يعرض 1 - 20 نتائج من 59 نتيجة بحث عن '"лютеин"', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The research was funded by the Russian Science Foundation, project number 22-74-00012, Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-74- 00012).

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 1 (2024); 50-56 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 1 (2024); 50-56 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1335/664; Britton G., Liaaen-Jensen S., Pfander H. Carotenoids: Handbook. Springer Science & Business Media; 2004. 708 pp.; Cunningham F.X., Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases. Proc. Natl. Acad. Sci. U.S.A. 2001;98(5):2905–2910.; Niedzwiedzki D., Koscielecki J.F., Cong H., Sullivan J.O., Gibson G.N., Birge R.R., Frank H.A. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J. Phys. Chem. B. 2007;111(21):5984–5998.; Balevičius V., Abramavicius D., Polívka T., Galestian Pour A., Hauer J. A unified picture of s* in carotenoids. J. Phys. Chem. Lett. 2016;7(17):3347–3352.; Wei T., Balevičius V., Polívka T., Ruban A.V., Duffy C.D.P. How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein. Phys. Chem. Chem. Phys. 2019;21(41):23187–23197.; Pishchalnikov R.Y., Yaroshevich I.A., Zlenko D.V., Tsoraev G.V., Osipov E.M., Lazarenko V.A., Parshina E.Y., Chesalin D.D., Sluchanko N.N., Maksimov E.G. The role of the local environment on the structural heterogeneity of carotenoid β-ionone rings. Photosynth. Res. 2023;156(1):3–17.; Yaroshevich I.A., Krasilnikov P.M., Rubin A.B. Functional interpretation of the role of cyclic carotenoids in photosynthetic antennas via quantum chemical calculations. Comput. Theor. Chem. 2015;1070:27–32.; Mostofian B., Johnson Q.R., Smith J.C., Cheng X. Carotenoids promote lateral packing and condensation of lipid membranes. Phys. Chem. Chem. Phys. 2020;22(21):12281–12293.; Gruszecki W.I., Strzałka K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta BBA – Mol. Basis Dis. 2005;1740(2):108–115.; El-Agamey A., Edge R., Navaratnam S., Land E.J., Truscott T.G. Carotenoid radical anions and their protonated derivatives. Org. Lett. 2006;8(19):4255–4258.; Liguori N., Xu P., Van Stokkum I.H.M., Van Oort B., Lu Y., Karcher D., Bock R., Croce R. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat. Commun. 2017;8(1):1994.; Moldenhauer M., Sluchanko N.N., Buhrke D., Zlenko D.V., Tavraz N.N., Schmitt F.J., Hildebrandt P., Maksimov E.G., Friedrich T. Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism. Photosynth. Res. 2017;133(1–3):327–341.; Kirilovsky D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical- quenching mechanism. Photosynth. Res. 2007;93(1–3):7.; Bondanza M., Cupellini L., Faccioli P., Mennucci B. Molecular mechanisms of activation in the orange carotenoid protein revealed by molecular dynamics. J. Am. Chem. Soc. 2020;142(52):21829–21841.; Arcidiacono A., Accomasso D., Cupellini L., Mennucci B. How orange carotenoid protein controls the excited state dynamics of canthaxanthin. Chem. Sci. 2023;14(40):11158–11169.; Chesalin D.D., Pishchalnikov R.Y. Searching for a unique exciton model of photosynthetic pigment–protein complexes: photosystem II reaction center study by differential evolution. Mathematics. 2022;10(6):959.; Leccese S., Wilson A., Kirilovsky D., Spezia R.; Jolivalt C., Mezzetti A. Light-induced infrared difference spectroscopy on three different forms of orange carotenoid protein: focus on carotenoid vibrations. Photochem. Photobiol. Sci. 2023;22(6):1379–1391.; Makuch K., Markiewicz M., Pasenkiewicz-Gierula M. Asymmetric spontaneous intercalation of lutein into a phospholipid bilayer, a computational study. Comput. Struct. Biotechnol. J. 2019;17:516–526.; Sterling T., Irwin J.J. ZINC 15 – ligand discovery for everyone. J. Chem. Inf. Model. 2015;55(11):2324–2337.; Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.; Robertson M.J., Tirado-Rives J., Jorgensen W.L. Improved peptide and protein torsional energetics with the OPLS-AA force field. J. Chem. Theory Comput. 2015;11(7):3499–3509.; Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31(3):1695–1697.; Cremer D., Pople J.A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975;97(6):1354–1358.; MacSurmak. MacSurmak/pucker_visualizer [Электронный ресурс]. 2023. URL: https://github.com/MacSurmak/pucker_visualizer (дата обращения: 25.01.2024).; Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018;8(1):e1327.; Neese F. Software update: The ORCA program system— Version 5.0. WIREs Comput. Mol. Sci. 2022;12(5):e1606.; Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110(13):6158–6170.; Ditchfield R., Hehre W.J., Pople J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian- type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971;54(2):724–728.; Kendall R.A., Dunning T.H., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96(9):6796–6806.; Calbo J., Sancho-García J.C., Ortí E., Aragó J. DLPNO-CCSD(T) scaled methods for the accurate treatment of large supramolecular complexes. J. Comput. Chem. 2017;38(21):1869–1878.; https://vestnik-bio-msu.elpub.ru/jour/article/view/1335

  2. 2
    Academic Journal

    المصدر: Vegetable crops of Russia; № 1 (2021); 111-116 ; Овощи России; № 1 (2021); 111-116 ; 2618-7132 ; 2072-9146

