يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"межклеточное взаимодействие"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Исследование выполнено при финансовом обеспечении внутривузовского гранта ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России.

    المصدر: Acta Biomedica Scientifica; Том 9, № 1 (2024); 73-84 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4600/2734; Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev, 2019; 99(1): 665-706. doi:10.1152/physrev.00067.2017; Palomino-Segura M, Hidalgo A. Immunity: Neutrophil quorum at the wound. Curr Biol. 2020; 30(14): R828-R830. doi:10.1016/j.cub.2020.05.045 141; Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: From mechanism to therapy. Nat Med. 2014; 20: 857-869.; Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory microenvironment of skin wounds. Front Immunol. 2022; 13: 789274. doi:10.3389/fimmu.2022.789274; Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, et al. The role of the immune microenvironment in bone, cartilage, and soft tis-sue regeneration: From mechanism to therapeutic opportunity. Mil Med Res. 2022; 9(1): 65. doi:10.1186/s40779-022-00426-8; Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediators Inflamm. 2012; 2012: 315941. doi:10.1155/2012/315941; Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007; 25(1): 9-18. doi:10.1016/j.clindermatol.2006.09.007; Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair: Positive actions and negative reactions. Adv Wound Care (New Rochelle). 2013; 2(7): 379-388. doi:10.1089/wound.2012.0383; Zheng SY, Wan XX, Kambey PA, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes. 2023; 14(4): 364-395. doi:10.4239/wjd.v14.i4.364; Jun JI, Kim KH, Lau LF. The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat Commun. 2015; 6: 7386. doi:10.1038/ncomms8386; McCracken JM, Allen LA. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death. 2014; 7: 15-23. doi:10.4137/JCD.S11038; Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol. 2019; 10: 85. doi:10.3389/fimmu.2019.00085; Diller RB, Tabor AJ. The role of the extracellular matrix (ECM) in wound healing: A review. Biomimetics (Basel). 2022; 7(3): 87. doi:10.3390/biomimetics7030087; Enzmann G, Kargaran S, Engelhardt B. Ischemia-reperfusion injury in stroke: Impact of the brain barriers and brain immune privilege on neutrophil function. Ther Adv Neurol Disord. 2018; 11: 1756286418794184. doi:10.1177/1756286418794184; Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015; 21(7): 815-819. doi:10.1038/nm.3887; Kanno E, Kawakami K, Ritsu M, Ishii K, Tanno H, Toriyabe S, et al. Wound healing in skin promoted by inoculation with Pseudomonas aeruginosa PAO1: The critical role of tumor necrosis factor-α secreted from infiltrating neutrophils. Wound Repair Regen. 2011; 19(5): 608-621. doi:10.1111/j.1524-475X.2011.00721.x; Canesso MC, Vieira AT, Castro TB, Schirmer BG, Cisalpino D, Martins FS, et al. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol. 2014; 193(10): 5171-5180. doi:10.4049/jimmunol.1400625; Kono H, Onda A, Yanagida T. Molecular determinants of sterile inflammation. Curr Opin Immunol. 2014; 26: 147-156. doi:10.1016/j.coi.2013.12.004; Soliman AM, Barreda DR. Acute inflammation in tissue healing. Int J Mol Sci. 2022; 24(1): 641. doi:10.3390/ijms24010641; Kovtun A, Messerer DAC, Scharffetter-Kochanek K, HuberLang M, Ignatius A. Neutrophils in tissue trauma of the skin, bone, and lung: Two sides of the same coin J Immunol Res. 2018; 2018: 8173983. doi:10.1155/2018/8173983; Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, et al. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells. 2021; 13(11): 1667-1695. doi:10.4252/wjsc.v13.i11.1667; Bayer F, Dremova O, Khuu MP, Pontarollo G, Kiouptsi K, Soshnikova N, et al. The interplay between nutrition, innate immunity, and the commensal microbiota in adaptive intestinal morphogenesis. Nutrients. 2021; 13(7): 2198. doi:10.3390/nu13072198; Frieri M, Kumar K, Boutin A. Wounds, burns, trauma, and injury. Wound Med. 2016; 13: 12-17.; André-Lévigne D, Modarressi A, Pepper MS, Pittet-Cuénod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. Int J Mol Sci. 2017; 18(10): 2149. doi:10.3390/ijms18102149; Brazil JC, Quiros M, Nusrat A, Parkos CA. Innate immune cell-epithelial crosstalk during wound repair. J Clin Invest. 