-
1Academic Journal
المؤلفون: О. А. Квятковская, А. В. Людчик, Н. С. Сердюченко, В. С. Аносов, А. Ю. Коваленко
المصدر: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 22, Iss 3, Pp 203-210 (2024)
مصطلحات موضوعية: гиалуроновая кислота, гиалуронан, клеточный рецептор, механизм действия, Medicine
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: K. A. Turupaev, A. V. Klimov, O. A. Khalmurzaev, G. A. Arakelyan, D. D. Ladyko, S. D. Bezhanova, V. O. Vorob’eva, A. V. Smirnova, V. B. Matveev, К. А. Турупаев, А. В. Климов, О. А. Халмурзаев, Г. А. Аракелян, Д. Д. Ладыко, С. Д. Бежанова, В. О. Воробьева, А. В. Смирнова, В. Б. Матвеев
المصدر: Cancer Urology; Том 19, № 4 (2023); 119-124 ; Онкоурология; Том 19, № 4 (2023); 119-124 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: светлоклеточный почечно-клеточный рак, organ-preserving surgical treatment, tumor thrombus, synchronous bilateral kidney cancer, papillary renal cell carcinoma, clear-cell renal cell carcinoma, органосохраняющее хирургическое лечение, опухолевый венозный тромбоз, синхронный двусторонний рак почек, папиллярный почечно-клеточный рак
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1688/1499; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1688/1323; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1688/1324; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1688/1325; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1688/1326; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1688/1327; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1688/1328; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1688/1329; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1688/1330; Globocan (IARC) 2020. Available at: https://gco.iarc.fr/today/data/factsheets/cancers/29-Kidney-fact-sheet.pdf.; Состояние онкологической помощи населению России в 2021 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. 239 с.; Zhang C., Li X., Hao H. et al. The correlation between size of renal cell carcinoma and its histopathological characteristics: a single center study of 1867 renal cell carcinoma cases. BJU Int 2012; 110(11 Pt B):E481–5. DOI:10.1111/j.1464-410X.2012.11173.x; Van Poppel H., Da Pozzo L., Albrecht W. et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011;59(4):543–52. DOI:10.1016/j.eururo.2010.12.013; Scosyrev E., Messing E.M., Sylvester R. et al. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol 2014;65(2):372–7. DOI:10.1016/j.eururo.2013.06.044; Fergany A.F., Hafez K.S., Novick A.C. Long-term results of nephron sparing surgery for localized renal cell carcinoma: 10-year followup. J Urol 2000;163(2):442–5.; Patel S.H., Uzzo R.G., Larcher A. et al. Oncologic and functional outcomes of radical and partial nephrectomy in pt3a pathologically upstaged renal cell carcinoma: a multi-institutional analysis. Clin Ge-nitourin Cancer 2020;18(6):e723–9. DOI:10.1016/j.clgc.2020.05.002; Kolla S.B., Ercole C., Spiess P.E. et al. Nephron-sparing surgery for pathological stage T3b renal cell carcinoma confined to the renal vein. BJU Int 2010;106(10):1494–8. DOI:10.1111/j.1464-410X.2010.09293.x; Yim K., Aron M., Rha K.H. et al. Outcomes of robot-assisted partial nephrectomy for clinical T3a renal masses: a multicenter analysis. Eur Urol Focus 2021;7(5):1107–14. DOI:10.1016/j.euf.2020.10.011; Woldu S.L., Barlow L.J., Patel T. et al. Single institutional experience with nephron-sparing surgery for pathologic stage T3bNxM0 renal cell carcinoma confined to the renal vein. Urology 2010;76(3):639–42. DOI:10.1016/j.urology.2009.10.073; Marra G., Gontero P., Brattoli M. et al. Is imperative partial nephrectomy feasible for kidney cancer with venous thrombus involvement? Outcomes of 42 cases and matched pair analysis with a large radical nephrectomy cohort. Urol Oncol 2018;36(7):339.e1–8. DOI:10.1016/j.urolonc.2018.04.007; Morgan T.N., Dai J.C., Kusin S. et al. Clinical outcomes of robotic assisted partial nephrectomy for pathologic T3a renal masses with venous tumor thrombus. Urology 2022;159:120–6. DOI:10.1016/j.urology.2021.06.054; Zisman A., Pantuck A.J., Wieder J. et al. Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J Clin Oncol 2002;20(23):4559–66. DOI:10.1200/JCO.2002.05.111; Leibovich B.C., Blute M.L., Cheville J.C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 2003;97(7):1663–71. DOI:10.1002/cncr.11234; Eisen T., Frangou E., Oza B. et al. Adjuvant sorafenib for renal cell carcinoma at intermediate or high risk of relapse: results from the SORCE randomized phase III intergroup trial. J Clin Oncol 2020;38:4064–75. DOI:10.1200/JCO.20.01800; Gross-Goupil M., Kwon T., Eto M. et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: results from the phase III, randomized ATLAS trial. Ann Oncol 2018;29(12):2371–8. DOI:10.1093/annonc/mdy454; Haas N.B., Manola J., Uzzo R.G. et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 2016;387(10032):2008–16. DOI:10.1016/S0140-6736(16)00559-6; Motzer R.J., Haas N.B., Donskov F. et al. Randomized phase III trial of adjuvant pazopanib versus placebo after nephrectomy in patients with localized or locally advanced renal cell carcinoma. J Clin Oncol 2017;35(35):3916–23. DOI:10.1200/JCO.2017.73.5324; Staehler M., Motzer R.J., George D.J. et al. Adjuvant sunitinib in patients with high-risk renal cell carcinoma: safety, therapy management, and patient-reported outcomes in the S-TRAC trial. Ann Oncol 2018;29(10):2098–104. DOI:10.1093/annonc/mdy329; Powles T., Tomczak P., Park S.H. et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2022;23(9):1133–44. DOI:10.1016/S1470-2045(22)00487-9; https://oncourology.abvpress.ru/oncur/article/view/1688
-
3Academic Journal
المؤلفون: Sergey D. Kruglov, Ol’ga V. Zubatkina, Anna V. Samodova
المصدر: Журнал медико-биологических исследований, Vol 11, Iss 3, Pp 292-301 (2023)
مصطلحات موضوعية: индуцируемый гипоксией фактор 1-альфа, сиртуин 3, аденозинтрифосфат (атф), клеточный иммунитет, популяции лимфоцитов, иммунометаболизм, Sports medicine, RC1200-1245, Biology (General), QH301-705.5
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Новикова, Т. С., Булякова, И. А.
المصدر: System Analysis in Science and Education = Sistemnyj analiz v nauke i obrazovanii; No. 2 (2024); 9-20 ; Системный анализ в науке и образовании; № 2 (2024); 9-20 ; 2071-9612
مصطلحات موضوعية: фрактальная геометрия, фракталы, гидрология, речные системы, клеточный метод, канторовский метод, fractal geometry, fractals, hydrology, river systems, cellular method, Cantor method
وصف الملف: application/pdf
-
5Academic Journal
المؤلفون: M. A. Vodyakova, N. S. Pokrovsky, I. S. Semenova, V. A. Merkulov, E. V. Melnikova, М. А. Водякова, Н. С. Покровский, И. С. Семенова, В. A. Меркулов, Е. В. Мельникова
المساهمون: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 05600026-24-01 (R&D Registry No. 124022200093-9)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 05600026-24-01 на проведение прикладных научных исследований (номер государственного учета НИР 124022200093-9).