    وصف الملف: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/1235/815; Голубкина Н.А., Кекина Е.Г., Молчанова А.В., Антошкина М.С., Надежкин С.М., Солдатенко А.В. Антиоксиданты растений и методы их определения. М., Инфра-М. 2020.; Голубкина Н.А., Терешонок В.И., Надежкин С.М., Молчанова А.В., Коротцева И.Б., Химич Г.А. Перспективы использования новых сортов тыквы в производстве тыквенного пюре. Нива Поволжья. 2015;2(35).; Кидин В.В. Практикум по агрохимии. М., Колос. 2008. С.236-240.; Корнеева А.В. Лютеин-зеаксантиновый комплекс: выбор офтальмологов. РМЖ «Клиническая Офтальмология». 2019;(1):54-58.; Методические рекомендации МР 2.3.1.1915-04 "Рекомендуемые уровни потребления пищевых и биологически активных веществ" (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 2 июля 2004 г.); Короцева И.Б., Химич Г.А. Основные направления и задачи селекции тыквенных культур. Овощи России. 2013;(2):17-21. https://doi.org/10.18619/2072-9146-2013-2-17-21; Faustino M., Veiga M., Sousa P., Costa E.M., Silva S., Pintado M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules. 2019;(24):1056; doi:10.3390/molecules24061056; Helkar P.B., Sahoo A.K., Patil N.J. Review: Food Industry By-Products used as a Functional Food Ingredients. Int J Waste Resour. 2016;6(3):248. doi:10.4172/2252-5211.1000248; Humphries J.M., Khachik F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J Agr Food Chemistry. 2003;51(1322–1327.; Iriondo-De Hond M., Miguel E., del Castillo M.D. Food Byproducts as Sustainable Ingredients for Innovative and Healthy Dairy Foods. Nutrients. 2018;(10):1358. doi:10.3390/nu10101358; Kulczy´nski B., Gramza-Michałowska A. The Profile of Secondary Metabolites and Other Bioactive Compounds in Cucurbita pepo L. and Cucurbita moschata Pumpkin Cultivars. Molecules. 2019a;(24):2945. doi:10.3390/molecules24162945; Kulczyński B., Gramza-Michałowska A. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules. 2019b;24(18):3212. doi:10.3390/molecules24183212; Khachik F., Beecher G.R., Goli M.B., Lusby W.R. Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure and Applied Chemistry. 1991;63(1):71–80; Madhavan J., Chandrasekharan S. , Priya M.K., Godavarthi A. Modulatory Effect of Carotenoid Supplement Constituting Lutein and Zeaxanthin (10:1) on Anti-oxidant Enzymes and Macular Pigments Level in Rats. Pharmacogn Mag. 2018;14(54):268-274. doi:10.4103/pm.pm_340_17.; Mares-Perlman J.A., Fisher A.I., Klein R. et al. Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the Third National Health and Nutrition. Examination Survey. Am J Epidemiology. 2001;153(5):424–432.; Mishra S., Sharma K. Development of pumpkin peel cookies and its nutritional composition. Journal of Pharmacognosy and Phytochemistry. 2019;8(4):370-372.; Norfezah M.N., Hardacre A., Brennan C.S. Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Science and Technology International. 2011;17(4):367–373. https://doi.org/10.1177/1082013210382484; Murkovic M., Mülleder U. , Neunteufl H. Carotenoid Content in Different Varieties of Pumpkins. Journal of Food Composition and Analysis. 2002;15(6):633-638. DOI:10.1006/jfca.2002.1052; Roberts J.E., Dennison J. The Photobiology of Lutein and Zeaxanthin in the EyeJ Ophthalmol. 2015;(2015):687173. doi:10.1155/2015/687173; Seddon J.M., Ajani U.A., Sperduto R.D. et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. EyeDiseaseCase-Control StudyGroup. J. Am. Med. Assoc. 1994;272(18):1413–1420,.; Sommerburg O., Keunen J. E.E., Bird A.C., van Kuijk. Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. British J Ophthalmology. 1998;82(8):907–910.; Staichok A.C.B., Mendonça K.R.B., Alves dos Santos P.G., Garcia L.G.C., Damiani C. Pumpkin Peel Flour (Cucurbita máxima L.) – Characterization and Technological Applicability. Journal of Food and Nutrition Research. 2016;4(5):327-333. DOI:10.12691/jfnr-4-5-9; Torres-León C., Ramírez-Guzman N., Londoño-Hernandez L., Martinez-Medina G.A., Díaz-Herrera R., Navarro-Macias V., Alvarez-Pérez O.B., Picazo B., Villarreal-Vázquez M., Ascacio-Valdes J., Aguilar C.N. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018;(2):52. doi:10.3389/fsufs.2018.00052; USDA Carotenoid Database, 1998.; Zhou T., King Q., Huang J., Dai R., Li Q. Characterization of nutritional components and utilization of pumpkin. Food. Global Science books. 2007;1(2):313-321.; https://www.vegetables.su/jour/article/view/1235

  3. 3
    Academic Journal

    المصدر: Vegetable crops of Russia; № 1 (2021); 69-73 ; Овощи России; № 1 (2021); 69-73 ; 2618-7132 ; 2072-9146

    وصف الملف: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/1229/809; Gazim Z.C., Rezende C.M., Fraga S.R., Svidzinski T.I.E., Garcia Cortez D.A. Antifungal activity of the essential oil from Calendula officinalis L. (Asteraceae) growing in. in Brazil. Brazilian Journal of Microbiology. 2008;39(1):61-63. DOI:10.1590/S1517-83822008000100015; Muley B.P., Khadabadi S.S., Banarase N.B. Phytochemical constituents and pharmacological activities of Calendula officinalis L. (Asteraceae): A Review. Tropical Journal of Pharmaceutical Research. 2009;8(5):455-465. DOI:10.4314/tjpr.v8i5.48090.; Malankina E.L., Kozlovskaya L.N., Biktimirova L.V. Сomprehensive productivity evaluation in ornamental varieties of Marigold (Calendula officinalis L.) as sources of medicinal plant raw material. Обзоры по клинической фармакологии и лекарственной терапии. 2015;13(S2):58-59.; Хазиева Ф.М., Цыганок С.И., Саматадзе Т.Е., Морозов А.И. Сортовая специфика накопления макро- и микроэлементов в цветках Calendula officinalis L. и их цитогенетическая изменчивость. Агрохимический вестник. 2019;(2):58-61.; Nelofer Jan, Khurshid Iqbal Andrabi, Riffat J. Calendula officinalis. An Important Medicinal Plant with Potential Biological Properties. Proc Indian Natn. Sci. Acad. 2017;83(4):769-787. DOI:10.16943/ptinsa/2017/49126.; Ukiya M., Akihisa T., Yasukava K., Tokuda H., Suzuki T. and Kimura Y. Anti-inflammatory, anti-tumorpromoting and cytotoxic activities of constituents of marigold (Calendula officinalis L.) flowers. J. Nat. Prod. 2005;(69):1692-1696. DOI:10.1021/np068016b.; Kurkin V.A. and Sharova O.V. Flavonoids from Calendula officinalis L. flowers. Chemistry of Natural Compounds. 2007;(43):216–217.; Janiszowska W., Michalski W., Kasprzyk Z. Рolyprenyl quinones and α-tocopherol in Calendula officinalis L. Phytochemistry. 1976;15(1):125-127.; Khalid, K. A., Da Silva, J.A.T. Biology of Calendula officinalis Linn. Focus On Pharmacology, Biological Activities and Agronomic Practices. Medicinal and Aromatic Plant Science and Biotechnology. 2012;6(1):12-27.; Pintea A, Bele C, Andrei S., Socaciu C. HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis. 2003;(47):37-40.; Маланкина Е.Л., Кузнецова Л.В., Козловская Л.Н., Комарова Е.Л., Евграфов А.А. Использование декоративных сортов календулы лекарственной (Calendula officinalis L.) в качестве источника лекарственного растительного сырья в условиях Нечерноземной зоны России. Известия Тимирязевской сельскохозяйственной академии. 2012;(2):106-110.; Маланкина Е.Л., Комарова Е.Л., Биктимирова Л.В., Дул В.Н, Козловская Л.Н. Влияние условий и продолжительности хранения и содержания суммы каротиноидов в сырье календулы лекарственной (Calendula officinalis L.). Вопросы обеспечения качества лекарственных средств. 2017;3(17):16-23.; Ханумиди Е.И., Коротких И.Н. Корелляционные зависимости хозяйственно-ценных признаков у серпухи венценосной (Serratula coronata L.). Вестник КрасГАУ. 2018;(3):25-29.; Макова Н.Е., Богданов О.Е. Статистические свойства показателей роста и плодоношения смородины. Вестник КрасГАУ. 2020;(1):12-17. DOI:10.36718/1819-4036-2020-1-12-17; Руководство по методам контроля качества и безопасности биологически активных добавок к пище. Руководство. Р 4.1.1672-03. 2003-06-30.; Mares J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annual Review of Nutrition. 2016;(36):571-602. DOI:10.1146/annurev-nutr-071715-051110; Оленников Д.Н., Танхаева Л.М. Методика количественного определения группового состава углеводного комплекса растительных объектов. Химия растительного сырья. 2006;(4):29-33.; https://www.vegetables.su/jour/article/view/1229