2019; 129(8): 2983-2993. doi:10.1172/JCI124618; Wu YS, Chen SN. Apoptotic cell: Linkage of inflammation and wound healing. Front Pharmacol. 2014; 5: 1. doi:10.3389/fphar.2014.00001; Anderton H, Alqudah S. Cell death in skin function, inflammation, and disease. Biochem J. 2022; 479(15): 1621-1651. doi:10.1042/BCJ20210606; Poplimont H, Georgantzoglou A, Boulch M, Walker HA, Coombs C, Papaleonidopoulou F, et al. Neutrophil swarming in damaged tissue is orchestrated by connexins and cooperative calcium alarm signals. Curr Biol. 2020; 30(14): 2761-2776.e7. doi:10.1016/j.cub.2020.05.030; Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium. 2016; 60(2): 108-114. doi:10.1016/j.ceca.2016.03.004; Sofoluwe A, Bacchetta M, Badaoui M, Kwak BR, Chanson M. ATP amplifies NADPH-dependent and -independent neutrophil extracellular trap formation. Sci Rep. 2019; 9(1): 16556. doi:10.1038/s41598-019-53058-9; Minutti CM, Knipper JA, Allen JE, Zaiss DM. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Bio. 2017; 61: 3-11. doi:10.1016/j.semcdb.2016.08.006; Kim SY, Nair MG. Macrophages in wound healing: Activation and plasticity. Immunol Cell Biol. 2019; 97(3): 258-267. doi:10.1111/imcb.12236; Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol. 2014; 5: 514. doi:10.3389/fimmu.2014.00514; Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Front Immunol. 2019; 10: 1084. doi:10.3389/fimmu.2019.01084; Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012; 122(3): 787-795. doi:10.1172/JCI59643; Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017; 199(1): 17-24. doi:10.4049/jimmunol.1700223; Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016; 44(3): 450-462. doi:10.1016/j.immuni.2016.02.015; Brown BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: A macrophage-centered approach. Front Immunol. 2014. 5: 510. doi:10.3389/fimmu.2014.00510; Yan D, Liu S, Zhao X, Bian H, Yao X, Xing J, et al. Recombinant human granulocyte macrophage colony stimulating factor in deep second-degree burn wound healing. Med (Baltimore). 2017; 96(22): e6881. doi:10.1097/MD.0000000000006881; Smigiel KS, Parks WC. Macrophages, wound healing, and fibrosis: Recent insights. Curr Rheumatol Rep. 2018; 20(4): 17. doi:10.1007/s11926-018- 0725-5; McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A. 20134; 110(43): 17253-17258. doi:10.1073/pnas.1308887110; Postat J, Olekhnovitch R, Lemaître F, Bousso P. A metabolism-based quorum sensing mechanism contributes to termination of inflammatory responses. Immunity. 2018; 49(4): 654-665.e5. doi:10.1016/j.immuni.2018.07.014; Kienle K, Lämmermann T. Neutrophil swarming: An essential process of the neutrophil tissue response. Immunol Rev. 2016; 273(1): 76-93. doi:10.1111/imr.12458; Uderhardt S, Martins AJ, Tsang JS, Lämmermann T, Germain RN. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell. 2019; 177(3): 541-555.e17. doi:10.1016/j.cell.2019.02.028; Zhang J, Qu C, Li T, Cui W, Wang X, Du J. Phagocytosis mediated by scavenger receptor class BI promotes macrophage transition during skeletal muscle regeneration. J Biol Chem. 2019; 294(43): 15672-15685. doi:10.1074/jbc.RA119.008795; Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh). 2019; 6(20): 1900513. doi:10.1002/advs.201900513; Wulff BC, Wilgus TA. Mast cell activity in the healing wound: More than meets the eye? Exp Dermatol. 2013; 22(8): 507- 510. doi:10.1111/exd.12169; Numata Y, Terui T, Okuyama R, Hirasawa N, Sugiura Y, Miyoshi I, et al. The accelerating effect of histamine on the cutaneous wound-healing process through the action of basic fibroblast growth factor. J Invest Dermatol. 2006; 126(6): 1403-1409. doi:10.1038/sj.jid.5700253; Komi DEA, Wöhrl S, Bielory L. Mast cell biology at molecular level: A comprehensive review. Clin Rev Allergy Immunoll. 2020; 58(3): 342-365. doi:10.1007/s12016-019-08769-2; Komi DEA, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin Rev Allergy Immunol. 2020; 58(3): 298-312. doi:10.1007/s12016-019-08729-w; Liao B, Ouyang Q, Song H, Wang Z, Ou J, Huang J, et al. The transcriptional characteristics of mast cells derived from skin tissue in type 2 diabetes patients at the single-cell level. Acta Histochem. 