يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"коэффициент направленности"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Science & Technique; Том 23, № 5 (2024); 370-379 ; НАУКА и ТЕХНИКА; Том 23, № 5 (2024); 370-379 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2024-23-5

    وصف الملف: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2804/2349; Cao W., Zhang B., Liu A., Yu T., Guo D., Pan X. (2012) MultiFrequency and Dual-Mode Patch Antenna Based on Electromagnetic Band-gap (EBG) Structure. IEEE Transactions on Antennas and Propagation, 60 (12), 6007–6012. https://doi.org/10.1109/tap.2012.2211554.; Metamaterials: The Complete Definition, History & Applications, 2016.; Liu Y., Hao Y., Li K., Gong S. (2016) Radar Cross Section Reduction of a Microstrip Antenna Based on Polarization Conversion Metamaterial. IEEE Antennas and Wireless Propagation Letters, 15, 80–83. https://doi.org/10. 1109/lawp.2015.2430363.; Pandeeswari R., Raghavan S. (2015) Microstrip Antenna with CSRR Loaded Ground Plane for Gain Enhancement. Micro-wave and Optical Technology Letters, 57 (2), 292–296. https://doi.org/10.1002/mop.28835.; Hu J. R., Li J. S. (2014) Compact Microstrip Antennas using CSRR Structure Ground Plane. Microwave and Optical Technology Letters, 56, 117–120. https://doi.org/10.1002/mop.28023.; Wang N., Zhang C., Zeng Q., Wang N., Xu J. (2013) New Dielectric 1D EBG Structure for the Design of Wide-band Dielectric Resonator Antennas. Process in Electromagnetic Research, 141, 233–248. https://doi.org/10.2528/pier13061207.; Dastranj A., Imani A., Naser-Moghaddasi M. (2008) Printed Wide-slot Antenna for Wideband Application. IEEE Transactions on Antennas and Propagation, 56 (10), 3097–3102. https://doi.org/10.1109/tap.2008.929459.; Jan J.-Y., Su J.-W. (2005) Bandwidth Enhancement of a Printed Wide-Slot Antenna with a Rotated Slot. IEEE Transactions on Antennas and Propagation, 53 (6), 2111–2114. https://doi.org/10.1109/tap.2005.848518.; Chen W.-L., Wang G.-M., Zhang C.-X. (2009) Bandwidth Enhancement of a Microstrip-line Fed Printed Wide-slot Antenna with a Fractal-Shaped Slot. IEEE Transactions on Antennas and Propagation, 57 (7), 2176–2179. https://doi.org/10.1109/tap.2009.2021974.; See C. H., Abd-Alhameed R. A., Zhou D., Lee T. H., Excell P. S. (2010). A CrescentShaped Multiband Planar Monopole Antenna for Mobile Wireless Applications. IEEE antennas and wireless propagation letters, 9, 152–155. https://doi.org/10.1109/lawp.2010.2044741.; Goswami C., Pal M., Ghatak R., Poddar D. R. (2014) Metamaterial Based Miniaturized Dual Band Antenna. 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking, 51, 1–4. https://doi.org/10.1109/et2ecn.2014.7044956.; Bhattacharya A. (2014) Modeling & Simulation of Meta material Based Devices for Industrial Applications. Elektronika – Konstrukcje, Technologie, Zastosowania, 1 (10), 68–71. https://doi.org/10.15199/13.2016.10.17.; Radavaram S., Pour M. (2019) Wideband Radiation Reconfigurable Microstrip Patch Antenna Loaded with Two Inverted U-Slots. IEEE Transactions on Antennas and Propagation, 67 (3), 1501–1508. https://doi.org/10.1109/ tap.2018.2885433.; Rambe A., Suherman S., Erwin E. (2019) Design of Rectangular Microstrip Patch Antenna for 1.8 GHz Applications. Proceedings of the Proceedings of The 2nd International Conference On Advance And Scientific Innovation, ICASI 2019, 18 July, Banda Aceh, Indonesia. https://doi.org/10.4108/eai.18-7-2019.2288555.; Islam M. R., Adel A. A. A., Mimi A. W. N., Yasmin M. S., Norun F. A. M. (2017) Design of Dual Band Microstrip Patch Antenna using Metamaterial. IOP Conference Series: Materials Science and Engineering, 260, 012037. https://doi.org/10.1088/1757-899x/260/1/012037.; Rop K. V., Konditi D. B. O. (2012) Performance Analysis of a Rectangular Microstrip Patch Antenna on Different Dielectric Substrates. Innovative Systems Design and Engineering, 3 (8), 1–14.; Rahimi M., Zarrabi F. B., Ahmadian R., Mansouri Z., Keshtkar A. (2014) Miniaturization of Antenna for Wireless Application with Difference Metamaterial Structures. Progress in Electromagnetics Research, 145, 19–29. https://doi.org/10.2528/pier13120902.; Jain S. K., Shrivastava A., Shrivas G. (2015) Miniaturization of Microstrip Patch Antenna using Metamaterial Loaded with SRR. 