  4. 4
    Academic Journal

    المؤلفون: I. A. Gndoyan, И. А. Гндоян

    المصدر: Ophthalmology in Russia; Том 17, № 3 (2020); 309-320 ; Офтальмология; Том 17, № 3 (2020); 309-320 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-3

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1269/711; Колен Д. Распространенность глазных болезней у детей. Вестник оптометрии. 2011;1:34–38.; Ладодо К.С., Спиричев В.Б. Витамины и здоровье детей. Педиатрия. 1987;3:5– 10.; VISION 2020: Global Initiative for the Elimination of Avoidable Blindness: action plan 2006–2011. WHO Library Cataloguing-in-Publication Data. Available: https://www.iapb.org/wp-content/uploads/VISION-2020-Action-Plan-2006-2011; Fomon S.J. Nutrition of normal infants. St. Louis: Mosby, 1993. 475 p.; Кацнельсон А.Б. Витамины в физиологии и витаминная недостаточность в патологии органа зрения. Л.: Медгиз, 1960. 150 с.; Кукес В. Г., Тутельян В. А. Витамины и микроэлементы в клинической фармакологии. М.: Палея, 2001. 558 с.; Громов И.А., Торшхоева Р.М., Намазова Л.С. Актуальность применения поливитаминов у детей в современной России. Педиатрическая фармакология. 2008;5(2):100–102.; Захарова И.Н., Свинцицкая В.И. Применение витаминов-антиоксидантов в педиатрической практике. Лечащий врач. 2010;8:45–47.; Тарутта Е.П., Иомдина Е.Н., Тарасова Н.А. Комплексный подход к профилактике и лечению прогрессирующей миопии у школьников. РМЖ Клиническая офтальмология. 2018;2:70–76. DOI:10.21689/2311-7729-2018-18-2-70-76; Schmid K. Myopia Manual: An impartial documentation of all the reasons, therapies and recommendations. Pagefree Publishing, 2018. 378 р.; Flitcroft D.I. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog. Retin. Eye Res. 2012;31(6):622–660. DOI:10.1016/j.preteyeres.2012.06.004; Morgan I.G. The biological basis of myopic refractive error. Clin. Exp. Optom. 2003;86(5):276–288. DOI:10.1111/j.1444-0938.2003.tb03123.x; Тарутта Е.П. Возможности профилактики прогрессирующей и осложненной миопии в свете современных знаний о ее патогенезе. Вестник офтальмологии. 2006;122(1):43–47.; Bosch-Morell F., Mérida S., Navea A. Oxidative Stress in Myopia. Oxidative Medicine and Cellular Longevity. Volume 2015, open access. DOI:10.1155/2015/750637; Матвеев А.В., Гусева М.Р., Маркова Е.Ю. Коррекция оксидативного стресса и гемодинамических изменений при миопии и нарушениях аккомодации. Российская педиатрическая офтальмология, 2012;1:25–28.; Edwards M.H., Leung S.S.F., Lee W.T.K. Do variations in normal nutrition play a role in the development of myopia? Optom. Vis. Sci. 1996;73(10):638–643. DOI:10.1097/00006324-199610000-00002; Винецкая М.И., Иомдина Е.Н. Исследование микроэлементов в слезной жидкости при некоторых глазных заболеваниях. Вестник офтальмологии. 1994;110(4):24–26.; Qiang M., Zhao R. A logistic regression analysis of relations between juvenile myopia and TV‐watching, trace elements, and psychological characteristics. Zhonghua Yu Fang Yi Xue Za Zhi. 1991;25(4):222–224.; Shiue C., Ko L.S. Study on serum copper and zinc levels in high myopia. Acta Ophthalmologica. 1988;Supplement 185:141–142. DOI:10.1111/j.1755-3768.1988.tb02691.x; Fedor M., Socha K., Urban B. Serum concentration of zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Biol. Trace Elem. Res. 2017;176;:1–9. DOI:10.1007/s12011-016-0805-1; Аветисов Э.С., Винецкая М.И., Иомдина Е.А. Обмен меди в склеральной ткани и возможности его коррекции при миопии. Вестник офтальмологии. 1991;107(5):31–34.; Avetisov E., Tarutta E.P., Iomdina E., Vinetskaya M., Andreyeva L. A New Composition for the Treatment of Progressive Myopia and Its Efficiency. In: Tokoro T. (eds) Myopia Updates: Proceedings of the 6th International Conference on Myopia. Tokyo: Springer, 1998. DOI:10.1007/978-4-431-66959-3_42; Tuormaa T.E. Adverse Effects of Zinc Deficiency: A Review from the Literature. Journal of Orthomolecular Medicine. 1995;10(3–4):149–164.; Bryce-Smith D: Zinc deficiency — the neglected factor. Chemistry in Britain. 1989;August:783–786.; Riordan J.F. Biochemistry of zinc. Med. Clin. North. Am. 1976;60(4):661–674. DOI:10.1016/S0025-7125(16)31851-X; Swinkels J.W., Kornegay E.T., Verstegen M.W. Biology of zinc and biological value of dietary organic zinc complexes and chelates. Nutr. Res. Rev. 1994;7(1):129–149. DOI:10.1079/NRR19940009; Flynn A., Strain W.H., Porles W.J. Corticotrophin dependency on zinc ions. Biochem. Biophys. Res. Commun. 1972;46(3):1113–1119. DOI:10.1016/s0006291x(72)80089-5; Pfeiffer C.C., Braveman E.R. Zinc, brain and behavior. Biolog. Psychiatry. 1982;17(4):513–532.; Sandstead H.H. Zinc: essentiality for brain development and function. Nutr. Rev. 1985; 43(5):130–137. DOI:10.1111/j.1753-4887.1985.tb06889.x; McBrien N.A., Jobling A.I., Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom. Vis. Sci. 2009;86:23–30. DOI:10.1097/OPX.0b013e3181940669; Summers-Rada J., Shelton S., Norton T.T. The sclera and myopia. Exp. Eye Res. 2006;82:185–200. DOI:10.1016/j.exer.2005.08.009; Yanagisawa H. Zinc deficiency and clinical practice-validity of zinc preparations. Yakugaku Zasshi. 2008;128(3):333–339. DOI:10.1248/yakushi.128.333; Harris E.D., Rayton J.K., Balthrop J.E. Copper and the synthesis of elastin and collagen. CIBA Found. Symp. 1980;79:163–182. DOI:10.1002/9780470720622.ch9; Powell S.R. The antioxidant properties of zinc. J. Nutr. 2000;130(5):1447–1454. DOI:10.1093/jn/130.5.1447S; Fedor M., Urban B., Socha K. Concentration of zinc, copper, selenium, manganese, and Cu/Zn ratio in hair of children and adolescents with myopia. Journal of Ophthalmology. 2019;2019:5643848-7. DOI:10.1155/2019/5643848, Open Access; Huibi X., Kaixun H., Quihua G. Prevention of axial elongation in myopia by the trace element zinc. Biol. Trace Elem. Res. 2001;79(1):39–47. DOI:10.1385/BTER:79:1:39; Silverstone B.Z. Effects of zinc and copper metabolism in highly myopic patients. CIBA Found. Symp. 1990;155:210–221. DOI:10.1002/9780470514023.ch12; Ставицкая Т.В. Применение экстракта черники в офтальмологии. РМЖ Клиническая офтальмология. 2002;2:86–87.; Судовская Т.В., Киселева Т.Н. Влияние антиоксидантного комплекса Стрикс отличник на зрительные функции и гемодинамику глаза у детей и подростков с миопией. Российский офтальмологический журнал. 2011;4(3):64–67.; Нагорский П.Г. Применение антиоксидантов в комплексной терапии компьютерного зрительного синдрома. РМЖ Клиническая офтальмология. 2006;1:38– 40.; Bomser J., Madhavi D.L., Singletary K., Smith M.A. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med. 1996;62(3):212–216. DOI:10.1055/s-2006-957862; Rao C.N., Rao V.H., Steinmann B. Bioflavonoid mediated stabilization of collagen in adjuvant‐induced arthritis. Scand. J. Rheumatol.1983;12(1):39–42.; Miskulin M., Godeau G., Tixier A.M., et al. Experimental study of the effects of cyanoside chloride on collagen, and its potential value in ophthalmology. J. Fr. Ophtalmol. 1984;7(11):737–743. 44. Algan B. The treatment of progressive malignant myopia with magnesium chelates of flavones. A propos of 400 cases. Bull. Soc. Belge Ophtalmol. 1981;192:103–112.; Nakaishi H., Matsumoto H., Tominaga S., Hirayama M. Effects of black current anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern. Med. Rev. 2000;5(6):553–562.; Lee J., Lee H. K., Kim C. Y. Purified high-dose anthocyanoside oligomer administration improves nocturnal vision and clinical symptoms in myopia subjects. British Journal of Nutrition. 2005;93(6):895–899. DOI:10.1079/bjn20051438; Omar I.A.N. Effect of bilberry extract on slowing high-myopia progression in children: 2-year follow-up study. Clinical Ophthalmology. 2018;12:2575–2579. DOI:10.2147/OPTH.S187949; Kamiya K., Kobashi H., Fujiwara K., Ando W. Effect of fermented bilberry extracts on visual outcomes in eyes with myopia: a prospective, randomized, placebo-controlled study. Journal of Ocular Pharmacology and Therapeutics. 2013;29(3):356– 359. DOI:10.1089/jop.2012.0098; Гндоян И.А., Петраевский А.В. Значение антоцианозидов в комплексном лечении миопии. Точка зрения. Восток–Запад. 2018;4:87–89. DOI:10.25276/2410-1257-2018-4-87-89; Тарутта Е.П., Иомдина Е.А., Тарасова Н.А. Нехирургическое лечение прогрессирующей близорукости. РМЖ Клиническая офтальмология. 2016;16(4):204– 210. DOI:10.21689/2311-7729-2016-16-4-204-210; Ших Е.В. Витамины с антиоксидантными свойствами в профилактике и лечении острых респираторных инфекций у детей. Вопросы современной педиатрии. 