المصدر: Regulatory Research and Medicine Evaluation; Том 14, № 5 (2024); 533-546 ; Регуляторные исследования и экспертиза лекарственных средств; Том 14, № 5 (2024); 533-546 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2024-14-5
مصطلحات موضوعية: негомологичное применение, fat tissue, advanced therapy medicinal product, ATMP, legal regulation, quality control, degree of cell manipulation, cell product, minimal manipulation, homologous use, non-homologous use, жировая ткань, высокотехнологичный лекарственный препарат, правовое регулирование, контроль качества, степень манипулирования клеток, клеточный препарат, минимальные манипуляции, гомологичное применение
وصف الملف: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/710/1706; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/710/760; Мельникова ЕВ, Горяев АА, Савкина МВ, Меркулова ОВ, Чапленко АА, Рачинская ОА и др. Международный опыт нормативно-правового регулирования препаратов, содержащих жизнеспособные клетки человека. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(3):150–60. https://doi.org/10.30895/2221-996X-2018-18-3-150-160; Marks PW. Clear evidence of safety and efficacy is needed for stromal vascular fraction products: Commentary on “Arguments for a different regulatory categorization and framework for stromal vascular fraction”. Stem Cells Dev. 2020;29(5):263–5. https://doi.org/10.1089/scd.2020.0011; Chisholm J, Von Tigerstrom B, Bedford P, Fradette J, Viswanathan S. Workshop to address gaps in regulation of minimally manipulated autologous cell therapies for homologous use in Canada. Cytotherapy. 2017;19(12):1400–11. https://doi.org/10.1016/j.jcyt.2017.08.015; Ejaz A, Yang KS, Venkatesh KP, Chinnapaka S, Kokai LE, Rubin JP. The impact of human lipoaspirate and adipose tissue-derived stem cells contact culture on breast cancer cells: implications in breast reconstruction. Int J Mol Sci. 2020;21(23):9171. https://doi.org/10.3390/ijms21239171; Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM, et al. Concise review: fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2017;6(4):1096–108. https://doi.org/10.1002/sctm.16-0337; Zheng H, Zhang B, Chhatbar PY, Dong Y, Alawieh A, Lowe F, et al. Mesenchymal stem cell therapy in stroke: a systematic review of literature in pre-clinical and clinical research. Cell Transplant. 2018;27(12):1723–30. https://doi.org/10.1177/0963689718806846; Karina K, Rosliana I, Rosadi I, Schwartz R, Sobariah S, Afini I, et al. Safety of technique and procedure of stromal vascular fraction therapy: from liposuction to cell administration. Scientifica (Cairo). 2020;2020:2863624. https://doi.org/10.1155/2020/2863624; Bowles AC, Wise RM, Gerstein BY, Thomas RC, Ogelman R, Manayan RC, et al. Adipose stromal vascular fraction attenuates Th1 cell-mediated pathology in a model of multiple sclerosis. J Neuroinflammation. 2018;15(1):77. https://doi.org/10.1186/s12974-018-1099-3; Detiger SEL, Helder MN, Smit TH, Hoogendoorn RJW. Adverse effects of stromal vascular fraction during regenerative treatment of the intervertebral disc: observations in a goat model. Eur Spine J. 2015;24(9):1992–2000. https://doi.org/10.1007/s00586-015-3803-7; Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med. 2017;376(11):1047–53. https://doi.org/10.1056/NEJMoa1609583; Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8. https://doi.org/10.1016/j.jcyt.2013.02.006; Turner LG. US clinics marketing unproven and unlicensed adipose-derived autologous stem cell interventions. Regen Med. 2015;10(4):397–402. https://doi.org/10.2217/rme.15.10; Law L, Hunt CL, Van Wijnen AJ, Nassr A, Larson AN, Eldrige JS, et al. Office-based mesenchymal stem cell therapy for the treatment of musculoskeletal disease: a systematic review of recent human studies. Pain Med. 2019;20(8):1570–83. https://doi.org/10.1093/pm/pny256; Lalu MM, Mazzarello S, Zlepnig J, Dong YY (Ryan), Montroy J, McIntyre L, et al. Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): a systematic review and meta-analysis. Stem Cells Transl Med. 2018;7(12):857–66. https://doi.org/10.1002/sctm.18-0120; Dominici M, Nichols K, Srivastava A, Weiss DJ, Eldridge P, Cuende N, et al. Positioning a scientific community on unproven cellular therapies: the 2015 international society for cellular therapy perspective. Cytotherapy. 2015;17(12):1663–6. https://doi.org/10.1016/j.jcyt.2015.10.007; Brown JC, Shang H, Li Y, Yang N, Patel N, Katz AJ. Isolation of adipose-derived stromal vascular fraction cells using a novel point-of-care device: cell characterization and review of the literature. Tissue Eng Part C Methods. 2017;23(3):125–35. https://doi.org/10.1089/ten.tec.2016.0377; Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11–5. https://doi.org/10.1016/j.stem.2011.06.008; Carstens M, Haq I, Martinez-Cerrato J, Dos-Anjos S, Bertram K, Correa D. Sustained clinical improvement of Parkinson’s disease in two patients with facially-transplanted adipose-derived stromal vascular fraction cells. J Clin Neurosci. 2020;81:47–51. https://doi.org/10.1016/j.jocn.2020.09.001; Correa-Rotter R, García-Trabanino R. Mesoamerican nephropathy. Semin Nephrol. 2019;39(3):263–71. https://doi.org/10.1016/j.semnephrol.2019.02.004; Guo J, Nguyen A, Banyard DA, Fadavi D, Toranto JD, Wirth GA, et al. Stromal vascular fraction: a regenerative reality? Part 2: Mechanisms of regenerative action. J Plast Reconstr Aesthet Surg. 2016;69(2):180–8. https://doi.org/10.1016/j.bjps.2015.10.014; Johnson RJ, Wesseling C, Newman LS. Chronic kidney disease of unknown cause in agricultural communities. N Engl J Med. 2019;380(19):1843–52. https://doi.org/10.1056/NEJMra1813869; Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, et al. Stromal vascular fraction: a regenerative reality? Part 1: Current concepts and review of the literature. J Plast Reconstr Aesthet Surg. 2016;69(2):170–9. https://doi.org/10.1016/j.bjps.2015.10.015; Wijkström J, González-Quiroz M, Hernandez M, Trujillo Z, Hultenby K, Ring A, et al. Renal morphology, clinical findings, and progression rate in