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), a 87, 1224–1227. https://doi.org/10.1109/iceaa. 2015. 729 7313.; Singh H. P. (2017) Design and Simulation of Rectangular Microstrip Patch Antenna Loaded with Metamaterial Structure. Electrical & Electronic Technology Open Access Journal, 1 (1), 58–62. Available at: https://medcraveonline.com/EETOAJ/EETOAJ-01-00012.pdf; Mishra G. P., Mangaraj B. B. (2020). Highly Compact Microstrip Patch Design based on Improved Capacitive Minkowski Fractal Defected Ground Structure. AEU – International Journal of Electronics and Communications, 115, 153049. https://doi.org/10.1016/j.aeue.2019.153049.; Yang M., Chen Z. N., Lau P. Y., Qing X., Yin X. (2015). Miniaturized Patch Antenna with Grounded Strips. IEEE Transactions on Antennas and Propagation, 63 (2), 843–848. https://doi.org/10.1109/tap.2014.2382668.; Wqrner D. H., Ganguly S. (2003). An Overview of Fractal Antenna Engineering Research. IEEE Antennas and Propagation Magazine, 45 (1), 38–57. https://doi.org/10.1109/map.2003.1189650.; Suvarna K., Murty N. R., Vardhan D. V. (2019) A Miniature Rectangular Patch Antenna using Defected Ground Structure for Wlan Applications. Progress In Electromagnetics Research C, 95, 131–140. https://doi.org/10.2528/pierc19061602.; Er-rebyiy R., Zbitou J., Latrach M., Tajmouati A., Errkik A., El Abdellaoui L. (2017). A Novel Design of a Miniature Low Cost Planar Antenna for ISM Band Applications. Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, 99, 1–5. https://doi.org/10.1145/3167486.3167492.; Ghaloua A., Zbitou J., El Abdellaoui L., Errkik A., Tajmouati A., Latrach M. (2017). A Miniature Circular Patch Antenna Using Defected Ground Structure for ISM Band Applications. Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, 4, 1–5. https://doi.org/10.1145/3167486.3167571.; Er-rebyiy R., Zbitou J., Latrach M., Tajmouati A., Errkik A., Abdellaoui L. E. (2017). New Miniature Planar Microstrip Antenna Using DGS for ISM Applications. TELKOMNIKA (Telecommunication Computing Electronics and Control), 15 (3), 1149. https://doi.org/10.12928/telkomnika. v15i3.6864.; Zhang H., Chen D., Yu Y., Zhao C., Tian G. (2019) A Novel Compact Microstrip Antenna with an Embedded λ/4 Resonator. International Journal of Antennas and Propagation, 2019, 1–7. https://doi.org/10.1155/2019/2431760.; Balanis C. A. Antenna Theory & Design. John Wiley & Sons, Inc., 1997.; Pozar D. M. (2004) Microwave Engineering. 3rd ed. John Wiley & Sons.; Stutzman W. L., Thiele G. A. (1998) Antenna Theory & Design. 2nd ed. John Wiley & Sons, New York.; Haupt R. L. (1995) An Introduction to Genetic Algorithms for Electromagnetic. IEEE Antennas and Propagation Magazine, 37 (2), 7–15. https://doi.org/10.1109/74.382334.; Hamzidah N. K., Setijadi E. (2015) Design of Microstrip Patch Antenna Based on Complementary Split Ring Resonator Metamaterial for Wi-MAX Application. 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), 56, 413–418. https://doi.org/10.1109/isitia.2015.7220016.; Nutan R. A., Raghavan S. (2013) Split Ring Resonator and Its Evolved Structures over the Past Decade: This paper discusses the nuances of the most celebrated composite particle (split-ring resonator) with which novel artificial structured materials (called metamaterials) are built. 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN). https://doi. org/10. 1109/ice-ccn.2013.6528575.; Sharma S. K., Abdalla M. A., Hu Z. (2018) Miniaturisation of an Electrically Small Metamaterial Inspired Antenna using Additional Conducting Layer. IET Microwaves, Antennas & Propagation, 12 (8), 1444–1449. https://doi.org/10.1049/ietmap.2017.0927.; Sharma R., Singh H. (2015) Left Handed Metamaterial Antenna Design for GSM 1.8 GHz Applications. 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), 2, 1–5. https://doi.org/10.1109/raecs.2015.7453276.; Segovia-Vargas D., Herraiz-Martinez F. J., Ugarte-Munoz E., Garcia-Munoz L. E., Gonzalez-Posadas V. (2013) Quad-Frequency Linearly-Polarized and Dual-Frequency Circularly-Polarized Microstrip Patch Antennas with CRLH Loading. Progress In Electromagnetics Research, 133, 91–115. https://doi.org/10.2528/pier12072413.; Niu J.-X. (2010). Dual-Band Dual-Mode Patch Antenna based on Resonant-Type Metamaterial Transmission Line. Electronics Letters, 46 (4), 266. https://doi.org/10.1049/el.2010.3142.; https://sat.bntu.by/jour/article/view/2804