2013;12(4):142–147.; Frei B., Stocker R., Ames B.N. Antioxidant defenses and lipid peroxidation in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(24):9748–9752. DOI:10.1073/pnas.85.24.9748; Johnson E.J., Russell R.M. Beta-Carotene. In: Coates P.M., Betz J.M., Blackman M.R., et al. (eds.). Encyclopedia of Dietary Supplements. 2nd ed. London and New York: Informa Healthcare; 2010:115–120.; Ross A. Vitamin A. In: Coates P.M., Betz J.M., Blackman M.R. (eds). Encyclopedia of Dietary Supplements. 2nd ed. London and New York: Informa Healthcare; 2010:778–791.; Шашкина М.Я., Шашкин П.Н., Сергеев А.В. Каротиноиды как основа для создания лечебно-профилактических средств. Российский биотерапевтический журнал. 2009;8(4):91–98.; Sommer A. Preventing blindness and saving lives: the centenary of vitamin A. JAMA Ophthalmol. 2014;132(1):115–117. DOI:10.1001/jamaophthalmol.2013.5309; Егоров Е,А., Астахов Ю.С., Ставицкая Т.В. Офтальмофармакология. М.: ГЭОТАР-МЕД, 2004. 464 c.; Foster A., Sommer A. Corneal ulceration, measles, and childhood blindness in Tanzania. Br. J. Ophthal. 1987;71(5):331–343. DOI:10.1136/bjo.71.5.331; Segun B., Martin M , Meremikwu R. Routine vitamin A supplementation for the prevention of blindness due to measles infection in children. Cochrane Systematic Review — Intervention Version published: 2011;13(4):CD007719. DOI:10.1002/14651858.CD007719.pub2; Mayo-Wilson E., Imdad A., Marshall K.H. Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: systematic review and meta-analysis. BMJ. 2011;343:d5094 DOI:10.1136/bmj.d5094; Mertz J.R., Wallman J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp. Eye Res. 2000;70:519–527. DOI:10.1006/exer.1999.0813. Available online at http://www.idealibrary.com on; Harper A.R., Wang X., Moiseyev G. Postnatal chick choroids exhibit increased retinaldehyde dehydrogenase activity during recovery from form deprivation induced myopia. Invest. Ophthalmol. Vis. Sci. 2016;57(11):4886–4897. DOI:10.1167/iovs.16-19395; Padayatty S.J., Katz A., Wang Y. Vitamin C as an antioxidant: evaluation of its role in disease prevention. Am. Coll. Nutr. 2003;22(1):18–35. DOI:10.1080/07315724.2003.10719272; Berg R.A., Kerr J.S. Nutritional aspects of collagen metabolism. Annu. Rev. Nutr. 1992;12:369–390. DOI:10.1146/annurev.nu.12.070192.002101; Чеснокова Н.Б. Значение некоторых микронутриентов при возрастных заболеваниях глаза. Офтальмология. 2005;2:59–61.; Гусева М.Р., Сидоренко Е.И., Маркова Е.Ю. и др. «Лютеин-Комплекс детский» при заболеваниях глаз у детей. Российская педиатрическая офтальмология. 2013;1:53–65.; Neal M.J., Cunningham J.R. Release of endogenous ascorbic acid preserves extracellular dopamine in the mammalian retina. Invest. Ophthalmol. Vis. Sci. 1999;40(12):2983–2987.; Brigelius-Flohe R., Traber M.C. Vitamin E: function and metabolism. FASEB Journal. 1999;13:1145–1155. DOI:10.1096/fasebj.13.10.1145; Mervyn L. Thorsons complete Guide to vitamins and minerals. London: Thorsons, 2000. 384 p.; Rosenlund H., Magnusson J., Kull I. Antioxidant intake and allergic disease in children. Clin. Exp. Allergy. 2012;42(10):1491–1500. DOI:10.1111/j.13652222.2012.04053.x; Martin A., Janigian D., Shukitt-Hale B. Effect of vitamin E intake on levels of vitamins E and C in the central nervous system and peripheral tissues: implications for health recommendations. Brain Res. 1999;845(1):50–59. DOI:10.1016/s0006-8993(99)01923-x; Chow C.K., Hong C.B. Dietary vitamin E and selenium and toxicity of nitrite and nitrate. Toxicology. 2000;180(2):195–207. DOI:10.1016/s0300-483x(02)00391-8; Amemiya T. The eye and nutrition. Jpn. J. Ophthalmol. 2000.;44(3):320. DOI:10.1016/S0021-5155(00)00161-1; Du Y., Miller. C.M., Kern T.S. Hyperglycemia increases mitochondrial superoxide in retina and retina cells. Free Radic. Biol. Med. 2003;35:1491–1499. DOI:10.1016/j.freeradbiomed.2003.08.018; Bhutto I.A., Amemiya T. Retinal vascular architecture is maintained in retinal degeneration: corrosion cast and electron microscope study. Eye. 2001;15(Pt4):531– 538. DOI:10.1038/eye.2001.168; Егоров Е.А. Патогенетические подходы к лечению возрастной макулярной дегенерации. РМЖ Клиническая офталмология. 2017;4:1–4.; Гндоян И.А., Петраевский А.В, Кузнецова Н.А., Дятчина А.И. Мониторинг функциональных показателей у пациентов с возрастной макулярной дегенерацией. Офтальмология. 2017;15(3):260–267. DOI:10.18008/1816-5095-2017-3-260-267; Zimmer J.P., Hammond B.R. Possible influences of lutein and zeaxanthin on the developing retina. Clinical Opthalmology. 2007;1(1):25–35.; Bernstein P., Khachik F., Carvalho L., et al. Identification and quantification of carotenoids and their metabolites in the tissues of the human eye. Exp. Eye Res. 2001;72:215–223. DOI:10.1006/exer.2000.0954; Mares J. Lutein and zeaxanthin isomers in eye health and disease. Annu. Rev. Nutr. 2016;36:571–602. DOI:10.1146/annurev-nutr-071715-051110; Bone R.A., Landrum J.T., Hime G.W. Stereochemistry of the human macular carotenoids. Invest. Ophthalmol. Vis. Sci. 1993;34:2033–2040.; Landrum J.T., Bone R.A., Chen Y. Carotenoids in the human retina. Pure Appl. Chem. 1999;71:2237–2244.; Bone R., Landrum J., Fernandez L. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest. Ophthalmol. Vis. Sci. 1988;29:843–849.; Teller D. First glances: The vision of infants. Invest. Ophthalmol. Vis. Sci. 1997;38:2183–2203.; Snodderly D.M., Auran J., Delori F. The macular pigment. II. Spatial distribution in primate retinas. Invest. Ophthalmol. Vis. Sci. 1984;25:674–685.; Hardy P., Dumont I., Bhattacharya M., et al. Oxidants, nitric oxide and prostanoids in the developing ocular vasculature: a basis for ischemic retinopathy. Cardiovasc. Res. 2000;47:489–509. DOI:10.1016/S0008-6363(00)00084-5; Kim S., Nakanishi K., Itagaki Y. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp. Eye Res. 2006; 82:828–839. DOI:10.1016/j.exer.2005.10.004; Sparrow J., Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp. Eye Res. 2005;80:595–606. DOI:10.1016/j.exer.2005.01.007; Leung I.Y., Sandstrom M.M., Zucker C.L. Nutritional manipulation of primate retinas, II: effects of age, n-3 fatty acids, lutein, and zeaxanthin on retinal pigment epithelium. Invest. Ophthalmol. Vis Sci. 2004;45(9):3244–3256. DOI:10.1167/iovs.021233; Feeney-Burns L., Hilderbrand E., Eldridge S. Aging human RPE: Morphometric analysis of macular, equitorial and peripheral cells. Invest. Ophthalmol. Vis. Sci. 1984;25:195–200.; Кирпиченкова Е.В., Королев А.А., Онищенко Г.Г. Изучение содержания лютеина и зеаксантина в рационе с оценкой взаимосвязи уровня алиментарного поступления невитаминных каротиноидов и плотности макулярной области сетчатки в молодом возрасте. Вопросы питания. 2018 87(5):20–26. DOI:10.24411/00428833-2018-10049; Vital-Durand F., The infant’s vision and light — The role of prevention in preserving visual capacity. Points de Vue. International Review of Ophthalmic Optics. 2014;71. Available at https://www.semanticscholar.org/author/Fran %C3%A7ois-Vital-Durand/49129221; Fishman G.A. Ocular phototoxicity: Guidelines for selecting sunglasses. Surv. Ophthalmol. 1986;31:119–124. DOI:10.1016/0039-6257(86)90079-2; Werner J.S. Children’s sunglasses: caveat emptor. Optom. Vis. Sci. 1991;68:318–320. DOI:10.1097/00006324-199104000-00010; Young S., Sands J. Sun and the eye: prevention and detection of light-induced disease. Clin. Dermatol. 1998;16:477–485. DOI:10.1016/s0738-081x(98)00021-2; Конь И.Я. Современные представления о роли каротиноида лютеина в питании детей раннего возраста. Педиатрия. 2012;91(1):96–102.; Neuringer M., Wallace P., Billingslea A. Incidence of drusen-like changes in a rhesus monkey colony: Effects of age, gender and dietary carotenoids. Invest. Ophthalmol. Vis. Sci. 2003;44:4949.; Jewell V.C., Mayes C.B.D., Tubman T.R.J. A comparison of lutein and zeaxanthin concentrations in formula and human milk samples from Northern Ireland mothers. Eur. J. Clin. Nutr. 2004;58:90–97. DOI:10.1038/sj.ejcn.1601753; Scientific Opinion. Safety, bioavailability and suitability of lutein for the particular nutritional use by infants and young children: Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies. The EFSA Journal. 2008;823:1–24. Open Access, first published in the EFSA Journal: 14 November 2008, adopted: 2 October 2008. DOI:10.2903/j.efsa.2008.823; Wegmüller R., Tay F., Zeder C. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J. Nutr. 2014;144:132–136. DOI:10.3945/jn.113/181487; https://www.ophthalmojournal.com/opht/article/view/1269