Mesoamerican nephropathy. Am J Kidney Dis. 2017;69(5):626–36. https://doi.org/10.1053/j.ajkd.2016.10.036; Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndromerelated coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44. https://doi.org/10.1038/s41564-020-0695-z; Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. https://doi.org/10.1056/NEJMoa2002032; Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect. 2020;9(1):275–7. https://doi.org/10.1080/22221751.2020.1723441; Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0; Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5; Lindvall O. Treatment of Parkinson’s disease using cell transplantation. Phil Trans R Soc Lond B Biol Sci. 2015;370(1680):20140370. https://doi.org/10.1098/rstb.2014.0370; Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ. The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol. 2010;67(1):64–70. https://doi.org/10.1001/archneurol.2009.295; Horváth K, Aschermann Z, Kovács M, Makkos A, Harmat M, Janszky J, et al. Changes in quality of life in Parkinson’s disease: how large must they be to be relevant? Neuroepidemiology. 2017;48(1–2):1–8. https://doi.org/10.1159/000455863; Bhargava S, Cunha PR, Lee J, Kroumpouzos G. Acne scarring management: systematic review and evaluation of the evidence. Am J Clin Dermatol. 2018;19(4):459–77. https://doi.org/10.1007/s40257-018-0358-5; Connolly D, Vu HL, Mariwalla K, Saedi N. Acne scarring — pathogenesis, evaluation, and treatment options. J Clin Aesthet Dermatol. 2017;10(9):12–23. PMID: 29344322; Boen M, Jacob C. A review and update of treatment options using the acne scar classification system. Dermatol Surg. 2019;45(3):411–22. https://doi.org/10.1097/DSS.0000000000001765; Yao Y, Cai J, Zhang P, Liao Y, Yuan Y, Dong Z, et al. Adipose stromal vascular fraction gel grafting: a new method for tissue volumization and rejuvenation. Dermatol Surg. 2018;44(10):1278–86. https://doi.org/10.1097/DSS.0000000000001556; Amos PJ, Shang H, Bailey AM, Taylor A, Katz AJ, Peirce SM. IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells. 2008;26(10):2682–90. https://doi.org/10.1634/stemcells.2008-0030; Arnberg F, Lundberg J, Olsson A, Samén E, Jaff N, Jussing E, et al. Intra-arterial administration of placenta-derived decidual stromal cells to the superior mesenteric artery in the rabbit: distribution of cells, feasibility, and safety. Cell Transplant. 2016;25(2):401–10. https://doi.org/10.3727/096368915X688191; Berishvili E, Kaiser L, Cohen M, Berney T, Scholz H, Floisand Y, Mattsson J. Treatment of COVID-19 pneumonia: the case for placenta-derived cell therapy. Stem Cell Rev Rep. 2021;17(1):63–70. https://doi.org/10.1007/s12015-020-10004-x; Bishop PD, Feiten LE, Ouriel K, Nassoiy SP, Pavkov ML, Clair DG, et al. Arterial calcification increases in distal arteries in patients with peripheral arterial disease. Ann Vasc Surg. 2008;22(6):799–805. https://doi.org/10.1016/j.avsg.2008.04.008; Bura A, Planat-Benard V, Bourin P, Silvestre J-S, Gross F, Grolleau J-L, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16(2):245–57. https://doi.org/10.1016/j.jcyt.2013.11.011; Carstens MH, Correa D, Llull R, Gomez A, Turner E, Valladares LS. Subcutaneous reconstruction of hand dorsum and fingers for late sequelae of burn scars using adipose-derived stromal vascular fraction (SVF). CellR4. 2015;3(5):e1675.; Siennicka K, Zolocinska A, Stepien K, Lubina-Dabrowska N, Maciagowska M, Zolocinska E, et al. Adipose-derived cells (stromal vascular fraction) transplanted for orthopedical or neurological purposes: are they safe enough? Stem Cells Int. 2016;2016:5762916. https://doi.org/10.1155/2016/5762916; Lu J, Xu B, Hu J, Yu J, Kang J, Yu Y, et al. Autologous adipose-derived vascular stromal component injection offers a safe and effective method for treating knee osteoarthritis: a one-year double-blind, randomized controlled clinical trial. Preprint; 2023. https://doi.org/10.21203/rs.3.rs-3369095/v1; Goncharov EN, Koval OA, Bezuglov EN, Encarnacion Ramirez M, Engelgard M, Eremin II, et al. Stromal vascular fraction therapy for knee osteoarthritis: a systematic review. Medicina (Kaunas). 2023;59(12):2090. https://doi.org/10.3390/medicina59122090; Usuelli FG, Grassi M, Maccario C, Vigano M, Lanfranchi L, Alfieri Montrasio U, de Girolamo L. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26(7):2000–10. https://doi.org/10.1007/s00167-017-4479-9; Mazur S, Zołocińska A, Siennicka K, Janik-Kosacka K, Chrapusta A, Pojda Z. Safety of adipose-derived cell (stromal vascular fraction — SVF) augmentation for surgical breast reconstruction in cancer patients. Adv Clin Exp Med. 2018;27(8):1085–90. https://doi.org/10.17219/acem/70798; Pattayadeekul T, Pawcsuntorn T, Nararatwanchai T. The efficacy and safety of autologous stromal vascular fraction transplantation for infraorbital skin rejuvenation: a clinical prospective study. J Cosmet Dermatol. 2022;21(1):220–6. https://doi.org/10.1111/jocd.14069; Han X, Ji D, Liu Y, Hu S. Efficacy and safety of transplantation of autologous fat, platelet-rich plasma (PRP) and stromal vascular fraction (SVF) in the treatment of acne scar: systematic review and meta-analysis. Aesthetic Plast Surg. 2023;47(4):1623–32. https://doi.org/10.1007/s00266-023-03295-1; Roohaninasab M, Ahmadi M, Dehghani A, Zare S, Goodarzi A, Nouri M, et al. The investigation and comparison of the efficacy and safety of stromal vascular fraction (SVF), platelet rich plasma (PRP), and 1064-nm Q-switched Nd:YAG laser in reducing nanofat-treated infraorbital dark circles and wrinkles: a controlled blinded randomized clinical trial. Skin Res Technol. 2024;30(6):e13793. https://doi.org/10.1111/srt.13793; https://www.vedomostincesmp.ru/jour/article/view/710
-
6Academic Journal
المؤلفون: Timociko, A.I., Timochko, A.I., Тимочко, А.И., Sotnikov, A.M., Sotnikov, O.M., Сотников, А.М., Dudcenko, S.V., Dudchenko, S., Дудченко, С.В., Makarciuk, D., Makarchuk, D., Макарчук, Д.В., Zazirnîi, A., Zazirnyi, A., Зазирный, А.А., Kolodiajnîi, O., Kolodiazhnyi, O., Колодяжный, А.И.
