01.025; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. The panel of 12 cell-Free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics 2020;10(1):38. DOI:10.3390/diagnostics10010038; Landoni E., Miceli R., Callari M. et al. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinformatics 2015;16:388. DOI:10.1186/s12859-015-0820-9; Bryzgunova O.E., Zaporozhchenko I.A., Lekchnov E.A. et al. Data analysis algorithm for the development of extracellular miRNA-based diagnostic systems for prostate cancer. PLoS One 2019;14(4):e0215003. DOI:10.1371/journal.pone.0215003; Bryzgunova O.E., Konoshenko M.Y., Zaporozhchenko I.A. et al. Isolation of cell-free miRNA from biological fluids: influencing factors and methods. Diagnostics (Basel) 2021;11(5):865. DOI:10.3390/diagnostics11050865; Dejima H., Iinuma H., Kanaoka R. et al. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 2017;13(3):1256–63. DOI:10.3892/ol.2017.5569; Kanaoka R., Iinuma H., Dejima H. et al. Usefulness of plasma exosomal microRNA-451a as a noninvasive biomarker for early prediction of recurrence and prognosis of non-small cell lung cancer. Oncology 2018;94(5):311–23. DOI:10.1159/000487006; Liu Q., Yu Z., Yuan S. et al. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 2017;8(8):13048–58. DOI:10.18632/oncotarget.14369; Munagala R., Aqil F., Gupta R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumor Biol 2016;37(8):10703–14. DOI:10.1007/s13277-016-4939-8; Silva J., García V., Zaballos Á. et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J 2011;37(3):617–23. DOI:10.1183/09031936.00029610; Zhuang L., Shou T., Li K. et al. MicroRNA-30e-5p promotes cell growth by targeting PTPN13 and indicates poor survival and recurrence in lung adenocarcinoma. J Cell Mol Med 2017;21(11):2852–62. DOI:10.1111/jcmm.13198; Li W., Yang P., Zhong C. et al. The circ-PITX1 promotes non-small cell lung cancer development via the miR-30e-5p/ITGA6 axis. Cell Cycle 2022;21(3):304–21. DOI:10.1080/15384101.2021.2020041; Dong W., Zhang H., Dai Y. et al. circRNA circFAT1(e2) Elevates the development of non-small-cell lung cancer by regulating miR-30e-5p and USP22. BioMed Res Int 2021;2021:6653387. DOI:10.1155/2021/6653387; Gao W., Shen H., Liu L. et al. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 2011;137(4):557–66. DOI:10.1007/s00432-010-0918-4; Ning Z.Q., Lu H.L., Chen C. et al. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget 2017;8(3):4572–81. DOI:10.18632/oncotarget.13944; Turchinovich A., Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 2012;9(8):1066–75. DOI:10.4161/rna.21083; Lunavat T.R., Lesley C., Dae-Kyum K. et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells – evidence of unique microRNA cargos. RNA Biol 2015;12(8):810–23. DOI:10.1080/15476286.2015.1056975; Huang X., Tiezheng Y., Tschannen M. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013;14:319. DOI:10.1186/1471-2164-14-319; Markou A., Sourvinou I., Vorkas P.A. et al. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 2013;81(3):388–96. DOI:10.1016/j.lungcan.2013.05.007; Cui Y., Zhao L., Zhao S. et al. MicroRNA-30e inhibits proliferation and invasion of non-small cell lung cancer via targeting SOX9. Human Cell 2019;32(3):326–33. DOI:10.1007/s13577-018-0223-0; Xu G., Cai J., Wang L. et al. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 2018;362(2):268–78. DOI:10.1016/j.yexcr.2017.11.027; He J., Jin S., Zhang W. et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer 2019;10(24):6003–13. DOI:10.7150/jca.35097; Liu X., Sempere L.F., Ouyang H. et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010;120(4):1298–309. DOI:10.1172/JCI39566; Zhu C., Wang S., Zheng M. et al. miR-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther Onkol 2022;198(3):304–14. DOI:10.1007/s00066-021-01895-x; Hou C., Sun B., Jiang Y. et al. MicroRNA-31 inhibits lung adenocarcinoma stem-like cells via down-regulation of MET-PI3K-Akt signaling pathway. Anticancer Agents Med Chem 2016;16(4):501–18. DOI:10.2174/1871520615666150824152353; Zhang J., Li D., Zhang Y. et al. Integrative analysis of mRNA and miRNA expression profiles reveals seven potential diagnostic biomarkers for non-small cell lung cancer. Oncol Rep 2020;43(1):99–112. DOI:10.3892/or.2019.7407; Cheng X., Sha M., Jiang W. et al. LINC00174 suppresses non-small cell lung cancer progression by up-regulating LATS2 via sponging miR-31-5p. Cell J 2022;24(3):140–7. DOI:10.22074/cellj.2022.7991; Wang Y., Shang S., Yu K. et al. miR-224, miR-147b and miR-31 associated with lymph node metastasis and prognosis for lung adenocarcinoma by regulating PRPF4B, WDR82 or NR3C2. Peer J 2020;8:e9704. DOI:10.7717/peerj.9704; Meng W., Ye Z., Cui R. et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin Cancer Res 2013;19(19):5423–33. DOI:10.1158/1078-0432.CCR-13-0320; Zeng X., Liu D., Peng G. et al. MiroRNA-31-3p promotes the invasion and metastasis of non-small-cell lung cancer cells by targeting forkhead Box 1 (FOXO1). Comput Math Methods Med 2022;2022:4597087. DOI:10.1155/2022/4597087; Sun X., Zhang S., Ma X. Prognostic value of microRNA-125 in various human malignant neoplasms: a meta-analysis Clin Lab 2015;61(11):1667–74. DOI:10.7754/clin.lab.2015.150408; Kazempour Dizaji M., Farzanegan B., Bahrami N. et al. Expression of miRNA1, miRNA133, miRNA191, and miRNA24, as good biomarkers, in non-small cell lung cancer using real-time PCR method. Asian Pac J Cancer Prev 2022;23(5):1565–70. DOI:10.31557/APJCP.2022.23.5.1565; Liu S., Chen J., Zhang T. et al. MicroRNA-133 inhibits the growth and metastasis of the human lung cancer cells by targeting epidermal growth factor receptor. J BUON 2012;24(3):929–35.; Liu G., Li Y.I., Gao X. Overexpression of microRNA-133b sensitizes non-small cell lung cancer cells to irradiation through the inhibition of glycolysis. Oncol Lett 2016;11(4):2903–8. DOI:10.3892/ol.2016.4316; Wei G., Xu Y., Peng T. et al. miR-133 involves in lung adenocarcinoma cell metastasis by targeting FLOT2. Artif Cells Nanomed Biotechnol 2018;46(2):224–30. DOI:10.1080/21691401.2017.1324467; Xiao B., Liu H., Gu Z. et al. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1. Arch Bronconeumol 2016;52(10):505–11. DOI:10.1016/j.arbres.2015.10.016; Xu M., Wang Y.Z. miR-133a suppresses cell proliferation, migration and invasion in human lung cancer by targeting MMP-14. Oncol Rep 2013;30(3):1398–404. DOI:10.3892/or.2013.2548; Peinado P., Andrades A., Martorell-Marugán J. et al. The SWI/SNF complex regulates the expression of miR-222, a tumor suppressor microRNA in lung adenocarcinoma. Human Mol Gen 2021;30(23):2263–71. DOI:10.1093/hmg/ddab187; Wu Q., Yu L., Lin X. et al. Combination of serum miRNAs with serum exosomal miRNAs in early diagnosis for non-small-cell lung cancer. Cancer Manag Res 2020;12:485–95. DOI:10.2147/CMAR.S232383; Chen W., Li X. MiR-222-3p promotes cell proliferation and inhibits apoptosis by targeting PUMA (BBC3) in non-small cell lung cancer. Technol Cancer Res Treat 2020;19:1533033820922558. DOI:10.1177/1533033820922558; Garofalo M., Romano G., Di Leva G. et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011;18:74–82. DOI:10.1038/nm.2577; Mao K.P., Zhang W.N., Liang X.M. et al. MicroRNA-222 expression and its prognostic potential in non-small cell lung cancer. Sci World J 2014;908326. DOI:10.1155/2014/908326; Zhong C., Ding S., Xu Y. et al. MicroRNA-222 promotes human non-small cell lung cancer H460 growth by targeting p27. Int J Clin Exp Med 2015;8(4):5534–40.; Sun Q., Jiang C.W., Tan Z.H. et al. MiR-222 promotes proliferation, migration and invasion of lung adenocarcinoma cells by targeting ETS1. Eur Rev Med Pharmacol Sci 2017;21(10):2385–91.; Hetta H.F., Zahran A.M., El-Mahdy R.I. et al. Assessment of circulating miRNA-17 and miRNA-222 expression profiles as non-invasive biomarkers in egyptian patients with non-small-cell lung cancer. Asian Pac J Cancer Prev 2019;20(6):1927–33. DOI:10.31557/APJCP.2019.20.6.1927; Kim Y., Sim J., Kim H. et al. MicroRNA-374a expression as a prognostic biomarker in lung adenocarcinoma. J Pathol Transl Med 2019;53(6):354–60. DOI:10.4132/jptm.2019.10.01; Wang G., Ji X., Li P. et al. Human bone marrow mesenchymal stem cell-derived exosomes containing microRNA-425 promote migration, invasion and lung metastasis by down-regulating CPEB1. Regen Ther 2022;20:107–16. DOI:10.1016/j.reth.2022.03.007; Guo Z., Ye H., Zheng X. et al. Extracellular vesicle-encapsulated microRNA-425-derived from drug-resistant cells promotes non-small-cell lung cancer progression through DAPK1-medicated PI3K/AKT pathway. J Cell Physiol 2021;236(5):3808–20. DOI:10.1002/jcp.30126; Zhou J.S., Yang Z.S., Cheng S.Y. et al. miRNA-425-5p enhances lung cancer growth via the PTEN/PI3K/AKT signaling axis. BMC Pulm Med 2020;20(1):223. DOI:10.1186/s12890-020-01261-0; Jiang L., Ge W., Geng J. miR-425 regulates cell proliferation, migration and apoptosis by targeting AMPH-1 in non-small-cell lung cancer. Pathol Res Pract 2019;215(12):152705. DOI:10.1016/j.prp.2019.152705.; Fu Y., Li Y., Wang X. et al. Overexpression of miR-425-5p is associated with poor prognosis and tumor progression in non-small cell lung cancer. Cancer Biomark 2020;27(2):147–56. DOI:10.3233/cbm-190782; Yuwen D., Ma Y., Wang D. et al. Prognostic role of circulating exosomal miR-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomark Prevent 2019;28(1):163–73. DOI:10.1158/1055-9965.epi-18-0569; Fortunato O., Boeri M., Moro M. et al. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Cell Death Dis 2014;5(12):e1564. DOI:10.1038/cddis.2014.507; Qi Y., Zha W., Zhang W. Exosomal miR-660-5p promotes tumor growth and metastasis in non-small cell lung cancer. J BUON 2019;24(2):599–607.; Moro M., Di Paolo D., Milione M. et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release 2019;308:44–56. DOI:10.1016/j.jconrel.2019.07.006; https://umo.abvpress.ru/jour/article/view/543
-
3Academic Journal
المؤلفون: O. V. Sirotkina, A. S. Ulitina, Y. I. Zhilenkova, E. A. Zolotova, M. A. Simakova, O. M. Moiseeva, T. V. Vavilova, О. В. Сироткина, А. С. Улитина, Ю. И. Жиленкова, Е. А. Золотова, М. А. Симакова, О. М. Моисеева, Т. В. Вавилова
المساهمون: The study was supported by state assignment No. 121031100305-9 «Development of a decision support system for predicting the development of long-term outcomes of venous thromboembolic complications», Исследование выполнено при поддержке ГЗ №121031100305-9 «Разработка системы поддержки принятия решений прогноза развития отдаленных исходов венозных тромбоэмболических осложнений».
المصدر: Pharmacogenetics and Pharmacogenomics; № 1 (2023); 20-32 ; Фармакогенетика и фармакогеномика; № 1 (2023); 20-32 ; 2588-0527 ; 2686-8849
مصطلحات موضوعية: посттромбоэмболический синдром, miR-144, miR-451, microvesicles, pulmonary embolism, post-thromboembolic syndrome, микровезикулы, ТЭЛА
وصف الملف: application/pdf
Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/272/262; Pastori D, Cormaci VM, Marucci S, et al. A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. Int J Mol Sci. 2023 Feb 5;24(4):3169. DOI:10.3390/ijms24043169.; Валиева З.С., Мартынюк Т.В. Хроническая тромбоэмболическая легочная гипертензия: от патогенеза к выбору тактики лечения. Терапевтический архив. 2022;94(7):791–796. [Valieva ZS, Martynyuk TV. Chronic thromboembolic pulmonary hypertension: from pathogenesis to the choice of treatment tactics. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(7):791–796. (In Russ.)]. DOI:10.26442/00403660.2022.07.201741.; Антонова О.А., Якушкин В.В., Мазуров А.В. Коагуляционная активность мембранных микрочастиц. Биологические мембраны. 2019;36(3):155–175. [Antonova OA, Yakushkin VV, Mazurov AV. Coagulation activity of membrane microparticles. Biologicheskiye membrany = Biological membranes. 2019;36(3):155–175. (In Russ.)]. DOI:10.1134/S0233475519030034.; Золотова Е.А., Симакова М.А., Жиленкова Ю.И. и др. Роль микро-РНК в патогенезе венозных тромбоэмболических осложнений. Российский журнал персонализированной медицины. 2022;2(1):43–50. [Zolotova EA, Simakova MA, Zhilenkova YuI et al. The role of miRNAs in the pathogenesis of venous thromboembolic complications. Russian Journal for Personalized Medicine. 2022;2(1):43–50. (In Russ.)]. DOI:10.18705/2782-3806-2022-2-1-43-50.; Alberro A, Iparraguirre L, Fernandes A, Otaegui D. Extracellular vesicles in blood: sources, effects, and applications. Int J Mol Sci. 2021;22(15):8163. DOI:10.3390/ijms22158163.; He Y, Wucorresponding Q. The effect of extracellular vesicles on thrombosis. J Cardiovasc Transl Res. 2022 Nov 28:1–16. DOI:10.1007/s12265-022-10342-w.; Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2021;22(1):153. DOI:10.3390/ijms22010153.; Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. DOI:10.1038/35057062.; Xue Y, Chen R, Qu L, Cao X. Noncoding RNA: from dark matter to bright star. Sci China Life Sci. 2020;63(4):463–468. DOI:10.1007/s11427-020-1676-5.; Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–3364. DOI:10.1093/nar/gkz097.; Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1):132. DOI:10.3390/ijms21010132.; Saliminejad K, Khorram Khorshid HR, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. DOI:10.1002/jcp.27486.; Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 2010;49(5): 841–50. DOI:10.1016/j.yjmcc.2010.08.007.; Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010 Jul 5; 207(7):1351–8. DOI:10.1084/jem.20100458.; Wang X, Hong Y, Wu L et al. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ. Front Neurol. 2021;11:551411. DOI:10.3389/fneur.2020.551411.; He Q, Wang F, Honda T, et al. Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci Rep. 2020;10(1):6127. DOI:10.1038/s41598-020-63335-7.; Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 2012;94(2):379–390. DOI:10.1093/cvr/cvs096.; Tao L, Yang L, Huang X, et al. Reconstruction and aof the lncRNAmiRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in dilated cardiomyopathy. Front Genet. 2019;10:1149. DOI:10.3389/fgene.2019.01149.; Turczyńska KM, Bhattachariya A, Säll J, et al. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One. 2013;8(5): e65135. DOI:10.1371/journal.pone.0065135.; Сироткина О.В., Ермаков А.И., Гайковая Л.Б. и др. Микрочастицы клеток крови у больных COVID-19 как маркер активации системы гемостаза. Тромбоз, гемостаз и реология. 2020;(4):35–40. [Sirotkina OV, Ermakov AI, Gaykovaya LB, et al. Microparticles of blood cells in patients with COVID-19 as a marker of hemostasis activation. Tromboz, gemostazireologija = Thrombosis, hemostasis and rheology. 2020;(4):35–40. (In Russ.)]. DOI:10.25555/THR.2020.4.0943.; Kabanova S, Kleinbongard P, Volkmer J, et al. Gene expression analysis of human red blood cells. Int J Med Sci. 2009;6(4):156–159. DOI:10.7150/ijms.6.156.; Groen K, Maltby VE, Lea RA, et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med Genomics. 2018;11(1):48. DOI:10.1186/s12920-018-0365-7.; Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One. 2008;3(6):e2360. DOI:10.1371/journal.pone.0002360.; Lamba V, Ghodke-Puranik Y, Guan W, Lamba JK. Identification of suitable reference genes for hepatic microRNA quantitation. BMC Res Notes. 2014;7:129. DOI:10.1186/1756-0500-7-129.; Shen J, Wang Q, Gurvich I, et al. Evaluating normalization approaches for the better identification of aberrant microRNAs associated with hepatocellular carcinoma. Hepatoma Res. 2016;2:305–315. DOI:10.20517/2394-5079.2016.28.; Wagner GM, Chiu DT, Yee MC, Lubin BH. Red cell vesiculation – a common membrane physiologic event. J Lab Clin Med. 1986;108(4):315–24.; Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10(7):1355–62. doi:10.1111/j.1538-7836.2012.04758.x.; Koshiar RL, Somajo S, Norström E, Dahlbäck B. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One. 2014;9(8):e104200. DOI:10.1371/journal.pone.0104200.; Papapetrou EP, Korkola JE, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells. 2010;28(2):287–96. DOI:10.1002/stem.257.; Fang X, Shen F, Lechauve C, et al. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica. 2018 Mar;103(3):406–416. DOI:10.3324/haematol.2017.177394.; Yu D, dos Santos CO, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010; 24(15):1620–1633. DOI:10.1101/gad.1942110.; Feng L, Yang X, Liang S, et al. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Part Fibre Toxicol. 2019;16(1):16. DOI:10.1186/s12989-019-0300-x.; Oto J, Plana E, Solmoirago MJ, et al. microRNAs and markers of neutrophil activation as predictors of early incidental post-surgical pulmonary embolism in patients with intracranial tumors. Cancers (Basel). 2020;12(6):1536. DOI:10.3390/cancers12061536.; Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in venous thromboembolism. Int J Mol Sci. 2020;21(7):2602. DOI:10.3390/ijms21072602.; He F, Ni N, Wang H et al. OUHP: an optimized universal hairpin primer system for cost-effective and high-throughput RT-qPCR-based quantification of microRNA (miRNA) expression. Nucleic Acids Res. 2022;50(4):e22. DOI:10.1093/nar/gkab1153.; Forero DA, González-Giraldo Y, Castro-Vega LJ, Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques. 2019;67(4):192–199. DOI:10.2144/btn-2019-0065.; Busk PK. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics. 2014;15:29. DOI:10.1186/1471-2105-15-29.; D’Agata R, Spoto G. Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem. 2019;411(19):4425–4444. DOI:10.1007/s00216-019-01621-8.; Zárybnický T, Matoušková P, Ambrož M, et al. The selection and validation of reference genes for mRNA and microRNA expression studies in human liver slices using RT-qPCR. Genes (Basel). 2019;10(10):763. DOI:10.3390/genes10100763.; Tafrihi M, Hasheminasab E. MiRNAs: biology, biogenesis, their web-based tools, and databases. Microrna. 2019;8(1):4–27. DOI:10.2174/2211536607666180827111633.; Felekkis K, Papaneophytou C. Challenges in using circulating micro- RNAs as biomarkers for cardiovascular diseases. Int J Mol Sci. 2020;21(2):561. DOI:10.3390/ijms21020561.; Rogula S, Pomirski B, Czyżak N, et al. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med. 2022;9:980718. DOI:10.3389/fcvm.2022.980718; https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/272
-
4Academic Journal
المؤلفون: M. G. Nikolaeva, V. Yu. Terekhina, A. V. Kudinov, I. I. Shakhmatov, A. P. Momot, М. Г. Николаева, В. Ю. Терехина, А. В. Кудинов, И. И. Шахматов, А. П. Момот
المساهمون: Ensuring the fulfillment of the state task of Altai State Medical University according to the project “The role of hemostatic and fibrinolytic reactions in the development of complicated pregnancy course and the postpartum period”, approved by the Department of Science and Innovative Health Development, No. 122022200403-8., Обеспечение выполнения государственного задания ФГБОУ ВО АГМУ Минздрава России по утвержденному департаментом науки и инновационного развития здравоохранения проекту «Роль гемостатических и фибринолитический реакций в развитии осложненного течения беременности и послеродового периода», номер 122022200403-8.
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 4 (2023); 433-442 ; Акушерство, Гинекология и Репродукция; Vol 17, No 4 (2023); 433-442 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: прогнозирование, еPE, relapse, endothelial dysfunction, endothelin-1, endothelial microvesicles, prognosis, рПЭ, рецидив, дисфункция эндотелия, эндотелин-1, эндотелиальные микровезикулы
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1742/1127; Opichka M.A., Rappelt M.W., Gutterman D.D. et al. Vascular dysfunction in preeclampsia. Cells. 2021;10(11):3055. https://doi.org/10.3390/cells10113055.; Sava R.I., March K.L., Pepine C.J. Hypertension in pregnancy: Taking cues from pathophysiology for clinical practice. Clin Cardiol. 2018;41(2):220–7. https://doi.org/10.1002/clc.22892.; Сидорова И.С., Никитина Н.А. Преэклампсия как гестационный иммунокомплексный комплементоопосредованный эндотелиоз. Российский вестник акушера-гинеколога. 2019;19(1):5–11. https://doi.org/10.17116/rosakush2019190115.; Idris-Khodja N., Ouerd S., Mian M.O.R. et al. Endothelin-1 overexpression exaggerates diabetesinduced endothelial dysfunction by altering oxidative stress. Am J Hypertens. 2016;29(11):1245–51. https://doi.org/10.1093/ajh/hpw078.; Lu Y.P., Hasan A.A., Zeng S. et al. Plasma ET-1 concentrations are elevated in pregnant women with hypertension – meta-analysis of clinical studies. Kidney Blood Press Res. 2017;42(4):654–63. https://doi.org/10.1159/000482004.; Bakrania B.A., Spradley F.T., Satchell S.C. et al. Heme oxygenase-1 is a potent inhibitor of placental ischemia-mediated endothelin-1 production in cultured human glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol. 2018;314(3):427–32. https://doi.org/10.1152/ajpregu.00370.2017.; Gohar E.Y., Pollock D.M. Sex-specific contributions of endothelin to hypertension. Curr Hypertens Rep. 2018;20(7):58. https://doi.org/10.1007/s11906-018-0856-0.; Brewster L.M., Garcia V.P., Levy M.V. et al. Endothelin-1-induced endothelial microvesicles impair endothelial cell function. J Appl Physiol (1985). 2020;128(6):1497–505. https://doi.org/10.1152/japplphysiol.00816.2019.; Desideri E., Ciccarone F., Ciriolo M.R. Fratantonio D. Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools. Free Radic Biol Med. 2021;172:508–20. https://doi.org/10.1016/j.freeradbiomed.2021.06.030.; Nakahara A., Nair S., Ormazabal V. et al. Circulating placental extracellular vesicles and their potential roles during pregnancy. Ochsner J. 2020;20(4):439–45. https://doi.org/10.31486/toj.20.0049.; Zhang J., Zhao W.S., Xu L. et al. Endothelium-specific endothelin-1 expression promotes proinflammatory macrophage activation by regulating miR-33/NR4A axis. Exp Cell Res. 2021;399(1):112443. https://doi.org/10.1016/j.yexcr.2020.112443.; Chang W., Lajko M., Fawzi A.A. Endothelin-1 is associated with fibrosis in proliferative diabetic retinopathy membranes. PLoS One. 2018;13(1):e0191285. https://doi.org/10.1371/journal.pone.0191285.; Orabona R., Vizzardi E., Sciatti E., et al. Insights into cardiac alterations after pre-eclampsia: An echocardiographic study. Ultrasound Obstet Gynecol. 2017;49(1):124–33. https://doi.org/10.1002/uog.15983.; Клинические рекомендации – Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде – 2021-2022-2023 (24.06.2021). Министерство здравоохранения Российской Федерации, 2021. 54 с. Режим доступа: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf. [Дата обращения: 20.07.2023].; Ackerman-Banks C.M., Lipkind H.S., Palmsten K., Ahrens K.A. et al. Association between hypertensive disorders of pregnancy and cardiovascular diseases within 24 months after delivery. Am J Obstet Gynecol. 2023;229(1):65.e1–65.e15. https://doi.org/10.1016/j.ajog.2023.04.006.; Yang Q., Han K., Wang J., Zou Y. Literature overview of association between preeclampsia and cardiovascular risk. Anatol J Cardiol. 2023;27(4):179–84. https://doi.org/10.14744/AnatolJCardiol.2023.2865.; Lampinen K.H., Rönnback M., Groop P.H. et al. Increased plasma norepinephrine levels in previously pre-eclamptic women. J Hum Hypertens. 2014;28(4):269–73. https://doi.org/10.1038/jhh.2013.84.; Majali-Martinez A., Velicky P., Pollheimer J. et al. Endothelin-1 down-regulates matrix metalloproteinase 14 and 15 expression in human first trimester trophoblasts via endothelin receptor type B. Hum Reprod. 2017;32(1):46–54. https://doi.org/10.1093/humrep/dew295.; George E.M., Granger J.P. Linking placental ischemia and hypertension in preeclampsia: role of endothelin 1. Hypertension. 2012;60(2):507–11. https://doi.org/10.1161/HYPERTENSIONAHA.112.194845.; Shaarawy M., Abdel-Magid A.M. Plasma endothelin-1 and mean arterial pressure in the prediction of pre-eclampsia. Int J Gynaecol Obstet. 2000;68(2):105–11. https://doi.org/10.1016/S0020-7292(99)00180-0.; Simanjuntak M.K., Idris I., Sunarno I. et al. Mean arterial pressure and the endothelin-1 levels in preeclampsia. Gac Sanit. 2021;35 Suppl 2:S242–S244. https://doi.org/10.1016/j.gaceta.2021.07.016.; Chen Y., Huang P., Han C. et al. Association of placenta-derived extracellular vesicles with preeclampsia and associated hypercoagulability: a clinical observational study. BJOG. 2021;128(6):1037–46. https://doi.org/10.1111/1471-0528.16552.; Zhang Y., Zhao C., Wei Y. et al. Increased circulating icroparticles in women with preeclampsia. Int J Lab Hematol. 2018;40(3):352–8. https://doi.org/10.1111/ijlh.12796.; Alijotas-Reig J., Palacio-Garcia C., Farran-Codina I. et al. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction. Am J Reprod Immunol. 2012;67(2):140–51. https://doi.org/10.1111/j.1600-0897.2011.01072.x.; https://www.gynecology.su/jour/article/view/1742
-
5Academic Journal
المؤلفون: K. L. Markova, M. S. Zementova, E. S. Vashukova, M. A. Pereviazkina, S. A. Selkov, D. I. Sokolov, К. Л. Маркова, М. С. Зементова, Е. С. Вашукова, М. А. Перевязкина, С. А. Сельков, Д. И. Соколов
المساهمون: Работа поддержана Поисковым научным исследованием АААА-А20-120041390023-5.