  5. 5
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 17, № 2 (2020); 165-171 ; Офтальмология; Том 17, № 2 (2020); 165-171 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-2

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1192/685; Flaxman S.R., Bourne R.R.A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M.V., et. al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health. 2017;5:e1221-e1234. DOI:10.1016/S2214-109X(17)30393-5; Sideri O., Tsaousis K.T., Li H.J., Viskadouraki M., Tsinopoulos I.T. The potential role of nutrition on lens pathology: A systematic review and meta-analysis. Surv. Ophthalmol. 2019;64:668–678. DOI:10.1016/j.survophthal.2019.03.003; Loskutova E., O’Brien C., Loskutov I., Loughman J. Nutritional supplementation in the treatment of glaucoma: A systematic review. Surv. Ophthalmol. 2019;64:195– 216. DOI:10.1016/j.survophthal.2018.09.005; Nangia V., Jonas J.B., George R. on behalf of the Vision Loss Expert Group of the Global Burden of Disease Study, et al Prevalence and causes of blindness and vi sion impairment: magnitude, temporal trends and projections in South and Central Asia British. Journal of Ophthalmology. 2019;103:871–877. DOI:10.1136/bjophthal- mol-2018-312292; Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic re view and meta-analysis. Ophthalmology. 2014;121:2081–2090. DOI:10.1016/j.oph tha.2014.05.013; Aslam T., Delcourt C., Holz F., García-Layana A., Leys A., Silva R.M., Souied E. European survey on the opinion and use of micronutrition in age-related macular degeneration: 10 years on from the Age-Related Eye Disease Study. Clinical ophthalmology. 2014;8:2045–2053. DOI: 2147/OPTH.S63937; Lawrenson J., Downie L. Nutrition and Eye Health. Nutrients. 2019;11: 2123. DOI:10.3390/nu11092123; Zhang X., Bullard K.M., Cotch M.F., Wilson M.R., Rovner B.W., McGwin G. Jr., et. al. Association between depression and functional vision loss in persons 20 years of age or older in the United States, NHANES 2005-2008. JAMA Ophthalmol. 2013;131(5):573–581. DOI:10.1001/jamaophthalmol.2013.2597; Tan B.L., Norhaizan M.E., Liew W.P., Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol. 2018;9:1162. DOI:10.3389/fphar.2018.01162; Sayama A., Okado K., Nakamura K., Kawaguchi T., Iguchi T., Makino T., Mori K. UNC569-induced Morphological Changes in Pigment Epithelia and Photorecep tor Cells in the Retina through MerTK Inhibition in Mice. Toxicologic Pathology. 2018;46(2):193–201. DOI:10.1177/0192623317749469; Moreno-García A., Kun A., Calero O., Medina M., Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci. 2018;12:464. DOI:10.3389/fnins.2018.00464; Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell. Mol. Life Sci. 2020;77(5):789–805. DOI:10.1007/s00018-019-03420-x; Ly A., Nivison-Smith L., Assaad N., Kalloniatis M. Fundus Autofluorescence in Age-related Macular Degeneration. Optom Vis Sci. 2017;94(2):246–259. DOI:10.1097/OPX.0000000000000997; Ablonczy Z., Higbee D., Anderson D.M., Dahrouj M., Grey A.C., Gutierrez D., et. al. Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2013;54(8):5535–5542. DOI:10.1167/iovs.13-12250; Handa J.T., Bowes Rickman C., Dick A.D., Gorin M.B., Miller J.W., Toth C.A., et. al. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun. 2019;10(1):3347. DOI:10.1038/s41467-019-11262-1; Evans J. R., Lawrenson J.G. Antioxidant vitamin and mineral supplements for preventing age‐related macular degeneration. Cochrane Database of Systematic Reviews. 2012;14(11):CD000254. DOI:10.1002/14651858.CD000254.pub3; Datta S., Cano M., Ebrahimi K., Wang L., Handa J.T. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Progress in Retinal and Eye Research. 2017;60:201–218. DOI:10.1016/j.preteyeres.2017.03.002; Sun M., Finnemann S.C., Febbraio M., Shan L., Annangudi S.P., Podrez E.A., et. al. Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress condi tions. The Journal of Biological Chemistry. 2006;281(7):4222–4230. DOI:10.1074/jbc.M509769200; Mares J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annu Rev Nutr. 2016;36:571–602. DOI:10.1146/annurev-nutr-071715-051110; Buscemi S., Corleo D., Di Pace D. Petroni M.L., Satriano A., Marchesini G. The Ef fect of Lutein on Eye and Extra-Eye Health. Nutrients. 2018;10(9):1321. DOI:10.3390/nu10091321; Михайлова М.А., Сизова М.В., Шеланкова А.В. Патогенез ретинальных венозных окклюзий. Вестник офтальмологии. 2014;130(2):88–92. [Mikhaylova M.A., Sizova M.V., Shelankova A.V. Pathogenesis of retinal vein occlusions. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2014;130(2):88– 92 (In Russ.)].; Carneiro A., Andrade J.P. Nutritional and lifestyle interventions for age-related macular degeneration: a review. Oxidative Medicine and Cellular Longevity. 2017;6469138. DOI:10.1155/2017/6469138; Rezende F.A., Lapalme E., Qian C.X., Smith L.E., SanGiovanni J.P., Sapieha P. Omega-3 supplementation combined with anti-vascular endothelial growth factor lowers vitreal levels of vascular endothelial growth factor in wet age-related macular degeneration. Am J Ophthalmol. 2014;158(5):1071–1078. DOI:10.1016/j.ajo.2014.07.036; Semeraro F., Gambicordi E., Cancarini A., Morescalchi F., Costagliola C., Russo A. Treatment of exudative age-related macular degeneration with aflibercept combined with pranoprofen eye drops or nutraceutical support with omega-3: A randomized trial. Br J Clin Pharmacol. 