المصدر: Problemele Energeticii Regionale 63 (3) 130-145
مصطلحات موضوعية: electric cable, autonomous underwater vehicle, fuzzy cellular automaton, Pareto-optimality, route, fuel consumption, minimum time, cablu electric, vehicul subacvatic autonom, automat celular fuzzy, Pareto-optimalitate, traseu, consum de combustibil, timp minim, электрический кабель, автономный подводный аппарат, нечеткий клеточный автомат, Парето-оптимальность, маршрут, расход топлива, минимальное время
وصف الملف: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/208222; urn:issn:18570070
-
7Academic Journal
المؤلفون: T. G. Malanicheva, E. V. Agafonova, Ch. I. Ashrafullina, Т. Г. Маланичева, Е. В. Агафонова, Ч. И. Ашрафуллина
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 5 (2024); 37-44 ; Российский вестник перинатологии и педиатрии; Том 69, № 5 (2024); 37-44 ; 2500-2228 ; 1027-4065
مصطلحات موضوعية: клеточный мукозальный иммуните, breastfeeding, cellular mucosal immunity, грудное вскармливание
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/2063/1529; Kuciel N., Mazurek J., Czosnykowska-Łukacka M., Królak-Olejnik B. Stem cells in breast milk. Pediatria Polska — Polish J Paediatr 2018; 93(3): 260–263. DOI:10.5114/polp.2018.77440; Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V., Buchman V.L. Stem cells in human breast milk. Human Cell 2019; 32(3): 223–230. DOI:10.1007/s13577–019–00251–7; Molès J.P., Tuaillon E., Kankasa C., Bedin A.S., Nagot N., Marchant A. et al. Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant. Pediatr Allergy Immunol 2018; 29(2): 133–143. DOI:10.1111/pai.12841; Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V., Buchman V.L. Human Cell 2019; 32(3): 223–230. DOI:10.1007/s13577–019–00251–7; Хаитов М.Р., Ильина Н.И., Лусс Л.В., Бабахин А.А. Мукозальный иммунитет респираторного тракта и его роль при профессиональных патологиях. Медицина экстремальных ситуаций 2017; 3: 8–24.; Несторова И.В., Чудилова Г.А., Ковалева С.В., Ломтатидзе М.В., Колесникова М.В., Евглевский А.А. Методы комплексной оценки функциональной активности нейтрофильных гранулоцитов в норме и патологии. Методические рекомендации для иммунологов-аллергологов, врачей и биологов клинической лабораторной диагностики Краснодар, 2017: 51.; Матвеева Л.А. Местная защита респираторного тракта у детей. Томск: Изд-во Томского университета 1993: 276.; Маланичева Т.Г., Мизерницкий Ю.Л., Агафонова Е.В., Можгина С.С. Особенности мукозального иммунитета у детей с внебольничной пневмоний на фоне сниженной резистентости организма. Педиатрия 2020; 99(6): 105–111.; Маланичева Т.Г., Агафонова Е.В., Зиатдинова Н.В., Скидан И.Н. Влияние характера вскармливания детей первого года жизни на формирование резистентности организма. Российский вестник перинатологии и педиатрии 2020; 65(6):145–154.; Виксман М.Е., Маянский А.Н. Способ оценки функциональной активности нейтрофилов человека по реакции восстановления нитросинего тетразолия. Методические рекомендации. Казань: Казанский НИИЭМ 1979: 11.; Герасимов И.Г., Калуцкая О.А. Кинетика реакции восстановления нитросинего тетразолия нейтрофилами крови человека. Цитология 2000; 42(2): 160–165.; Хаитов Р.М., Пинегин Б.В., Истамов Х.И. Экологическая иммунология. М: ВНИРО 1995; 219.; Козлов В.А. Некоторые аспекты проблемы цитокинов. Цитокины и воспаление 2002; 1 (1): 1–8.; Серебренникова С.Н., Семинский И.Ж. Роль цитокинов в воспалительном процессе (сообщение 2). Сибирский медицинский журнал 2008; 8: 5–8.; Кушнарева М.В., Виноградова Т.В., Кешишян Е.С., Парфенов В.В., Кольцов В.Д., Брагина Г.С. и др. Особенности иммунного статуса и системы интерферона у детей раннего возраста. Российский вестник перинатологии и педиатрии 2016; 61 (3): 12–21.; Андрюков Б.Г., Сомова Л.М., Дробот Е.И., Матосова Е.В. Антимикробные стратегии нейтрофилов при инфекционной патологии. Клиническая лабораторная диагностика 2016; 61(12): 825–833.; Casanova-Acebes M., Nicolas-Avila J.A., Li J.L., Garcia-Silva S., Balachander A., Rubio-Ponce A. et al. Neutrophils instruct homeostatic and pathological states in naive tiss. J Exper Med 2018; 215(11): 2778–2795. DOI:10.1084/jem.20181468
-
8Academic Journal
المؤلفون: Юнусалиева Мадина Дониёровна
المصدر: МЕДИЦИНА, ПЕДАГОГИКА И ТЕХНОЛОГИЯ: ТЕОРИЯ И ПРАКТИКА, 2(7), 63-69, (2024-07-13)
مصطلحات موضوعية: Воспаление, клеточный механизм, ткань, медиатор, лимфоцит, повреждение, Peganum L, Rosaceae, фермент
Relation: https://doi.org/10.5281/zenodo.12735783; https://doi.org/10.5281/zenodo.12735784; oai:zenodo.org:12735784
-
9Academic Journal
المؤلفون: Антонова Елена Ивановна, Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова», Elena I. Antonova,
Nauchno-issledovatel'skii tsentr fundamental'nykh i prikladnykh problem bioekologii i biotekhnologii FGBOU VO "Ul'ianovskii gosudarstvennyi pedagogicheskii universitet im. I.N. Ul'ianova", Зимнуров Айдар Раилевич, Aidar R. Zimnurov, Соловьева Ирина Леонидовна, Медицинский центр «Аллегрис», Irina L. Soloveva, Meditsinskii tsentr "Allegris", Фирсова Наталья Викторовна, Natalia V. Firsova, Цвилик Лев Николаевич, Lev N. Tsvilik المصدر: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 119-125 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 119-125
مصطلحات موضوعية: дети, атопический дерматит, иммуноглобулины, фагоцитоз, аллергическая реакция, клеточный иммунитет, гуморальный иммунитет