2021; 123(7): 151789. doi:10.1016/j.acthis.2021.151789; Bacci S. Fine regulation during wound healing by mast cells, a physiological role not yet clarified. Int J Mol Sci. 2022; 23(3): 1820. doi:10.3390/ijms23031820; Bacci S, Bonelli A, Romagnoli P. Mast cells in injury response. In: Abreu T, Silva G (eds). Cell movement: New research trends. New York: Nova Science Publishers; 2009: 81-121.; Kim TG, Kim SH, Lee MG. The origin of skin dendritic cell network and its role in psoriasis. Int J Mol Sci. 2017; 19(1): 42. doi:10.3390/ijms19010042; Su Q, Igyártó BZ. Keratinocytes share gene expression fingerprint with epidermal langerhans cells via mRNA transfer. J Invest Dermatol. 2019; 139(11): 2313-2323.e8. doi:10.1016/j.jid.2019.05.006; Stojadinovic O, Yin N, Lehmann J, Pastar I, Kirsner RS, Tomic-Canic M. Increased number of langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunol Res. 2013; 57(1-3): 222-228. doi:10.1007/s12026-013-8474-z; Kohn S, Kohn D, Schiller D. Effect of zinc supplementation on epidermal langerhans’ cells of elderly patients with decubital ulcers. J Dermatol. 2000; 27(4): 258-263. doi:10.1111/j.1346-8138.2000.tb02161.x; Gregorio J, Meller S, Conrad C, Di Nardo A, Homey B, Lauerma A, et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med. 2010; 207(13): 2921-2930. doi:10.1084/jem.20101102; Sobecki M, Krzywinska E, Nagarajan S, Audigé A, Huỳnh K, Zacharjasz J, et al. NK cells in hypoxic skin mediate a trade-off between wound healing and antibacterial defence. Nat Commun. 2021; 12(1): 4700. doi:10.1038/s41467-021-25065-w; Thomas H, Jäger M, Mauel K, Brandau S, Lask S, Flohé SB. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferongamma secretion. Mediators Inflamm. 2014; 2014: 143463. doi:10.1155/2014/143463; Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity. 2016; 44(2): 355-367. doi:10.1016/j.immuni.2016.01.009; Moreau JM, Dhariwala MO, Gouirand V, Boda DP, Boothby IC, Lowe MM, et al. Regulatory T cells promote innate inflammation after skin barrier breach via TGF-β activation. Sci Immunol. 2021; 6(62): eabg2329. doi:10.1126/sciimmunol.abg2329; Ribot JC, Lopes N, Silva-Santos B. γδ T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021; 21(4): 221-232. doi:10.1038/s41577-020-00452-4; Liu Z, Xu Y, Zhang X, Liang G, Chen L, Xie J, et al. Defects in dermal Vγ4 γδT cells result in delayed wound healing in diabetic mice. Am J Transl Res. 2016; 8(6): 2667-2680.; Chen L, Mehta ND, Zhao Y, DiPietro LA. Absence of CD4 or CD8 lymphocytes changes infiltration of inflammatory cells and profiles of cytokine expression in skin wounds, but does not impair healing. Exp Dermatol. 2014; 23(3): 189-194. doi:10.1111/exd.12346; Davis PA, Corless DJ, Aspinall R, Wastell C. Effect of CD4+ and CD8+ cell depletion on wound healing. Br J Surg. 2001; 88(2): 298-304. doi:10.1046/j.1365-2168.2001.01665.x; Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 2019; 21(1): 18- 24. doi:10.1038/s41556-018-0237-6; Planat-Benard V, Varin A, Casteilla L. MSCs and inflammatory cells crosstalk in regenerative medicine: Concerted actions for optimized resolution driven by energy metabolism. Front Immunol. 2021; 12: 626755. doi:10.3389/fimmu.2021.626755; Dhoke NR, Geesala R, Das A. Low oxidative stress-mediated proliferation JNK-FOXO3a-catalase signaling in transplanted adult stem cells promotes wound tissue regeneration. Antioxid Redox Signal. 2018; 28(11): 1047-1065. doi:10.1089/ars.2016.6974; Jere SW, Houreld NN, Abrahamse H. Role of the PI3K/Akt (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine Growth Factor Rev. 2019; 50: 52-59. doi:10.1016/j.cytogfr.2019.03.001; Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017; 169(6): 985-999. doi:10.1016/j.cell.2017.05.016; Zhang B, Han F, Wang Y, Sun Y, Zhang M, Yu X, et al. Cells-micropatterning biomaterials for immune activation and bone regeneration. Adv Sci (Weinh). 2022; 9(18): e2200670. doi:10.1002/advs.202200670; Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs. J Control Release. 2021; 331: 376-389. doi:10.1016/j.jconrel.2021.01.034; Toh WS, Zhang B, Lai RC, Lim SK. Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy. 2018; 20(12): 1419- 1426. doi:10.1016/j.jcyt.2018.09.008; Wei F, Li Z, Crawford R, Xiao Y, Zhou Y. Immunoregulatory role of exosomes derived from differentiating mesenchymal stromal cells on inflammation and osteogenesis. J Tissue Eng Regen Med. 2019; 13(11): 1978-1991. doi:10.1002/term.2947; El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013; 12(5): 347-357. doi:10.1038/nrd3978; https://www.actabiomedica.ru/jour/article/view/4600