المصدر: Medical Immunology (Russia); Том 26, № 1 (2024); 7-26 ; Медицинская иммунология; Том 26, № 1 (2024); 7-26 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: иммунные клетки, exosomes, microvesicles, microRNA, biomarkers, immune cells, экзосомы, микровезикулы, микроРНК, биомаркеры
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2617/1815; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10354; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10355; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10356; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10357; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10358; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10359; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10779; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10780; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/10781; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2617/12744; Адамян Л.В., Азнаурова Я.Б. Молекулярные аспекты патогенеза эндометриоза // Проблемы репродукции, 2015. Т. 21, № 2. С. 66-77.; Баулина Н.М., Кулакова О.Г., Фаворова О.О. МикроРНК: роль в развитии аутоиммунного воспаления // Acta Naturae (русскоязычная версия), 2016. Т. 8, № 1 (28). С. 23-26.; Великонивцев Ф.С., Головкин А.С. Терапия внеклеточными везикулами: возможности, механизмы и перспективы применения // Российский кардиологический журнал, 2020. Т. 25, № 10. С. 4081. doi:10.15829/1560-4071-2020-4081.; Тигунцев В.В., Иванова С.А., Серебров В.Ю., Бухарева М.Б. Малые некодирующие РНК как перспективные биомаркеры: биогенез и терапевтические стратегии // Бюллетень сибирской медицины, 2016. Т. 15, № 2. С. 112-126. [; Хальчинский С.Е., Комов В.П., Насырова Р.Ф., Иванов М.В. Нарушения регуляции микроРНК при психических и неврологических расстройствах // Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева, 2014. № 4. С. 23-29.; Abels E.R., Breakefield X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell. Mol. Neurobiol., 2016, Vol. 36, no. 3, pp. 301-312.; Anene C., Graham A.M., Boyne J., Roberts W. Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Biochim. Biophys. Acta Mol. Basis Dis., 2018, Vol. 1864, no. 8, pp. 2633-2643.; Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis. Circ. Res., 2012, Vol. 110, no. 2, pp. 356-369.; Arunachalam S.R., Tang K.D., Punyadeera C. Isolation and Quantification of MicroRNAs from Human Saliva. Methods Mol. Biol, 2019, Vol. 2054, pp. 105-114.; Arunkumar G., Deva Magendhra Rao A.K., Manikandan M., Prasanna Srinivasa Rao H., Subbiah S., Ilangovan R., Murugan A.K., Munirajan A.K. Dysregulation of miR-200 family microRNAs and epithelialmesenchymal transition markers in oral squamous cell carcinoma. Oncol. Lett., 2018, Vol. 15, no. 1, pp. 649-657.; Bao H., Chen Y.X., Huang K., Zhuang F., Bao M., Han Y., Chen X.H., Shi Q., Yao Q.P., Qi Y.X. Plateletderived microparticles promote endothelial cell proliferation in hypertension via miR-142-3p. FASEB J., 2018, Vol. 32, no. 7, pp. 3912-3923.; Bernimoulin M., Waters E.K., Foy M., Steele B.M., Sullivan M., Falet H., Walsh M.T., Barteneva N., Geng J.G., Hartwig J.H., Maguire P.B.,Wagner D.D. Differential stimulation of monocytic cells results in distinct populations of microparticles. J. Thromb. Haemost., 2009, Vol. 7, no. 6, pp. 1019-1028.; Brase J.C., Johannes M., Schlomm T., Falth M., Haese A., Steuber T., Beissbarth T., Kuner R., Sultmann H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer, 2011, Vol. 128, no. 3, pp. 608-616.; Brossa A., Fonsato V., Grange C., Tritta S., Tapparo M., Calvetti R., Cedrino M., Fallo S., Gontero P., Camussi G., Bussolati B. Extracellular vesicles from human liver stem cells inhibit renal cancer stem cell-derived tumor growth in vitro and in vivo. Int. J. Cancer, 2020, Vol. 147, no. 6, pp. 1694-1706.; Burger D., Schock S., Thompson C.S., Montezano A.C., Hakim A.M., Touyz R.M. Microparticles: biomarkers and beyond. Clin. Sci. (Lond.), 2013, Vol. 124, no. 7, pp. 423-441.; Burnier L., Fontana P., Kwak B.R., Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb. Haemost., 2009, Vol. 101, no. 3, pp. 439-451.; Cao D.D., Li L.,Chan W.Y. MicroRNAs: key regulators in the central nervous system and their implication; Carney M.C., Tarasiuk A., di Angelo S.L., Silveyra P., Podany A., Birch L.L., Paul I.M., Kelleher S., Hicks S.D. Metabolism-related microRNAs in maternal breast milk are influenced by premature delivery. Pediatr. Res., 2017, Vol. 82, no. 2, pp. 226-236.; Chen D.B., Wang W. Human placental microRNAs and preeclampsia. Biol. Reprod., 2013, Vol. 88, no. 5, 130. doi:10.1095/biolreprod.113.107805.; Cochran A.M., Kornbluth J. Extracellular vesicles from the human natural killer cell line NK3.3 have broad and potent anti-tumor activity. Front. Cell Dev. Biol., 2021, Vol. 9, 698639. doi:10.3389/fcell.2021.698639.; Cocucci E., Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol., 2015, Vol. 25, no. 6, pp. 364-372.; Cocucci E., Racchetti G., Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol., 2009, Vol. 19, no, 2, pp. 43-51.; Costa Verdera H., Gitz-Francois J.J., Schiffelers R.M., Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control Release, 2017, Vol. 266, pp. 100-108.; Crompot E., van Damme M., Duvillier H., Pieters K., Vermeesch M., Perez-Morga D., Meuleman N., Mineur P., Bron D., Lagneaux L., Stamatopoulos B. Avoiding false positive antigen detection by flow cytometry on blood cell derived microparticles: the importance of an appropriate negative control. PLoS One, 2015, Vol. 10, no. 5, e0127209. doi:10.1371/journal.pone.0127209.; d’Alessandra Y., Devanna P., Limana F., Straino S., di Carlo A., Brambilla P.G., Rubino M., Carena M.C., Spazzafumo L., de Simone M., Micheli B., Biglioli P., Achilli F., Martelli F., Maggiolini S., Marenzi G., Pompilio G., Capogrossi M.C. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J., 2010, Vol. 31, no. 22, pp. 2765-2773.; d’Souza-Schorey C., Clancy J.W. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev., 2012, Vol. 26, no. 12, pp. 1287-1299.; de Mattei M., Grassilli S., Pellati A., Brugnoli F., de Marchi E., Contartese D., Bertagnolo V. Pulsed electromagnetic fields modulate miRNAs during osteogenic differentiation of bone mesenchymal stem cells: a possible role in the osteogenic-angiogenic coupling. Stem Cell Rev. Rep., 2020, Vol. 16, no. 5, pp. 1005-1012.; Desrochers L.M., Antonyak M.A., Cerione R.A. Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev. Cell, 2016, Vol. 37, no. 4, pp. 301-309.; Devor E., Santillan D., Scroggins S., Warrier A., Santillan M. Trimester-specific plasma exosome microRNA expression profiles in preeclampsia. J. Matern. Fetal Neonatal Med., 2020, Vol. 33, no. 18, pp. 3116-3124.; Ding Y., Cao F., Sun H., Wang Y., Liu S., Wu Y., Cui Q., Mei W., Li F. Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett., 2019, Vol. 442, pp. 351-361.; Distler J.H., Huber L.C., Gay S., Distler O., Pisetsky D.S. Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity, 2006, Vol. 39, no. 8, pp. 683-690.; Doroszkiewicz J., Groblewska M., Mroczko B. Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases. Int. J. Mol. Sci., 2022, Vol. 23, no. 9, 4610. doi:10.3390/ijms23094610.; Eiring A.M., Harb J.G., Neviani P., Garton C., Oaks J.J., Spizzo R., Liu S., Schwind S., Santhanam R., Hickey C.J., Becker H., Chandler J.C., Andino R., Cortes J., Hokland P., Huettner C.S., Bhatia R., Roy D.C., Liebhaber S.A., Caligiuri M.A., Marcucci G., Garzon R., Croce C.M., Calin G.A., Perrotti D. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell, 2010, Vol. 140, no. 5, pp. 652-665.; Elmore S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, Vol. 35, no. 4, pp. 495-516.; Fabbri M., Paone A., Calore F., Galli R., Gaudio E., Santhanam R., Lovat F., Fadda P., Mao C., Nuovo G.J., Zanesi N., Crawford M., Ozer G.H., Wernicke D., Alder H., Caligiuri M.A., Nana-Sinkam P., Perrotti D., Croce C.M. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA, 2012, Vol. 109, no. 31, pp. E2110-E2116.; Feng Y., Li J., Zhang Y. Chemical knockdown of MicroRNA with Small-Molecule Chimeras. Chembiochem, 2020, Vol. 21, no. 22, pp. 3180-3185.; Fu G., Brkic J., Hayder H., Peng C. MicroRNAs in human placental development and pregnancy complications. Int. J. Mol. Sci., 2013, Vol. 14, no. 3, pp. 5519-5544.; Fujita K., Nonomura N. Urinary biomarkers of prostate cancer. Int. J. Urol., 2018, Vol. 25, no. 9, pp. 770-779.; Gallo A., Tandon M., Alevizos I., Illei G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One, 2012, Vol. 7, no. 3, e30679. doi:10.1371/journal.pone.0030679.; Gangoda L., Boukouris S., Liem M., Kalra H., Mathivanan S. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics, 2015, Vol. 15, no. 2-3, pp. 260-271.; Gheytanchi E., Madjd Z., Janani L., Rasti A., Ghods R., Atyabi F., Asadi-Lari M.H., Babashah S. Exosomal microRNAs as potential circulating biomarkers in gastrointestinal tract cancers: a systematic review protocol. Syst. Rev., 2017, Vol. 6, no. 1, 228. doi:10.1186/s13643-017-0624-2.; Gidlöf O., van der Brug M., Ohman J., Gilje P., Olde B., Wahlestedt C., Erlinge D. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 2013, Vol. 121, no. 19, pp. 3908-3917, s1-26.; Gong C., Tian J., Wang Z., Gao Y., Wu X., Ding X., Qiang L., Li G., Han Z., Yuan Y., Gao S. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J. Nanobiotechnology, 2019, Vol. 17, no. 1, 93. doi:10.1186/s12951-019-0526-7.; Goto T., Fujiya M., Konishi H., Sasajima J., Fujibayashi S., Hayashi A., Utsumi T., Sato H., Iwama T., Ijiri M., Sakatani A., Tanaka K., Nomura Y., Ueno N., Kashima S., Moriichi K., Mizukami Y., Kohgo Y., Okumura T. An elevated expression of serum exosomal microRNA-191, -21, -451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer, 2018, Vol. 18, no. 1, 116. doi:10.1186/s12885-018-4006-5.; Gunel T., Zeybek Y.G., Akcakaya P., Kalelioglu I., Benian A., Ermis H., Aydinli K. Serum microRNA expression in pregnancies with preeclampsia. Genet. Mol. Res., 2011, Vol. 10, no. 4, pp. 4034-4040.; Gyorgy B., Szabo T.G., Pasztoi M., Pal Z., Misjak P., Aradi B., Laszlo V., Pallinger E., Pap E., Kittel A., Nagy G., Falus A., Buzas E.I. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci., 2011, Vol. 68, no. 16, pp. 2667-2688.; Henderson M.C., Azorsa D.O. The genomic and proteomic content of cancer cell-derived exosomes. Front. Oncol., 2012, Vol. 2, 38. doi:10.3389/fonc.2012.00038.; Hessvik N.P., Llorente A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, Vol. 75, no. 2, pp. 193-208.; Hosseinpour S., He Y., Nanda A., Ye Q. MicroRNAs involved in the regulation of angiogenesis in bone regeneration. Calcif. Tissue Int., 2019, Vol. 105, no. 3, pp. 223-238.; Jansen F., Stumpf T., Proebsting S., Franklin B.S., Wenzel D., Pfeifer P., Flender A., Schmitz T., Yang X., Fleischmann B.K., Nickenig G., Werner N. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J. Mol. Cell. Cardiol., 2017, Vol. 104, pp. 43-52.; Johnson B.L., III, Kuethe J.W., Caldwell C.C. Neutrophil derived microvesicles: emerging role of a key mediator to the immune response. Endocr. Metab. Immune Disord. Drug Targets, 2014, Vol. 14, no. 3, pp. 210-217.; Kanada M., Bachmann M.H., Hardy J.W., Frimannson D.O., Bronsart L., Wang A., Sylvester M.D., Schmidt T.L., Kaspar R.L., Butte M.J., Matin A.C., Contag C.H. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc. Natl Acad. Sci. USA, 2015, Vol. 112, no. 12, pp. E1433-E1442.; Khalaj K., Miller J.E., Lingegowda H., Fazleabas A.T., Young S.L., Lessey B.A., Koti M.,Tayade C. Extracellular vesicles from endometriosis patients are characterized by a unique miRNA-lncRNA signature. JCI Insight, 2019, Vol. 4, no. 18, e128846. doi:10.1172/jci.insight.128846.; Komuro H., Kawai-Harada Y., Aminova S., Pascual N., Malik A., Contag C.H., Harada M. Engineering extracellular vesicles to target pancreatic tissue in vivo. Nanotheranostics, 2021, Vol. 5, no. 4, pp. 378-390.; Kumari P., Syed S.A., Wahid M., Qureshi M.A., Kumar R. Expression of miR-31 in saliva-liquid biopsy in patients with oral squamous cell carcinoma. J. Taibah Univ. Med. Sci., 2021, Vol. 16, no. 5, pp. 733-739.; Kuwabara Y., Ono K., Horie T., Nishi H., Nagao K., Kinoshita M., Watanabe S., Baba O., Kojima Y., Shizuta S., Imai M., Tamura T., Kita T., Kimura T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet., 2011, Vol. 4, no. 4, pp. 446-454.; Laffont B., Corduan A., Plé H., Duchez A.C., Cloutier N., Boilard E., Provost P. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood, 2013, Vol. 122, no. 2, pp. 253-261.; Latifkar A., Hur Y.H., Sanchez J.C., Cerione R.A., Antonyak M.A. New insights into extracellular vesicle biogenesis and function. J. Cell Sci., 2019, Vol. 132, no. 13, jcs222406. doi:10.1242/jcs.222406.; Lee T.H., D’Asti E., Magnus N., Al-Nedawi K., Meehan B., Rak J. Microvesicles as mediators of intercellular communication in cancer – the emerging science of cellular ‘debris’. Semin. Immunopathol., 2011, Vol. 33, no. 5, pp. 455-467.; Leroyer A.S., Rautou P.E., Silvestre J.S., Castier Y., Leseche G., Devue C., Duriez M., Brandes R.P., Lutgens E., Tedgui A., Boulanger C.M. CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J. Am. Coll. Cardiol., 2008, Vol. 52, no. 16, pp. 1302-1311.; Li T., Leong M.H., Harms B., Kennedy G., Chen L. MicroRNA-21 as a potential colon and rectal cancer biomarker. World J. Gastroenterol., 2013, Vol. 19, no. 34, pp. 5615-5621.; Li Y., Zhang H., Dong Y., Fan Y., Li Y., Zhao C., Wang C., Liu J., Li X., Dong M., Liu H.,Chen J. MiR-146b-5p functions as a suppressor miRNA and prognosis predictor in non-small cell lung cancer. J. Cancer, 2017, Vol. 8, no. 9, pp. 1704-1716.; Liang H.Z., Li S.F., Zhang F., Wu M.Y., Li C.L., Song J.X., Lee C., Chen H. Effect of endothelial microparticles induced by Hypoxia on migration and angiogenesis of human umbilical vein endothelial cells by delivering MicroRNA-19b. Chin. Med. J. (Engl.), 2018, Vol. 131, no. 22, pp. 2726-2733.; Liu C.J., Lin S.C., Yang C.C., Cheng H.W., Chang K.W. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck, 2012, Vol. 34, no. 2, pp. 219-224.; Liu Y., Song J.W., Lin J.Y., Miao R.,Zhong J.C. Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovasc. Toxicol., 2020, Vol. 20, no. 5, pp. 463-473.; Lönnerdal B. Human Milk MicroRNAs/Exosomes: Composition and Biological Effects. Nestle Nutr. Inst. Workshop Ser., 2019, Vol. 90, pp. 83-92.; Lv Y., Lu C., Ji X., Miao Z., Long W., Ding H., Lv M. Roles of microRNAs in preeclampsia. J. Cell. Physiol., 2019, Vol. 234, no. 2, pp. 1052-1061.; Lycoudi A., Mavreli D., Mavrou A., Papantoniou N., Kolialexi A. miRNAsinpregnancy-relatedcomplications. Expert Rev. Mol. Diagn., 2015, Vol. 15, no. 8, pp. 999-1010.; Mahesh G., Biswas R. MicroRNA-155: a master regulator of inflammation. J. Interferon Cytokine Res., 2019, Vol. 39, no. 6, pp. 321-330.; Martignano F., Rossi L., Maugeri A., Gallà V., Conteduca V., de Giorgi U., Casadio V., Schepisi G. Urinary RNA-based biomarkers for prostate cancer detection. Clin. Chim. Acta, 2017, Vol. 473, pp. 96-105.; Mathivanan S., Ji H., Simpson R.J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteomics, 2010, Vol. 73, no. 10, pp. 1907-1920.; Menon R., Debnath C., Lai A., Guanzon D., Bhatnagar S., Kshetrapal P.K., Sheller-Miller S., Salomon C., Garbhini Study T. Circulating Exosomal miRNA Profile During Term and Preterm Birth Pregnancies: A Longitudinal Study. Endocrinology, 2019, Vol. 160, no. 2, pp. 249-275.; Momen-Heravi F., Trachtenberg A.J., Kuo W.P., Cheng Y.S. Genomewide Study of Salivary MicroRNAs for Detection of Oral Cancer. J. Dent. Res., 2014, Vol. 93, no. 7 Suppl., pp. 86s-93s.; Mouillet J.F., Ouyang Y., Coyne C.B., Sadovsky Y. MicroRNAs in placental health and disease. Am. J. Obstet. Gynecol., 2015, Vol. 213, no. 4 Suppl., pp. S163-S172.; Mulcahy L.A., Pink R.C.,Carter D.R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 2014, 3. doi:10.3402/jev.v3.24641.; Munir J., Yoon J.K.,Ryu S. Therapeutic miRNA-Enriched Extracellular Vesicles: Current Approaches and Future Prospects. Cells, 2020, Vol. 9, no 10, 2271. doi:10.3390/cells9102271.; Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA, 2016, Vol. 7, no. 5, pp. 637-660.; Neviani P., Wise P.M., Murtadha M., Liu C.W., Wu C.H., Jong A.Y., Seeger R.C., Fabbri M. Natural killerderived exosomal mir-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res., 2019, Vol. 79, no. 6, pp. 1151-1164.; Pan Y., Liang H., Liu H., Li D., Chen X., Li L., Zhang C.Y., Zen K. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J. Immunol., 2014, Vol. 192, no. 1, pp. 437-446.; Poirier C., Desgagne V., Guerin R., Bouchard L. MicroRNAs in pregnancy and gestational diabetes mellitus: emerging role in maternal metabolic regulation. Curr. Diab. Rep., 2017, Vol. 17, no. 5, 35. doi:10.1007/s11892-0170856-5.; Ratajczak J., Miekus K., Kucia M., Zhang J., Reca R., Dvorak P., Ratajczak M.Z. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 2006, Vol. 20, no. 5, pp. 847-856.; Ratajczak J., Wysoczynski M., Hayek F., Janowska-Wieczorek A., Ratajczak M.Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 2006, Vol. 20, no. 9, pp. 1487-1495.; Roberts C.T., Jr., Kurre P. Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication. Cancer Res., 2013, Vol. 73, no. 11, pp. 3200-3205.; Samsonov R., Shtam T., Burdakov V., Glotov A., Tsyrlina E., Berstein L., Nosov A., Evtushenko V., Filatov M.,Malek A. Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: Application for prostate cancer diagnostic. Prostate, 2016, Vol. 76, no. 1, pp. 68-79.; Schulte C., Molz S., Appelbaum S., Karakas M., Ojeda F., Lau D.M., Hartmann T., Lackner K.J., Westermann D., Schnabel R.B., Blankenberg S., Zeller T. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One, 2015, Vol. 10, no. 12, e0145930. doi:10.1371/journal.pone.0145930.; Sedgwick A.E., D’Souza-Schorey C. The biology of extracellular microvesicles. Traffic, 2018, Vol. 19, no. 5, pp. 319-327.; Semenov D.V., Baryakin D.N., Brenner E.V., Kurilshikov A.M., Vasiliev G.V., Bryzgalov L.A., Chikova E.D., Filippova J.A., Kuligina E.V., Richter V.A. Unbiased approach to profile the variety of small non-coding RNA of human blood plasma with massively parallel sequencing technology. Expert Opin. Biol. Ther., 2012, Vol. 12, Suppl. 1, pp. S43-S51.; Shu Z., Tan J., Miao Y., Zhang Q. The role of microvesicles containing microRNAs in vascular endothelial dysfunction. J. Cell. Mol. Med., 2019, Vol. 23, no. 12, pp. 7933-7945.; Sokolov D.I. Markova K.L., Mikhailova V.A., Vyazmina L.P., Milyutina Yu.P., Kozyreva A.R., Zhdanova A.A., Malygina D.A., Onokhin K.V., Ivanova A.N., Korenevsky A.V., Selkov S.A. Phenotypic and functional characteristics of microvesicles produced by natural killer cells. Medical Immunology (Russia), 2019, Vol. 21, no. 4, pp. 669-688. doi:10.15789/1563-0625-2019-4-669-688.; Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2014, Vol. 170, pp. 112-123.; Sun H., Shi K., Qi K., Kong H., Zhang J., Dai S., Ye W., Deng T., He Q., Zhou M. Natural killer cell-derived exosomal miR-3607-3p Inhibits Pancreatic Cancer Progression by Targeting IL-26. Front. Immunol., 2019, Vol. 10, 2819. doi:10.3389/fimmu.2019.02819.; Svensson K.J., Christianson H.C., Wittrup A., Bourseau-Guilmain E., Lindqvist E., Svensson L.M., Morgelin M., Belting M. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raftmediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem., 2013, Vol. 288, no. 24, pp. 17713-17724.; Symons L.K., Miller J.E., Kay V.R., Marks R.M., Liblik K., Koti M., Tayade C. The Immunopathophysiology of Endometriosis. Trends Mol. Med., 2018, Vol. 24, no. 9, pp. 748-762.; Todorova D., Simoncini S., Lacroix R., Sabatier F., Dignat-George F. Extracellular Vesicles in Angiogenesis. Circ. Res., 2017, Vol. 120, no. 10, pp. 1658-1673.; Ura B., Feriotto G., Monasta L., Bilel S., Zweyer M., Celeghini C. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J. Obstet. Gynecol., 2014, Vol. 53, no. 2, pp. 232-234.; Waldenstrom A., Genneback N., Hellman U., Ronquist G. Cardiomyocyte microvesicles contain DNA/ RNA and convey biological messages to target cells. PLoS One, 2012, Vol. 7, no. 4, e34653. doi:10.1371/journal. pone.0034653.; Wang B., Wu Z.H., Lou P.Y., Chai C., Han S.Y., Ning J.F., Li M. Human bone marrow-derived mesenchymal stem cell-secreted exosomes overexpressing microRNA-34a ameliorate glioblastoma development via downregulating MYCN. Cell. Oncol. (Dordr.), 2019, Vol. 42, no. 6, pp. 783-799.; Wang D., Na Q., Song G.Y., Wang L. Human umbilical cord mesenchymal stem cell-derived exosomemediated transfer of microRNA-133b boosts trophoblast cell proliferation, migration and invasion in preeclampsia by restricting SGK1. Cell Cycle, 2020, Vol. 19, no. 15, pp. 1869-1883.; Wang F., Li L., Piontek K., Sakaguchi M., Selaru F.M. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology, 2018, Vol. 67, no. 3, pp. 940-954.; Wang G.K., Zhu J.Q., Zhang J.T., Li Q., Li Y., He J., Qin Y.W., Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J., 2010, Vol. 31, no. 6, pp. 659-666.; Wang X., Li J., Dong K., Lin F., Long M., Ouyang Y., Wei J., Chen X., Weng Y., He T., Zhang H. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal, 2015, Vol. 27, no. 3, pp. 443-452.; Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, Vol. 10, no. 1, pp. 57-63.; Westholm J.O., Lai E.C. Mirtrons: microRNA biogenesis via splicing. Biochimie, 2011, Vol. 93, no. 11, pp. 1897-904.; Wu D., Lu P., Mi X., Miao J. Exosomal miR-214 from endometrial stromal cells inhibits endometriosis fibrosis. Mol. Hum. Reprod., 2018, Vol. 24, no. 7, pp. 357-365.; Wu Y., Yuan W., Ding H., Wu X. Serum exosomal miRNA from endometriosis patients correlates with disease severity. Arch. Gynecol. Obstet., 2022, Vol. 305, no. 1, pp. 117-127.; Yang C., Lim W., Park J., Park S., You S., Song G. Anti-inflammatory effects of mesenchymal stem cellderived exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast cells. Mol. Hum. Reprod., 2019, Vol. 25, no. 11, pp. 755-771.; Yang C., Tahiri H., Cai C., Gu M., Gagnon C., Hardy P. microRNA-181a inhibits ocular neovascularization by interfering with vascular endothelial growth factor expression. Cardiovasc. Ther, 2018, Vol. 36, no. 3, e12329. doi:10.1111/1755-5922.12329.; Yu X., Fang X., Gao M., Mi J., Zhang X., Xia L., Zhao Z., Albrecht E., Maak S., Yang R. Isolation and identification of bovine preadipocytes and screening of micrornas associated with adipogenesis. Animals (Basel), 2020, Vol. 10, no. 5, 818. doi:10.3390/ani10050818.; Yuana Y., Bertina R.M., Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost., 2011, Vol. 105, no. 3, pp. 396-408.; Zhang J., Li S., Li L., Li M., Guo C., Yao J., Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics, 2015, Vol. 13, no. 1, pp. 17-24.; Zhang L., Li H., Yuan M., Li D., Sun C., Wang G. Serum Exosomal MicroRNAs as Potential Circulating Biomarkers for Endometriosis. Dis. Markers, 2020, Vol. 2020, 2456340. doi:10.1155/2020/2456340.; Zhang Y., Liu D., Chen X., Li J., Li L., Bian Z., Sun F., Lu J., Yin Y., Cai X., Sun Q., Wang K., Ba Y., Wang Q., Wang D., Yang J., Liu P., Xu T., Yan Q., Zhang J., Zen K., Zhang C.Y. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell, 2010, Vol. 39, no. 1, pp. 133-144.; Zhang Y., Liu Y.J., Liu T., Zhang H., Yang S.J. Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial infarction. Eur. Rev. Med. Pharmacol. Sci., 2016, Vol. 20, no. 2, pp. 323-329.; Zhang Y., Zhang W., Zha C., Liu Y. Platelets activated by the anti-β2GPI/β2GPI complex release microRNAs to inhibit migration and tube formation of human umbilical vein endothelial cells. Cell. Mol. Biol. Lett., 2018, Vol. 23, 24. doi:10.1186/s11658-018-0091-3.; Zhao H., Su W., Kang Q., Xing Z., Lin X.,Wu Z. Natural killer cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p. Am. J. Cancer Res., 2018, Vol. 8, no. 5, pp. 824-834.; Zhu K.Y., Palli S.R. Mechanisms, Applications, and Challenges of Insect RNA Interference. Annu Rev. Entomol., 2020, Vol. 65, pp. 293-311.; Zhu L., Kalimuthu S., Gangadaran P., Oh J.M., Lee H.W., Baek S.H., Jeong S.Y., Lee S.W., Lee J., Ahn B.C. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics, 2017, Vol. 7, no. 10, pp. 2732-2745.; Zitzer N.C., Garzon R., Ranganathan P. Toll-like receptor stimulation by micrornas in acute graft-vs.-Host disease. Front. Immunol., 2018, Vol. 9, 2561. doi:10.3389/fimmu.2018.02561.; Zou J., Peng H., Liu Y. The roles of exosomes in immunoregulation and autoimmune thyroid diseases. Front. Immunol., 2021, Vol. 12, 757674. doi:10.3389/fimmu.2021.757674.; https://www.mimmun.ru/mimmun/article/view/2617