وصف الملف: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-38-7; https://phsreda.com/e-articles/10590/Action10590-112102.pdf; Дементьева Е.А. Гуморальный иммунный ответ при атопическом дерматите у детей / Е.А. Дементьева, О.П. Гурина, А.Е. Блинов [и др.] // Медицина: теория и практика. – 2019. – №3 [Электронный ресурс]. – Режим доступа: https://cyberleninka.ru/article/n/gumoralnyy-immunnyy-otvet-pri-atopicheskom-dermatite-u-detey (дата обращения: 11.03.2024).; Дементьева Е.А. Цитометрический анализ показателей клеточной дисфункции при атопическом дерматите у детей / Е.А. Дементьева, О.П. Гурина, А.Е. Блинов [и др.] // Медицина: теория и практика. – 2019. – №3 [Электронный ресурс]. – Режим доступа: https://cyberleninka.ru/article/n/tsitometricheskiy-analiz-pokazateley-kletochnoy-disfunktsii-pri-atopicheskom-dermatite-u-detey (дата обращения: 12.03.2024). – EDN TKSNKI; Дементьева Е.А. Особенности клеточного и гуморального иммунитета при атопическом дерматите у детей первого года жизни / Е.А. Дементьева, О.П. Гурина, А.Е. Блинов [и др.] // Педиатр. – 2019. – №6 [Электронный ресурс]. – Режим доступа: https://cyberleninka.ru/article/n/osobennosti-kletochnogo-i-gumoralnogo-immuniteta-pri-atopicheskom-dermatite-u-detey-pervogo-goda-zhizni (дата обращения: 12.03.2024). – DOI 10.17816/PED10635-44. – EDN OGMGJK; Касохов Т.Б. Атопический дерматит у детей / Т.Б. Касохов, З.А. Цораева, В.В. Касохова [и др.] // Научное обозрение. Медицинские науки. – 2016. – №1. – С. 8–26. EDN WLXHOR; Мавлянова Ш.З. Некоторые показатели гуморального иммунного ответа на candida albicans у детей с атопическим дерматитом / Ш.З. Мавлянова, Ю.А. Алимухамедова, Г.Р. Ибрагимова [и др.] // Проблемы медицинской микологии. – 2022. – №24 (4). – С. 47–50. doi:10.24412/1999-6780-2022-4-47-50. – EDN JXYVUE; Мельник В.А. Состояние функций полиморфно-ядерных нейтрофилов при атопических дерматитах у детей / В.А. Мельник, Л.И. Слюсарь, Е.И. Беседина // Аллергические заболевания у детей: современные проблемы диагностики, терапии и реабилитации: материалы научно-практической конференции (декабрь, 1998). – Новосибирск, 1998. – С. 23–30.; Моргуль Е.В. Содержание иммуноглобулина Е, гормонов и перекисей у детей с атопическим дерматитом / Е.В. Моргуль, Т.С. Колмакова, О.С. Оксенюк // Журнал фундаментальной медицины и биологии. – 2016. – №1. – С. 37–40. – EDN TWREVM; Нестерова И.В. Методы комплексной оценки функциональной активности нейтрофильных гранулоцитов в норме и патологии. Методические рекомендации для иммунологов-аллергологов, врачей и биологов клинической лабораторной диагностики / И.В. Нестерова, Г.А. Чудилова, С.В. Ковалева [и др.]. – Краснодар, 2017. – С. 8.; Самойликов П.В. IgE- и IgG-аутореактивность у детей с атопическим дерматитом / П.В. Самойликов, В.Б. Гервазиева, С.А. Кожевников // Российский вестник перинатологии и педиатрии. – 2012. – №1. – С. 97–103. – EDN PBBPOD; Chen K., Magri G., Grasset E.K. [et al.] Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat Rev Immunol 20, 427–441 (2020). https://doi.org/10.1038/s41577-019-0261-1.; Odales J., Valle J.G., Martínez-Cortés F., Manoutcharian K. Immunogenic properties of immunoglobulin superfamily members within complex biological networks // Cell Immunol. 2020. Dec; 358:104235.; https://phsreda.com/files/Books/10590/Cover-10590.jpg?req=112102; https://phsreda.com/article/112102/discussion_platform; https://doi.org/10.31483/r-112102
-
10Academic Journal
المصدر: Chemistry; Том 16, № 1 (2024): Вестник Южно-Уральского государственного университета. Серия: Химия; 155-186 ; Химия; Том 16, № 1 (2024): Вестник Южно-Уральского государственного университета. Серия: Химия; 155-186 ; 2412-0413 ; 2076-0493
مصطلحات موضوعية: entropy, ion transport, cellular effect, free radicals, mobility of reagents, photopolymerization, microviscosity, desaturase, membranes, lipids, fatty acids, eye lenses, cataract, энтропия, транспорт ионов, клеточный эффект, свободные радикалы, подвижность реагентов, фотополимеризация, микровязкость, десатураза, мембраны, липиды, жирные кислоты, хрусталики глаз, катаракта
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: A. R. Galembikova, P. D. Dunaev, T. V. Ivoilova, A. I. Gilyazova, A. E. Galyautdinova, E. G. Mikheeva, S. S. Zykova, N. M. Igidov, P. B. Kopnin, S. V. Boichuk, А. Р. Галембикова, П. Д. Дунаев, Т. В. Ивойлова, А. И. Гилязова, А. Э. Галяутдинова, Е. Г. Михеева, С. С. Зыкова, Н. М. Игидов, П. Б. Копнин, С. В. Бойчук
المساهمون: The study was carried out with the support of the Russian Science Foundation (RSF) (grant No. 20-15-00001) and was performed as a part of Russia Strategic Academic Leadership Program (“Priority-2030”) of Kazan (Volga Region) Federal University, Исследование выполнено при поддержке Российского научного фонда (грант № 20-15-00001) и проведено в рамках Программы стратегического академического лидерства ФГАОУ ВО «Казанский (Приволжский) федеральный университет» («Приоритет-2030»)
المصدر: Advances in Molecular Oncology; Том 11, № 2 (2024); 130-146 ; Успехи молекулярной онкологии; Том 11, № 2 (2024); 130-146 ; 2413-3787 ; 2313-805X
مصطلحات موضوعية: доксорубицин, tubulin depolymerization, cell cycle, apoptosis, mitotic catastrophe, multidrug resistance, triple-negative breast cancer, gastrointestinal stromal tumor, osteosarcoma, colorectal adenocarcinoma, ethyl-pyrrole-carboxyls, pyrrole-carboxamides, paclitaxel, vinblastine, doxorubicin, деполимеризация тубулина, клеточный цикл, апоптоз, митотическая катастрофа, множественная лекарственная устойчивость, трижды негативный рак молочной железы, гастроинтестинальная стромальная опухоль, остеосаркома, колоректальная аденокарцинома, этил-пиррол-карбоксилы, пиррол-карбоксамиды, паклитаксел, винбластин
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/683/355; Bhardwaj V., Gumber D., Abbot V. et al. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 2015;5:15233–66. DOI:10.1039/C4RA15710A; DeSimone R.W., Currie K.S., Mitchell S.A. et al. Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 2004;7(5):473–93. DOI:10.2174/1386207043328544; Duarte C.D., Barreiro E.J., Fraga C.A.M. Privileged structures: a useful concept for the rational design of new lead drug candidates. Mini-Rev Med Chem 2007;7(11):1108–19. DOI:10.2174/138955707782331722; Li Petri G., Spanò V., Spatola R. et al. Bioactive pyrrole-based compounds with target selectivity. Eur J Med Chem 2020;208:112783. DOI:10.1016/j.ejmech.2020.112783; Walsh C.T., Garneau-Tsodikova S., Howard-Jones A.R. Biological formation of pyrroles: Nature’s logic and enzymatic machinery. Nat Prod Rep 2006;23:517–31. DOI:10.1039/b605245m; Ahmad S., Alam O., Naim M.J. et al. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem 2018;157:527–61. DOI:10.1016/j.ejmech.2018.08.002; Bianco M.C.A.D., Marinho D.I.L.F., Hoelz L.V.B. et al. Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors. Pharmaceuticals 2021;14(9):893. DOI:10.3390/ph14090893; La Regina G., Bai R., Coluccia A. et al. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J Med Chem 2014;57:6531–52. DOI:10.1021/jm500561a; Jadala C., Prasad B., Prasanthi A.V.G. et al. Transition metal-free one-pot synthesis of substituted pyrroles by employing aza-Wittig reaction. RSC Adv 2019;9:30659–65. DOI:10.1039/C9RA06778G; Tang S., Zhou Z., Jiang Z. et al. Indole-based tubulin inhibitors: binding modes and sars investigations. Molecules 2022;27(5):1587. DOI:10.3390/molecules27051587; Romagnoli R., Oliva P., Salvador M.K. et al. A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem 2021;214:113229. DOI:10.1016/j.ejmech.2021.113229; Sun J., Chen L., Liu C. et al. Synthesis and biological evaluations of 1,2-diaryl pyrroles as analogues of combretastatin A-4. Chem Biol Drug Des 2015;86(6):1541–7. DOI:10.1111/cbdd.12617; Ma Z., Ma Z., Zhang D. Synthesis of multi-substituted pyrrole derivatives through [3+2] cycloaddition with tosylmethyl isocyanides (TosMICs) and electron-deficient compounds. Molecules 2018;23(10):2666. DOI:10.3390/molecules23102666; Mowery P., Mejia F.B., Franceschi C.L. et al. Synthesis and evaluation of the anti-proliferative activity of diaryl-3-pyrrolin-2-ones and fused analogs. Bioorganic Med Chem Lett 2017;27(2):191–5. DOI:10.1016/j.bmcl.2016.11.076; Boichuk S., Galembikova A., Syuzov K. et al. The design, synthesis, and biological activities of pyrrole-based carboxamides: the novel tubulin inhibitors targeting the colchicine-binding site. Molecules 2021;26(19):5780. DOI:10.3390/molecules26195780; Findeisen P., Mühlhausen S., Dempewolf S. et al. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 2014;6(9):2274–88. DOI:10.1093/gbe/evu187; Avila J. Microtubule functions. Life Sci 1992;50(5):327–34. DOI:10.1016/0024-3205(92)90433-P; Vukušić K., Buđa R., Tolić I.M. Force-generating mechanisms of anaphase in human cells. J Cell Sci 2019;132(18):jcs231985. DOI:10.1242/jcs.231985; de Forges H., Bouissou A., Perez F. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 2012;44(2):266–74. DOI:10.1016/j.biocel.2011.11.009; Bonifacino J.S., Neefjes J. Moving and positioning the endolysosomal system. Curr Opin Cell Biol 2017;47:266–74. DOI:10.1016/j.ceb.2017.01.008; Wood K.W., Cornwell W.D., Jackson J.R. Past and future of the mitotic spindle as an oncology target. Curr Opin Pharmacol 2001;1(4):370–7. DOI:10.1016/s1471-4892(01)00064-9; von Hoff D.D. The taxoids: Same roots, different drugs. Semin Oncol 1997;24(13):S13-3–10.; Bollag D.M., McQueney P.A., Zhu J. et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995;55(11):2325–33.; Gigant B., Wang C., Ravelli R.B.G. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435(7041):519–22. DOI:10.1038/nature03566; Hastie S.B. Interactions of colchicine with tubulin. Pharmacol Ther 1991;51(3):377–401. DOI:10.1016/0163-7258(91)90067-V; Mooberry S.L., Tien G., Hernandez A.H. et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999;59(3):653–60.; Hamel E. Natural products which interact with tubulin in the vinca domain: Maytansine, rhizoxin, phomopsin a, dolastatins 10 and 15 and halichondrin B. Pharmacol Ther 1992;55(1):31–51. DOI:10.1016/0163-7258(92)90028-X; Jordan M.A., Wilson L. Microtubules as a target for anticancer drugs. Nat Cancer 2004;4(4):253–65. DOI:10.1038/nrc1317; Stanton R.A., Gernert K.M., Nettles J.H. et al. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 2011;31(3):443–81. DOI:10.1002/med.20242; Ravelli R.B., Gigant G., Curmi B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004;428(6979):198–202. DOI:10.1038/nature02393; Yang J., Wang Y., Wang T. et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 2016;7:12103. DOI:10.1038/ncomms12103; Prota A.E., Setter J., Waight A.B. et al. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J Mol Biol 2016;428(15):2981–8. DOI:10.1016/j.jmb.2016.06.023; Steinmetz M.O., Prota A.E. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28(10):776–92. DOI:10.1016/j.tcb.2018.05.001; Fanale D., Bronte G., Passiglia F. et al. Stabilizing versus destabilizing the microtubules: A double-edge sword for an effective cancer treatment option? Anal Cell Pathol (Amst) 2015;2015:690916. DOI:10.1155/2015/690916; West L.M., Northcote P.T., Battershill C.N. Peloruside A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65(2):445–9. DOI:10.1021/jo991296y; Prota A.E., Bargsten K., Northcote P.T. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53(6):1621–5. DOI:10.1002/anie.201307749.; Chaplin D.J., Hill S.A. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol 2002;54(5):1491–6. DOI:10.1016/S0360-3016(02)03924-X; Siemann D.W., Shi W. Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503). Anticancer Res 2008;28(4 B):2027–31.; Lindamulage I.K., Vu H.-Y., Karthikeyan C. et al. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci Rep 2017;7(1):10298. DOI:10.1038/s41598-017-10972-0; Gupta S., Banerjee M., Poddar A. et al. Biphasic kinetics of the colchicine−tubulin interaction: role of amino acids surrounding the A ring of bound colchicine molecule. Biochemistry 2005;44(30):10181–8. DOI:10.1021/bi050599l; McLoughlin E.C., O’Boyle N.M. Colchicine-binding site inhibitors from chemistry to clinic : a review. Pharmaceuticals 2020;13(1):8. DOI:10.3390/ph13010008; Arnst K.E., Banerjee S., Chen H. et al. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med Res Rev 2019;39(4):1398–426. DOI:10.1002/med.21568; Зыкова С.С., Бойчук С.В., Галембикова А.Р. и др. 3-гидрокси-1,5-диарил-4-пивалоил-2,5-дигидро-2-пирролоны нарушают процессы митоза и индуцируют гибель опухолевых клеток in vitro. Цитология 2014;56:439–42. – Zykova S.S., Boychuk S.V., Galimbekova A.R. et al. 3-hydroxy-1,5-diaryl-4-pivaloyl-2,5-dihydro-2-pyrrolone disrupt the processes of mitosis and induce the death of tumor cells in vitro. Citologiya = Cytology 2014;56:439–42. (In Russ.).; Boichuk S., Galembikova A., Zykova S. et al. Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro. Anti-Cancer Drugs 2016;27(7):620–34. DOI:10.1097/CAD.0000000000000372; Boichuk S., Galembikova A., Dunaev P. et al. Ethyl-2-amino-pyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs 2019;30(5):475–84. DOI:10.1097/CAD.0000000000000753; Boichuk S., Bikinieva F., Mustafin I. et al. 2-Amino-pyrrole-carboxylate attenuates homology-mediated DNA repair and sensitizes cancer cells to doxorubicin. Biochemistry (Mosc) 2022;87(5):391–9. DOI:10.1134/S0006297922050017; Boichuk S., Syuzov K., Bikinieva F. et al. Computational-based discovery of the anti-cancer activities of pyrrole-based compounds targeting the colchicine-binding site of tubulin. Molecules 2022;27(9):2873. DOI:10.3390/molecules27092873; Boichuk S., Galembikova A., Bikinieva F. et al. 2-APCAs, the novel microtubule targeting agents active against distinct cancer cell lines. Molecules 2021;26(3):616. DOI:10.3390/molecules26030616; Галембикова А.Р., Дунаев П.Д., Бикиниева Ф.Ф. и др. Механизмы цитотоксической активности пиррол-карбоксамидов в отношении опухолевых клеточных сублиний с множественной лекарственной устойчивостью. Успехи молекулярной онкологии 2023;10(3):59–71. DOI:10.17650/2313-805X-2023-10-3-59-71; Carta D., Bortolozzi R., Sturlese M. et al. Synthesis, structure-activity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur J Med Chem 2017;127:643–60. DOI:10.1016/j.ejmech.2016.10.026; Brindisi M., Ulivieri C., Alfano G. et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2019;162:290–320. DOI:10.1016/j.ejmech.2018.11.004; Zykova S.S., Galembikova A.R., Ramazanov B.R. et al. Synthesis and cytotoxic activity of ethyl 2-amino-1-benzamido-4-oxo-5-(2-oxo-2-arylethylidene)-4,5-dihydro-1H-pyrrole-3-carboxylates. Pharm Chem J 2016;49(12):817–20. DOI:10.1007/s11094-016-1378-1; Zykova S.S., Igidov N.M., Zakhmatov A.V. et al. Synthesis and biological activity of 2-amino-1-aryl-5-(3,3-dimethyl-2-oxobutylidene)-4-oxo-n-(thiazol-5-yl)-4,5-dihydro-1H-pyrrole-3-carboxamides. Pharm Chem J 2018;52(3):198–204.; Zykova S.S., Kizimova I.A., Syutkina A.I. et al. Synthesis and cytostatic activity of (e)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden)-4-oxo-1- (2-phenylaminobenzamido)-4,5-dihydro-1hpyrrol-3-carboxylate. Pharm Chem J 2020;53:895–8. DOI:10.1007/s11094-020-02096-z; Boichuk S., Galembikova A., Sitenkov A. et al. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017;14(4):5039–45. DOI:10.3892/ol.2017.6795; Boichuk S., Bikinieva F., Valeeva E. et al. Establishment and characterization of multi-drug resistant p53-negative osteosarcoma SaOS-2 subline. Diagnostics (Basel) 2023;13(16):2646. DOI:10.3390/diagnostics13162646; Хуснутдинов Р.Р., Галембикова А.Р., Бойчук С.В. Получение клона клеток гастроинтестинальной стромальной опухоли с признаками множественной лекарственной устойчивости и оценка его свойств. Современные технологии в медицине 2016;8(4):36–41. DOI:10.17691/stm2016.8.4.05; Taguchi T., Sonobe H., Toyonaga S. et al. Conventionaland molecular cytogenetic characterization of a newhuman cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab Invest 2002;82(5):663–5. DOI:10.1038/labinvest.3780461; Wittmann C., Sivchenko A.S., Bacher F. et al. Inhibition of microtubule dynamics in cancer cells by indole-modified latonduine derivatives and their metal complexes. Inorg Chem 2022;61(3):1456–70. DOI:10.1021/acs.inorgchem.1c03154; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Marupudi N.I., Han J.E., Li K.W. et al. Paclitaxel : a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 2007;6(5):609–21. DOI:10.1517/14740338.6.5.609; Young J.A., Howell S.B., Green M.R. Pharmacokinetics and toxicity of 5-day continuous infusion of vinblastine. Cancer Chemother Pharmacol 1984;12(1):43–5. DOI:10.1007/BF00255908; Mora E., Smith E.M., Donohoe C. et al. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am J Cancer Res 2016;6(11):2416–30.; Abu Samaan T.M., Samec M., Liskova A. et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789. DOI:10.3390/biom9120789; Hashemi M., Zandieh M.A., Talebi Y. et al. Paclitaxel and docetaxel resistance in prostate cancer: molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023;160:114392. DOI:10.1016/j.biopha.2023.114392; Zhang Y., Yang S.H., Guo X.L. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed Pharmacother 2017;96:659–66. DOI:10.1016/j.biopha.2017.10.041; Toledo B., González-Titos A., Hernández-Camarero P. et al. A brief review on chemoresistance; targeting cancer stem cells as an alternative approach. Int J Mol Sci 2023;24(5):4487. DOI:10.3390/ijms24054487; Distefano M., Scambia G., Ferlini C. et al. Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 1998;13(5):489–99.; Liu J., Yang X., Gao S. et al. DDX11-AS1 modulates DNA damage repair to enhance paclitaxel resistance of lung adenocarcinoma cells. Pharmacogenomics 2023;24(3):163–72. DOI:10.2217/pgs-2022-0121; Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig 1997;100(5): 1282–93. DOI:10.1172/JCI119642; Poruchynsky M.S., Giannakakou P., Ward Y. et al. Accompanying protein alterations in malignant cells with a microtubule-polymerizing drug-resistance phenotype and a primary resistance mechanism. Biochem Pharmacol 2001;62(11):1469–80. DOI:10.1016/s0006-2952(01)00804-8; Houghton J.A., Houghton P.J., Hazelton B.J. et al. In situ selection of a human rhabdomyosarcoma resistant to vincristine with altered beta-tubulins. Cancer Res 1985;45(6):2706–12.; Stengel C., Newman S.P., Leese M.P. et al. Class III β-tubulin expression and in vitro resistance to microtubule targeting agents. Br J Cancer 2009;102:316–24. DOI:10.1038/sj.bjc.6605489; Rodríguez-Antona C. Pharmacogenomics of paclitaxel. Pharmacogenomics 2010;11(5):621–3. DOI:10.2217/pgs.10.32; Ezrahi S., Aserin A., Garti N. Basic principles of drug delivery systems – the case of paclitaxel. Adv Colloid Interface Sci 2019;263:95–130. DOI:10.1016/j.cis.2018.11.004; Tuy H.D., Shiomi H., Mukaisho K.I. et al. ABCG2 expression in colorectal adenocarcinomas may predict resistance to irinotecan. Oncol Lett 2016;12(4):2752–60. DOI:10.3892/ol.2016.4937; Mooberry S.L., Weiderhold K.N., Dakshanamurthy S. et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007;72(1):132–40. DOI:10.1124/mol.107.034876; https://umo.abvpress.ru/jour/article/view/683