  2. 2
    Academic Journal

    المصدر: Translational Medicine; Том 9, № 1 (2022); 12-28 ; Трансляционная медицина; Том 9, № 1 (2022); 12-28 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/652/454; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/652/1328; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/652/1329; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/652/1330; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/652/1331; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/652/1332; Gillette M, Morneau K, Hoang V, et al. Antiplatelet Management for Coronary Heart Disease: Advances and Challenges. Curr Atheroscler Rep. 2016; 18(6):35. DOI:10.1007/s11883-016-0581-6.; Parker WA, Storey RF. Long-term antiplatelet therapy following myocardial infarction: implications of PEGASUS-TIMI 54. Heart. 2016; 102(10): 783789. DOI:10.1136/heartjnl-2015-307858.; Capodanno D, Angiolillo DJ. Antithrombotic Therapy for Atherosclerotic Cardiovascular Disease Risk Mitigation in Patients With Coronary Artery Disease and Diabetes Mellitus. Circulation. 2020; 142(22):2172-2188. DOI:10.1161/CIRCULATIONAHA.120.045465.; Bij de Weg JM, Abheiden CNH, Fuijkschot WW, et al. Resistance of aspirin during and after pregnancy: A longitudinal cohort study. Pregnancy Hypertens. 2020; 19:2530. DOI:10.1016/j.preghy.2019.11.008.; Yassin AS, Abubakar H, Mishra T, et al. Aspirin Resistance: Cardiovascular Risk Game Changer. Am J Ther. 2019; 26(5):593–599. DOI:10.1097/MJT.0000000000000780.; Floyd CN, Ferro A. Antiplatelet drug resistance: Molecular insights and clinical implications. Prostaglandins Other Lipid Mediat. 2015; 120:21–27. DOI:10.1016/j.prostaglandins.2015.03.011.; Van Oosterom N, Barras M, Cottrell N, et al. Platelet function assays for the diagnosis of aspirin resistance. Platelets. 2021; 24:110. DOI:10.1080/09537104.2021.1942816.; Soehnlein O. Decision shaping neutrophil-platelet interplay in inflammation: From physiology to intervention. Eur J Clin Invest. 2018 Feb; 48 (2). DOI:10.1111/eci.12871.; Джатдоева, А.А., Проскурнина Е.В., Нестерова А.М. и др. Митохондрии как источники супероксидного анион-радикала в тромбоцитах. Биологические мембраны. 2017; 34(6):116–123. DOI:10.7868/S0233475517060056.; [Гринштейн Ю.И., Филоненко И.В., Савченко А.А. и др. Способ диагностики резистентности к ацетилсалициловой кислоте. Патент по заявке № 2009131242/15 от 17.08.2009.; Савченко Е.А., Савченко А.А., Герасимчук А.Н. и др. Оценка метаболического статуса тромбоцитов в норме и при ишемической болезни сердца. Клиническая лабораторная диагностика. 2006; 5;33-36; Savchenko AA, Goncharov MD, Grinsthein YI, et al. Chemiluminescent Analysis of Reactive Oxygen Species Synthesis by Platelets from Patients with Coronary Heart Disease. Bull Exp Biol Med. 2020; 169(4):535-538. DOI:10.1007/s10517-020-04924-4.; Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г. и др. Хемилюминесцентная и энзиматическая активность нейтрофильных гранулоцитов у больных распространенным гнойным перитонитом в зависимости от исхода заболевания. Вестник РАМН. 2014; 69(5-6):23-28.; Запровальная О.