-
6Academic Journal
المؤلفون: I. P. Ivanova, G. V. Seledtsova, V. I. Seledtsov, T. S. Khabalova, A. B. Dorzhieva, И. П. Иванова, Г. В. Селедцова, В. И. Селедцов, Т. С. Хабалова, А. Б. Доржиева
المصدر: Medical Immunology (Russia); Том 25, № 3 (2023); 665-672 ; Медицинская иммунология; Том 25, № 3 (2023); 665-672 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: болезни почек, microvesicles, therapeutic use of microvesicles, regeneration, acute renal failure, kidney disease, микровезикулы, терапевтическое применение микровезикул, регенерация, острая почечная недостаточность
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2716/1706; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11225; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11226; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11227; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11243; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11253; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11254; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11255; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11256; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11257; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/11261; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2716/12389; Alikhan M.A., Huynh M., Kitching A.R., Ooi J.D. Regulatory Tcells in renal diseases. Clin. Transl. Immunol., 2018, Vol. 7, no. 1, 1004. doi:10.1002/cti2.1004.; Bruno S., Grange C., Deregibus M.C., Calogero R.A., Savozzi F.C., Morando L., Busca A., Falda M., Bussolati B., Tetta C., Camussi G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol., 2009, Vol. 20, no. 5, pp. 1053-1067.; Camussi G., Deregibus M.C., Bruno S., Cantaluppi V., Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int., 2010, Vol. 78, no. 9, pp. 838-848.; Cantaluppi V., Biancone L., Quercia A., Deregibus M.C., Segoloni G., Camussi G. Rationale of mesenchymal stem cell therapy in kidney injury. Am. J. Kidney Dis., 2013, Vol. 61, no. 2, pp. 300-309.; Deregibus M.C., Cantaluppi V., Calogero R., Lo Iacono M., Tetta C., Biancone L., Bruno S., Bussolati B., Camussi, G. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood, 2007, Vol. 110, no. 7, pp. 2440-2448.; Gatti S., Bruno S., Deregibus M.C., Sordi A., Cantaluppi V., Tetta C., Camussi G. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant., 2011, Vol. 26, no. 5, pp. 1474-1483.; Goes N., Urmson J., Ramassar V., Halloran P.F. Ischemic acute tubular necrosis induces an extensive local cytokine response: evidence for induction of interferon-gamma, transforming growth factor-1, granulocytemacrophage colony-stimulating factor, interleukin-2, and interleukin-10. Transplantation, 1995, Vol. 59, no. 4, pp. 565-572.; Humphreys B.D., Valerius M.T., Kobayashi A., Mugford J.W., Soeung S., Duffield J.S., McMahon A.P., Bonventre J.V. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell, 2008, Vol. 2, no. 3, pp. 284-291.; Nauta A.J., Fibbe W.E. Immunomodulatory properties of mesenchymal stromal sells. Blood, 2007, Vol. 110, no. 10, pp. 3499-3506.; Quesenberry P.J., Dooner M.S., Aliotta J.M. Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp. Hematol., 2010, Vol. 38, no. 7, pp. 581-592.; Rabb H. Immune modulation of acute kidney injury. J. Am. Soc. Nephrol., 2006, Vol. 17, no. 3, pp. 604-606.; Stahl A., Johanson K., Mossberg M., Kahn R., Karpman D. Exosomes and microvesicules in normal physiology, pathophysiology and renal deseases. Pediatr. Nephrol., 2019, Vol. 34, no. 1, pp. 11-30.; Wang S.Y., Hong Q., Zhang C.Y., Yang Y.J., Cai G.Y., Chen X.M. miRNAs in stem cell-derived extracellular vesicles for acute kidney injury treatment: comprehensive review of preclinical studies. Stem Cell Res. Ther., 2019, Vol.10, no. 1, 281. doi:10.1186/s13287-019-1371-1.; Wang Y., Wang Y., Cao Q., Zheng G., Lee V.W.S., Zheng D., Li X., Tan T.K., Harris D.C.H. By homing to the kidney, activated macrophages potently exacerbate renal injury. Am. J. Pathol., 2008, Vol. 172, no. 6, pp. 1491-1499.; Zhou Y., Xu H., Xu W., Wang B., Wu H., Tao Y., Zhang B., Wang M., Mao F., Yan Y., Gao S., Gu H., Zhu W., Qian H. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther., 2013, Vol. 4, no. 2, 34. doi:10.1186/scrt194.; https://www.mimmun.ru/mimmun/article/view/2716
-
7Academic Journal
المؤلفون: Arthur Daniil Akino, Artem A. Rubinshtein, Ivan A. Golovkin, Polina V. Tirikova, Andrey S. Trulyov, Igor V. Kudryavtsev, Aleksey S. Golovkin, Артур Даниил Акино, Артем Аркадьевич Рубинштейн, Иван Алексеевич Головкин, Полина Валерьевна Тирикова, Андрей Сергеевич Трулев, Игорь Владимирович Кудрявцев, Алексей Сергеевич Головкин
المساهمون: Исследование выполнено за счет гранта Российского научного фонда (проект № 19-75-20076).
المصدر: Complex Issues of Cardiovascular Diseases; Online First ; Комплексные проблемы сердечно-сосудистых заболеваний; Online First ; 2587-9537 ; 2306-1278
مصطلحات موضوعية: 4-форбол-12-миристат-13-ацетат, Extracellular vesicles, Exosomes, microvesicles, Tumor necrosis factor, lipopolysaccharide, 4-forbol-12-myristate-13-acetate, Внеклеточные везикулы, Экзосомы, Микровезикулы, Фактор некроза опухоли, Липополисахарид
وصف الملف: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1197/830; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1197/1172; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1197/1209; Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience. 2015 Aug 1;65(8):783–97. doi:10.1093/biosci/biv084; Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015 Jan 1;4(1):27066. doi:10.3402/jev.v4.27066; Borges FT, Reis LA, Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Brazilian J Med Biol Res. 2013 Oct;46(10):824–30. doi:10.1590/1414-431X20132964; Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteomics. 2010 Sep;73(10):1907–20. doi:10.1016/j.jprot.2010.06.006; Ludwig A-K, Giebel B. Exosomes: Small vesicles participating in intercellular communication. Int J Biochem Cell Biol. 2012 Jan;44(1):11–5. doi:10.1016/j.biocel.2011.10.005; Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018 Dec 1;7(1):1535750. doi:10.1080/20013078.2018.1535750; Reales-Calderón JA, Vaz C, Monteoliva L, Molero G, Gil C. Candida albicans Modifies the Protein Composition and Size Distribution of THP-1 Macrophage-Derived Extracellular Vesicles. J Proteome Res. 2017 Jan 6;16(1):87–105. doi:10.1021/acs.jproteome.6b00605; Gangadaran P, Rajendran RL, Oh JM, Hong CM, Jeong SY, Lee S-W, et al. Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo. Exp Cell Res. 2020 Sep;394(2):112146. doi:10.1016/j.yexcr.2020.112146; Liu S, Chen J, Shi J, Zhou W, Wang L, Fang W, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol. 2020 Mar 28;115(2):22. doi:10.1007/s00395-020-0781-7; Chen B, Luo L, Wei X, Gong D, Li Z, Li S, et al. M1 Bone Marrow-Derived Macrophage-Derived Extracellular Vesicles Inhibit Angiogenesis and Myocardial Regeneration Following Myocardial Infarction via the MALAT1/MicroRNA-25-3p/CDC42 Axis. Zhou Y, editor. Oxid Med Cell Longev. 2021 Oct 29;2021:1–26. doi:10.1155/2021/9959746; Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb Haemost. 2008 Nov 22;100(05):878–85. doi:10.1160/TH07-11-0691; Pieters BCH, Cappariello A, van den Bosch MHJ, van Lent PLEM, Teti A, van de Loo FAJ. Macrophage-Derived Extracellular Vesicles as Carriers of Alarmins and Their Potential Involvement in Bone Homeostasis. Front Immunol. 2019 Aug 8;10. doi:10.3389/fimmu.2019.01901; Kang M, Huang C-C, Lu Y, Shirazi S, Gajendrareddy P, Ravindran S, et al. Bone regeneration is mediated by macrophage extracellular vesicles. Bone. 2020 Dec;141:115627. doi:10.1016/j.bone.2020.115627; Ding J, Zhang Y, Cai X, Zhang Y, Yan S, Wang J, et al. Extracellular vesicles derived from M1 macrophages deliver miR-146a-5p and miR-146b-5p to suppress trophoblast migration and invasion by targeting TRAF6 in recurrent spontaneous abortion. Theranostics. 2021;11(12):5813–30. doi:10.7150/thno.58731; Singhto N, Kanlaya R, Nilnumkhum A, Thongboonkerd V. Roles of Macrophage Exosomes in Immune Response to Calcium Oxalate Monohydrate Crystals. Front Immunol. 2018 Feb 27;9. doi:10.3389/fimmu.2018.00316; Gao W, Guo X, Wang Y, Jian D, Li M. Monocyte-derived extracellular vesicles upon treated by palmitate promote endothelial migration and monocytes attachment to endothelial cells. Biochem Biophys Res Commun. 2020 Mar;523(3):685–91. doi:10.1016/j.bbrc.2019.12.095; Lee HD, Kim YH, Kim D-S. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking. Eur J Immunol. 2014 Apr;44(4):1156–69. doi:10.1002/eji.201343660; Volgers C, Benedikter BJ, Grauls GE, Savelkoul PHM, Stassen FRM. Immunomodulatory role for membrane vesicles released by THP-1 macrophages and respiratory pathogens during macrophage infection. BMC Microbiol. 2017 Dec 13;17(1):216. doi:10.1186/s12866-017-1122-3; Wang Y-X, Lin C, Cui L-J, Deng T-Z, Li Q-M, Chen F-Y, et al. Mechanism of M2 macrophage-derived extracellular vesicles carrying lncRNA MEG3 in inflammatory responses in ulcerative colitis. Bioengineered. 2021 Dec 20;12(2):12722–39. doi:10.1080/21655979.2021.2010368; Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Ortega A, editor. Hypertens Res. 2017 Apr 24;40(4):353–60. doi:10.1038/hr.2016.163; Wang G, Jin S, Ling X, Li Y, Hu Y, Zhang Y, et al. Proteomic Profiling of LPS‐Induced Macrophage‐Derived Exosomes Indicates Their Involvement in Acute Liver Injury. Proteomics. 2019 Feb 27;19(3):1800274. doi:10.1002/pmic.201800274; Shao J, Li S, Liu Y, Zheng M. Extracellular vesicles participate in macrophage-involved immune responses under liver diseases. Life Sci. 2020 Jan;240:117094. doi:10.1016/j.lfs.2019.117094; Kawata R, Oda S, Koya Y, Kajiyama H, Yokoi T. Macrophage-derived extracellular vesicles regulate concanavalin A-induced hepatitis by suppressing macrophage cytokine production. Toxicology. 2020 Oct;443:152544. doi:10.1016/j.tox.2020.152544; Shi C, Ulke-Lemée A, Deng J, Batulan Z, O’Brien ER. Characterization of heat shock protein 27 in extracellular vesicles: a potential anti‐inflammatory therapy. FASEB J. 2019 Feb 6;33(2):1617–30. doi:10.1096/fj.201800987R; Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: An in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014 Nov;23(1):37–45. doi:10.1016/j.intimp.2014.08.002; Bosshart H, Heinzelmann M. THP-1 cells as a model for human monocytes. Ann Transl Med. 2016 Nov;4(21):438–438. doi:10.21037/atm.2016.08.53; Tedesco S, De Majo F, Kim J, Trenti A, Trevisi L, Fadini GP, et al. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in vitro Polarization? Front Pharmacol. 2018 Feb 22;9. doi:10.3389/fphar.2018.00071; Wang J-G, Williams JC, Davis BK, Jacobson K, Doerschuk CM, Ting JP-Y, et al. Monocytic microparticles activate endothelial cells in an IL-1β–dependent manner. Blood. 2011 Aug 25;118(8):2366–74. doi:10.1182/blood-2011-01-330878; Li X, Lei Y, Wu M, Li N. Regulation of Macrophage Activation and Polarization by HCC-Derived Exosomal lncRNA TUC339. Int J Mol Sci. 2018 Sep 28;19(10):2958. doi:10.3390/ijms19102958; Chen L, Yao X, Yao H, Ji Q, Ding G, Liu X. Exosomal miR‐103‐3p from LPS‐activated THP‐1 macrophage contributes to the activation of hepatic stellate cells. FASEB J. 2020 Apr 17;34(4):5178–92. doi:10.1096/fj.201902307RRR; Liu H, Zhang L, Li M, Zhao F, Lu F, Zhang F, et al. Bone mesenchymal stem cell-derived extracellular vesicles inhibit DAPK1-mediated inflammation by delivering miR-191 to macrophages. Biochem Biophys Res Commun. 2022 Apr;598:32–9. doi:10.1016/j.bbrc.2022.02.009; McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R, et al. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain. 2014 Aug;155(8):1527–39. doi:10.1016/j.pain.2014.04.029; Maeß MB, Wittig B, Cignarella A, Lorkowski S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J Immunol Methods. 2014 Jan;402(1–2):76–81. doi:10.1016/j.jim.2013.11.006; Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 2007 Jan;56(1):45–50. doi:10.1007/s00011-007-6115-5; Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The Identification of Markers of Macrophage Differentiation in PMA-Stimulated THP-1 Cells and Monocyte-Derived Macrophages. Doherty TM, editor. PLoS One. 2010 Jan 13;5(1):e8668. doi:10.1371/journal.pone.0008668; Kim YK, Hwang JH, Lee HT. Differential susceptibility to lipopolysaccharide affects the activation of toll-like-receptor 4 signaling in THP-1 cells and PMA-differentiated THP-1 cells. Innate Immun. 2022 Apr 25;28(3–4):122–9. doi:10.1177/17534259221100170; Sindhu S, Akhter N, Wilson A, Thomas R, Arefanian H, Al Madhoun A, et al. MIP-1α Expression Induced by Co-Stimulation of Human Monocytic Cells with Palmitate and TNF-α Involves the TLR4-IRF3 Pathway and Is Amplified by Oxidative Stress. Cells. 2020 Jul 29;9(8):1799. doi:10.3390/cells9081799; Akhter N, Wilson A, Thomas R, Al-Rashed F, Kochumon S, Al-Roub A, et al. ROS/TNF-α Crosstalk Triggers the Expression of IL-8 and MCP-1 in Human Monocytic THP-1 Cells via the NF-κB and ERK1/2 Mediated Signaling. Int J Mol Sci. 2021 Sep 29;22(19):10519. doi:10.3390/ijms221910519; Dubashynskaya N V., Golovkin AS, Kudryavtsev I V., Prikhodko SS, Trulioff AS, Bokatyi AN, et al. Mucoadhesive cholesterol-chitosan self-assembled particles for topical ocular delivery of dexamethasone. Int J Biol Macromol. 2020 Sep;158:811–8. doi:10.1016/j.ijbiomac.2020.04.251; Nurkhametova D, Kudryavtsev I, Guselnikova V, Serebryakova M, Giniatullina RR, Wojciechowski S, et al. Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges. Front Cell Neurosci. 2019 Feb 13;13. doi:10.3389/fncel.2019.00045; Kondratov K, Nikitin Y, Fedorov A, Kostareva A, Mikhailovskii V, Isakov D, et al. Heterogeneity of the nucleic acid repertoire of plasma extracellular vesicles demonstrated using high‐sensitivity fluorescence‐activated sorting. J Extracell Vesicles. 2020 Sep 30;9(1):1743139. doi:10.1080/20013078.2020.1743139; Fedorov A, Kondratov K, Kishenko V, Mikhailovskii V, Kudryavtsev I, Belyakova M, et al. Application of high-sensitivity flow cytometry in combination with low-voltage scanning electron microscopy for characterization of nanosized objects during platelet concentrate storage. Platelets. 2020 Feb 17;31(2):226–35. doi:10.1080/09537104.2019.1599337; Nolan JP. Flow Cytometry of Extracellular Vesicles: Potential, Pitfalls, and Prospects. Curr Protoc Cytom. 2015 Jul;73(1). doi:10.1002/0471142956.cy1314s73; Welsh JA, Van Der Pol E, Arkesteijn GJA, Bremer M, Brisson A, Coumans F, et al. MIFlowCyt‐EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles. 2020 Sep 3;9(1):1713526. doi:10.1080/20013078.2020.1713526; Kudryavtsev I, Kalinina O, Bezrukikh V, Melnik O, Golovkin A. The Significance of Phenotyping and Quantification of Plasma Extracellular Vesicles Levels Using High-Sensitivity Flow Cytometry during COVID-19 Treatment. Viruses. 2021 Apr 27;13(5):767. doi:10.3390/v13050767; Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014 Aug;29:116–25. doi:10.1016/j.ceb.2014.05.004; Crenshaw BJ, Gu L, Sims B, Matthews QL. Exosome Biogenesis and Biological Function in Response to Viral Infections. Open Virol J. 2018 Sep 28;12(1):134–48. doi:10.2174/1874357901812010134; Sheikh NA, Jones LA. CD54 is a surrogate marker of antigen presenting cell activation. Cancer Immunol Immunother. 2008 Sep 23;57(9):1381–90. doi:10.1007/s00262-008-0474-9; Mitachi T, Kouzui M, Maruyama R, Yamashita K, Ogata S, Kojima H, et al. Some non-sensitizers upregulate CD54 expression by activation of the NLRP3 inflammasome in THP-1 cells. J Toxicol Sci. 2019;44(3):213–24. doi:10.2131/jts.44.213; Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5(SEP).; MacDonald C, Payne JA, Aboian M, Smith W, Katzmann DJ, Piper RC. A Family of Tetraspans Organizes Cargo for Sorting into Multivesicular Bodies. Dev Cell. 2015 May;33(3):328–42. doi:10.1016/j.devcel.2015.03.007; MacDonald C, Stamnes MA, Katzmann DJ, Piper RC. Tetraspan cargo adaptors usher GPI-anchored proteins into multivesicular bodies. Cell Cycle. 2015 Dec 2;14(23):3673–8. doi:10.1080/15384101.2015.1100773; Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III–dependent sorting of tetraspanins to exosomes. J Cell Biol. 2020 Mar 2;219(3). doi:10.1083/jcb.201904113; Ziegler-Heitbrock HWL, Ulevitch RJ. CD14: Cell surface receptor and differentiation marker. Immunol Today. 1993 Jan;14(3):121–5. doi:10.1016/0167-5699(93)90212-4; Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013 Feb 18;200(4):373–83. doi:10.1083/jcb.201211138; van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018 Apr 17;19(4):213–28. doi:10.1038/nrm.2017.125; Reutelingsperger CPM, van Heerde WL. Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell Mol Life Sci. 1997 Jun 1;53(6):527–32. doi:10.1007/s000180050067; https://www.nii-kpssz.com/jour/article/view/1197
-
8Academic Journal
المؤلفون: Шкайр Лайали, ФГАОУ ВО «Казанский (Приволжский) федеральный университет», Laiali Shkair, FSBEI of HE “Kazan (Volga Region) Federal University”, Гаранина Екатерина Евгеньевна, Институт фундаментальной медицины и биологии ФГАОУ ВО «Казанский (Приволжский) федеральный университет», Ekaterina E. Garanina, Мартынова Екатерина Владимировна, Ekaterina V. Martynova, Колесникова Алёна Игоревна, Ризванов Альберт Анатольевич, Научно-клинический центр прецизионной и регенеративной медицины ФГАОУ ВО «Казанский (Приволжский) федеральный университет», Albert A. Rizvanov, Хайбуллина Светлана Францевна, Svetlana F. Khaiboullina
المصدر: Fundamental and applied research for key propriety areas of bioecology and biotechnology; ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии
مصطلحات موضوعية: гуморальный иммунный ответ, геморрагическая лихорадка с почечным синдромом, микровезикулы, ортохантавирус, вакцина
وصف الملف: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907561-33-5; https://phsreda.com/e-articles/10364/Action10364-102526.pdf; Federal Service for Surveillance on Consumer Rights Protection and Human Welfare On the State of Sanitary and Epidemiological Well-Being of the Population in the Russian Federation in 2020 [(accessed on 12 December 2021)]; 2021 Available online: https://www.rospotrebnadzor.ru/upload/iblock/5fa/gd-seb_02.06-_s-podpisyu_.pdf.; Garanina E., Martynova E., Davidyuk Y., Kabwe E., Ivanov K., Titova A., Markelova M., Zhuravleva M., Cherepnev G., Shakirova V.G., et al. Cytokine Storm Combined with Humoral Immune Response Defect in Fatal Hemorrhagic Fever with Renal Syndrome Case, Tatarstan, Russia. Viruses. 2019;11:601. doi:10.3390/v11070601.; Geldmacher A., Skrastina D., Borisova G., Petrovskis I., Krüger D.H., Pumpens P., Ulrich R. A hantavirus nucleocapsid protein segment exposed on hepatitis B virus core particles is highly immunogenic in mice when applied without adjuvants or in the presence of pre-existing anti-core antibodies. Vaccine. 2005;23:3973–3983. doi:10.1016/j.vaccine.2005.02.025.; Geldmacher A., Skrastina D., Petrovskis I., Borisova G., Berriman J.A., Roseman A.M., Crowther R.A., Fischer J., Musema S., Gelderblom H.R., et al. An amino-terminal segment of hantavirus nucleocapsid protein presented on hepatitis B virus core particles induces a strong and highly cross-reactive antibody response in mice. Virology. 2004;323:108–119. doi:10.1016/j.virol.2004.02.022.; Gerritzen M.J.H., Martens D.E., Wijffels R.H., van der Pol L., Stork M. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv. 2017;35:565–574. doi:10.1016/j.biotechadv.2017.05.003.; Gomzikova M.O., Aimaletdinov A.M., Bondar O.V., Starostina I.G., Gorshkova N.V., Neustroeva O.A., Kletukhina S.K., Kurbangaleeva S.V., Vorobev V.V., Garanina E.E., et al. Immunosuppressive properties of cytochalasin B-induced membrane vesicles of mesenchymal stem cells: Comparing with extracellular vesicles derived from mesenchymal stem cells. Sci. Rep. 2020;10:10740. doi:10.1038/s41598-020-67563-9.; Gomzikova M.O., Kletukhina S.K., Kurbangaleeva S.V., Neustroeva O.A., Vasileva O.S., Garanina E.E., Khaiboullina S.F., Rizvanov A.A. Mesenchymal Stem Cell Derived Biocompatible Membrane Vesicles Demonstrate Immunomodulatory Activity Inhibiting Activation and Proliferation of Human Mononuclear Cells. Pharmaceutics. 2020;12:577. doi:10.3390/pharmaceutics12060577.; Guardado-Calvo P., Rey F.A. The Envelope Proteins of the Bunyavirales. Adv. Virus Res. 2017;98:83–118. doi:10.1016/bs.aivir.2017.02.002.; Jiang D.B., Zhang J.P., Cheng L.F., Zhang G.W., Li Y., Li Z.C., Lu Z.H., Zhang Z.X., Lu Y.C., Zheng L.H., et al. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy. Antivir. Res. 2018;150:174–182. doi:10.1016/j.antiviral.2017.12.011.; Jonsson C.B., Figueiredo L.T.M., Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 2010;23:412–441. doi:10.1128/CMR.00062–09.; Laenen L., Vergote V., Calisher C.H., Klempa B., Klingström J., Kuhn J.H., Maes P. Hantaviridae: Current Classification and Future Perspectives. Viruses. 2019;11:788. doi:10.3390/v11090788.; Lundkvist A., Kallio-Kokko H., Sjölander K.B., Lankinen H., Niklasson B., Vaheri A., Vapalahti O. Characterization of Puumala virus nucleocapsid protein: Identification of B-cell epitopes and domains involved in protective immunity. Virology. 1996;216:397–406. doi:10.1006/viro.1996.0075.; Mehanny M., Koch M., Lehr C.M., Fuhrmann G. Streptococcal Extracellular Membrane Vesicles Are Rapidly Internalized by Immune Cells and Alter Their Cytokine Release. Front. Immunol. 2020;11:80. doi:10.3389/fimmu.2020.00080.; Mir M.A. Hantaviruses. Clin. Lab. Med. 2010;30:67–91. doi:10.1016/j.cll.2010.01.004.; Pap E., Pállinger É., Pásztói M., Falus A. Highlights of a new type of intercellular communication: Microvesicle-based information transfer. Inflamm. Res. 2009;58:1–8. doi:10.1007/s00011-008-8210-7.; Shakirova V., Martynova E., Saubanova A., Khaertynova I., Khaybullina S., Garanina E. Analysis of markers of renal damage in patients with hantaan hemorrhagic fever. Pract. Med. 2019;17:97–102. doi:10.32000/2072-1757-2019-8-97-102.; Shkair L., Garanina E.E., Stott R.J., Foster T.L., Rizvanov A.A., Khaiboullina S.F. Membrane Microvesicles as Potential Vaccine Candidates. Int. J. Mol. Sci. 2021;22:1142. doi:10.3390/ijms22031142.; Stahl P.D., Raposo G. Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis. Physiology. 2019;34:169–177. doi:10.1152/physiol.00045.2018.; Sung J.H., Yang H.M., Park J.B., Choi G.S., Joh J.W., Kwon C.H., Chun J.M., Lee S.K., Kim S.J. Isolation and characterization of mouse mesenchymal stem cells. Transplant. Proc. 2008;40:2649–2654. doi:10.1016/j.transproceed.2008.08.009.; Tkachenko E.A., Ishmukhametov A.A., Dzagurova T.K., Bernshtein A.D., Morozov V.G., Siniugina A.A., Kurashova S.S., Balkina A.S., Tkachenko P.E., Kruger D.H., et al. Hemorrhagic Fever with Renal Syndrome, Russia. Emerg. Infect. Dis. 2019;25:2325–2328. doi:10.3201/eid2512.181649.; https://phsreda.com/files/Books/628b9d26a7181.jpg?req=102526; https://phsreda.com/article/102526/discussion_platform
-
9Academic Journal
المؤلفون: O. V. Sirotkina, A. S. Ulitina, Yu. I. Zhilenkova, E. A. Zolotova, M. A. Simakova, O. M. Moiseeva, T. V. Vavilova, О. В. Сироткина, А. С. Улитина, Ю. И. Жиленкова, Е. А. Золотова, М. А. Симакова, О. М. Моисеева, Т. В. Вавилова