2019;85: 908–913. DOI:10.1111/bcp.13871; Stahl A., Sapieha P., Connor K.M. Sangiovanni J.P., Chen J., Aderman C.M., Willett K.L., Krah N.M., Dennison R.J., Seaward M.R., Guerin K.I., Hua J., Smith L.E. Short communication: PPAR gamma mediates a direct antiangiogenic effect of omega 3-PUFAs in proliferative retinopathy. Circ Res. 2010;107(4):495–500. DOI:10.1161/CIRCRESAHA.110.221317; Connor K.M., SanGiovanni J.P., Lofqvist C., Aderman C.M., Chen J., Higuchi A., et. al. Increased dietary intake of omega‐3‐polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13(7):868–873. DOI:10.1038/nm1591; Cohen L.P., Pasquale L.R. Clinical characteristics and current treatment of glaucoma. Cold Spring Harb Perspect Med. 2014;4(6):a017236. DOI:10.1101/cshperspect.a017236; Sayner R., Carpenter D.M., Blalock S.J. Robin A.L., Muir K.W., Hartnett M.E., et. al. Accuracy of Patient-reported Adherence to Glaucoma Medications on a Visual Analog Scale Compared With Electronic Monitors. Clin Ther. 2015;37(9):1975–1985. DOI:10.1016/j.clinthera.2015.06.008; Nucci C., Di Pierro D., Varesi C., Ciuffoletti E., Russo R., Gentile R., Cedrone C., Pinazo Duran M.D., Coletta M., Mancino R. Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol. Vis. 2013;19:1841–1846.; Sorkhabi R., Ghorbanihaghjo A., Javadzadeh A., Rashtchizadeh N., Moharrery M. Oxidative DNA damage and total antioxidant status in glaucoma patients. Mol. Vis. 2011;17:41–46.; Тренделева Т.А., Аливердиева Д.А., Звягильская Р.А. Механизмы определения низкого уровня кислорода у млекопитающих и дрожжей и их адаптационные ответы (обзор). Биохимия. 2014;79(8):750–760. [Trendeleva T.A., Zvyagilskaya R.A., Aliverdieva D.A. Mechanisms of sensing and adaptive responses to low oxygen conditions in mammals and yeasts. Biochemistry = Biohimiya. 2014;79(8):750–760 (In Russ.)].; Yıldırım O., Ates N., Ercan B., Muşlu N., Unlü A., Tamer L., Atik U., Kanik A. Role of oxidative stress enzymes in open-angle glaucoma. Eye. 2005;19:580–583. DOI:10.1038/sj.eye.6701565; Goyal A., Srivastava A., Sihota R., Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr. Eye Res. 2014;39:823–829. DOI:10.3109/02713683.2011.556299; Sacca S.C., Pascotto A., Camicione P., Capris P., Izzotti A. Oxidative DNA damage in the human trabecular meshwork: Clinical correlation in patients with primary open-angle glaucoma. Arch. Ophthalmol. 2005;123:458–463. DOI:10.1001/archopht.123.4.458; Izzotti A., Sacca S.C., Cartiglia C., De Flora S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am. J. Med. 2003. 114:638–646. DOI:10.1016/s0002-9343(03)00114-1; Tezel G. The immune response in glaucoma: A perspective on the roles of oxidative stress. Exp. Eye Res. 2011;93:178–186. DOI:10.1016/j.exer.2010.07.009; Maruyama I., Ohguro H., Ikeda Y. Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. Invest Ophthalmol Vis Sci. 2000;41:1657–1665.; Johnson E.C., Morrison J.C. Friend or foe? Resolving the impact of glial responses in glaucoma. J Glaucoma. 2009;18:341–353. DOI:10.1097/IJG.0b013e31818c6ef6; Bernstein P.S., Li B., Vachali P.P., Gorusupudi A., Shyam R., Henriksen B.S. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in retinal and eye research. 2016;50:34–66. DOI:10.1016/j.preteyeres; Eggersdorfer M., Wyss A. Carotenoids in human nutrition and health. Archives of biochemistry and biophysics. 2018;652:18–26. DOI:10.1016/j.abb.2018.06.001; Kijlstra A., Tian Y., Kelly E.R., Berendschot T.T. Lutein: more than just a filter for blue light. Progress in retinal and eye research. 2012;31(4):303–315. DOI:10.1016/j.preteyeres; Eisenhauer B., Natoli S., Liew G., Flood V.M. Lutein and Zeaxanthin-Food Sources, Bioavailability and Dietary Variety in Age-Related Macular Degeneration Protection. Nutrients. 2017;9(2):120. DOI:10.3390/nu9020120; Mukhtar S., Ambati B.K. The value of nutritional supplements in treating Age-Related Macular Degeneration: a review of the literature. Int Ophthalmo. 2019;39:2975– 2983. DOI:10.1007/s10792-019-01140-6; Филиппова О.В. Выбор лекарственной формы для лечения и профилактики патологий сетчатки. РМЖ. Клиническая офтальмология. 2019;4:211–216. [Filippova O.V. Selecting drug formulation for the treatment and prevention of retinal disorders. Clinical ophthalmology = Klinicheskaya oftal’mologiya. 2019;19(4):211–216 (In Russ.)]. DOI:10.32364/2311-7729-2019-19-4-211-216; Scripsema N.K., Hu D.N., Rosen R.B. Lutein, zeaxanthin and meso-zeaxanthin in the clinical management of eye disease. J. Ophthalmol. 2015. 2015:865179. DOI:10.1155/2015/865179; Liu R., Wang T., Zhang B., et al. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014;56(1):252–258. DOI:10.1167/iovs.14-15553; Yoserizal M., Hirooka K., Yoneda M. Associations of nutrient intakes with glaucoma among Japanese Americans. Medicine (Baltimore). 2019. 98(49):e18314. DOI:10.1097/MD.0000000000018314; Jung K.I., Kim Y.C., Park C.K. Dietary niacin and open-angle glaucoma: The Korean National Health and Nutrition Examination Survey. Nutrients. 2018;10(4):ii:E387. DOI:10.3390/nu10040387; Ramdas W.D., Wolfs R.C., Kiefte-de Jong J.C. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur J Epidemiol 2012;27:385–393. DOI:10.1007/s10654-012-9672-z; Cho H.-K. Neuroprotective effect of ginkgo biloba extract against hypoxic retinal ganglion cell degeneration in vitro and in vivo. Journal of Medicinal Food. 2019;22(8):771–778. DOI:10.1089/jmf.2018.4350; Lawler T., Liu Y., Christensen K., Vajaranant T.S., Mares J. Dietary antioxidants, macular pigment, and glaucomatous neurodegeneration: a review of the evidence. Nutrients. 2019;11:1002. DOI:10.3390/nu11051002; Mozaffarieh M., Grieshaber M.C., Orgul, S., Flammer J. The potential value of natural antioxidative treatment in glaucoma. Surv. Ophthalmol. 2008;53:479–505. DOI:10.1016/j.survophthal.2008.06.006; Kang J.H., Pasquale L.R., Willett W., Rosner B., Egan K.M., Faberowski N., Hankinson S.E. Antioxidant intake and primary open-angle glaucoma: A prospective study. Am. J. Epidemiol. 2003;158:337–346. DOI:10.1093/aje/kwg167; Wang S.Y., Singh K., Lin S.C. Glaucoma and vitamins A, C, and E supplement intake and serum levels in a population-based sample of the United States. Eye. 2013;27:487–494. DOI:10.1038/eye.2013.10; Yong J. J., et al. Ocular Nutritional Supplements: Are Their Ingredients and Manufacturers’ Claims Evidence-Based? Ophthalmology. 2015;122(3):595–599. DOI:10.1016/j.ophtha.2014.09.039; https://www.ophthalmojournal.com/opht/article/view/1192