Е., Триполка С.А. Аспиринорезистентность и применение нестероидных противовоспалительных препаратов в кардиологической практике. Свiт медицини та бiологii. 2012; 2(33):35-39.; Wand S, Adam EH, Wetz AJ, et al. The Prevalence and Clinical Relevance of ASA Nonresponse After Cardiac Surgery: A Prospective Bicentric Study. Clin Appl Thromb Hemost. 2018; 24(1):179-185. DOI:10.1177/1076029617693939.; Modica A, Karlsson F, Mooe T. Platelet aggregation and aspirin non-responsiveness increase when an acute coronary syndrome is complicated by an infection. Journal of Thrombosis and Haemostasis. 2007; 5(3):507-511. DOI:10.1111/j.1538-7836.2007.02378.x.; Boucher AA, Francisco BJ, Pfeiffer A, et al. Urinary 11-dehydrothromboxane B2 aspirin efficacy testing is sensitive to perioperative inflammation in pediatric solid-organ transplant patients. Pediatr Blood Cancer. 2022; 69(2):e29413. DOI:10.1002/pbc.29413.; Grosser T, Fries S, Lawson JA, et al. Drug resistance and pseudoresistance: an unintended consequence of enteric coating aspirin. Circulation. 2013; 127(3):377–385. DOI:10.1161/CIRCULATIONAHA.112.117283.; Bhatt DL, Grosser T, Dong JF, et al. Enteric Coating and Aspirin Nonresponsiveness in Patients With Type 2 Diabetes Mellitus. J Am Coll Cardiol. 2017; 69(6):603–612. DOI:10.1016/j.jacc.2016.11.050.; Grinshtein YI, Savchenko AA, Kosinova AA, et al. Resistance to Acetylsalicylic Acid in Patients with Coronary Heart Disease Is the Result of Metabolic Activity of Platelets. Pharmaceuticals (Basel). 2020; 13(8):178. DOI:10.3390/ph13080178.; Rahman M, Zhang S, Chew M, et al. Platelet-derived CD40L (CD154) mediates neutrophil upregulation of Mac-1 and recruitment in septic lung injury. Ann Surg. 2009; 250(5):783–790. DOI:10.1097/SLA.0b013e3181bd95b7.ascular medicine; Rahman M, Roller J, Zhang S, et al. Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflamm Res. 2012; 61(6):571–579. DOI:10.1007/s00011-012-0446-6.; Maugeri N, Rovere-Querini P, Baldini M, et al. Oxidative stress elicits platelet/leukocyte inflammatory interactions via HMGB1: a candidate for microvessel injury in sytemic sclerosis. Antioxid Redox Signal. 2014; 20(7):1060–1074. DOI:10.1089/ars.2013.5298.; Schrottmaier WC, Mussbacher M, Salzmann M, et al. Platelet-leukocyte interplay during vascular disease. Atherosclerosis. 2020; 307:109–120. DOI:10.1016/j.atherosclerosis.2020.04.018.; Wang XL, Deng HF, Li T, et al. Clopidogrel reduces lipopolysaccharide-induced inflammation and neutrophilplatelet aggregates in an experimental endotoxemic model. J Biochem Mol Toxicol. 2019; 33(4):e22279. DOI:10.1002/jbt.22279.; https://transmed.almazovcentre.ru/jour/article/view/652