المصدر: Medical Genetics; Том 21, № 8 (2022); 47-50 ; Медицинская генетика; Том 21, № 8 (2022); 47-50 ; 2073-7998
مصطلحات موضوعية: посттромбоэмболический синдром, miR-223, microRNA, microvesicles, PE, post-thromboembolic syndrome, микроРНК, микровезикулы, ТЭЛА
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2132/1599; Сироткина О.В., Улитина А.С., Масленников А.Б., Вавилова Т.В. Генетические факторы риска развития тромбозов: накопленный опыт и новые горизонты. Молекулярно-биологические технологии в медицинской практике. Под ред. чл.-корр. РАЕН А.Б. Масленникова. Вып. 31. Новосибирск: Академиздат, 2020. C. 48-62.; Золотова Е.А., Жиленкова Ю.И., Сироткина О.В. и др. Повышение уровня внеклеточных везикул тромбоцитарного и эндотелиального происхождения у пациентов с перенесенной тромбоэмболией легочной артерии. Современные достижения химико-биологических наук в профилакической и клинической медицине: сборник научных трудов 2-й Всероссийской научно-практической конференции с международным участием. 2-3 декабря 2021 года. Под. ред. А.В. Силина, Л.Б. Гайковой. СПб.: Изд-во СЗГМУ им. И.И. Мечникова, 2021. С. 243-246.; Zarà M., Guidetti G.F., Camera M. et al. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis.International Journal of Molecular Sciences. 2019;20(11):2840.; Jiang Z., Ma J., Wang Q., Wu F., Ping J., Ming L.Combination of Circulating miRNA-320a/b and D-Dimer Improves Diagnostic Accuracy in Deep Vein Thrombosis Patients. Med Sci Monit. 2018;24:2031-2037.; Золотова Е.А., Симакова М.А., Жиленкова Ю.И. и др. Роль микро-РНК в патогенезе венозных тромбоэмболических осложнений. Российский журнал персонализированной медицины. 2022;2(1):43-50.; Di Martino M.T., Arbitrio M., Caracciolo D. et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. Molecular Therapy: Nucleic Acids. 2022;27:1191-1224.; Liu T., Kang.J, Liu F. Plasma Levels of microRNA-221 (miR-221) are Increased in Patients with Acute Pulmonary Embolism. Medical Science Monitor. 2018;24:8621-8626.; Zhang W., Tao Z., Xu F., Diao Q., Li J., Zhou L., Miao Y., Xie S., Wan J., Xu R. An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension. BioMed Research International. 2021, Article ID 5765029.; Sobrero M., Montecucco F., Carbone F. Circulating MicroRNAs for Diagnosis of Acute Pulmonary Embolism: Still a Long Way to Go. Biomed Res Int. 2022; 2022: 4180215.; Кишенко В.В., Кондратов К.А., Михайловский В.Ю. и др. Выделение тромбоцитами мембранных везикул, несущих зрелую микроРНК-221 и активированную каспазу-3, в процессе хранения тромбоцитного концентрата. Цитология. 2018;60(7): 563-566.; Merkerova M., Belickova M., Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol. 2008;81(4):304-310.; Shen N.N., Zhang C., Li Z., Kong L.C., Wang X.H., Gu Z.C., Wang J.L. MicroRNA expression signatures of atrial fibrillation: The critical systematic review and bioinformatics analysis. Experimental Biology and Medicine. 2020; 245: 42-53.; Duan X., Zhan Q., Song B. et al. Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke. J. Diabetes.Complications. 2014;28(5):705-710.; Sun L.L., Lei F.R., Jiang X.D., Du X.L., Xiao L., Li W.D., Li X.Q. LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FGF2 and MMP2/9 through the miR-223-3p/FOXO1/Akt pathway. AGING. 2020;12(5):4506-526.; Sirotkina O., Kishenko V., Melnishnikova O. et al. Platelet microparticles containing microRNA as a marker of the antiplatelet therapy’s effectiveness. Res. Pract. Thromb. Haemost. 2019;3(Suppl. 1): 36.; https://www.medgen-journal.ru/jour/article/view/2132
-
10Academic Journal
المؤلفون: A. V. Korenevsky, Yu. P. Milyutina, M. E. Berezkina, E. P. Alexandrova, O. A. Balabas, K. L. Markova, S. A. Selkov, D. I. Sokolov, А. В. Кореневский, Ю. П. Милютина, М. Э. Березкина, Е. П. Александровна, О. А. Балабас, К. Л. Маркова, С. А. Сельков, Д. И. Соколов
المساهمون: ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта», ФГБОУ ВО «Санкт-Петербургский государственный университет»
المصدر: Medical Immunology (Russia); Том 23, № 2 (2021); 275-292 ; Медицинская иммунология; Том 23, № 2 (2021); 275-292 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: MALDI-масс-спектрометрия, monocytes, macrophages, microvesicles, inflammation, proteomics, MALDI-TOF mass spectrometry, моноциты, макрофаги, микровезикулы, воспаление, протеомный анализ
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2141/1372; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7056; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7058; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7059; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7060; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7061; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7062; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7063; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7064; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7065; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7066; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7067; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7082; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2141/7083; Anteby E.Y., Natanson-Yaron S., Hamani Y., Sciaki Y., Goldman-Wohl D., Greenfield C., Ariel I., Yagel S. Fibroblast growth factor-10 and fibroblast growth factor receptors 1-4: expression and peptide localization in human decidua and placenta. Eur. J. Obstet. Gynecol. Reprod. Biol., 2005, Vol. 119, no. 1, pp. 27-35.; Baig S., Kothandaraman N., Manikandan J., Rong L., Ee K.H., Hill J., Lai C.W., Tan W.Y., Yeoh F., Kale A., Su L.L., Biswas A., Vasoo S., Choolani M. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin. Proteomics, 2014, Vol. 11, no. 1, 40.; Battistini B., Chailler P., D'Orléans-Juste P., Brière N., Sirois P. Growth regulatory properties of endothelins. Peptides, 1993, Vol. 14, no. 2, pp. 385‐399.; Bernimoulin M., Waters E.K., Foy M., Steele B.M., Sullivan M., Falet H., Walsh M.T., Barteneva N., Geng J.G., Hartwig J.H., Maguire P.B., Wagner D.D. Differential stimulation of monocytic cells results in distinct populations of microparticles. J. Thromb. Haemost., 2009, Vol. 7, no. 6, pp. 1019-1028.; Burbano C., Rojas M., Vasquez G., Castano D. Microparticles that form immune complexes as modulatory structures in autoimmune responses. Mediators Inflamm., 2015, Vol. 2015, article ID 267590.; Carpenter S., Carlson T., Dellacasagrande J., Garcia A., Gibbons S., Hertzog P., Lyons A., Lin L.L., Lynch M., Monie T., Murphy C., Seidl K.J., Wells C., Dunne A., O'Neill L.A. TRIL, a functional component of the TLR4 signaling complex, highly expressed in brain. J. Immunol., 2009, Vol. 183, no. 6, pp. 3989-3995.; Chen C., Li X., Ge G., Liu J., Biju K.C., Laing S.D., Qian Y., Ballard C., He Z., Masliah E., Clark R.A., O'Connor J.C., Li S. GDNF-expressing macrophages mitigate loss of dopamine neurons and improve Parkinsonian symptoms in MitoPark mice. Sci. Rep., 2018, Vol. 8, no. 1, 5460.; Cianciaruso C., Beltraminelli T., Duval F., Nassiri S., Hamelin R., Mozes A., Gallart-Ayala H., Ceada Torres G., Torchia B., Ries C.H., Ivanisevic J., De Palma M. Molecular profiling and functional analysis of macrophage-derived tumor extracellular vesicles. Cell Rep., 2019, Vol. 27, no. 10, pp. 3062-3080.e11.; Colombo M., Raposo G., Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, Vol. 30, pp. 255-289.; Cronemberger-Andrade A., Aragão-França L., de Araujo C.F., Rocha V.J., Borges-Silva Mda C., Figueira C.P., Oliveira P.R., de Freitas L.A., Veras P.S., Pontes-de-Carvalho L. Extracellular vesicles from Leishmania-infected macrophages confer an anti-infection cytokine-production profile to naïve macrophages. PLoS Negl. Trop. Dis., 2014, Vol. 8, no. 9, e3161. Erratum in: PLoS Negl. Trop. Dis. 2014 Vol. 8, no. 11, e3415. Figueiras C.P. [corrected to Figueira, Cláudio P].; Graner M.W. Roles of extracellular vesicles in high-grade gliomas: tiny particles with outsized influence. Annu. Rev. Genomics Hum. Genet., 2019, Vol. 20, pp. 331-357.; Gui L., Zhang Q., Cai Y., Deng X., Zhang Y., Li C., Guo Q., He X., Huang J. Effects of let-7e on LPS-stimulated THP-1 cells assessed by iTRAQ proteomic analysis. Proteomics Clin. Appl., 2018, Vol. 12, no. 5, e1700012.; Haraszti R.A., Didiot M.C., Sapp E., Leszyk J., Shaffer S.A., Rockwell H.E., Gao F., Narain N.R., DiFiglia M., Kiebish M.A., Aronin N., Khvorova A. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles, 2016, Vol. 5, no. 1, article ID 32570.; Hare N.J., Chan B., Chan E., Kaufman K.L., Britton W.J., Saunders B.M. Microparticles released from Mycobacterium tuberculosis-infected human macrophages contain increased levels of the type I interferon inducible proteins including ISG15. Proteomics, 2015, Vol. 15, no. 17, pp. 3020-3029.; Hegab A.E., Ozaki M., Kagawa S., Hamamoto J., Yasuda H., Naoki K., Soejima K., Yin Y., Kinoshita T., Yaguchi T., Kawakami Y., Ornitz D.M., Betsuyaku T. Tumor associated macrophages support the growth of FGF9-induced lung adenocarcinoma by multiple mechanisms. Lung Cancer, 2018, Vol. 119, pp. 25-35.; Izdebska M., Zielińska W., Grzanka D., Gagat M. The role of actin dynamics and actin-binding proteins expression in epithelial-to-mesenchymal transition and its association with cancer progression and evaluation of possible therapeutic targets. Biomed. Res. Int., 2018, Vol. 2018, 4578373.; Kaewseekhao B., Naranbhai V., Roytrakul S., Namwat W., Paemanee A., Lulitanond V., Chaiprasert A., Faksri K. Comparative proteomics of activated THP-1 cells infected with Mycobacterium tuberculosis identifies putative clearance biomarkers for tuberculosis treatment. PLoS One, 2015, Vol. 10, no. 7, e0134168.; Kang J.H., Kim H.T., Choi M.S., Lee W.H., Huh T.L., Park Y.B., Moon B.J., Kwon O.S. Proteome analysis of human monocytic THP-1 cells primed with oxidized low-density lipoproteins. Proteomics, 2006, Vol. 6, no. 4, pp. 1261-1273.; Kok Y.L., Vongrad V., Shilaih M., Di Giallonardo F., Kuster H., Kouyos R., Günthard H.F., Metzner K.J. Monocyte-derived macrophages exhibit distinct and more restricted HIV-1 integration site repertoire than CD4(+) T cells. Sci. Rep., 2016, Vol. 6, 24157.; Korenevskii A.V., Milyutina Y.P., Zhdanova A.A., Pyatygina K.M., Sokolov D.I., Sel'kov S.A. Mass-spectrometric analysis of proteome of microvesicles produced by NK-92 natural killer cells. Bull. Exp. Biol. Med., 2018, Vol. 165, no. 4, pp. 564-571.; Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Thery C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. U. S. A., 2016, Vol. 113, no. 8, pp. E968-E977.; Li P., Kaslan M., Lee S.H., Yao J., Gao Z. Progress in exosome isolation techniques. Theranostics, 2017, Vol. 7, no. 3, pp. 789-804.; Maas S.L.N., Breakefield X.O., Weaver A.M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell. Biol., 2017, Vol. 27, no. 3, pp. 172-188.; Malloci M., Perdomo L., Veerasamy M., Andriantsitohaina R., Simard G., Martinez M.C. Extracellular vesicles: mechanisms in human health and disease. Antioxid. Redox Signal., 2019, Vol. 30, no. 6, pp. 813-856.; Markova K.L., Mikhailova V.A., Korenevsky A.V., Milyutina Y.P., Rodygina V.V., Aleksandrova E.P., Markov A.S., Balabas O.A., Selkov S.A., Sokolov D.I. Microvesicles produced by natural killer cells of the NK-92 cell line affect the phenotype and functions of endothelial cells of the EA.Hy926 cell line. Med. Immunol. (Russia), 2020, Vol. 22, no. 2, pp. 249-268.; Miguet L., Pacaud K., Felden C., Hugel B., Martinez M.C., Freyssinet J.M., Herbrecht R., Potier N., van Dorsselaer A., Mauvieux L. Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics, 2006, Vol. 6, no. 1, pp. 153-171.; Olingy C.E., Dinh H.Q., Hedrick C.C. Monocyte heterogeneity and functions in cancer. J. Leukoc. Biol., 2019, Vol. 106, no. 2, pp. 309-322.; Ornitz D.M, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol., 2015, Vol. 4, no. 3, pp. 215-266.; Palevski D., Levin-Kotler L.P., Kain D., Naftali-Shani N., Landa N., Ben-Mordechai T., Konfino T., Holbova R., Molotski N., Rosin-Arbesfeld R., Lang R.A., Leor J. Loss of macrophage Wnt secretion improves remodeling and function after myocardial infarction in mice. J. Am. Heart Assoc., 2017, Vol. 6, no. 1, e004387.; Pelekanou V., Kampa M., Kiagiadaki F., Deli A., Theodoropoulos P., Agrogiannis G., Patsouris E., Tsapis A., Castanas E., Notas G. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERα36 and GPR30/GPER1. J. Leukoc. Biol., 2016, Vol. 99, no. 2, pp. 333-347.; Poczobutt J.M., De S., Yadav V.K., Nguyen T.T., Li H., Sippel T.R., Weiser-Evans M.C., Nemenoff R.A. Expression profiling of macrophages reveals multiple populations with distinct biological roles in an immunocompetent orthotopic model of lung cancer. J. Immunol., 2016, Vol. 196, no. 6, pp. 2847-2859.; Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol., 2013, Vol. 200, no. 4, pp. 373-383.; Reales-Calderón J.A., Vaz C., Monteoliva L., Molero G., Gil C. Candida albicans modifies the protein composition and size distribution of THP-1 macrophage-derived extracellular vesicles. J. Proteome Res., 2017, Vol. 16, no. 1, pp. 87-105.; Sáenz-Cuesta M., Irizar H., Castillo-Triviño T., Muñoz-Culla M., Osorio-Querejeta I., Prada A., Sepúlveda L., López-Mato M.P., López de Munain A., Comabella M., Villar L.M., Olascoaga J., Otaegui D. Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomark. Med., 2014, Vol. 8, no. 5, pp. 653-661.; Shi C., Pamer E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol., 2011, Vol. 11, no. 11, pp. 762-774.; Thery C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, Vol. 2, no. 8, pp. 569-579.; Tőkés-Füzesi M., Ruzsics I., Rideg O., Kustán P., Kovács G.L., Molnár T. Role of microparticles derived from monocytes, endothelial cells and platelets in the exacerbation of COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, Vol. 13, pp. 3749-3757.; van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., van Leeuwen T.G., Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost., 2014, Vol. 12, no. 7, pp. 1182-1192.; Walters S.B., Kieckbusch J., Nagalingam G., Swain A., Latham S.L., Grau G.E., Britton W.J., Combes V., Saunders B.M. Microparticles from mycobacteria-infected macrophages promote inflammation and cellular migration. J. Immunol. 2013, Vol. 190, no. 2, pp. 669-677.; Yao Z., Jia X., Megger D.A., Chen J., Liu Y., Li J., Sitek B., Yuan Z. Label-free proteomic analysis of exosomes secreted from THP-1-derived macrophages treated with IFN-α identifies antiviral proteins enriched in exosomes. J. Proteome Res., 2019, Vol. 18, no. 3, pp. 855-864.; https://www.mimmun.ru/mimmun/article/view/2141
-
11Academic Journal
المؤلفون: T. S. Khabalova, Yu. E. Androsova, E. A. Kaschenko, I. P. Ivanova, Т. С. Хабалова, Ю. Э. Андросова, Э. А. Кащенко, И. П. Иванова
المصدر: Medical Immunology (Russia); Том 23, № 4 (2021); 685-692 ; Медицинская иммунология; Том 23, № 4 (2021); 685-692 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: бесклеточная терапия, microvesicles, chronic renal failure, chronic kidney disease, acellular therapy, внеклеточные пузырьки, микровезикулы, хроническая почечная недостаточность, почечное повреждение
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2285/1407; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7891; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7892; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7893; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7894; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7895; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7896; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7897; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7898; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/7899; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/8610; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/8611; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2285/8612; Alikhan M.A., Huynh M., Kitching A.R., Ooi J.D. Regulatory T cells in renal disease. Clin. Transl. Immunol., 2018, Vol. 7, no. 1, 1004. doi:10.1002/cti2.1004.; Bonventre J.V., Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int., 2004, Vol. 66, pp. 480-485.; Burne M.J., Daniels F., El Ghandour A., Mauiyyedi S., Colvin R.B., O’Donnell M.P., Rabb H. Identification of the CD4( þ) T cell as a major pathogenic factor in ischemic acute renal failure. J. Clin. Invest., 2001, Vol. 108, no. 9, pp. 1283-1290.; Goes N., Urmson J., Ramassar V., Halloran P.F. Ischemic acute tubular necrosis induces an extensive local cytokine response: evidence for induction of interferon-, transforming growth factor-1, granulocyte-macrophage colony-stimulating factor, interleukin-2, and interleukin-10. Transplantation, 1995, Vol. 59, no. 4, pp. 565-572.; Gupta K.H., Goldufsky J.W., Wood S.J., Tardi N.J., Moorthy G.S., Gilbert D.Z., Zayas J.P., Hahm E., Altintas M.M., Reiser J., Shafikhani S.H. Apoptosis and compensatory proliferation signaling are coupled by CrkIcontaining microvesicles. Dev. Cell, 2017, Vol. 41, no. 6, pp. 674-684.; Kamijo-Ikemori A.K., Sugaya T., Matsui K., Yokoyama T., Kimura K. Roles of human liver type fatty acid binding protein in kidney disease clarified using hL-FABP chromosomal transgenic mice. Nephrology, 2011, Vol. 16, no. 6, pp 539-544.; Karpman D., Ståhl An-L., Arvidsson I. Extracellular vesicles in renal disease. Nat. Rev. Nephrol., 2017, Vol. 13, no. 9, pp. 545-562.; Mause S.F., Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res., 2010, Vol. 107, no. 9, pp. 1047-1057.; Nauta A.J., Fibbe W.E. Immunomodulatory properties of mesenchymal stromal sells. Blood, 2007, Vol. 110, no. 10, pp. 3499-3506.; Rabb H. Immune modulation of acute kidney injury. J. Am. Soc. Nephrol., 2006, Vol. 17, no. 3, pp. 604-606.; Ratajczak M.Z., Ratajczak J. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future? Leukemia, 2020, Vol. 34, pp. 3126-3135.; Ratajczak M.Z., Ratajczak D., Pedziwiatr D. Extracellular microvesicles (ExMVs) in cell-to-cell communication: a role of telocytes. Adv. Exp. Med. Biol., 2016, Vol. 913, pp. 41-49.; Ryu J.-S., Jeong E.-J., Kim J.-Y., Park S.J., W.S. Ju, Kim C.-H., Kim J.-S., Choo Y.-K. Application of mesenchymal stem cells in inflammatory and fibrotic disease. Int. J. Mol. Sci., 2020, Vol. 21., no. 21, 8366. doi:10.3390/ijms21218366.; Ståhl A., Johanson K., Mossberg M., Kahn R., Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr. Nephrol., 2019, Vol. 34, no. 1, pp. 11-30.; Zager R.A., Jonson A.C., Lund S., Hanson S. Acute renal failure: determinants and characteristics of injuryinduced hyperinflammatory response. Am. J. Physiol. Renal Physiol., 2006, Vol. 291, no. 3, pp. 546-556.; https://www.mimmun.ru/mimmun/article/view/2285
-
12Academic Journal
المؤلفون: K. L. Markova, V. A. Mikhailova, A. V. Korenevsky, Yu. P. Milyutina, V. V. Rodygina, E. P. Aleksandrova, A. S. Markov, O. A. Balabas, S. A. Selkov, D. I. Sokolov, К. Л. Маркова, В. А. Михайлова, А. В. Кореневский, Ю. П. Милютина, В. В. Родыгина, Е. П. Александрова, А. С. Марков, О. А. Балабас, С. А. Сельков, Д. И. Соколов
المساهمون: The EC proliferation and migration study was supported by the Russian Foundation for Basic Research grant No. 17-04-00679. Laser correlation analysis, flow cytometry and western blot analysis were supported by the Russian Science Foundation grant No. 17-15-01230. One-dimensional microchip gel electrophoresis and lysate preparation for mass spectrometry analysis were supported by the Russian Foundation for Basic Research grant No. 19-01500218. Cell culture management was supported by AAAA-A19-119021290116-1, грант РНФ No. 17-15-0123, грант РФФИ No. 17-04-00679, грант РФФИ No. 19-015-00218
المصدر: Medical Immunology (Russia); Том 22, № 2 (2020); 249-268 ; Медицинская иммунология; Том 22, № 2 (2020); 249-268 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: миграция, endothelium, microvesicles, granzyme B, caspases, proliferation, migration, эндотелий, микровезикулы, гранзим B, каспазы, пролиферация
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1877/1249; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5373; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5374; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5375; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5376; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5377; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5378; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5379; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5380; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5381; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5382; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5383; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5384; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5385; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5386; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5387; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5388; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5389; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5390; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5391; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5392; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1877/5393; Andreu Z., Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol., 2014, Vol. 5, 442. doi:10.3389/fimmu.2014.00442.; Ardoin S.P., Shanahan J.C., Pisetsky D.S. The role of microparticles in inflammation and thrombosis. Scand. J. Immunol., 2007, Vol. 66, no. 2-3, pp. 159-165.; Ashkenazi A., Salvesen G. Regulated cell death: signaling and mechanisms. Annu. Rev. Cell Dev. Biol., 2014, Vol. 30, pp. 337-356.; Ashton S.V., Whitley G.S., Dash P.R., Wareing M., Crocker I.P., Baker P.N., Cartwright J.E. Uterine spiral artery remodeling involves endothelial apoptosis induced by extravillous trophoblasts through Fas/FasL interactions. Arterioscler. Thromb. Vasc. Biol., 2005, Vol. 25, no. 1, pp. 102-108.; Aubrey B.J., Kelly G.L., Janic A., Herold M.J., Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, Vol. 25, no. 1, pp. 104-113.; Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, Vol. 72, pp. 248-254.; Budaj M., Poljak Z., Duris I., Kasko M., Imrich R., Kopani M., Maruscakova L., Hulin I. Microparticles: a component of various diseases. Pol. Arch. Med. Wewn., 2012, Vol. 122, Suppl. 1, pp. 24-29.; Burger D., Schock S., Thompson C.S., Montezano A.C., Hakim A.M., Touyz R.M. Microparticles: biomarkers and beyond. Clin. Sci. (Lond.), 2013, Vol. 124, no. 7, pp. 423-441.; Cantarella G., di Benedetto G., Ribatti D., Saccani-Jotti G., Bernardini R. Involvement of caspase 8 and c-FLIPL in the proangiogenic effects of the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). FEBS J., 2014, Vol. 281, no. 5, pp. 1505-1513.; Chazara O., Xiong S., Moffett A. Maternal KIR and fetal HLA-C: a fine balance. J. Leukoc. Biol., 2011, Vol. 90, no. 4, pp. 703-716.; Colombo M., Raposo G., Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, Vol. 30, pp. 255-289.; Cooper M.A., Fehniger T.A., Caligiuri M.A. The biology of human natural killer-cell subsets. Trends Immunol., 2001, Vol. 22, no. 11, pp. 633-640.; Dasgupta S.K., Abdel-Monem H., Niravath P., Le A., Bellera R.V, Langlois K., Nagata S., Rumbaut R.E., Thiagarajan P. Lactadherin and clearance of platelet-derived microvesicles. Blood, 2009, Vol. 113, no. 6, pp. 1332-1339.; Delia D., Lampugnani M.G., Resnati M., Dejana E., Aiello A., Fontanella E., Soligo D., Pierotti M.A., Greaves M.F. CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood, 1993, Vol. 81, no. 4, pp. 1001-1008.; Distler J.H., Huber L.C., Gay S., Distler O., Pisetsky D.S. Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity, 2006, Vol. 39, no. 8, pp. 683-690.; Dondero A., Casu B., Bellora F., Vacca A., de Luisi A., Frassanito M.A., Cantoni C., Gaggero S., Olive D., Moretta A., Bottino C., Castriconi R. NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27. Oncotarget, 2017, Vol. 8, no. 21, pp. 35088-35102.; Dragovic R.A., Collett G.P., Hole P., Ferguson D.J., Redman C.W., Sargent I.L., Tannetta D.S. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods, 2015, Vol. 87, pp. 64-74.; Edgell C.J., McDonald C.C., Graham J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA, 1983, Vol. 80, no. 12, pp. 3734-3737.; el Costa H., Tabiasco J., Berrebi A., Parant O., Aguerre-Girr M., Piccinni M.P., le Bouteiller P. Effector functions of human decidual NK cells in healthy early pregnancy are dependent on the specific engagement of natural cytotoxicity receptors. J. Reprod. Immunol., 2009, Vol. 82, no. 2, pp. 142-147.; Evans-Osses I., Reichembach L.H., Ramirez M.I. Exosomes or microvesicles? Two kinds of extracellular vesicles with different routes to modify protozoan-host cell interaction. Parasitol. Res., 2015, Vol. 114, no. 10, pp. 3567-3575.; Fraser R., Whitley G.S., Thilaganathan B., Cartwright J.E. Decidual natural killer cells regulate vessel stability: implications for impaired spiral artery remodelling. J. Reprod. Immunol., 2015, Vol. 110, pp. 54-60.; Gojova A., Barakat A.I. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J. Appl. Physiol. (1985), 2005, Vol. 98, no. 6, pp. 2355-2362.; Gong J.H., Maki G., Klingemann H.G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia, 1994, Vol. 8, no. 4, pp. 652-658.; Halim A.T., Ariffin N.A., Azlan M. Review: the Multiple roles of monocytic microparticles. Inflammation, 2016, Vol. 39, no. 4, pp. 1277-1284.; Hanna J., Goldman-Wohl D., Hamani Y., Avraham I., Greenfield C., Natanson-Yaron S., Prus D., Cohen-Daniel L., Arnon T.I., Manaster I., Gazit R., Yutkin V, Benharroch D., Porgador A., Keshet E., Yagel S., Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med., 2006, Vol. 12, no. 9, pp. 1065-1074.; Hanna J., Wald O., Goldman-Wohl D., Prus D., Markel G., Gazit R., Katz G., Haimov-Kochman R., Fujii N., Yagel S., Peled A., Mandelboim O. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood, 2003, Vol. 102, no. 5, pp. 1569-1577.; Hemler M.E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol., 2003, Vol. 19, pp. 397-422.; Imam J.S., Buddavarapu K., Lee-Chang J.S., Ganapathy S., Camosy C., Chen Y., Rao M.K. MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene, 2010, Vol. 29, no. 35, pp. 4971-4979.; Kalkunte S.S., Mselle T.F., Norris W.E., Wira C.R., Sentman C.L., Sharma S. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J. Immunol., 2009, Vol. 182, no. 7, pp. 4085-4092.; Kalra H., Drummen G.P., Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int. J. Mol. Sci, 2016, Vol. 17, no. 2, 170. doi:10.3390/ijms17020170.; Kawakami A., Hida A., Yamasaki S., Miyashita T., Nakashima K., Tanaka F., Ida H., Furuyama M., Migita K., Origuchi T., Eguchi K. Modulation of the expression of membrane-bound CD54 (mCD54) and soluble form of CD54 (sCD54) in endothelial cells by glucosyl transferase inhibitor: possible role of ceramide for the shedding of mCD54. Biochem. Biophys. Res. Commun., 2002, Vol. 296, no. 1, pp. 26-31.; Kawauchi K., Ihjima K., Yamada O. IL-2 increases human telomerase reverse transcriptase activity transcriptionally and posttranslationally through phosphatidylinositol 3’-kinase/Akt, heat shock protein 90, and mammalian target of rapamycin in transformed NK cells. J. Immunol., 2005, Vol. 174, no. 9, pp. 5261-5269.; Kim M., Park H.J., Seol J.W., Jang J.Y., Cho Y.S., Kim K.R., Choi Y., Lydon J.P., Demayo F.J., Shibuya M., Ferrara N., Sung H.K., Nagy A., Alitalo K., Koh G.Y. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. EMBO Mol. Med., 2013, Vol. 5, no. 9, pp. 1415-1430.; Komatsu F., Kajiwara M. Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol. Res., 1998, Vol. 10, no. 10, pp. 483-489.; Korenevskii A.V., Milyutina Y.P., Zhdanova A.A., Pyatygina K.M., Sokolov D.I., Sel’kov S.A. Mass-Spectrometric analysis of proteome of microvesicles produced by NK-92 natural killer cells. Bull. Exp. Biol. Med., 2018, Vol. 165, no. 4, pp. 564-571.; Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Thery C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA, 2016, Vol. 113, no. 8, pp. E968-E977.; Krueger A., Schmitz I., Baumann S., Krammer P.H., Kirchhoff S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J. Biol. Chem., 2001, Vol. 276, no. 23, pp. 20633-20640.; Kumar S., Pan C.C., Bloodworth J.C., Nixon A.B., Theuer C., Hoyt D.G., Lee N.Y. Antibody-directed coupling of endoglin and MMP-14 is a key mechanism for endoglin shedding and deregulation of TGF-beta signaling. Oncogene, 2014, Vol. 33, no. 30, pp. 3970-3979.; Lash G.E., Robson S.C., Bulmer J.N. Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua. Placenta, 2010, Vol. 31 Suppl., pp. S87-S92.; Leonard S., Murrant C., Tayade C., van den Heuvel M., Watering R., Croy B.A. Mechanisms regulating immune cell contributions to spiral artery modification - facts and hypotheses - a review. Placenta, 2006, Vol. 27, Suppl A, pp. S40-S46.; Li P., Kaslan M., Lee S.H., Yao J., Gao Z. Progress in Exosome Isolation Techniques. Theranostics, 2017, Vol. 7, no. 3, pp. 789-804.; Liang S., Zhang J., Wei H., Sun R., Tian Z. Differential roles of constitutively activated ERK1/2 and NF-kappa B in cytotoxicity and proliferation by human NK cell lines. Int. Immunopharmacol., 2005, Vol. 5, no. 5, pp. 839-848.; Liang Y.J., Yang W.X. Kinesins in MAPK cascade: How kinesin motors are involved in the MAPK pathway? Gene, 2019, Vol. 684, pp. 1-9.; Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat. Rev. Immunol., 2003, Vol. 3, no. 5, pp. 361-370.; Liu K., He B., Xu J., Li Y., Guo C., Cai Q., Wang S. miR-483-5p targets MKNK1 to suppress Wilms’ tumor cell proliferation and apoptosis in vitro and in vivo. Med. Sci. Monit., 2019, Vol. 25, pp. 1459-1468.; Liu S., Yu D., Xu Z.P., Riordan J.F., Hu G.F. Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun., 2001, Vol. 287, no. 1, pp. 305-310.; Lugini L., Cecchetti S., Huber V., Luciani F., Macchia G., Spadaro F., Paris L., Abalsamo L., Colone M., Molinari A., Podo F., Rivoltini L., Ramoni C., Fais S. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol., 2012, Vol. 189, no. 6, pp. 2833-2842.; Male V, Sharkey A., Masters L., Kennedy P.R., Farrell L.E., Moffett A. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur. J. Immunol., 2011, Vol. 41, no. 10, pp. 3017-3027.; Mandal A.,Viswanathan C. Natural killer cells: In health and disease. Hematol. Oncol. Stem Cell Ther., 2015, Vol. 8, no. 2, pp. 47-55.; Markov A.S., Markova K.L., Sokolov D.I., Selkov S.A., MARKMIGRATION. 2019: Russia.; Martinez-Lostao L., de Miguel D., Al-Wasaby S., Gallego-Lleyda A., Anel A. Death ligands and granulysin: mechanisms of tumor cell death induction and therapeutic opportunities. Immunotherapy, 2015, Vol. 7, no. 8, pp. 883-882.; Micheau O., Thome M., Schneider P., Holler N., Tschopp J., Nicholson D.W, Briand C., Grutter M.G. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem., 2002, Vol. 277, no. 47, pp. 45162-45171.; Mikhailova V.A. B.K.L., Vyazmina L.P., Sheveleva A.R., Selkov S.A., Sokolov D.I. Evaluation of microvesicles formed by natural killer (NK) cells using flow cytometry. Medical Immunology (Russia), 2018, Vol. 20, no. 2, pp. 251-254. doi:10.15789/1563-0625-2018-2-251-254.; Mikhailova V.A., Ovchinnikova O.M., Zainulina M.S., Sokolov D.I., Sel’kov S.A. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull. Exp. Biol. Med., 2014, Vol. 157, no. 6, pp. 751-756.; Murphy K., Weaver C. Janeway’s Immunology. Garland Science, Taylor & Francis Group, 2017. 924 p.; Naruse K., Lash G.E., Bulmer J.N., Innes B.A., Otun H.A., Searle R.F., Robson S.C. The urokinase plasminogen activator (uPA) system in uterine natural killer cells in the placental bed during early pregnancy. Placenta, 2009, Vol. 30, no. 5, pp. 398-404.; Okada H., Nakajima T., Sanezumi M., Ikuta A., Yasuda K., Kanzaki H. Progesterone enhances interleukin-15 production in human endometrial stromal cells in vitro. J. Clin. Endocrinol. Metab., 2000, Vol. 85, no. 12,pp. 4765-4770.; Osinska I., Popko K., Demkow U. Perforin: an important player in immune response. Cent. Eur. J. Immunol., 2014, Vol. 39, no. 1, pp. 109-115.; Philpott N.J., Scopes J., Marsh J.C., Gordon-Smith E.C., Gibson F.M. Increased apoptosis in aplastic anemia bone marrow progenitor cells: possible pathophysiologic significance. Exp. Hematol., 1995, Vol. 23, no. 14, pp. 1642-1648.; Pinto-Diez C., Garcia-Recio E.M., Perez-Morgado M.I., Garcia-Hernandez M., Sanz-Criado L., Sacristan S., Toledo-Lobo M.V., Perez-Mies B., Esteban-Rodriguez I., Pascual A., Garcia-Villanueva M., Martinez-Janez N., Gonzalez V.M., Martin M.E. Increased expression of MNK1b, the spliced isoform of MNK1, predicts poor prognosis and is associated with triple-negative breast cancer. Oncotarget, 2018, Vol. 9, no. 17, pp. 13501-13516.; Raposo G., Stoorvogel W Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol., 2013, Vol. 200, no. 4, pp. 373-383.; Riesbeck K., Billstrom A., Tordsson J., Brodin T., Kristensson K., Dohlsten M. Endothelial cells expressing an inflammatory phenotype are lysed by superantigen-targeted cytotoxic T cells. Clin. Diagn. Lab. Immunol., 1998, Vol. 5, no. 5, pp. 675-682.; Robson A., Harris L.K., Innes B.A., Lash G.E., Aljunaidy M.M., Aplin J.D., Baker P.N., Robson S.C., Bulmer J.N. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J., 2012, Vol. 26, no. 12, pp. 4876-4885.; Schuler M., Green D.R. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans., 2001, Vol. 29, Pt 6, pp. 684-688.; Sedgwick A.E., d’Souza-Schorey C. The biology of extracellular microvesicles. Traffic, 2018, Vol. 19, no. 5, pp. 319-327.; Si Y., Chu H., Zhu W, Xiao T., Shen X., Fu Y., Xu R., Jiang H. Concentration-dependent effects of rapamycin on proliferation, migration and apoptosis of endothelial cells in human venous malformation. Exp. Ther. Med., 2018, Vol. 16, no. 6, pp. 4595-4601.; Simak J., Gelderman M.P., Yu H., Wright V., Baird A.E. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J. Thromb. Haemost., 2006, Vol. 4, no. 6, pp. 1296-1302.; Singh R., Letai A., Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell. Biol., 2019, Vol. 20, no. 3, pp. 175-193.; Smith S.D., Dunk C.E., Aplin J.D., Harris L.K., Jones R.L. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am. J. Pathol., 2009, Vol. 174, no. 5, pp. 1959-1971.; Smulski C.R., Decossas M., Chekkat N., Beyrath J., Willen L., Guichard G., Lorenzetti R., Rizzi M., Eibel H., Schneider P., Fournel S. Hetero-oligomerization between the TNF receptor superfamily members CD40, Fas and TRAILR2 modulate CD40 signalling. Cell Death Dis., 2017, Vol. 8, no. 2, e2601. doi:10.1038/cddis.2017.22.; Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2016, Vol. 170, pp. 112-123.; Susanto O., Trapani J.A., Brasacchio D. Controversies in granzyme biology. Tissue Antigens, 2012, Vol. 80, no. 6, pp. 477-487.; Svensson K.J., Christianson H.C., Wittrup A., Bourseau-Guilmain E., Lindqvist E., Svensson L.M., Morgelin M., Belting M. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem., 2013, Vol. 288, no. 24, pp. 17713-17724.; Thornhill M.H., Li J., Haskard D.O. Leucocyte endothelial cell adhesion: a study comparing human umbilical vein endothelial cells and the endothelial cell line EA-hy-926. Scand. J. Immunol., 1993, Vol. 38, no. 3, pp. 279-286.; van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P, Sturk A., van Leeuwen T.G., Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost., 2014, Vol. 12, no. 7, pp. 1182-1192; Vermeulen K., van Bockstaele D.R., Berneman Z.N. Apoptosis: mechanisms and relevance in cancer. Ann. Hematol., 2005, Vol. 84, no. 10, pp. 627-639.; Wallace A.E., Fraser R., Cartwright J.E. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum. Reprod. Update, 2012, Vol. 18, no. 4, pp. 458-471.; Wang M., Su P The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update. Syst. Biol. Reprod. Med., 2018, Vol. 64, no. 2, pp. 93-102.; Waters W.R., Harkins K.R., Wannemuehler M.J. Five-color flow cytometric analysis of swine lymphocytes for detection of proliferation, apoptosis, viability, and phenotype. Cytometry, 2002, Vol. 48, no. 3, pp. 146-152.; Xu R., Greening D.W., Zhu H.J., Takahashi N., Simpson R.J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest., 2016, Vol. 126, no. 4, pp. 1152-1162.; Yao L., Sgadari C., Furuke K., Bloom E.T., Teruya-Feldstein J., Tosato G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood, 1999, Vol. 93, no. 5, pp. 1612-1621.; Zhang C., Gao F., Teng F., Zhang M. Fas/FasL Complex promotes proliferation and migration of brain endothelial cells via FADD-FLIP-TRAF-NF-kappaB pathway. Cell Biochem. Biophys., 2015, Vol. 71, no. 3, pp. 1319-1323.; https://www.mimmun.ru/mimmun/article/view/1877
-
13Academic Journal
المؤلفون: A. V. Korenevsky, A. D. Shcherbitskaia, M. E. Berezkina, K. L. Markova, E. P. Alexandrova, O. A. Balabas, S. A. Selkov, D. I. Sokolov, А. В. Кореневский, А. Д. Щербицкая, М. Э. Березкина, К. Л. Маркова, Е. П. Александрова, О. А. Балабас, С. А. Сельков, Д. И. Соколов
المساهمون: This work was supported by the Russian Foundation for Basic Research (Project Registration No. 19-015-00218) and was performed in the Department of Immunology and Cell Interactions, D. Ott Institute of Obstetrics, Gynecology, and Reproductology (St. Petersburg, Russia), partially within the institutional state assignment framework (R&D State Registration No. AAAA-A19-119021290116-1), using the equipment of Chemical Analysis and Materials Research Centre, St. Petersburg State University (St. Petersburg, Russia), Российский фонд фундаментальных исследований, НИИ акушерства, гинекологии и репродуктологии им. Д.О. Отта
المصدر: Medical Immunology (Russia); Том 22, № 4 (2020); 633-646 ; Медицинская иммунология; Том 22, № 4 (2020); 633-646 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: MALDI-TOF-массспектрометрия, microvesicles, immune response, inflammation, proteome, MALDI-TOF mass spectrometry, микровезикулы, иммунный ответ, воспаление, протеом
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1976/1282; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5942; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5943; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5944; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5945; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5946; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5947; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5948; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5949; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5950; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5951; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5952; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5953; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5954; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5962; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/6003; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/6106; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/6107; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/6108; Brittoli A., Fallarini S., Zhang H., Pieters R.J., Lombardi G. “In vitro” studies on galectin-3 in human natural killer cells. Immunol. Lett., 2018, Vol. 194, pp. 4-12.; Burbano C., Rojas M., Vasquez G., Castano D. Microparticles that form immune complexes as modulatory structures in autoimmune responses. Mediators Inflamm., 2015, Vol. 2015, 267590. doi:10.1155/2015/267590.; Cepero-Donates Y., Rakotoarivelo V., Mayhue M., Ma A., Chen Y.G., Ramanathan S. Homeostasis of IL-15 dependent lymphocyte subsets in the liver. Cytokine, 2016, Vol. 82, pp. 95-101.; Haraszti R.A., Didiot M.C., Sapp E., Leszyk J., Shaffer S.A., Rockwell H.E., Gao F., Narain N.R., DiFiglia M., Kiebish M.A., Aronin N., Khvorova A. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles, 2016, Vol. 5, no. 1, 32570. doi:10.3402/jev.v5.32570.; Holt D., Ma X., Kundu N., Fulton A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol. Immunother., 2011, Vol. 60, no. 11, pp. 1577-1586.; Honorati M.C., Neri S., Cattini L., Facchini A. IL-17 enhances the susceptibility of U-2 OS osteosarcoma cells to NK cell lysis. Clin. Exp. Immunol., 2003, Vol. 133, no. 3, pp. 344-349.; Jaime P., Garcia-Guerrero N., Estella R., Pardo J., Garcia-Alvarez F., Martinez-Lostao L. CD56(+)/CD16(-) Natural killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis. Osteoarthritis Cartilage, 2017, Vol. 25, no. 10, pp. 1708-1718.; Jong A.Y., Wu C.H., Li J., Sun J., Fabbri M., Wayne A.S., Seeger R.C. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J. Extracell. Vesicles, 2017, Vol. 6, no. 1, 1294368. doi:10.1080/20013078.2017.1294368.; Keerthikumar S., Gangoda L., Gho Y.S., Mathivanan S. Exosomes and microvesicles. Methods in molecular biology. Ed. Hill A., Humana Press, 2017, pp. 189-196.; Khurana D., Arneson L.N., Schoon R.A., Dick C.J., Leibson P.J. Differential regulation of human NK cellmediated cytotoxicity by the tyrosine kinase Itk. J. Immunol., 2007, Vol. 178, no. 6, pp. 3575-3582.; Ko Y.H., Park S., Jin H., Woo H., Lee H., Park C., Kim K. Granzyme B leakage-induced apoptosis is a crucial mechanism of cell death in nasal-type NK/T-cell lymphoma. Lab. Invest., 2007, Vol. 87, no. 3, pp. 241-250.; Korenevskii A.V., Milyutina Y.P., Zhdanova A.A., Pyatygina K.M., Sokolov D.I., Sel’kov S.A. Massspectrometric analysis of proteome of microvesicles produced by NK-92 natural killer cells. Bull. Exp. Biol. Med., 2018, Vol. 165, no. 4, pp. 564-571.; Kumar D., Hosse J., von Toerne C., Noessner E., Nelson P.J. JNK MAPK pathway regulates constitutive transcription of CCL5 by human NK cells through SP1. J. Immunol., 2009, Vol. 182, no. 2, pp. 1011-1020.; Kweon S., Phan M.T., Chun S., Yu H., Kim J., Kim S., Lee J., Ali A.K., Lee S.H., Kim S.K., Doh J., Cho D. Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Front. Immunol., 2019, Vol. 10, 879. doi:10.3389/fimmu.2019.00879.; Liu X.C., Liang H., Tian Z., Ruan Y.S., Zhang L., Chen Y. Proteomic analysis of human NK-92 cells after NK cell-mediated cytotoxicity against K562 cells. Biochemistry Moscow, 2007, Vol. 72, no. 7, pp. 716-727.; Lugini L., Cecchetti S., Huber V., Luciani F., Macchia G., Spadaro F., Paris L., Abalsamo L., Colone M., Molinari A., Podo F., Rivoltini L., Ramoni C., Fais S. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol., 2012, Vol. 189, no. 6, pp. 2833-2842.; Ma D., Cao W., Kapur A., Felder M., Scarlett C.O., Patankar M.S., Li L. Differential expression of proteins in naive and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J. Proteomics, 2013, Vol. 91, pp. 151-163.; Malloci M., Perdomo L., Veerasamy M., Andriantsitohaina R., Simard G., Martinez M.C. Extracellular vesicles: mechanisms in human health and disease. Antioxid. Redox Signal., 2019, Vol. 30, no. 6, pp. 813-856.; Malorni W., Quaranta M.G., Straface E., Falzano L., Fabbri A., Viora M., Fiorentini C. The Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay. J. Immunol., 2003, Vol. 171, no. 8, pp. 4195-4202.; Manzini C., Vene R., Cossu I., Gualco M., Zupo S., Dono M., Spagnolo F., Queirolo P., Moretta L., Mingari M.C., Pietra G. Cytokines can counteract the inhibitory effect of MEK-i on NK-cell function. Oncotarget, 2016, Vol. 7, no. 38, pp. 60858-60871.; Mizrahi S., Markel G., Porgador A., Bushkin Y., Mandelboim O. CD100 on NK cells enhance IFNgamma secretion and killing of target cells expressing CD72. PLoS ONE, 2007, Vol. 2, no. 9, e818. doi:10.1371/journal.pone.0000818.; Nawrot R., Barylski J., Schulze W.X. Incorrectly annotated keratin derived peptide sequences lead to misleading MS/MS data interpretation. J. Proteomics, 2013, Vol. 91, pp. 270-273.; Ochoa M.C., Minute L., Rodriguez I., Garasa S., Perez-Ruiz E., Inoges S., Melero I., Berraondo P. Antibodydependent cell cytotoxicity (ADCC): immunotherapy strategies enhancing effector NK cells. Immunol. Cell Biol., 2017, no. 4, pp. 347-355.; Oykhman P., Timm-McCann M., Xiang R.F., Islam A., Li S.S., Stack D., Huston S.M., Ma L.L., Mody C.H. Requirement and redundancy of the Src family kinases Fyn and Lyn in perforin-dependent killing of Cryptococcus neoformans by NK cells. Infect. Immun., 2013, Vol. 81, no. 10, pp. 3912-3922.; Pesce S., Carlomagno S., Moretta A., Sivori S., Marcenaro E. Uptake of CCR7 by KIR2DS4(+) NK cells is induced upon recognition of certain HLA-C alleles. J. Immunol. Res., 2015, Vol. 2015, 754373. doi:10.1155/2015/754373.; Scheiter M., Lau U., van Ham M., Bulitta B., Grobe L., Garritsen H., Klawonn F., Konig S., Jansch L. Proteome analysis of distinct developmental stages of human natural killer (NK) cells. Mol. Cell. Proteomics, 2013, Vol. 12, no. 5, pp. 1099-1114.; Singh U.P., Singh S., Singh R., Cong Y., Taub D.D., Lillard J.W., Jr. CXCL10-producing mucosal CD4+ T cells, NK cells, and NKT cells are associated with chronic colitis in IL-10(-/-) mice, which can be abrogated by antiCXCL10 antibody inhibition. J. Interferon Cytokine Res., 2008, Vol. 28, no. 1, pp. 31-43.; Sokolov D.I., Markova K.L., Mikhailova V.A., Vyazmina L.P., Milyutina Y.P., Kozyreva A.R., Zhdanova A.A., Malygina D.A., Onokhin K.V., Ivanova A.N., Korenevsky A.V., Selkov S.A. Phenotypic and functional characteristics of microvesicles produced by natural killer cells. Medical Immunology (Russia), 2019, Vol. 21, no. 4, pp. 669-688. doi:10.15789/1563-0625-2019-4-669-688.; Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2016, Vol. 170, pp. 112-123.; Thery C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, Vol. 2, no. 8, pp. 569-579.; Tramontano A.F., Lyubarova R., Tsiakos J., Palaia T., Deleon J.R., Ragolia L. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm., 2010, Vol. 2010, 250476. doi:10.1155/2010/250476.; van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., van Leeuwen T.G., Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Thromb. Haemost., 2014, Vol. 12, no. 7, pp. 1182-1192.; van Helden M.J., Zaiss D.M., Sijts A.J. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS ONE, 2012, Vol. 7, no. 12, e52027. doi:10.1371/journal.pone.0052027.; van Niel G., d’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, Vol. 19, no. 4, pp. 213-228.; Vasilopoulou E., Loubiere L.S., Lash G.E., Ohizua O., McCabe C.J., Franklyn J.A., Kilby M.D., Chan S.Y. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner. Hum. Reprod., 2014, Vol. 29, no. 6, pp. 1161-1172.; Veerman R.E., Gucluler Akpinar G., Eldh M., Gabrielsson S. Immune cell-derived extracellular vesicles –functions and therapeutic applications. Trends Mol. Med., 2019, Vol. 25, no. 5, pp. 382-394.; Voigt J., Malone D.F.G., Dias J., Leeansyah E., Bjorkstrom N.K., Ljunggren H.G., Grobe L., Klawonn F., Heyner M., Sandberg J.K., Jansch L. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur. J. Immunol., 2018, Vol. 48, no. 9, pp. 1456-1469.; Wagstaffe H.R., Nielsen C.M., Riley E.M., Goodier M.R. IL-15 promotes polyfunctional NK cell responses to influenza by boosting IL-12 production. J. Immunol., 2018, Vol. 200, no. 8, pp. 2738-2747.; Wang W., Guo H., Geng J., Zheng X., Wei H., Sun R., Tian Z. Tumor-released galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J. Biol. Chem., 2014, Vol. 289, no. 48, pp. 33311-33319.; Zhu L., Aly M., Kuon R.J., Toth B., Wang H., Karakizlis H., Weimer R., Morath C., Ibrahim E., Ekpoom N., Opelz G., Daniel V. Patients with idiopathic recurrent miscarriage have abnormally high TGFss+ blood NK, NKT and T cells in the presence of abnormally low TGFss plasma levels. BMC Immunol., 2019, Vol. 20, no. 1, 10. doi:10.1186/s12865-019-0290-3.; https://www.mimmun.ru/mimmun/article/view/1976
-
14Academic Journal
المؤلفون: Yakovlev, A.A., Druzhkova, T.A., Guekht, A.B., Gulyaeva, N.V.
