-
1Academic Journal
المؤلفون: I. A. Khlusov, A. S. Omelyanchik, V. V. Rodionova, V. V. Shupletsova, O. G. Khaziakhmatova, K. A. Yurova, L. S. Litvinova, I. K. Norkin, И. А. Хлусов, А. С. Омельянчик, В. B. Родионова, В. В. Шуплецова, О. Г. Хазиахматова, К. А. Юрова, Л. С. Литвинова, И. К. Норкин
المساهمون: The study was supported by Siberian State Medical University development program Priority 2030, Исследование выполнено при финансовой поддержке Сибирского государственного медицинского университета в рамках Программы стратегического академического лидерства «Приоритет – 2030».
المصدر: Bulletin of Siberian Medicine; Том 22, № 1 (2023); 96-102 ; Бюллетень сибирской медицины; Том 22, № 1 (2023); 96-102 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-1
مصطلحات موضوعية: цитотоксичность in vitro, ambient conditions, nanopowder stability, human blood mononuclear leukocytes, in vitro cytotoxicity, комнатные условия, стабильность нанопорошка, лейкоциты крови человека
وصف الملف: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5139/3354; Farjadian F., Ghasemi A., Gohari O., Roointan A., Karimi M., Hamblin M.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93–126. DOI:10.2217/nnm-2018-0120.; Halwani A.A. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022;14(1):106. DOI:10.3390/pharmaceutics14010106.; Al-Anazi A. Iron-based magnetic nanomaterials in environmental and energy applications: a short review. Current Opinion in Chemical Engineering. 2022;36:100794. DOI:10.1016/j.coche.2022.100794.; Kabir E., Kumar V., Kim K.H., Yip A.C.K., Sohn J.R. Environmental impacts of nanomaterials. J. Environ. Manage. 2018;225:261–271. DOI:10.1016/j.jenvman.2018.07.087.; Nel A., Xia T., Mädler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627. DOI:10.1126/science.1114397.; Widdrat M., Kumari M., Tompa Е. Keeping nanoparticles fully functional: Long-term storage and alteration of magnetite. Chem. Plus Chem. 2014;79(8):1225–1233. DOI:10.1002/cplu.201402032.; Sedoi V.S., Ivanov Yu.F., Osmonaliev M.N. Study of ultra-fine powders produced by the exploding wire method. In book: DeLuca L.T., Galfetti L., Pesce-Rodriguez R.A. (ed). Novel Energetic Materials and Applications. Grafiche G.S.S., 24040 Arzago d’Adda, BG, Italy; 2004:1–10. DOI:10.1002/prep.200300019.; Khlusov I.A., Omelyanchik A.S., Rodionova V.V. Granulocyte-macrophage progenitor cells response to magnetite nanoparticles in a static magnetic field. J. Magn. Magn. Mater. 2018;459:84–91. DOI:10.1016/j.jmmm.2017.12.017.; Omelyanchik A., Varvaro G., Gorshenkov M. High-quality α-Fe nanoparticles synthesized by the electric explosion of wires. J. Magn. Magn. Mater. 2019;484:196–200. DOI:10.1016/j.jmmm.2019.03.109.; Kurlyandskaya G.V., Litvinova L.S., Safronov A.P. Water-based suspensions of iron oxide nanoparticles with electrostatic or steric stabilization by chitosan: Fabrication, characterization and biocompatibility. Sensors. 2017;17(11):2605. DOI:10.3390/s17112605.; Muscas G., Yaacoub N., Concas G. Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles. Nanoscale. 2015;7(32):13576–13585. DOI:10.1039/c5nr02723c.; Frison R., Cernuto G., Cervellino A. Magnetite-maghemite nanoparticles in the 5–15 nm range: Correlating the core–shell composition and the surface structure to the magnetic properties. A total scattering study. ChemMater. 2013;25(23):4820– 4827. DOI:10.1021/cm403360f.; Sandler S., Fellows B.D., Mefford O.T. Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal. Chem. 2019;91:4159–14169. DOI:10.1021/acs.analchem.9b03518.; Teja A.S., Koh P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009;55(1–2): 22–45. DOI:10.1016/j.pcrysgrow.2008.08.003.; Feoktystov A. Mechanism of magnetization reduction in iron oxide nanoparticles. Nanoscale. 2021;13(14):6965–6976. DOI:10.1039/D0NR08615K.; Omelyanchik A. Effect of citric acid on the morpho-structural and magnetic properties of ultra small iron oxide nanoparticle. J. Alloys Compd. 2021;883:160779. DOI:10.1016/j.jallcom.2021.160779.; https://bulletin.ssmu.ru/jour/article/view/5139