  3. 3
    Academic Journal

    المساهمون: Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта № 18-415-243003 «Персонификация антитромбоцитарной терапии пациентов с ишемической болезнью сердца (ИБС) в зависимости от уровня экспрессии гена Р-селектина, выраженности межклеточного взаимодействия и воспаления»

    المصدر: Rational Pharmacotherapy in Cardiology; Vol 17, No 1 (2021); 16-22 ; Рациональная Фармакотерапия в Кардиологии; Vol 17, No 1 (2021); 16-22 ; 2225-3653 ; 1819-6446

    وصف الملف: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2383/2107; Patrono C., Bachmann F., Baigent C., et al. Expert consensus document on the use of antiplatelet agents. The task force on the use of antiplatelet agents in patients with atherosclerotic cardiovascular disease of the European society of cardiology. Eur Heart J. 2004;25(2):166-81. DOI:10.1016/j.ehj.2003.10.013.; Пучиньян Н.Ф., Фурман Н.В., Киселев А.Р., Довгалевский Я.П. Риск повторных тромботических событий у пациентов c лабораторно определяемой резистентностью к ацетилсалициловой кислоте, перенесших острый коронарный синдром. Рациональная Фармакотерапия в Кардиологии. 2009;5(6):41-6. DOI:10.20996/1819-6446-2009-5-6-41-46.; Айнетдинова Д.Х., Удовиченко А.Е., Сулимов В.А. Резистентность к антитромбоцитарным препаратам у больных ишемической болезнью сердца. Рациональная Фармакотерапия в Кардиологии. 2007;3(3):52-9]. DOI:10.20996/1819-6446-2007-3-3-52-59.; Гринштейн Ю.И., Косинова А.А., Гринштейн И.Ю. Контроль антитромбоцитарной терапии: кризис доверия или поиск новых решений? Рациональная фармакотерапия в кардиологии. 2013;9(6):682-9. DOI:10.20996/1819-6446-2013-9-6-682-689.; Голухова Е.З., Рябинина М.Н. Современные аспекты антиагрегантной терапии. Креативная Кардиология. 2013;(1):46-57.; Grosser T., Fries S., Lawson J.A., et al. Drug resistance and pseudoresistance: an unintended consequence of enteric coating aspirin. Circulation. 2013;127(3):377-85. DOI:10.1161/CIRCULATIONAHA.112.117283.; Ren Q., Chan K.W., Huang H., et al. Platelet-derived alpha-granules are associated with inflammation in patients with NK/T-cell lymphoma-associated hemophagocytic syndrome. Cytokine. 2020;126:154878. DOI:10.1016/j.cyto.2019.154878.; Teixeira C., Fernandes C.M., Leiguez E. et al. Inflammation Induced by Platelet-Activating Viperid Snake Venoms: Perspectives on Thromboinflammation. Front Immunol. 2019;10:2082. DOI:10.3389/fimmu.2019.02082.; Витковский Ю.А., Кузник Б.И., Солпов А.В. Патогенетическое значение лимфоцитарно-тромбоцитарной адгезии. Медицинская Иммунология. 2006;8(5-6):745-53. DOI:10.15789/1563-0625-2006-5-6-745-753.; Fuentes E., Gibbins J.M., Holbrook L.M., Palomo I. NADPH oxidase 2 (NOX2): A key target of oxidative stress-mediated platelet activation and thrombosis. Trends Cardiovasc Med. 2018;28(7):429- 34. DOI:10.1016/j.tcm.2018.03.001.; Ghasemzadeh M., Hosseini E., Roudsari Z.O., Zadkhak P. Intraplatelet reactive oxygen species (ROS) correlate with the shedding of adhesive receptors, microvesiculation and platelet adhesion to collagen during storage: Does endogenous ROS generation downregulate platelet adhesive function? Thromb Res. 2018;163:153-61. DOI:10.1016/j.thromres.2018.01.048.; Paul M., Hemshekhar M., Kemparaju K., Girish K.S. Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity. Free Radic Biol Med. 2019;130:196-205. DOI:10.1016/j.freeradbiomed.2018.10.453.; Пинегина Н.В. Лейкоцитарно-тромбоцитарные комплексы в патогенезе острого коронарного синдрома. Часть 2. Креативная Кардиология. 2016;10(3):201-9.; Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная и энзиматическая активность нейтрофильных гранулоцитов у больных распространенным гнойным перитонитом в зависимости от исхода заболевания. Вестник РАМН. 2014;69(5-6);23-28]. DOI:10.15690/vramn.v69i5-6.1039.; Савченко А.А., Кудрявцев И.В., Борисов А.Г. Методы оценки и роль респираторного взрыва в патогенезе инфекционно- воспалительных заболеваний. Инфекция и Иммунитет. 2017;7(4):327-40. DOI:10.15789/2220-7619-2017-4-327-340.; Савченко Е.А., Савченко А.А., Герасимчук А.Н., Грищенко Д.А. Оценка метаболического статуса тромбоцитов в норме и при ишемической болезни сердца. Клиническая Лабораторная Диагностика. 2006;(5);33-6.; Гринштейн Ю.И., Филоненко И.В., Савченко А.А. и др. Способ диагностики резистентности к ацетилсалициловой кислоте. Патент 2413953, Российская Федерация. Опубликовано 10.03.2009. Бюллетень № 7.; Гринштейн Ю.И., Савченко А.А., Гринштейн И.Ю., Савченко Е.А. Особенности гемостаза, метаболической активности тромбоцитов и частота резистентности к аспирину у больных с хронической сердечной недостаточностью после аортокоронарного шунтирования. Кардиология. 2008;48(6):51-6.; Finamore F., Reny J.L., Malacarne S. et al. A high glucose level is associated with decreased aspirinmediated acetylation of platelet cyclooxygenase (COX)-1 at serine 529: A pilot study. J. Proteomics. 2019;192:258-66. DOI:10.1016/j.jprot.2018.09.007.; Jiang X., Liu X., Liu X., et al. Low-Dose Aspirin Treatment Attenuates Male Rat Salt-Sensitive Hypertension via Platelet Cyclooxygenase 1 and Complement Cascade Pathway. J Am Heart Assoc. 2020;9(1):e013470. DOI:10.1161/JAHA.119.013470.; Pastori D., Pignatelli P., Carnevale R., Violi F. Nox-2 up-regulation and platelet activation: Novel insights. Prostaglandins Other Lipid Mediat. 2015;120:50-5. DOI:10.1016/j.prostaglandins.2015.03.010.; Qin Y.Y., Li M., Feng X., et al. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic Biol Med. 2017;104:333-45. DOI:10.1016/j.freeradbiomed.2017.01.034.; Lösche W., Temmler U., Redlich H., et al. Inhibition of leukocyte chemiluminescence by platelets: role of platelet-bound fibrinogen. Platelets. 2001;12(1):15-9. DOI:10.1080/09537100020031171.; https://www.rpcardio.com/jour/article/view/2383

  4. 4
    Academic Journal

    المصدر: Advances in Molecular Oncology; Том 4, № 3 (2017); 92-98 ; Успехи молекулярной онкологии; Том 4, № 3 (2017); 92-98 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2017-4-3