المصدر: Biomedical Chemistry: Research and Methods; Vol. 3 No. 4 (2020); e00143 ; Biomedical Chemistry: Research and Methods; Том 3 № 4 (2020); e00143 ; 2618-7531
مصطلحات موضوعية: detergents, dynamic light scattering, blood serum, microvesicles, exosomes, детергенты, динамическое светорассеяние, сыворотка крови, микровезикулы, экзосомы
وصف الملف: application/pdf; text/html
-
15
مصطلحات موضوعية: proinflammatory activity of monocytes, depression, spontaneous clots, депрессивные состояния, тромбообразование, провоспалительная активность моноцитов, микровезикулы, microvesicles, thrombosis, спонтанные сгустки
-
16Academic Journal
المؤلفون: V. A. Mikhailova, K. L. Belyakova, L. P. Vyazmina, A. R. Sheveleva, S. A. Selkov, D. I. Sokolov, В. А. Михайлова, К. Л. Белякова, Л. П. Вязьмина, А. Р. Шевелева, С. А. Сельков, Д. И. Соколов
المساهمون: The present work was supported by the Russian Foundation for Basic Research grant No. 17-04- 00679 (cell cultures) and the Russian Science Foundation grant No. 17-15-01230 (evaluation of the NK-92 cell line phenotype and their microvesicles)., Работа поддержана грантом РФФИ № 17-04- 00679 (культивирование клеток) и грантом РНФ № 17-15-01230 (оценка фенотипических характеристик линии NK-92 и их микрочастиц).
المصدر: Medical Immunology (Russia); Том 20, № 2 (2018); 251-254 ; Медицинская иммунология; Том 20, № 2 (2018); 251-254 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2018-2
مصطلحات موضوعية: поверхностные рецепторы, flow cytometry, microvesicles, microparticles, cell culture, NK-92, cell surface receptors, проточная цитофлуориметрия, микровезикулы, микрочастицы, клеточная культура
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1482/1018; Agouni A., Ducluzeau P. H., Benameur T., Faure S., Sladkova M., Duluc L., Leftheriotis G., Pechanova O., Delibegovic M., Martinez M.C., Andriantsitohaina R. Microparticles from patients with metabolic syndrome induce vascular hypo-reactivity via Fas/Fas-ligand pathway in mice. PLoS ONE, 2011, Vol. 6, no. 11, e27809. doi:10.1371/journal.pone.0027809.; Albanese J., Meterissian S., Kontogiannea M., Dubreuil C., Hand A., Sorba S., Dainiak N. Biologically active Fas antigen and its cognate ligand are expressed on plasma membrane-derived extracellular vesicles. Blood, 1998, Vol. 91, no. 10, pp. 3862-3874.; Camussi G., Deregibus M.C., Bruno S., Grange C., Fonsato V., Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am. J. Cancer Res., 2011, Vol. 1, no. 1, pp. 98-110.; Diehl P., Fricke A., Sander L., Stamm J., Bassler N., Htun N., Ziemann M., Helbing T., El-Osta A., Jowett J.B., Peter K., Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc. Res., 2012, Vol. 93, no. 4, pp. 633-644.; Gelderman M.P., Simak J. Flow cytometric analysis of cell membrane microparticles. Methods Mol. Biol., 2008, Vol. 484, pp. 79-93.; Gyorgy B., Szabo T. G., Pasztoi M., Pal Z., Misjak P., Aradi B., Laszlo V., Pallinger E., Pap E., Kittel A., Nagy G., Falus A., Buzas E. I. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 2011, Vol. 68, no. 16, pp. 2667-2688.; Jayachandran M., Litwiller R.D., Owen W.G., Heit J.A., Behrenbeck T., Mulvagh S.L., Araoz P.A., Budoff M.J., Harman S.M., Miller V.M. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. Am. J. Physiol. Heart Circ. Physiol., 2008, Vol. 295, no. 3, pp. H931-H938.; Mause S.F., Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res., 2010, Vol. 107, no. 9, pp. 1047-1057.; Mikhailova V.A., Ovchinnikova O.M., Zainulina M.S., Sokolov D.I., Selkov S.A. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bulletin of Experimental Biology and Medicine, 2014, Vol. 157, no. 6, pp. 721-727.; Roos M.A., Gennero L., Denysenko T., Reguzzi S., Cavallo G., Pescarmona G.P., Ponzetto A. Microparticles in physiological and in pathological conditions. Cell Biochemistry and Function, 2010, Vol. 28, no. 7, pp. 539-548.; Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2016, Vol. 170, pp. 112-123.; van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., van Leeuwen T.G., Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost., 2014, Vol. 12, no. 7, pp. 1182-1192.; Xu R., Greening D.W., Zhu H.J., Takahashi N., Simpson R.J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest., 2016, Vol. 126, no. 4, pp. 1152-1162.; https://www.mimmun.ru/mimmun/article/view/1482
-
17Academic Journal
المؤلفون: G. O. Kerksehko, A. V. Korenevsky, D. I. Sokolov, S. A. Selkov, Г. О. Керкешко, А. В. Кореневский, Д. И. Соколов, С. А. Сельков
المصدر: Medical Immunology (Russia); Том 20, № 4 (2018); 485-514 ; Медицинская иммунология; Том 20, № 4 (2018); 485-514 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2018-4
مصطلحات موضوعية: межклеточные взаимодействия, hypertension, placenta, trophoblast, microvesicles, cell interactions, гипертензия, плацента, трофобласт, микровезикулы
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1558/1045; Айламазян Э.К., Степанова О.И., Сельков С.А., Соколов Д.И. Клетки иммунной системы матери и клетки трофобласта: «конструктивное сотрудничество» ради достижения совместной цели // Вестник РАМН, 2013. Т. 68, № 11. С. 12-21. [Ailamazyan E.K., Stepanova O.I., Selkov S.A., Sokolov D.I. Cells of immune system of mother аnd trophoblast cells: constructive cooperation for the sake of achievement of the joint purpose. Vestnik RAMN = Annals of the Russian Academy of Medical Sciences, 2013, Vol. 68, no. 11, pp. 12-21. (In Russ.)]; Милованов А.П., Волощук И.Н. Депортированный синцитиотрофобласт и плацентарные микрочастицы в организме матери при нормальной беременности и преэклампсии (28 лет спустя) // Архив патологии, 2017. Т. 79, № 1. С. 61-67. [Milovanov A.P., Voloshchuk I.N. Deported syncytiotrophoblast and placental microparticles in the mother’s body during normal pregnancy and preeclampsia (28 years later). Arkhiv patologii = Archive of Pathology, 2017, Vol. 79, no. 1, pp. 61-67. (In Russ.)]; Abalos E., Cuesta C., Grosso A.L., Chou D., Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol., 2013, Vol. 170, no. 1, pp. 1-7.; Abrahams V.M., Kim Y.M., Straszewski S.L., Romero R., Mor G. Macrophages and apoptotic cell clearance during pregnancy. Am. J. Reprod. Immunol., 2004, Vol. 51, no. 4, pp. 275-282.; Abrahams V.M., Straszewski-Chavez S.L., Guller S., Mor G. First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol. Hum. Reprod., 2004, Vol. 10, no. 1, pp. 55-63.; Abumaree M.H., Chamley L.W., Badri M., El-Muzaini M.F. Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? J. Reprod. Immunol., 2012, Vol. 94, no. 2, pp. 131-141.; Abumaree M.H., Stone P.R., Chamley L.W. The effects of apoptotic, deported human placental trophoblast on macrophages: possible consequences for pregnancy. J. Reprod. Immunol., 2006, Vol. 72, no. 1-2, pp. 33-45.; Aharon A., Brenner B., Katz T., Miyagi Y., Lanir N. Tissue factor and tissue factor pathway inhibitor levels in trophoblast cells: implications for placental hemostasis. Thromb. Haemost., 2004, Vol. 92, no. 4, pp. 776-786.; Aharon A., Katzenell S., Tamari T., Brenner B. Microparticles bearing tissue factor and tissue factor pathway inhibitor in gestational vascular complications. J. Thromb. Haemost., 2009, Vol. 7, no. 6, pp. 1047-1050.; Alavi A., Axford J.S. The pivotal nature of sugars in normal physiology and disease. Wien Med. Wochenschr., 2006, Vol. 156, no. 1-2, pp. 19-33.; Allaire A.D., Ballenger K.A., Wells S.R., McMahon M.J., Lessey B.A. Placental apoptosis in preeclampsia. Obstet. Gynecol., 2000, Vol. 96, no. 2, pp. 271-276.; Almeida A., Kolarich D. The promise of protein glycosylation for personalised medicine. Biochim. Biophys. Acta, 2016, Vol. 1860, no. 8, pp. 1583-1595.; Aly A.S., Khandelwal M., Zhao J., Mehmet A.H., Sammel M.D., Parry S. Neutrophils are stimulated by syncytiotrophoblast microvillous membranes to generate superoxide radicals in women with preeclampsia. Am. J. Obstet. Gynecol., 2004, Vol. 190, no. 1, pp. 252-258.; Amsalem H., Kwan M., Hazan A., Zhang J., Jones R.L., Whittle W., Kingdom J.C., Croy B.A., Lye S.J., Dunk C.E. Identification of a novel neutrophil population: proangiogenic granulocytes in second-trimester human decidua. J. Immunol., 2014, Vol. 193, no. 6, pp. 3070-3079.; Ananth C.V., Keyes K.M., Wapner R.J. Pre-eclampsia rates in the United States, 1980-2010: age-periodcohort analysis. BMJ, 2013, Vol. 347, f6564. doi:10.1136/bmj.f6564.; Anderson H.C., Mulhall D., Garimella R. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab. Invest., 2010, Vol. 90, no. 11, pp. 1549-1557.; Andreu Z., Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol., 2014, Vol. 5, p. 442.; Apps R., Murphy S.P., Fernando R., Gardner L., Ahad T., Moffett A. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology, 2009, Vol. 127, no. 1, pp. 26-39.; Arck P.C., Hecher K., Solano M.E. B cells in pregnancy: functional promiscuity or tailored function? Biol. Reprod., 2015, Vol. 92, no. 1, p. 12.; Atay S., Gercel-Taylor C., Suttles J., Mor G., Taylor D.D. Trophoblast-derived exosomes mediate monocyte recruitment and differentiation. Am. J. Reprod. Immunol., 2011, Vol. 65, no. 1, pp. 65-77.; Atay S., Gercel-Taylor C., Taylor D.D. Human trophoblast-derived exosomal fibronectin induces proinflammatory IL-1beta production by macrophages. Am. J. Reprod. Immunol., 2011, Vol. 66, no. 4, pp. 259-269.; Attwood H.D., Park W.W. Embolism to the lungs by trophoblast. J. Obstet. Gynaecol. Br. Commonw., 1961, Vol. 68, no. 4, pp. 611-617.; Baig S., Kothandaraman N., Manikandan J., Rong L., Ee K.H., Hill J., Lai C.W., Tan W.Y., Yeoh F., Kale A., Su L.L., Biswas A., Vasoo S., Choolani M. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin. Proteomics, 2014, Vol. 11, no. 1, p. 40.; Baig S., Lim J.Y., Fernandis A.Z., Wenk M.R., Kale A., Su L.L., Biswas A., Vasoo S., Shui G., Choolani M. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta, 2013, Vol. 34, no. 5, pp. 436-442.; Bao Y., Cao X. The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. J. Autoimmun., 2014, Vol. 55, pp. 10-23.; Batista B.S., Eng W.S., Pilobello K.T., Hendricks-Munoz K.D., Mahal L.K. Identification of a conserved glycan signature for microvesicles. J. Proteome Res., 2011, Vol. 10, no. 10, pp. 4624-4633.; Biermann M., Maueroder C., Brauner J.M., Chaurio R., Janko C., Herrmann M., Munoz L.E. Surface code – biophysical signals for apoptotic cell clearance. Phys. Biol., 2013, Vol. 10, no. 6, 065007. doi:10.1088/1478- 3975/10/6/065007.; Brinkman van der Linden E.C., Hurtado-Ziola N., Hayakawa T., Wiggleton L., Benirschke K., Varki A., Varki N. Human-specific expression of Siglec-6 in the placenta. Glycobiology, 2007, Vol. 17, no. 9, pp. 922-931.; Burton G.J. Deportation of syncytial sprouts from the term human placenta. Placenta, 2011, Vol. 32, no. 1, pp. 96-98.; Burton G.J., Fowden A.L. The placenta: a multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2015, Vol. 370, no. 1663, 20140066. doi:10.1098/rstb.2014.0066.; Burton G.J., Jones C.J. Syncytial knots, sprouts, apoptosis, and trophoblast deportation from the human placenta. Taiwan J. Obstet. Gynecol., 2009, Vol. 48, no. 1, pp. 28-37.; Burton G.J., Woods A.W., Jauniaux E., Kingdom J.C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta, 2009, Vol. 30, no. 6, pp. 473-482.; Burton G.J., Yung H.W. Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens., 2011, Vol. 1, no. 1-2, pp. 72-78.; Caniggia I., Winter J., Lye S.J., Post M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta, 2000, Vol. 21, Suppl. A, pp. S25-S30.; Carosella E.D., Gregori S., LeMaoult J. The tolerogenic interplay(s) among HLA-G, myeloid APCs, and regulatory cells. Blood, 2011, Vol. 118, no. 25, pp. 6499-6505.; Chamley L.W., Chen Q., Ding J., Stone P.R., Abumaree M. Trophoblast deportation: just a waste disposal system or antigen sharing? J. Reprod. Immunol., 2011, Vol. 88, no. 2, pp. 99-105.; Chen D.B., Wang W. Human placental micrornas and preeclampsia. Biol. Reprod., 2013, Vol. 88, no. 5, p. 130.; Chen Q., Chen L., Liu B., Vialli C., Stone P., Ching L.M., Chamley L. The role of autocrine TGFbeta1 in endothelial cell activation induced by phagocytosis of necrotic trophoblasts: a possible role in the pathogenesis of pre-eclampsia. J. Pathol., 2010, Vol. 221, no. 1, pp. 87-95.; Chen Q., Guo F., Jin H.Y., Lau S., Stone P., Chamley L. Phagocytosis of apoptotic trophoblastic debris protects endothelial cells against activation. Placenta, 2012, Vol. 33, no. 7, pp. 548-553.; Chen Q., Stone P.R., McCowan L.M., Chamley L.W. Phagocytosis of necrotic but not apoptotic trophoblasts induces endothelial cell activation. Hypertension, 2006, Vol. 47, no. 1, pp. 116-121.; Chen Y., Huang Y., Jiang R., Teng Y. Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. Int. J. Gynaecol. Obstet., 2012, Vol. 119, no. 3, pp. 234-238.; Chua S., Wilkins T., Sargent I., Redman C. Trophoblast deportation in pre-eclamptic pregnancy. Br. J. Obstet. Gynaecol., 1991, Vol. 98, no. 10, pp. 973-979.; Cockell A.P., Learmont J.G., Smarason A.K., Redman C.W., Sargent I.L., Poston L. Human placental syncytiotrophoblast microvillous membranes impair maternal vascular endothelial function. Br. J. Obstet. Gynaecol., 1997, Vol. 104, no. 2, pp. 235-240.; Colombo M., Raposo G., Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, Vol. 30, pp. 255-289.; Darmochwal-Kolarz D., Leszczynska-Gorzelak B., Rolinski J., Oleszczuk J. The expression and concentrations of Fas/APO-1 (CD95) antigen in patients with severe pre-eclampsia. J. Reprod. Immunol., 2001, Vol. 49, no. 2, pp. 153-164.; Darmochwal-Kolarz D., Rolinski J., Leszczynska-Gorzelak B., Oleszczuk J. Fas antigen expression on the decidual lymphocytes of pre-eclamptic patients. Am. J. Reprod. Immunol., 2000, Vol. 43, no. 4, pp. 197-201.; Dignat-George F., Camoin-Jau L., Sabatier F., Arnoux D., Anfosso F., Bardin N., Veit V., Combes V., Gentile S., Moal V., Sanmarco M., Sampol J. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb. Haemost., 2004, Vol. 91, no. 4, pp. 667-673.; Djurisic S., Hviid T.V. HLA class Ib molecules and immune cells in pregnancy and preeclampsia. Front. Immunol., 2014, Vol. 5, p. 652.; Douglas G.W., Thomas L., Carr M., Cullen N.M., Morris R. Trophoblast in the circulating blood during pregnancy. Am. J. Obstet. Gynecol., 1959, Vol. 78, no. 5, pp. 960-973.; Dragovic R.A., Collett G.P., Hole P., Ferguson D.J., Redman C.W., Sargent I.L., Tannetta D.S. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence nanoparticle tracking analysis. Methods, 2015, Vol. 87, pp. 64-74.; Dragovic R.A., Southcombe J.H., Tannetta D.S., Redman C.W., Sargent I.L. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women. Biol. Reprod., 2013, Vol. 89, no. 6, р. 151.; Duckitt K., Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ, 2005, Vol. 330, p. 565.; el. Andaloussi S., Mager I., Breakefield X.O., Wood M.J. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov., 2013, Vol. 12, no. 5, pp. 347-357.; Escudero C.A., Herlitz K., Troncoso F., Acurio J., Aguayo C., Roberts J.M., Truong G., Duncombe G., Rice G., Salomon C. Role of extracellular vesicles and microRNAs on dysfunctional angiogenesis during preeclamptic pregnancies. Front. Physiol., 2016, Vol. 7, p. 98.; Ferreira L.M., Meissner T.B., Tilburgs T., Strominger J.L. HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol., 2017, Vol. 38, no. 4, pp. 272-286.; Frangsmyr L., Baranov V., Nagaeva O., Stendahl U., Kjellberg L., Mincheva-Nilsson L. Cytoplasmic microvesicular form of Fas ligand in human early placenta: switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol. Hum. Reprod., 2005, Vol. 11, no. 1, pp. 35-41.; Franz S., Herrmann K., Furnrohr B.G., Sheriff A., Frey B., Gaipl U.S., Voll R.E., Kalden J.R., Jack H.M., Herrmann M. After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ., 2007, Vol. 14, no. 4, pp. 733-742.; Fu G., Brkic J., Hayder H., Peng C. MicroRNAs in human placental development and pregnancy complications. Int. J. Mol. Sci., 2013, Vol. 14, no. 3, pp. 5519-5544.; Gardiner C., Tannetta D.S., Simms C.A., Harrison P., Redman C.W., Sargent I.L. Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PLoS ONE, 2011, Vol. 6, no. 10, e26313. doi:10.1371/journal.pone.0026313.; Gelber S.E., Brent E., Redecha P., Perino G., Tomlinson S., Davisson R.L., Salmon J.E. Prevention of defective placentation and pregnancy loss by blocking innate immune pathways in a syngeneic model of placental insufficiency. J. Immunol., 2015, Vol. 195, no. 3, pp. 1129-1138.; Germain S.J., Sacks G.P., Sooranna S.R., Sargent I.L., Redman C.W. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J. Immunol., 2007, Vol. 178, no. 9, pp. 5949-5956.; Gilani S.I., Weissgerber T.L., Garovic V.D., Jayachandran M. Preeclampsia and extracellular vesicles. Curr. Hypertens. Rep., 2016, Vol. 18, no. 9, p. 68.; Goldman-Wohl D., Yagel S. Preeclampsia – a placenta developmental biology perspective. J. Reprod. Immunol., 2009, Vol. 82, no. 2, pp. 96-99.; Gonzalez-Quintero V.H., Smarkusky L.P., Jimenez J.J., Mauro L.M., Jy W., Hortsman L.L., O’Sullivan M.J., Ahn Y.S. Elevated plasma endothelial microparticles: preeclampsia versus gestational hypertension. Am. J. Obstet. Gynecol., 2004, Vol. 191, no. 4, pp. 1418-1424.; Goodridge J.P., Burian A., Lee N., Geraghty D.E. HLA-F and MHC class I open conformers are ligands for NK cell Ig-like receptors. J. Immunol., 2013, Vol. 191, no. 7, pp. 3553-3562.; Goswami D., Tannetta D.S., Magee L.A., Fuchisawa A., Redman C.W., Sargent I.L., von Dadelszen P. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta, 2006, Vol. 27, no. 1, pp. 56-61.; Gould S.J., Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles, 2013, Vol. 2, no. 1, 20389. doi:10.3402/jev.v2i0.20389.; Guller S., Tang Z., Ma Y.Y., Di Santo S., Sager R., Schneider H. Protein composition of microparticles shed from human placenta during placental perfusion: potential role in angiogenesis and fibrinolysis in preeclampsia. Placenta, 2011, Vol. 32, no. 1, pp. 63-69.; Gupta A.K., Hasler P., Holzgreve W., Gebhardt S., Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol., 2005, Vol. 66, no. 11, pp. 1146-1154.; Gupta A.K., Rusterholz C., Holzgreve W., Hahn S. Syncytiotrophoblast micro-particles do not induce apoptosis in peripheral T lymphocytes, but differ in their activity depending on the mode of preparation. J. Reprod. Immunol., 2005, Vol. 68, no. 1-2, pp. 15-26.; Gupta A.K., Rusterholz C., Huppertz B., Malek A., Schneider H., Holzgreve W., Hahn S. A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells. Placenta, 2005, Vol. 26, no. 1, pp. 59-66.; Hackmon R., Pinnaduwage L., Zhang J., Lye S.J., Geraghty D.E., Dunk C.E. Definitive class I human leukocyte antigen expression in gestational placentation: HLA-F, HLA-E, HLA-C, and HLA-G in extravillous trophoblast invasion on placentation, pregnancy, and parturition. Am. J. Reprod. Immunol., 2017, Vol. 77, no. 6, e12643. doi:10.1111/aji.12643.; Han J., Yang B.P., Li Y.L., Li H.M., Zheng X.H., Yu L.L., Zhang Q., Zheng Y.R., Yi P., Li L., Guo J.X., Zhou Y.G. RhoB/ROCK mediates oxygen-glucose deprivation-stimulated syncytiotrophoblast microparticle shedding in preeclampsia. Cell Tissue Res., 2016, Vol. 366, no. 2, pp. 411-425.; He Y.D., Li Y.L., Chen Q. Expression of various subtypes of human leukocyte antigen-G in placenta of patients complicated with severe pre-eclampsia. Zhonghua Fu Chan Ke Za Zhi, 2012, Vol. 47, no. 1, pp. 29-32.; Hedlund M., Stenqvist A.C., Nagaeva O., Kjellberg L., Wulff M., Baranov V., Mincheva-Nilsson L. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J. Immunol., 2009, Vol. 183, no. 1, pp. 340-351.; Hoegh A.M., Tannetta D., Sargent I., Borup R., Nielsen F.C., Redman C., Sorensen S., Hviid T.V. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells. BJOG, 2006, Vol. 113, no. 11, pp. 1270-1279.; Holder B.S., Tower C.L., Forbes K., Mulla M.J., Aplin J.D., Abrahams V.M. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology, 2012, Vol. 136, no. 2, pp. 184-191.; Holder B.S., Tower C.L., Jones C.J., Aplin J.D., Abrahams V.M. Heightened pro-inflammatory effect of preeclamptic placental microvesicles on peripheral blood immune cells in humans. Biol. Reprod., 2012, Vol. 86, no. 4, p. 103.; Holland O.J., Linscheid C., Hodes H.C., Nauser T.L., Gilliam M., Stone P., Chamley L.W., Petroff M.G. Minor histocompatibility antigens are expressed in syncytiotrophoblast and trophoblast debris: implications for maternal alloreactivity to the fetus. Am. J. Pathol., 2012, Vol. 180, no. 1, pp. 256-266.; Hube F., Reverdiau P., Iochmann S., Trassard S., Thibault G., Gruel Y. Demonstration of a tissue factor pathway inhibitor 2 messenger RNA synthesis by pure villous cytotrophoblast cells isolated from term human placentas. Biol. Reprod., 2003, Vol. 68, no. 5, pp. 1888-1894.; Huppertz B., Kadyrov M., Kingdom J.C. Apoptosis and its role in the trophoblast. Am. J. Obstet. Gynecol., 2006, Vol. 195, no. 1, pp. 29-39.; Huppertz B., Kingdom J., Caniggia I., Desoye G., Black S., Korr H., Kaufmann P. Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Placenta, 2003, Vol. 24, no. 2-3, pp. 181-190.; Ikle F.A. Dissemination of syncytial trophoblastic cells in the maternal blood stream during pregnancy. Bull. Schweiz Akad. Med. Wiss., 1964, Vol. 20, pp. 62-72.; Ishitani A., Sageshima N., Lee N., Dorofeeva N., Hatake K., Marquardt H., Geraghty D.E. Protein expression and peptide binding suggest unique and interacting functional roles for HLA-E, F, and G in maternal-placental immune recognition. J. Immunol., 2003, Vol. 171, no. 3, pp. 1376-1384.; Jaameri K.E., Koivuniemi A.P., Carpen E.O. Occurrence of trophoblasts in the blood of toxaemic patients. Gynaecologia, 1965, Vol. 160, no. 5, pp. 315-320.; Jauniaux E., Hempstock J., Greenwold N., Burton G.J. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am. J. Pathol., 2003, Vol. 162, no. 1, pp. 115-125.; Jia R., Li J., Rui C., Ji H., Ding H., Lu Y., De W., Sun L. Comparative proteomic profile of the human umbilical cord blood exosomes between normal and preeclampsia pregnancies with high-resolution mass spectrometry. Cell. Physiol. Biochem., 2015, Vol. 36, no. 6, pp. 2299-2306.; Johansen M., Redman C.W., Wilkins T., Sargent I.L. Trophoblast deportation in human pregnancy – its relevance for pre-eclampsia. Placenta, 1999, Vol. 20, no. 7, pp. 531-539.; Kalra H., Drummen G.P., Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int. J. Mol. Sci., 2016, Vol. 17, no. 2, p. 170.; Knight M., Redman C.W., Linton E.A., Sargent I.L. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br. J. Obstet. Gynaecol., 1998, Vol. 105, no. 6, pp. 632-640.; Kshirsagar S.K., Alam S.M., Jasti S., Hodes H., Nauser T., Gilliam M., Billstrand C., Hunt J.S., Petroff M.G. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta, 2012, Vol. 33, no. 12, pp. 982-990.; Lacroix R., Plawinski L., Robert S., Doeuvre L., Sabatier F., Martinez de Lizarrondo S., Mezzapesa A., Anfosso F., Leroyer A.S., Poullin P., Jourde N., Njock M.S., Boulanger C.M., Angles-Cano E., Dignat-George F. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica, 2012, Vol. 97, no. 12, pp. 1864-1872.; Lavialle C., Cornelis G., Dupressoir A., Esnault C., Heidmann O., Vernochet C., Heidmann T. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, Vol. 368, no. 1626, 20120507. doi:10.1098/rstb.2012.0507.; Lee J.C., Lee K.M., Kim D.W., Heo D.S. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol., 2004, Vol. 172, no. 12, pp. 7335-7340.; Lee X., Keith J.C., Jr., Stumm N., Moutsatsos I., McCoy J.M., Crum C.P., Genest D., Chin D., Ehrenfels C., Pijnenborg R., van Assche F.A., Mi S. Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta, 2001, Vol. 22, no. 10, pp. 808-812.; le Fevre M.L., U.S. Preventive Services Task Force Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med., 2014, Vol. 161, no. 11, pp. 819-826.; Leung D.N., Smith S.C., To K.F., Sahota D.S., Baker P.N. Increased placental apoptosis in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol., 2001, Vol. 184, no. 6, pp. 1249-1250.; Li H., Han L., Yang Z., Huang W., Zhang X., Gu Y., Li Y., Liu X., Zhou L., Hu J., Yu M., Yang J., Li Y., Zheng Y., Guo J., Han J., Li L. Differential proteomic analysis of syncytiotrophoblast extracellular vesicles from early-onset severe preeclampsia, using 8-plex iTRAQ labeling coupled with 2D nano LC-MS/MS. Cell. Physiol. Biochem., 2015, Vol. 36, no. 3, pp. 1116-1130.; Li L., Schust D.J. Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta. Reprod. Biol. Endocrinol., 2015, Vol. 13, p. 71.; Liang Y., Eng W.S., Colquhoun D.R., Dinglasan R.R., Graham D.R., Mahal L.K. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J. Biol. Chem., 2014, Vol. 289, no. 47, pp. 32526-32537.; Linscheid C., Heitmann E., Singh P., Wickstrom E., Qiu L., Hodes H., Nauser T., Petroff M.G. Trophoblast expression of the minor histocompatibility antigen HA-1 is regulated by oxygen and is increased in placentas from preeclamptic women. Placenta, 2015, Vol. 36, no. 8, pp. 832-838.; Lisonkova S., Joseph K.S. Incidence of preeclampsia: risk factors and outcomes associated with early-versus late-onset disease. Am. J. Obstet. Gynecol., 2013, Vol. 209, no. 6, p. 544.; Lo Y.M., Leung T.N., Tein M.S., Sargent I.L., Zhang J., Lau T.K., Haines C.J., Redman C.W. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin. Chem., 1999, Vol. 45, no. 2, pp. 184-188.; Lok C.A., van der Post J.A., Sargent I.L., Hau C.M., Sturk A., Boer K., Nieuwland R. Changes in microparticle numbers and cellular origin during pregnancy and preeclampsia. Hypertens. Pregnancy, 2008, Vol. 27, no. 4, pp. 344-360.; Lokossou A.G., Toudic C., Barbeau B. Implication of human endogenous retrovirus envelope proteins in placental functions. Viruses, 2014, Vol. 6, no. 11, pp. 4609-4627.; Lu J., Zhou W.H., Ren L., Zhang Y.Z. CXCR4, CXCR7, and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia. Exp. Mol. Pathol., 2016, Vol. 100, no. 1, pp. 184-191.; Lyons J.J., Milner J.D., Rosenzweig S.D. Glycans instructing immunity: the emerging role of altered glycosylation in clinical immunology. Front. Pediatr., 2015, Vol. 3, p. 54.; Macey M.G., Bevan S., Alam S., Verghese L., Agrawal S., Beski S., Thuraisingham R., MacCallum P.K. Platelet activation and endogenous thrombin potential in pre-eclampsia. Thromb. Res., 2010, Vol. 125, no. 3, e76-e81. doi:10.1016/j.thromres.2009.09.013.; Marques F.K., Campos F.M., Filho O.A., Carvalho A.T., Dusse L.M., Gomes K.B. Circulating microparticles in severe preeclampsia. Clin. Chim. Acta, 2012, Vol. 414, pp. 253-258.; Meekins J.W., Pijnenborg R., Hanssens M., McFadyen I.R., van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br. J. Obstet. Gynaecol., 1994, Vol. 101, no. 8, pp. 669-674.; Meesmann H.M., Fehr E.M., Kierschke S., Herrmann M., Bilyy R., Heyder P., Blank N., Krienke S., Lorenz H.M., Schiller M. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J. Cell. Sci., 2010, Vol. 123, Pt 19, pp. 3347-3356.; Messerli M., May K., Hansson S.R., Schneider H., Holzgreve W., Hahn S., Rusterholz C. Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes. Placenta, 2010, Vol. 31, no. 2, pp. 106-112.; Mikhailova V.A., Ovchinnikova O.M., Zainulina M.S., Sokolov D.I., Selkov S.A. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull. Exp. Biol. Med., 2014, Vol. 157, no. 6, pp. 751-756.; Mincheva-Nilsson L., Baranov V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am. J. Reprod. Immunol., 2014, Vol. 72, no. 5, pp. 440-457.; Mincheva-Nilsson L., Baranov V. The role of placental exosomes in reproduction. Am. J. Reprod. Immunol., 2010, Vol. 63, no. 6, pp. 520-533.; Mincheva-Nilsson L., Nagaeva O., Chen T., Stendahl U., Antsiferova J., Mogren I., Hernestal J., Baranov V. Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J. Immunol., 2006, Vol. 176, no. 6, pp. 3585-3592.; Mitchell M.D., Peiris H.N., Kobayashi M., Koh Y.Q., Duncombe G., Illanes S.E., Rice G.E., Salomon C. Placental exosomes in normal and complicated pregnancy. Am. J. Obstet. Gynecol., 2015, Vol. 213, Suppl. 4, pp. S173-S181.; Motta-Mejia C., Kandzija N., Zhang W., Mhlomi V., Cerdeira A.S., Burdujan A., Tannetta D., Dragovic R., Sargent I.L., Redman C.W., Kishore U., Vatish M. Placental vesicles carry active endothelial nitric oxide synthase and their activity is reduced in preeclampsia. Hypertension, 2017, Vol. 70, no. 2, pp. 372-381.; Mouillet J.F., Ouyang Y., Coyne C.B., Sadovsky Y. MicroRNAs in placental health and disease. Am. J. Obstet. Gynecol., 2015, Vol. 213, Suppl. 4, pp. S163-S172.; Moulin V., Andris F., Thielemans K., Maliszewski C., Urbain J., Moser M. B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J. Exp. Med., 2000, Vol. 192, no. 4, pp. 475-482.; Myatt L., Redman C.W., Staff A.C., Hansson S., Wilson M.L., Laivuori H., Poston L., Roberts J.M.; Global Pregnancy CoLaboratory. Strategy for standardization of preeclampsia research study design. Hypertension, 2014, Vol. 63, no. 6, pp. 1293-1301.; Nielsen C.T., Ostergaard O., Johnsen C., Jacobsen S., Heegaard N.H. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum., 2011, Vol. 63, no. 10, pp. 3067-3077.; Orozco A.F., Jorgez C.J., Ramos-Perez W.D., Popek E.J., Yu X., Kozinetz C.A., Bischoff F.Z., Lewis D.E. Placental release of distinct DNA-associated micro-particles into maternal circulation: reflective of gestation time and preeclampsia. Placenta, 2009, Vol. 30, no. 10, pp. 891-897.; Ouyang Y., Bayer A., Chu T., Tyurin V.A., Kagan V.E., Morelli A.E., Coyne C.B., Sadovsky Y. Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta, 2016, Vol. 47, pp. 86-95.; Preston R.A., Jy W., Jimenez J.J., Mauro L.M., Horstman L.L., Valle M., Aime G., Ahn Y.S. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension, 2003, Vol. 41, no. 2, pp. 211-217.; Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell. Biol., 2013, Vol. 200, no. 4, pp. 373-383.; Reddy A., Zhong X.Y., Rusterholz C., Hahn S., Holzgreve W., Redman C.W., Sargent I.L. The effect of labour and placental separation on the shedding of syncytiotrophoblast microparticles, cell-free DNA and mRNA in normal pregnancy and pre-eclampsia. Placenta, 2008, Vol. 29, no. 11, pp. 942-949.; Redman C.W., Sargent I.L. Latest advances in understanding preeclampsia. Science, 2005, Vol. 308, no. 5728, pp. 1592-1594.; Redman C.W., Tannetta D.S., Dragovic R.A., Gardiner C., Southcombe J.H., Collett G.P., Sargent I.L. Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta, 2012, Vol. 33, pp. S48-S54.; Resic Karara J., Zekic Tomas S., Marusic J., Roje D., Kuzmic Prusac I. Fas and FasL expression in placentas complicated with intrauterine growth retardation with and without preeclampsia. J. Matern. Fetal Neonatal Med., 2016, Vol. 29, no. 7, pp. 1154-1159.; Reverdiau P., Jarousseau A.C., Thibault G., Khalfoun B., Watier H., Lebranchu Y., Bardos P., Gruel Y. Tissue factor activity of syncytiotrophoblast plasma membranes and tumoral trophoblast cells in culture. Thromb. Haemost., 1995, Vol. 73, no. 1, pp. 49-54.; Roberts J.M., August P.A., Bakris G., Barton J.R., Bernstein I.M., Gaiser R.R., Granger J.P., Jeyabalan A., Johnson D.D., Karumanchi S., Lindheimer M., Owens M.Y., Saade G.R., Sibai B.M., Spong C.Y., Tsigas E., Joseph G.F., O’Reilly N., Politzer A., Son S., Ngaiza K. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol., 2013, Vol. 122, no. 5, pp. 1122-1131.; Roberts J.M., Escudero C. The placenta in preeclampsia. Pregnancy Hypertens., 2012, Vol. 2, no. 2, pp. 72-83.; Roberts J.M., Lain K.Y. Recent insights into the pathogenesis of pre-eclampsia. Placenta, 2002, Vol. 23, no. 5, pp. 359-372.; Roberts J.M., Redman C.W. Pre-eclampsia: more than pregnancy-induced hypertension. Lancet, 1993, Vol. 341, no. 8858, pp. 1447-1451.; Sabapatha A., Gercel-Taylor C., Taylor D.D. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am. J. Reprod. Immunol., 2006, Vol. 56, no. 5-6, pp. 345-355.; Sabatier F., Darmon P., Hugel B., Combes V., Sanmarco M., Velut J.G., Arnoux D., Charpiot P., Freyssinet J.M., Oliver C., Sampol J., Dignat-George F. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes, 2002, Vol. 51, no. 9, pp. 2840-2845.; Sacks G.P., Studena K., Sargent K., Redman C.W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am. J. Obstet. Gynecol., 1998, Vol. 179, no. 1, pp. 80-86.; Salomon C., Guanzon D., Scholz-Romero K., Longo S., Correa P., Illanes S.E., Rice G.E. Placental exosomes as early biomarker of preeclampsia – potential role of exosomal microRNAs across gestation. J. Clin. Endocrinol. Metab., 2017, Vol. 102, no. 9, pp. 3182-3194; Salomon C., Kobayashi M., Ashman K., Sobrevia L., Mitchell M.D., Rice G.E. Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes. PLoS ONE, 2013, Vol. 8, no. 11, e79636. doi:10.1371/journal. pone.0079636.; Salomon C., Rice G.E. Role of exosomes in placental homeostasis and pregnancy disorders. Prog. Mol. Biol. Transl. Sci., 2017, Vol. 145, pp. 163-179.; Salomon C., Ryan J., Sobrevia L., Kobayashi M., Ashman K., Mitchell M., Rice G.E. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS ONE, 2013, Vol. 8, no. 7, e68451. doi:10.1371/journal.pone.0068451.; Salomon C., Scholz-Romero K., Sarker S., Sweeney E., Kobayashi M., Correa P., Longo S., Duncombe G., Mitchell M.D., Rice G.E., Illanes S.E. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes, 2016, Vol. 65, no. 3, pp. 598-609.; Salomon C., Torres M.J., Kobayashi M., Scholz-Romero K., Sobrevia L., Dobierzewska A., Illanes S.E., Mitchell M.D., Rice G.E. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS ONE, 2014, Vol. 9, no. 6, e98667. doi:10.1371/journal.pone.0098667.; Sargent I. Microvesicles and pre-eclampsia. Pregnancy Hypertens., 2013, Vol. 3, no. 2, p. 58.; Schmidt M., Hoffmann B., Beelen D., Gellhaus A., Winterhager E., Kimmig R., Kasimir-Bauer S. Detection of circulating trophoblast particles in peripheral maternal blood in preeclampsia complicated pregnancies. Hypertens. Pregnancy, 2008, Vol. 27, no. 2, pp. 131-142.; Schmorl G. Pathologisch-anatomische untersuchungen über puerperal-eklampsie (pathological and anatomical examinations of puerperal-eclampsia). Leipzig: FCW Vogel, 1893. 106 p.; Schneider H. Characterization of extracellular vesicles in plasma of pregnant women using multicolor flow cytometry and nanoparticle tracking analysis. Biol. Reprod., 2013, Vol. 89, no. 6, p. 152.; Schrocksnadel H., Daxenbichler G., Artner E., Steckel-Berger G., Dapunt O. Tumor markers in hypertensive disorders of pregnancy. Gynecol. Obstet. Invest., 1993, Vol. 35, no. 4, pp. 204-208.; Shen F., Wei J., Snowise S., DeSousa J., Stone P., Viall C., Chen Q., Chamley L. Trophoblast debris extruded from preeclamptic placentae activates endothelial cells: a mechanism by which the placenta communicates with the maternal endothelium. Placenta, 2014, Vol. 35, no. 10, pp. 839-847.; Simak J., Gelderman M.P. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus. Med. Rev., 2006, Vol. 20, no. 1, pp. 1-26.; Smarason A.K., Sargent I.L., Starkey P.M., Redman C.W. The effect of placental syncytiotrophoblast microvillous membranes from normal and pre-eclamptic women on the growth of endothelial cells in vitro. Br. J. Obstet. Gynaecol., 1993, Vol. 100, no. 10, pp. 943-949.; Smith N.C., Brush M.G., Luckett S. Preparation of human placental villous surface membrane. Nature, 1974, Vol. 252, no. 5481, pp. 302-303.; Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2016, Vol. 170, pp. 112-123.; Solier C., Aguerre-Girr M., Lenfant F., Campan A., Berrebi A., Rebmann V., Grosse-Wilde H., Le Bouteiller P. Secretion of pro-apoptotic intron 4-retaining soluble HLA-G1 by human villous trophoblast. Eur. J. Immunol., 2002, Vol. 32, no. 12, pp. 3576-3586.; Southcombe J., Tannetta D., Redman C., Sargent I. The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS ONE, 2011, Vol. 6, no. 5, e20245. doi:10.1371/journal.pone.0020245.; Stenqvist A.C., Nagaeva O., Baranov V., Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosomemediated immune privilege of the fetus. J. Immunol., 2013, Vol. 191, no. 11, pp. 5515-5523.; Stepanian A., Bourguignat L., Hennou S., Coupaye M., Hajage D., Salomon L., Alessi M.C., Msika S., de Prost D. Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring), 2013, Vol. 21, no. 11, pp. 2236-2243.; Sukhikh G.T., Ziganshina M.M., Nizyaeva N.V., Kulikova G.V., Volkova J.S., Yarotskaya E.L., Kan N.E., Shchyogolev A.I., Tyutyunnik V.L. Differences of glycocalyx composition in the structural elements of placenta in preeclampsia. Placenta, 2016, Vol. 43, pp. 69-76.; Tang Y., Liu H., Li H., Peng T., Gu W., Li X. Hypermethylation of the HLA-G promoter is associated with preeclampsia. Mol. Hum. Reprod., 2015, Vol. 21, no. 9, pp. 736-744.; Tannetta D., Collett G., Vatish M., Redman C., Sargent I. Syncytiotrophoblast extracellular vesicles – circulating biopsies reflecting placental health. Placenta, 2017, Vol. 52, pp. 134-138.; Tannetta D., Dragovic R., Alyahyaei Z., Southcombe J. Extracellular vesicles and reproduction-promotion of successful pregnancy. Cell. Mol. Immunol., 2014, Vol. 11, no. 6, pp. 548-563.; Tannetta D., Mackeen M., Kessler B., Sargent I., Redman C. Multi-dimensional protein identification technology analysis of syncytiotrophoblast vesicles released from perfused preeclampsia placentas. Pregnancy Hypertens., 2012, Vol. 2, no. 3, pp. 201-202.; Tannetta D., Masliukaite I., Vatish M., Redman C., Sargent I. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J. Reprod. Immunol., 2017, Vol. 119, pp. 98-106.; Tannetta D., Sargent I. Placental disease and the maternal syndrome of preeclampsia: missing links? Curr. Hypertens. Rep., 2013, Vol. 15, no. 6, pp. 590-599.; Tannetta D.S., Dragovic R.A., Gardiner C., Redman C.W., Sargent I.L. Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: expression of Flt-1 and endoglin. PLoS ONE, 2013, Vol. 8, no. 2, e56754. doi:10.1371/journal.pone.0056754.; Tannetta D.S., Hunt K., Jones C.I., Davidson N., Coxon C.H., Ferguson D., Redman C.W., Gibbins J.M., Sargent I.L., Tucker K.L. Syncytiotrophoblast extracellular vesicles from pre-eclampsia placentas differentially affect platelet function. PLoS ONE, 2015, Vol. 10, no. 11, e0142538. doi:10.1371/journal.pone.0142538.; Teng Y., Jiang R., Lin Q., Ding C., Ye Z. The relationship between plasma and placental tissue factor, and tissue factor pathway inhibitors in severe pre-eclampsia patients. Thromb. Res., 2010, Vol. 126, no. 1, e41-e45. doi:10.1016/j.thromres.2010.02.012.; Thibault G., Degenne D., Girard A.C., Guillaumin J.M., Lacord M., Bardos P. The inhibitory effect of human syncytiotrophoblast plasma membrane vesicles on in vitro lymphocyte proliferation is associated with reduced interleukin 2 receptor expression. Cell. Immunol., 1991, Vol. 138, no. 1, pp. 165-174.; Tolosa J.M., Schjenken J.E., Clifton V.L., Vargas A., Barbeau B., Lowry P., Maiti K., Smith R. The endogenous retroviral envelope protein syncytin-1 inhibits LPS/PHA-stimulated cytokine responses in human blood and is sorted into placental exosomes. Placenta, 2012, Vol. 33, no. 11, pp. 933-941.; Tomas S.Z., Prusac I.K., Roje D., Tadin I. Trophoblast apoptosis in placentas from pregnancies complicated by preeclampsia. Gynecol. Obstet. Invest., 2011, Vol. 71, no. 4, pp. 250-255.; Tong M., Chamley L.W. Placental extracellular vesicles and feto-maternal communication. Cold Spring Harb. Perspect. Med., 2015, Vol. 5, no. 3, a023028. doi:10.1101/cshperspect.a023028.; Tramontano A.F., Lyubarova R., Tsiakos J., Palaia T., Deleon J.R., Ragolia L. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm., 2010, Vol. 2010, 250476. doi:10.1155/2010/250476.; Vanwijk M.J., Svedas E., Boer K., Nieuwland R., Vanbavel E., Kublickiene K.R. Isolated microparticles, but not whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial arteries from healthy pregnant women. Am. J. Obstet. Gynecol., 2002, Vol. 187, no. 6, pp. 1686-1693.; Vargas A., Zhou S., Ethier-Chiasson M., Flipo D., Lafond J., Gilbert C., Barbeau B. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J., 2014, Vol. 28, no. 8, pp. 3703-3719.; von Dadelszen P., Hurst G., Redman C.W. Supernatants from co-cultured endothelial cells and syncytiotrophoblast microvillous membranes activate peripheral blood leukocytes in vitro. Hum. Reprod., 1999, Vol. 14, no. 4, pp. 919-924.; Wei J., Lau S.Y., Blenkiron C., Chen Q., James J.L., Kleffmann T., Wise M., Stone P.R., Chamley L.W. Trophoblastic debris modifies endothelial cell transcriptome in vitro: a mechanism by which fetal cells might control maternal responses to pregnancy. Sci. Rep., 2016, Vol. 6, 30632. doi:10.1038/srep30632.; Yanez-Mo M., Siljander P.R., Andreu Z., Zavec A.B., Borras F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., Colas E., Cordeiro-da Silva A., Fais S., Falcon-Perez J.M., Ghobrial I.M., Giebel B., Gimona M., Graner M., Gursel I., Gursel M., Heegaard N.H., Hendrix A., Kierulf P., Kokubun K., Kosanovic M., Kralj-Iglic V., KramerAlbers E.M., Laitinen S., Lasser C., Lener T., Ligeti E., Line A., Lipps G., Llorente A., Lotvall J., Mancek-Keber M., Marcilla A., Mittelbrunn M., Nazarenko I., Nolte-’t Hoen E.N., Nyman T.A., O’Driscoll L., Olivan M., Oliveira C., Pallinger E., Del Portillo H.A., Reventos J., Rigau M., Rohde E., Sammar M., Sanchez-Madrid F., Santarem N., Schallmoser K., Ostenfeld M.S., Stoorvogel W., Stukelj R., van der Grein S.G., Vasconcelos M.H., Wauben M.H., De Wever O. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles, 2015, Vol. 4, 27066. doi:10.3402/jev.v4.27066.; Zhang X., McGeoch S.C., Johnstone A.M., Holtrop G., Sneddon A.A., MacRury S.M., Megson I.L., Pearson D.W., Abraham P., De Roos B., Lobley G.E., O’Kennedy N. Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status. J. Thromb. Thrombolysis, 2014, Vol. 37, no. 4, pp. 455-463.; Zhou Y., Damsky C.H., Chiu K., Roberts J.M., Fisher S.J. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J. Clin. Invest., 1993, Vol. 91, no. 3, pp. 950-960.; Zhou Y., Damsky C.H., Fisher S.J. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Invest., 1997, Vol. 99, no. 9, pp. 2152-2164.; Ziganshina M.M., Pavlovich S.V., Bovin N.V., Sukhikh G.T. Hyaluronic acid in vascular and immune homeostasis during normal pregnancy and preeclampsia. Acta Naturae, 2016, Vol. 8, no. 3, pp. 59-71.; https://www.mimmun.ru/mimmun/article/view/1558