  6. 6
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 16, № 2 (2019); 259-264 ; Офтальмология; Том 16, № 2 (2019); 259-264 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2019-2

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/965/616; Аветисов С.Э., Егоров Е.А., Мошетова Л.К., Нероев В.В., Тахчиди Х.П. Офтальмология: национальное руководство. М.: ГЭОТАР-Медиа, 2008. 944 с.; Hyman L., Schachat A.P., He Q., Leske M.C. Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Archives of Ophthalmology. 2000;118(3):351–358. DOI:10.1001/archopht.118.3.351; Gass J.D. Choroidal neovascular membranes their visualization and treatment. Trans.Am.Acad. Ophthal. Otolaryng. 1973;77:310–320.; Bressler N.M., Silva J.C., Bressler S.B. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina. 2005;25:130–142.; Ястребов А.П., Мещанинов В. Н. Старение, перекисное окисление липидов и биовозраст. УГМА. Екатеринбург: [б. и.], 2005. (Екатеринбург: Уральский следопыт): 217 с.; Анисимов В.Н. Фундаментальная геронтология на рубеже веков. Клиническая геронтология. 2000;(1):25–32.; Kalous M. The role of mitochondria in aging. Physiol. Res.1996;45(5):351–359.; Zhang Y., Saum K.U., Schöttker B. Methylomic survival predictors, frailty, and mortality. Aging (Albany NY). 2018:10;339–357. DOI:10.18632/aging.101392; Lyle B.J., Mares-Perlman J.A., Klein B.E., et al. Antioxidant intake and risk of incident age-related nuclear cataracts in the Beaver Dam Eye Study. Am.J. Epidemiol. 1999;149(39):801–809.; Beatty S., Koh H-H. Henson D., Bouston M. Role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 2000;45:115– 134.; Barnett Y.A., King C.M. An investigation of antioxidant status, DNA repair capacity and mutation as a function of age in humans. Mutat. Res. DN Aging: Gen. Instab. and Aging. 1995:338;115–128.; Mitnitski A. B. Epigenetic Biomarkers for Biological Age. Epigenet. Aging Longevity. Translat. Epigenet. 2018:4;153–170.; Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013:309(19):2005–2015. DOI:10.1001/jama.2013.4997; Age-Related Eye Disease Study Research G. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Archives of Ophthalmology. 2001;119(10):1417–1436. DOI:10.1001/archopht.119.10.1417; Moeller S.M., Parekh N., Tinker L., et al. Associations between intermediate age — related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age — related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative. Arch Ophthalmol. 2006;124:1151–1162. DOI:10.1001/ archopht.124.8.1151; https://www.ophthalmojournal.com/opht/article/view/965

  7. 7
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 11, № 4 (2014); 41-46 ; Офтальмология; Том 11, № 4 (2014); 41-46 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2014-4