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/106/119; Evans J.M., Donnelly L.A., Emslie- Smith A.M. et al. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005;330(7503):1304–5.; Shcherbakov A.M., Andreeva O.E., Shatskaya V.A., Krasil’nikov M.A. The relationships between snail1 and estrogen receptor signaling in breast cancer cells. J Cell Biochem 2012;113(6):2147–55.; Viedma-Rodriguez R., Baiza-Gutman L., Salamanca-Gómez F. et al. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep 2014;32(1):3–15.; Nalvarte I., Schwend T., Gustafsson J.A. Proteomics analysis of the estrogen receptor alpha receptosome. Mol Cell Proteomics 2010;9(7):1411–22.; Bihani T., Ezell S.A., Ladd B. et al. Resistance to everolimus driven by epigenetic regulation of MYC in ER+ breast cancers. Oncotarget 2015;6(4):2407–20.; Oliveras-Ferraros C., Vazquez-Martin A., Cuyàs E. et al. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile. Cell Cycle 2014;13(7):1132–44.; Shcherbakov A.M., Sorokin D.V., Tatar- skiy V.V. Jr et al. The phenomenon of acquired resistance to metformin in breast cancer cells: the interaction of growth pathways and estrogen receptor signaling. IUBMB Life 2016;68(4):281–92.; Семина С.Е., Багров Д.В., Красильников М.А. Межклеточные взаимодействия и развитие гормональной резистентности клеток рака молочной железы. Успехи молекулярной онкологии 2015;2(2):50–5. [Semina S.E., Bagrov D.V., Krasil’nikov M.A. Intercellular interactions and progression of hormonal resistance of breast cancer cells. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2015;2(2):50–5. (In Russ.)].; Reid G., Hübner M.R., Métivier R. et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 2003;11(3):695–707.; Thery C., Amigorena S., Raposo G., Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006. Chapter 3: Unit 3.22.; Yang B., Wang S., Yu S. et al. C1q/tumor necrosis factor-related protein 3 inhibits oxidative stress during intracerebral hemorrhage via PKA signaling. Brain Res 2017;1657:176–84.; Choi J., Kim D.I., Kim J. et al. Hornerin is involved in breast cancer progression. J Breast Cancer 2016;19(2): 142–7.; Wang Z.C., E D., Batu D.L. et al. 2DDIGE proteomic analysis of changes in estrogen/progesterone-induced rat breast hyperplasia upon treatment with the Mongolian remedy RuXian-I. Molecules 2011;16(4):3048–65.; Queiroz E.A., Puukila S., Eichler R. et al. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One 2014;9(5): e98207; https://umo.abvpress.ru/jour/article/view/106

  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: Особливості впливу інтерфероногену аміксину на процеси міжклітинної взаємодії у хворих на хронічний гепатит С / Є. В. Нікітін [и др.] // Одеський медичний журнал. - 2008. - N 4. - С. 36-39.; http://repo.odmu.edu.ua:80/xmlui/handle/123456789/1704

  10. 10

    وصف الملف: application/pdf

    Relation: Усиченко, Катерина Миколаївна. Стан інтерфероногенезу та клітинного імунітету у хворих на хронічний гепатит С та його корекція : автореф. дис. . канд. мед. наук : 14.01.13 / К. М. Усиченко; АМН України, Ін-т епідеміології та інфекц. хвороб ім. Л. В. Громашевського, Одес. держ. мед. ун-т. - К. : [б. и.], 2006. - 20 с.; http://repo.odmu.edu.ua:80/xmlui/handle/123456789/579

  11. 11

    وصف الملف: application/pdf

    Relation: Усиченко, Катерина Миколаївна. Стан інтерфероногенезу та клітинного імунітету у хворих на хронічний гепатит С та його корекція : дис. . канд. мед. наук: 14.01.13 / К. М. Усиченко; Одес. держ. мед. ун-т. - К. : [б. и.], 2006. - 152 с.; http://repo.odmu.edu.ua:80/xmlui/handle/123456789/580

  12. 12
    Electronic Resource