  2. 2
    Academic Journal

    المصدر: Radiatsionnaya Gygiena = Radiation Hygiene; Том 17, № 2 (2024); 64-75 ; Радиационная гигиена; Том 17, № 2 (2024); 64-75 ; 2409-9082 ; 1998-426X

    وصف الملف: application/pdf

    Relation: https://www.radhyg.ru/jour/article/view/1040/891; Дружинина П.С., Романович И.К., Водоватов А.В. и др. Тенденции развития компьютерной томографии в Российской Федерации в 2011–2021 гг. // Радиационная гигиена. 2023. Т. 16, № 3. С. 101-117. https://doi.org/10.21514/1998-426X-2023-16-3-101-117.; Martin C.J. Radiation shielding for diagnostic radiology // Radiation Protection Dosimetry. 2015. Vol. 165, No 1-4. P. 376-81. doi:10.1093/rpd/ncv040. Epub 2015 Mar 25. PMID: 25813477.; Голиков В.Ю. Критический анализ существующего подхода к расчету стационарной защиты в рентгеновских кабинетах // Радиационная гигиена. 2023. Т. 16, № 3. С. 13–21. DOI:10.21514/1998-426X-2023-16-3-13-21; NCRP. Report No. 147. Structural Shielding Design for Medical X-Ray Imaging Facilities. 2004. 194 p.; Wallace H., Martin C.J., Sutton D.G. et al. Establishment of scatter factors for use in shielding calculations and risk assessment for computed tomography facilities // Journal of Radiological Protection. 2012. Vol. 32, No 1. P. 39-50. doi:10.1088/0952-4746/32/1/39. Epub 2012 Feb 10. PMID: 22327169.; Шлеенкова Е.Н. Экспериментальное исследование ха-рактеристик индивидуальных термолюминесцентных дозиметров для измерения эквивалентных доз в коже и хрусталике глаза // Радиационная гигиена. 2014. Т. 7, №4. С. 143–156.; Research and production enterprise “DOZA”. Dosimetric thermo-luminescent complex “DOZA-TLD”. Operating manual FVKM.412118.010RE. – 49 p. URL: https://atomsnab.kz/wp-content/uploads/2020/07/tld_new.pdf (Дата обращения: 20.03.2024).; Harris C.R., Millman K.J., van der Walt S.J. et al. Array programming with NumPy // Nature. 2020. Vol. 585. P. 357–362. https://doi.org/10.1038/s41586-020-2649-2.; Дружинина П.С., Чипига Л.А., Рыжов С.А. и др. Современные подходы к обеспечению качества диагностики в компьютерной томографии // Радиационная гигиена. 2021. Т. 14, № 1. С. 17-33. https://doi.org/10.21514/1998-426X-2021-14-1-17-33.; Sutton D.G., Martin C.J., Williams J.R., Peet D.J. Radiation Shielding for Diagnostic Radiology. British Institute of Radiology, 2012. 139 p.; Sutton D.G., Martin C.J., Peet D., Williams J.R. The characterization and transmission of scattered radiation resulting from x-ray beams filtered with zero to 0.99 mm copper // Journal of Radiological Protection. 2012. Vol. 32, No 2. P. 117-29. doi:10.1088/0952-4746/32/2/117. Epub 2012 May 3. PMID: 22555158.; Martin C.J., Sutton D.G., Magee J. et al. Derivation of factors for estimating the scatter of diagnostic x-rays from walls and ceiling slabs // Journal of Radiological Protection. 2012. Vol. 32, No 4. P. 373-96 p. doi:10.1088/0952-4746/32/4/373. Epub 2012 Sep 24. PMID: 23006642.; Martin C.J., Sutton D.G. Practical Radiation Protection in Healthcare. Second edition, 2015. 536 p.; Cole J.A., Platten D.J. A comparison of shielding calculation methods for multi-slice computed tomography (CT) systems // Journal of Radiological Protection. 2008. Vol. 28, No 4. P. 511-23. doi:10.1088/0952-4746/28/4/005. Epub 2008 Nov 24. PMID: 19029585.; Ciraj-Bjelac O., Arandjic D., Kosutic D. Comparison of differ-ent methods for shielding design in computed tomography // Radiation Protection Dosimetry. 2011. Vol. 147, No 1-2. P. 133-6. doi:10.1093/rpd/ncr287. Epub 2011 Jul 9. PMID: 21743070.; Hiroshi W., Takuma U., Yoshinori Sh., Takurou H. Verification study to improve the Japanese-DLP calculation method for shielding in the X-ray CT room // Japanese Journal of Health Physics. 2022. Vol. 57, No 2. P. 87–92.; Verdun F.R., Aroua A., Trueb P.R., Bochud F.O. Use of DLP for establishing the shielding of multidetector computed tomography rooms. 2010. 8 p. https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/006/41006643.pdf.; https://www.radhyg.ru/jour/article/view/1040