-
18Academic Journal
المؤلفون: A. I. Baranich, A. A. Sychev, I. А. Savin, A. A. Polupan, A. V. Oshorov, A. A. Potapov, А. И. Баранич, А. А. Сычев, И. А. Савин, А. А. Полупан, А. В. Ошоров, А. А. Потапов
المصدر: General Reanimatology; Том 14, № 5 (2018); 85-95 ; Общая реаниматология; Том 14, № 5 (2018); 85-95 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2018-5
مصطلحات موضوعية: нейрохирургия, TBI, traumatic brain injury, hemostasis, coagulopathy, hemorrhagic foci, ischemic foci, platelet disfunction, microthrombs, microvesicles, tissue factor, neurosurgery, ЧМТ, черепно-мозговая травма, гемостаз, коагулопатия, геморрагические очаги, ишемические очаги, тромбоцитопатия, микротромбы, микровезикулы, тканевой фактор
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/1715/1253; https://www.reanimatology.com/rmt/article/view/1715/1262; Stein S.C., Chen X.H., Sinson G.P., Smith D.H. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J. Neurosurg. 2002; 97 (6): 1373-1377. DOI:10.3171/jns.2002.97.6.1373. PMID: 12507136; Stein S.C., Young G.S., Talucci R.C., Greenbaum B.H., Ross S.E. Delayed brain injury after head trauma: significance of coagulopathy. Neurosurgery. 1992; 30 (2): 160-165. DOI:10.1097/00006123-199202000-00002. PMID: 1545882; Stein S.C., Spettell C., Young G., Ross S.E. Delayed and progressive brain injury in closed-head trauma: radiological demonstration. Neurosurgery. 1993; 32 (1): 25-30. DOI:10.1097/00006123-199301000-00004. PMID: 8421553; Juratli T.A., Zang B., Litz R.J., Sitoci K.H., Aschenbrenner U., Gottschlich B., Daubner D., Schackert G., Sobottka S.B. Early hemorrhagic progression of traumatic brain contusions: frequency, correlation with coagulation disorders, and patient outcome: a prospective study. J. Neurotrauma. 2014; 31 (17): 1521-1527. DOI:10.1089/neu.2013.3241. PMID: 24738836; Oertel M., Kelly D.F., McArthur D., Boscardin W.J., Glenn T.C., Lee J.H., Gravori T., Obukhov D., McBride D.Q., Martin N.A. Progressive hemorrhage after head trauma: predictors and consequences of the evolving injury. J. Neurosurg. 2002; 96 (1): 109-116. DOI:10.3171/jns.2002.96.1.0109. PMID: 11794591; Allard C.B., Scarpelini S., Rhind S.G., Baker A.J., Shek P.N., Tien H., Fernando M., Tremblay L., Morrison L.J., Pinto R., Rizoli S.B. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage. J. Trauma. 2009; 67 (5): 959-967. DOI:10.1097/TA.0b013e3181ad5d37. PMID: 19901655; Потапов А.А., Лихтерман Л.Б., Кравчук А.Д., Охлопков В.А., Александрова Е.В., Филатова М.М., Маряхин А.Д., Латышев Я.А. Легкая черепно-мозговая травма. Клинические рекомендации. М.; 2016: 23.; Kaufman H.H., Hui K.S., Mattson J.C., Borit A., Childs T.L., Hoots W.K., Bernstein D.P., Makela M.E., Wagner K.A., Kahan B.D. Clinicopathological correlations of disseminated intravascular coagulation in patients with head injury. Neurosurgery. 1984; 15 (1): 34-42. DOI:10.1097/00006123-198407000-00007. PMID: 6472592; Stein S.C., Graham D.I., Chen X.H., Smith D.H. Association between intravascular microthrombosis and cerebral ischemia in traumatic brain injury. Neurosurgery. 2004; 54 (3): 687-691. DOI:10.1227/01.NEU.0000108641.98845.88. PMID: 15028145; Schwarzmaier S.M., Kim S.W., Trabold R., Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J. Neurotrauma. 2010; 27 (1): 121-130. DOI:10.1089/neu.2009.1114. PMID: 19803784; Brohi K., Cohen M.J., Davenport R.A. Acute coagulopathy of trauma: mechanism, identification and effect. Curr. Opin. Crit. Care. 2007; 13 (6): 680685 DOI:10.1097/MCC.0b013e3282f1e78f. PMID: 17975390; Cohen M.J., Brohi K., Ganter M.T., Manley G.T., Mackersie R.C., Pittet J.F. Early coagulopathy after traumatic brain injury: the role of hypoperfusion and the protein C pathway. J. Trauma. 2007; 63 (6): 1254-1261. DOI:10.1097/TA.0b013e318156ee4c. PMID: 18212647; van der Sande J.J., Emeis J.J., Lindeman J. Intravascular coagulation: a common phenomenon in minor experimental head injury. J. Neurosurg. 1981; 54 (1): 21-25. DOI:10.3171/jns.1981.54.1.0021. PMID: 7463116; Cortez S.C., McIntosh T.K., Noble L.J. Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res. 1989; 482 (2): 271-282. DOI:10.1016/0006-8993(89)91190-6. PMID: 2706487; Dietrich W.D., Alonso O., Halley M. Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J. Neurotrauma. 1994; 11 (3): 289-301. DOI:10.1089/neu.1994.11.289. PMID: 7996583; Dietrich W.D., Alonso O., Busto R., Prado R., Dewanjee S., Dewanjee M.K., Ginsberg M.D. Widespread hemodynamic depression and focal platelet accumulation after fluid percussion brain injury: a double-label autoradiographic study in rats. J. Cereb. Blood Flow Metab. 1996; 16 (3): 481489 DOI:10.1097/00004647-199605000-00015. PMID: 8621753; Maeda T., Katayama Y., Kawamata T., Aoyama N., Mori T. Hemodynamic depression and microthrombosis in the peripheral areas of cortical contusion in the rat: role of platelet activating factor. Acta Neurochir. Suppl. 1997; 70: 102-105. DOI:10.1007/978-3-7091-6837-0_32. PMID: 9416292; Scherer R.U., Spangenberg P. Procoagulant activity in patients with isolated severe head trauma. Crit. Care Med. 1998; 26 (1): 149-156. DOI:10.1097/00003246-199801000-00031. PMID: 9428558; Hulka F., Mullins R.J., Frank E.H. Blunt brain injury activates the coagulation process. Arch. Surg. 1996; 131 (9): 923-927. DOI:10.1001/archsurg.1996.01430210021004. PMID: 8790176; Stein S.C., Smith D.H. Coagulopathy in traumatic brain injury. Neurocrit. Care. 2004; 1 (4): 479-488. DOI:10.1385/NCC:1:4:479. PMID: 16174954; Pathak A., Dutta S., Marwaha N., Singh D., Varma N., Mathuriya S.N. Change in tissue thromboplastin content of brain following trauma. Neurol. India. 2005; 53 (2): 178-182. DOI:10.4103/0028-3886.16404. PMID: 16010055; Halpern C.H., Reilly P.M., Turtz A.R., Stein S.C. Traumatic coagulopathy: the effect of brain injury. J. Neurotrauma. 2008; 25 (8): 997-1001. DOI:10.1089/neu.2008.0548. PMID: 18687038; Nemerson Y., Giesen P.L. Some thoughts about localization and expression of tissue factor. Blood Coagul. Fibrinolysis. 1998; 9 (Suppl 1): S45S47. PMID: 9819028; Carrick M.M., Tyroch A.H., Youens C.A., Handley T. Subsequent development of trombocytopenia and coagulopathy in moderate and severe head injury: support for serial laboratory examination. J. Trauma. 2005; 58 (4): 725-729. DOI:10.1097/01.TA.0000159249.68363.78. PMID: 15824648; Nekludov M., Bellander B.M., Blombäck M., Wallen H.N. Platelet dysfunction in patients with severe traumatic brain injury. J. Neurotrauma. 2007; 24 (11): 1699-1706. DOI:10.1089/neu.2007.0322. PMID: 18001200; Schnüriger B., Inaba K., Abdelsayed G.A., Lustenberger T., Eberle B.M., Barmparas G., Talving P., Demetriades D. The impact of platelets on the progression of traumatic intracranial hemorrhage. J. Trauma. 2010; 68 (4): 881-885. DOI:10.1097/TA.0b013e3181d3cc58. PMID: 20386283; Laroche M., Kutcher M.E., Huang M.C., Cohen M.J., Manley G.T. Coagulopathy after traumatic brain injury. Neurosurgery. 2012; 70 (6): 13341345. DOI:10.1227/NEU.0b013e31824d179b. PMID: 22307074; Maegele M. Coagulopathy after traumatic brain injury: incidence, pathogenesis, and treatment options. Transfusion. 2013; 53 (Suppl 1): 28S-37S. DOI:10.1111/trf.12033. PMID: 23301970; Баранич А.И., Савин И.А., Табасаранский Т.Ф., Полупан А.А., Сычев А.А., Пилипенко Ю.В., Курдюмова Н.В., Микеладзе К.Г., Элиава Ш.Ш. Нарушения системы гемостаза у пациентов с аневризматическим субарахноидальным кровоизлиянием. Вопросы нейрохирургии им. Н.Н.Бурденко. 2018; 82 (4): 109-116. PMID: 30137045; Harhangi B.S., Kompanje E.J., Leebeek F.W., Maas A.I. Coagulation disorders after traumatic brain injury. Acta Neurochir. (Wien). 2008; 150 (2): 165-175. DOI:10.1007/s00701-007-1475-8. PMID: 18166989; Keimowitz R.M., Annis B.L. Disseminated intravascular coagulation associated with massive brain injury. J. Neurosurg. 1973; 39 (2): 178-180. DOI:10.3171/jns.1973.39.2.0178. PMID: 4719695; Goodnight S.H., Kenoyer G., Rapaport S.I., Patch M.J., Lee J.A., Kurze T. Defibrination after bain-tissue destruction: a serious complication of head injury. N. Engl. J. Med. 1974; 290 (19): 1043-1047. DOI:10.1056/NEJM197405092901903. PMID: 4821906; Mackman N. Tissue-specific hemostasis: role of tissue factor. J. Thromb. Haemost. 2008; 6 (2): 303-305. DOI:10.1111/j.1538-7836.2007.02873.x. PMID: 18088348; Gando S. Disseminated intravascular coagulation in trauma patients. Semin. Thromb. Hemost. 2001; 27 (6): 585–592. DOI:10.1055/s-200118864. PMID: 11740682; Reilly P., Bullock R. Head injury, pathophysiology and management. 2nd ed. Hodder Arnold; 2005: 129-130. ISBN 0340-80724-5; Matta B., Menon D., Turner J. Textbook of neuroanaesthesia and critical care. Chapter: Management of acute head injury. London: Greenwich Medical Media Ltd; 2000: 285-297. ISBN 1-900151-73-1; van der Sande J.J., Veltkamp J.J., Boekhout-Mussert R.J., Bouwhuis-Hoogerwerf M.L. Head injury and coagulation disorders. J. Neurosurg. 1978; 49 (3): 357-365. DOI:10.3171/jns.1978.49.3.0357. PMID: 681997; Olson J.D., Kaufman H.H., Moake J., O’Gorman T.W., Hoots K., Wagner K., Brown C.K., Gildenberg P.L. The incidence and significance of hemostatic abnormalities in patients with head injuries. Neurosurgery. 1989; 24 (6): 825-832. DOI:10.1097/00006123-198906000-00007. PMID: 2747858; Takahashi H., Urano T., Takada Y., Nagai N., Takada A. Fibrinolytic parameters as an admission prognostic marker of head injury in patients who talk and deteriorate. J. Neurosurg. 1997; 86 (5): 768-772. DOI:10.3171/jns.1997.86.5.0768. PMID: 9126890; Morel N., Morel O., Petit L., Hugel B., Cochard J.F., Freyssinet J.M., Sztark F., Dabadie P. Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. J. Trauma. 2008; 64 (3): 698-704. DOI:10.1097/TA.0b013e31816493ad. PMID: 18332810; Morel N., Morel O., Delabranche X., Jesel L., Sztark F., Dabadie P., Freyssinet J.M., Toti F. Microparticles during sepsis and trauma. A link between inflammation and thrombotic processes. Ann. Fr. Anesth. Reanim. 2006; 25 (9): 955-966. DOI:10.1016/j.annfar.2006.04.013. PMID: 16926090; Reininger A.J., Heijnen H.F., Schumann H., Specht H.M., Schramm W., Ruggeri Z.M. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood. 2006; 107 (9): 3537-3545. DOI:10.1182/blood-2005-02-0618. PMID: 16449527; Mooberry M.J., Key N.S. Microparticle analysis in disorders of hemostatsis and thrombosis. Cytometry A. 2016; 89 (2): 111–122. DOI:10.1002/cyto.a.22647. PMID: 25704723; Burnier L., Fontana P., Kwak B.R., Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb. Haemost. 2009; 101 (3): 439-451. DOI:10.1160/TH08-08-0521. PMID: 19277403; Nekludov M., Mobarrez F., Gryth D., Bellander B.M., Wallen H. Formation of microparticles in the injured brain of patients with severe isolated traumatic brain injury. J. Neurotrauma. 2014; 31 (23): 1927-1933. DOI:10.1089/neu.2013.3168. PMID: 24956150; Vikerfors A., Mobarrez F., Bremme K., Holmström M., Ågren A., Eelde A., Bruzelius M., Antovic A., Wallén H., Svenungsson E. Studies of microparticles in patients with the antiphospholipid syndrome (APS). Lupus. 2012; 21 (7): 802-805. DOI:10.1177/0961203312437809. PMID: 22635239; Lustenberger T., Talving P., Kobayashi L., Inaba K., Lam L., Plurad D., Demetriades D. Time course of coagulopathy in isolated severe traumatic brain injury. Injury. 2010; 41 (9): 924-928. DOI:10.1016/j.injury.2010.04.019. PMID: 20471013; Cortiana M., Zagara G., Fava S., Seveso M. Coagulation abnormalities in patients with head injury. J. Neurosurg. Sci. 1986; 30 (3): 133-138. PMID: 3783267; Kutcher M.E., Redick B.J., McCreery R.C., Crane I.M., Greenberg M.D., Cachola L.M., Nelson M.F., Cohen M.J. Characterization of platelet dysfunction after trauma. J. Trauma Acute Care Surg. 2012; 73 (1): 13-19. DOI:10.1097/TA.0b013e318256deab. PMID: 22743367; Vecht C.J., Minderhoud J.M., Sibinga C.T. Platelet aggregability in relation to impaired consciousness after head injury. J. Clin. Pathol. 1975; 28 (10): 814-820. DOI:10.1136/jcp.28.10.814. PMID: 1214015; Saillant N.N., Sims C.A. Platelet dysfunction in injured patients. Mol. Cell Ther. 2014; 2: 37. DOI:10.1186/s40591-014-0037-8. PMID: 26056601; Donahue D.L., Beck J., Fritz B., Davis P., Sandoval-Cooper M.J., Thomas S.G., Yount R.A., Walsh M., Ploplis V.A., Castellino F.J. Early platelet dysfunction in a rodent model of blunt traumatic brain injury reflects the acute traumatic coagulopathy found in humans. J. Neurotrauma. 2014; 31 (4): 404-410. DOI:10.1089/neu.2013.3089. PMID: 24040968; Lapetina E.G., Cuatrecasas P. Rapid inactivation of cyclooxygenase activity after stimulation of intact platelets. Proc. Natl. Acad. Sci. USA. 1979; 76 (1): 121-125. DOI:10.1073/pnas.76.1.121. PMID: 218191; Wohlauer M.V., Moore E.E., Thomas S., Sauaia A., Evans E., Harr J., Silliman C.C., Ploplis V., Castellino F.J., Walsh M. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J. Am. Coll. Surg. 2012; 214 (5): 739–746. DOI:10.1016/j.jamcollsurg.2012.01.050. PMID: 22520693; Castellino F.J., Chapman M.P., Donahue D.L., Thomas S., Moore E.E., Wohlauer M.V., Fritz B., Yount R., Ploplis V., Davis P., Evans E., Walsh M. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J. Trauma Acute Care Surg. 2014; 76 (5): 1169–1176. DOI:10.1097/TA.0000000000000216. PMID: 24747445; Davis P.K., Musunuru H., Walsh M., Cassady R., Yount R., Losiniecki A., Moore E.E., Wohlauer M.V., Howard J., Ploplis V.A., Castellino F.J., Thomas S.G. Platelet dysfunction is an early marker for traumatic brain injuryinduced coagulopathy. Neurocrit. Care. 2012; 18 (2): 201–208. DOI:10.1007/s12028-012-9745-6. PMID: 22847397; Briggs A., Gates J.D., Kaufman R.M., Calahan C., Gormley W.B., Havens J.M. Platelet dysfunction and platelet transfusion in traumatic brain injury. J. Surg. Res. 2015; 193 (2): 802–806. DOI:10.1016/j.jss.2014.08.016. PMID: 25218281; Joseph B., Aziz H., Zangbar B., Kulvatunyou N., Pandit V., O’Keeffe T., Tang A., Wynne J., Friese R.S., Rhee P. Acquired coagulopathy of traumatic brain injury defied by routine laboratory tests: which laboratory values matter? J. Trauma Acute Care Surg. 2014; 76 (1): 121–125. DOI:10.1097/TA.0b013e3182a9cc95. PMID: 24368366; Massaro A.M., Doerfler S., Nawalinski K., Michel B., Driscoll N., Ju C., Patel H., Quattrone F., Frangos S., Maloney-Wilensky E., Sean Grady M., Stein S.C., Kasner S.E., Kumar M.A. Thromboelastography defies late hypercoagulopathy after TBI: a pilot study. Neurocrit. Care. 2015; 22 (1): 45–51. DOI:10.1007/s12028-014-0051-3. PMID: 25127903; Corps K.N., Roth T.L., McGavern D.B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015; 72 (3): 355-362. DOI:10.1001/jamaneurol.2014.3558. PMID: 25599342; Ramlackhansingh A.F., Brooks D.J., Greenwood R.J., Bose S.K., Turkheimer F.E., Kinnunen K.M., Gentleman S., Heckemann R.A., Gunanayagam K., Gelosa G., Sharp D.J. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 2011; 70 (3): 374-383. DOI:10.1002/ana.22455. PMID: 21710619; Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа; 2010: 93-96. ISBN 978-5-9704-1319-7; Russo M.V., McGavern D.B. Immune surveillance of the CNS following infection and injury. Trends Immunol. 2015; 36 (10): 637-650. DOI:10.1016/j.it.2015.08.002. PMID: 26431941; Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 2007; 81 (1): 1-5. DOI:10.1189/jlb.0306164. PMID: 17032697; Morgan B.P. Mechanisms of tissue damage by the membrane attack complex of complement. Complement Inflamm. 1989; 6 (2): 104-111. DOI:10.1159/000463082. PMID: 2656078; Martel C., Cointe S., Maurice P., Matar S., Ghitescu M., Théroux P., Bonnefoy A. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS One. 2011; 6 (4): e18812. DOI:10.1371/journal.pone.0018812. PMID: 21526204; Morgan B.P. The membrane attack complex as an inflammatory trigger. Immunobiology. 2016; 221 (6): 747-751. DOI:10.1016/j.imbio.2015.04.006. PMID: 25956457; Bellander B.M., von Holst H., Fredman P., Svensson M. Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. J. Neurosurg. 1996; 85 (3): 468-475. DOI:10.3171/jns.1996.85.3.0468. PMID: 8751634; Bellander B.M., Singhrao S.K., Ohlsson M., Mattsson P., Svensson M. Complement activation in the human brain after traumatic head injury. J. Neurotrauma. 2001; 18 (12): 1295-1311. DOI:10.1089/08977150152725605. PMID: 11780861; Stahel P.F., Morganti-Kossmann M.C., Kossmann T. The role of the complement system in traumatic brain injury. Brain Res. Brain Res. Rev. 1998; 27 (3): 243-256. DOI:10.1016/S0165-0173(98)00015-0. PMID: 9729408; Rostami E., Davidsson J., Gyorgy A., Agoston D.V., Risling M., Bellander B.M. The terminal pathway of the complement system is activated in focal penetrating but not in mild diffuse traumatic brain injury. J. Neurotrauma. 2013; 30 (23): 1954-1965. DOI:10.1089/neu.2012.2583. PMID: 23808389; Bellander B.M., Olafsson I.H., Ghatan P.H., Bro Skejo H.P., Hansson L.O., Wanecek M., Svensson M.A. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir. (Wien). 2011; 153 (1): 90-100. DOI:10.1007/s00701-010-0737-z. PMID: 20686797; Christiaans S.C., Wagener B.M., Esmon C.T., Pittet J.F. Protein C and acute inflammation: a clinical and biological perspective. Am. J. Physiol. Lung Cell Mol. Physiol. 2013; 305 (7): L455-L466. DOI:10.1152/ajplung.00093.2013. PMID: 23911436; Kushimoto S., Shibata Y., Yamamoto Y. Implications of fibrinogenolysis in patients with closed head injury. J. Neurotrauma. 2003; 20 (4): 357363. DOI:10.1089/089771503765172318. PMID: 12866815; Tian H.L., Chen H., Wu B.S., Cao H.L., Xu T., Hu J., Wang G., Gao W.W., Lin Z.K., Chen S.W. D-Dimer as a predictor of progressive hemorrhagic injury in patients with traumatic brain injury: analysis of 194 cases. Neurosurg. Rev. 2010; 33 (3): 359-365. DOI:10.1007/s10143-010-0251-z. PMID: 20349100; Kushimoto S., Yamamoto Y., Shibata Y., Sato H., Koido Y. Implications of excessive fibrinolysis and alpha(2)-plasmin inhibitor deficiency in patients with severe head injury. Neurosurgery. 2001; 49 (5): 1084-1089. DOI:10.1097/00006123-200111000-00011. PMID: 11846901; Auer L. Disturbances of the coagulatory system in patients with severe cerebral trauma. I. Acta Neurochir. (Wien). 1978; 43 (1-2): 51-59. DOI:10.1007/BF01809225. PMID: 707171; Auer L.M., Ott E. Disturbances of the coagulatory system in patients with severe cerebral trauma II. Platelet function. Acta Neurochir. (Wien). 1979; 49 (3-4): 219-226. DOI:10.1007/BF01808961. PMID: 517179; Touho H., Hirakawa K., Hino A., Karasawa J., Ohno Y. Relationship between abnormalities of coagulation and fibrinolysis and postoperative intracranial hemorrhage in head injury. Neurosurgery. 1986; 19 (4): 523-531. DOI:10.1227/00006123-198610000-00005. PMID: 3785592; Crone K.R., Lee K.S., Kelly D.L.Jr. Correlation of admission fibrin degradation products with outcome and respiratory failure in patients with severe head injury. Neurosurgery. 1987; 21 (4): 532-536. DOI:10.1227/00006123-198710000-00015. PMID: 3683787; Selladurai B.M., Vickneswaran M., Duraisamy S., Atan M. Coagulopathy in acute head injury: a study of its role as a prognostic indicator. Br. J. Neurosurg. 1997; 11 (5): 398-404. DOI:10.1080/02688699745880. PMID: 9474270; https://www.reanimatology.com/rmt/article/view/1715
-
19Academic Journal
المؤلفون: Markova K.L., Kogan I.U., Sheveleva A.R., Mikhailova V.A., Selkov S.A., Sokolov D.I.
المساهمون: РФФИ, грант№ 17-04-00679
المصدر: Annals of the Russian academy of medical sciences; Vol 73, No 6 (2018); 378-387 ; Вестник Российской академии медицинских наук; Vol 73, No 6 (2018); 378-387 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn736
مصطلحات موضوعية: microvesicles, vesicles, leukocyte, lymphocytes, микровезикулы, везикулы, лейкоциты, лимфоциты
وصف الملف: application/pdf
Relation: https://vestnikramn.spr-journal.ru/jour/article/view/1031/1042; https://vestnikramn.spr-journal.ru/jour/article/view/1031
-
20
المؤلفون: Laiali Shkair, Ekaterina E. Garanina, Ekaterina V. Martynova, Aliona I. Kolesnikova, Albert A. Rizvanov, Svetlana F. Khaibullina
المصدر: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 226-231
Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 226-231مصطلحات موضوعية: геморрагическая лихорадка с почечным синдромом, гуморальный иммунный ответ, вакцина, ортохантавирус, микровезикулы
وصف الملف: text/html