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/204/213; https://www.ophthalmojournal.com/opht/article/view/204/229; Kugoyeva E. E., Podgornaya N. N., Sherstneva L. V., Petrov S. Y., Cherkashina A. V. [Evaluation of eye hemodinamics and somatic status in patients with primary openangle glaucoma]. Izuchenie gemodinamiki glaza i obshhesomaticheskogo statusa bol’nyh s pervichnoj otkrytougol’noj glaukomoj. [Annals of ophthalmology]. Vestnik Oftalmology 2000; 4: 26‑28. (in Russ.).; Shmyreva V. F., Petrov S. Ju., Makarova A. S. [Causes of long-term efficacy decrease of antiglaukoma interventions and possibilities of its improvement]. Prichiny snizhenija otdalennoj gipotenzivnoj jeffektivnosti antiglaukomatoznyh operacij i vozmozhnosti ee povyshenija. [Glaucoma]. Glaukoma. 2010; 126 (2): 43‑49. (in Russ.).; Kurysheva N. I. [Optical neuropathy in patients with glaucoma]. Glaukomnaja opticheskaja nejropatija. Moscow. 2006. 135p. (in Russ.).; Bressler N. M., Silva J. C., Bressler S. B. et al. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina 2005; 25: 130‑42.; Hyun H. J., Sohn J. H., Ha D. W. et al. Depletion of intracellular zinc and cooper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells// Invest. Ophthalmol. Vis. Sci. 2001; 42 (2): 460‑465.; Klein R., Klein B. E., Jensen S. C. et al. Medication use and the 5‑year incidence of early age-related maculopathy: the Beaver Dam Eye Study. Arch. Ophthalmol. 2001;119 (9):1354‑9.; Ostrovskij M. A. [Clinical physiology of vision]. Klinicheskaja fiziologija zrenija. Moscow, 2002. 39 pp. (in Russ.).; The Age- Related Eye Disease Study Research Group. A randomized, placebo- controlled, clinical trial of high-dose supplementation with vitamins C and E, beta-carotene, and zinc for age-related macular degeneration and vision loss. AREDS Report No.8. Arch. Ophthalmol. 2001;119: 1417‑1436.; Beatty S., Koh H-H. Henson D., Bouston M. et al. Role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 2000; 45:115‑134.; Gottsch J. D, Bynoe L. A., Harlan J. B. et al. Light-induced deposits in Bruch’s membrane of protoporphyric mice. Arch. Ophthalmol. 1993;111:126‑129.; Norkus E. P., Norkus K. L., Dharmarajan T. S. et al. Serum lutein response is greater from free lutein than from esterified lutein during 4 weeks of supplementation in healthy adults. Am Coll Nutr. 2010;29:575‑85.; Vinderling J. R., Dielemans I., Bots M. L. Age-related macular degeneration is associated with atheroclerosis. The Rotterdam Study. Am. J. Opid. 1995;142 (4):404‑409.; Delcourt C, Carriere I, Delage M, et al, POLA Study Group. Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age — related maculopathy and cataract: the POLA Study. Invest Ophthalmol Vis Sci. 2006; 47:2329‑2335.; Kiseleva T. N., Polunin G. S., Budzinskaja M. V., Lagutina Ju. M., Vorob’eva M. V. [Modern approaches to treatment and prevention of macular degeneration]. Sovremennye podhody k lecheniju i profilaktike vozrastnoj makuljarnoj degeneracii. [Russian Medical Journal]. Russkij medicinskij zhurnal 2007; 2:78‑79. (in Russ.).; Wang X., Yin W., Dong X. et al. Experimental high IOP model and hypertension-induced lipid hyperoxygen reaction. Chinese-Ophthalmic-Res. 2004; 22:620‑622.; Zeimer M., Hense H. W., Heimes B. et al. The macular pigment: short– and intermediate — term changes of macular pigment optical density following supplementation with lutein and zeaxanthin and co — antioxidants. The LUNA Study / Ophthalmologe. 2009; 106:29‑36.; Smirnoff N. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology 2000;3: 229‑235.; Moeller S. M., Parekh N., Tinker L. et al. Associations between intermediate age — related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age — related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative. Arch Ophthalmol. 2006; 124:1151‑1162.; Beatty S., Koh H-H. Henson D., Bouston M. et al. Role of oxidative stress in the pathogenesis of age-related macular degenerationю Surv. Ophthalmol. 2000; 45:115‑134.; Bone R. A., Landrum J. T., Mayne S. T. et al. Macular pigment in donor eyes with and without AMD: a case-control study. Invest. Ophthalmol. Vis. Sci. 2001; 42: 235‑240.; Delcourt C, Carriere I, Delage M, et al, POLA Study Group. Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age — related maculopathy and cataract: the POLA Study. Invest Ophthalmol Vis Sci 2006; 47:2329‑2335.; Seddon J. M., Ajani U. A., Sperduto R. D. Dietary carotenoids, vitamin A, C and E and advanced age-related macular degeneration: Eye Disease case-Control Study Group. JAVA 1994; 272: 1413‑1420.; Richer S., Stiles W., Statkute L. et al. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 2004; 75 (4): 216‑30.; Tan J. S., Wang J. J., Flood V., et al. Dietary antioxidants and the long — term incidence of age — related macular degeneration: the Blue Mountains Eye Study.Ophthalmology. 2008; 115:334‑341.; SanGiovanni J. P., Agron E., Clemons T. E. et al. Omega-3 long-chain polyunsaturated fatty acid intake inversely associated with 12‑year progression to advanced age-related macular degeneration. Arch Ophthalmol. 2009; 127 (1): 110‑112.; SanGiovanni J. P., Chew E. Y., Agron E. et al. The relationship of dietary omega-3 longchain polyunsaturated fatty acid intake with incident age-related macular degeneration: AREDS report no. 23. Arch Ophthalmol. 2008; 126 (9): 1274‑1279.; Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 2013;19: 2005‑2015.; Yamamoto T. The dawn of neuroprotective therapy for glaucoma optic neuropathy. Nippon Ganka Zasshi. 2001;105:866‑883.; https://www.ophthalmojournal.com/opht/article/view/204

  8. 8
    Academic Journal
  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: Пушко, А. В. Сравнительный анализ цветков календулы лекарственной / А. В. Пушко, О. А. Ёршик // Технология органических веществ : материалы 85-й научно-технической конференции профессорско-преподавательского состава, научных сотрудников и аспирантов (с международным участием), Минск, 1-13 февраля 2021 г. – Минск : БГТУ, 2021. – С. 372-375.; https://elib.belstu.by/handle/123456789/41603; 615.322:582.886

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    Relation: Действие лютеин-зеаксантин содержащей добавки на морфологические и биохимические показатели крови перепелов / А. А. Шапошников, Л. Р. Закирова, Г. Н. Клочкова и др.; НИУ БелГУ // Научный результат. Сер. Медицина и фармация. - 2014. - Т.1, №2(2).-С. 12-19.; http://dspace.bsu.edu.ru/handle/123456789/42642

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal
  19. 19
    Academic Journal

    Relation: Исследование каротиноидного состава мякоти тыкв / Л.А. Дейнека [и др.]; НИУ БелГУ // Научные ведомости БелГУ. Сер. Естественные науки. - 2011. - №9(104), вып.15.-С. 131-136.; http://dspace.bsu.edu.ru/handle/123456789/51541

  20. 20