  3. 3
    Academic Journal

    المؤلفون: Ryazancev, O. V., Kulik, M. V.

    المصدر: Збірник наукових праць Дніпровського державного технічного університету (технічні науки); Том 2 № 29 (2016): collection; 72-76 ; Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences); Vol. 2 No. 29 (2016): collection; 72-76 ; 2617-8389 ; 2519-2884

    وصف الملف: application/pdf

  4. 4
    Academic Journal

    المصدر: Medical Visualization; № 2 (2015); 135-140 ; Медицинская визуализация; № 2 (2015); 135-140 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/207/208; Ferlay J., Soerjomataram I., Ervik M. et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr, (дата обращения: 24.12.2014 г.).; Постановление Правительства Москвы от 4 октября 2011 года № 461-ПП Государственная программа города Москвы на период с 2012 по 2020 годы. Развитие здравоохранения города Москвы (Столичное здравоохранение).; Статистика злокачественных новообразований в России и странах СНГ в 2012 г.; Под ред. М.И. Давыдова, Е.М. Аксель. М.: Издательская группа РОНЦ, 2014. 226 с.; Состояние онкологической помощи населению России в 2013 году; Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена Минздрава России, 2014. 235 с.; OECD (2012), Health at a Glance: Europe 2012; 154 pp. http://dx.doi.org/10.1787/9789264183896-en (дата обращения: 09.03.2015 г.); Приказ Министерства промышленности и торговли РФ от 31 января 2013 г. № 118 "Об утверждении Стратегии развития медицинской промышленности Российской Федерации на период до 2020 года".; СанПиН 2.6.1.2573-10. Гигиенические требования к размещению и эксплуатации ускорителей электронов с энергией до 100 МэВ. Санитарные правила и нормативы. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2010. 50 с.; Белогрудов А.А., Владимиров Л.В. Особенности расчета радиационной защиты медицинских линейных ускорителей электронов с энергией выше 10 МэВ. Медицинская техника. 2013; 5: 33-36.; Владимиров Л.В., Защиринский Д.М., Сидоров О.С. Методика контроля радиологической защиты при эксплуатации модификаций ускорителей электронов с учетом наведенной активности. Медицинская техника. 2014; 5: 26-29.; Ильин М.А., Сотников В.М., Паньшин Г.А., и др. Лучевая терапия средними фракциями периферического немелкоклеточного рака легкого с увеличением эквивалентной суммарной очаговой дозы. Вестник РНЦРР МЗ РФ. 2011; 11: http://vestnik.rncrr.ru/vestnik/v11/papers/iliyn_v11.htm (дата обращения: 01.03.2015 г.); Clinac 2100C/D, 2300C/D, 21EX, iX, Novalis Tx, Trilogy & Silhouette Edition Radiation Leakage Data. Varian Medical Systems. 2010. 12 р.; Designers' Desk Reference High Energy Clinac Edition. Varian Medical Systems. 2010; 10 (4): 140.; СанПиН 2.6.1.2523-09. Нормы радиационной безопасности. НРБ-99/2009. Санитарно правила и нормативы. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 100 с.; https://medvis.vidar.ru/jour/article/view/207

  5. 5
  6. 6
  7. 7
  8. 8