-
12Academic Journal
المؤلفون: N. A. Karelskaya, I. S. Gruzdev, V. Yu. Raguzina, G. G. Karmazanovsky, Н. А. Карельская, И. С. Груздев, В. Ю. Рагузина, Г. Г. Кармазановский
المصدر: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 7-18 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 7-18 ; 2079-5343
مصطلحات موضوعية: почечно-клеточный рак, MRI, Texture analysis, renal cell carcinoma, МРТ, текстурный анализ
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/934/617; Moch H., Cubilla A.L., Humphrey P.A. et al. Ulbright. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs — Part A: Renal, Penile, and Testicular Tumours // Eur. Urol. 2016. Vol. 70, No. 1. Р. 93–105. doi:10.1016/J.EURURO.2016.02.029.; Halefoglu A.M., Ozagari A.A. Tumor grade estimation of clear cell and papillary renal cell carcinomas using contrast-enhanced MDCT and FSE T2 weighted MR imaging: radiology-pathology correlation // Radiol. Med. 2021. Vol. 126, No. 9. Р. 1139–1148. doi:10.1007/S11547-021-01350-Y.; Miles K.A., Ganeshan B., Hayball M.P. CT texture analysis using the filtration-histogram method: what do the measurements mean? // Cancer Imaging. 2013. Vol. 13, No. 3. Р. 400–406. doi:10.1102/1470-7330.2013.9045.; Nioche C., Orlhac F., Boughdad S. et al. Lifex: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity // Cancer Res. 2018. Vol. 78, No. 16. Р. 4786–4789. doi:10.1158/0008-5472.CAN-18-0125.; Schieda N., Lim R.S., Krishna S. et al. Diagnostic Accuracy of Unenhanced CT Analysis to Differentiate Low-Grade From High-Grade Chromophobe Renal Cell Carcinoma // AJR. Am. J. Roentgenol. 2018. Vol. 210, No. 5. Р. 1079–1087. doi:10.2214/AJR.17.18874.; Bektas C.T., Kocak B., Yardimci A.H. et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade // Eur. Radiol. 2019. Vol. 29, No. 3. Р. 1153–1163. doi:10.1007/S00330-018-5698-2.; Cornelis F., Tricaud E., Lasserre A.S. et al. Multiparametric magnetic resonance imaging for the differentiation of low- and high-grade clear cell renal carcinoma // Eur. Radiol. 2015. Vol. 25, No. 1. Р. 24–31. doi:10.1007/S00330-014-3380-X.; Oh S., Sung D.J., Yang K.S. et al. Correlation of CT imaging features and tumor size with Fuhrman grade of clear cell renal cell carcinoma // Acta Radiologica. 2016. Vol. 58, No. 3. Р. 376–384. doi:10.1177/0284185116649795.; Sun R., Zhao S., Jiang H. et al. Imaging Tool for Predicting Renal Clear Cell Carcinoma Fuhrman Grade: Comparing R.E.N.A.L. Nephrometry Score and CT Texture Analysis // Biomed. Res. Int. 2021. Vol. 1. Р. 1–11. doi:10.1155/2021/1821876.; Muglia V.F., Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings // Radiol. Bras. 2015. Vol. 48, No. 3. Р. 166–174. doi:10.1590/0100-3984.2013.1927.; Zhu Y.H., Wang X., Zhang J., Chen Y.H. et al. Low enhancement on multiphase contrast-enhanced CT images: an independent predictor of the presence of high tumor grade of clear cell renal cell carcinoma // AJR. Am. J. Roentgenol. 2014. Vol. 203, No. 3. Р. W295–W300. doi:10.2214/AJR.13.12297.; Goyal A., Sharma R., Bhalla A.S. et al. Diffusion-weighted MRI in renal cell carcinoma: A surrogate marker for predicting nuclear grade and histological subtype // Acta radiol. 2012. Vol. 53, No. 3. Р. 349–358. doi:10.1258/AR.2011.110415/ASSET/IMAGES/LARGE/10.1258_AR.2011.110415-FIG2.JPEG.; Yi X., Xiao Q., Zeng F. et al. Computed Tomography Radiomics for Predicting Pathological Grade of Renal Cell Carcinoma // Front. Oncol. 2020. Vol. 10. Р. 570396–570396. doi:10.3389/FONC.2020.570396.; Kim N.Y., Lubner M.G., Nystrom J.T. et al. Utility of CT Texture Analysis in Differentiating Low-Attenuation Renal Cell Carcinoma From Cysts: A Bi-Institutional Retrospective Study // American Journal of Roentgenology. 2019. Vol. 213, No. 6. Р. 1259–1266. doi:10.2214/AJR.19.21182.; Yu H.S., Scalera J., Khalid M. et al. Texture analysis as a radiomic marker for differentiating renal tumors // Abdom. Radiol. 2017. Vol. 42, No. 10. Р. 2470–2478. doi:10.1007/S00261-017-1144-1/TABLES/4.; Ding J., Xing Z., Jiang Z. et al. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma // Eur. J. Radiol. Vol. 103. Р. 51–56. doi:10.1016/J.EJRAD.2018.04.013.; Paschall A.K., Mirmomen S.M., Symons R. et al. Differentiating papillary type I RCC from clear cell RCC and oncocytoma: application of whole-lesion volumetric ADC measurement // Abdom. Radiol. (New York). 2018. Vol. 43, No. 9. Р. 2424–2430. doi:10.1007/S00261-017-1453-4.; Shen L., Zhou L., Liu X. et al. Comparison of biexponential and monoexponential DWI in evaluation of Fuhrman grading of clear cell renal cell carcinoma // Diagnostic Interv. Radiol. 2017. Vol. 23, No. 2, p. 100. doi:10.5152/DIR.2016.15519.; Villavicencio C.P., McCarthy R.J., Miller F.H. Can diffusion-weighted magnetic resonance imaging of clear cell renal carcinoma predict low from high nuclear grade tumors // Abdom. Radiol. (New York). 2017. Vol. 42, No. 4. Р. 1241–1249. doi:10.1007/S00261-016-0981-7.; Mytsyk Y., Dutka I., Borys Y. et al. Renal cell carcinoma: applicability of the apparent coefficient of the diffusion-weighted estimated by MRI for improving their differential diagnosis, histologic subtyping, and differentiation grade // Int. Urol. Nephrol. 2017. Vol. 49, No. 2. Р. 215–224. doi:10.1007/S11255-016-1460-3.; Adams L.C., Bressem K.K., Jurmeister P. et al. Use of quantitative T2 mapping for the assessment of renal cell carcinomas: First results // Cancer Imaging. 2019. Vol. 19, No. 1. Р. 1–11. doi:10.1186/S40644-019-0222-8/FIGURES/5.; Zhang Y.D., Wu C.J., Wang Q. et al. Comparison of Utility of Histogram Apparent Diffusion Coefficient and R2* for Differentiation of Low-Grade From High-Grade Clear Cell Renal Cell Carcinoma // AJR. Am. J. Roentgenol. 2015. Vol. 205, No. 2. Р. W193–W201. doi:10.2214/AJR.14.13802.; Moran K., Abreu-Gomez J., Krishn S. et al. Can MRI be used to diagnose histologic grade in T1a (; Kierans A.S., Rusinek H., Lee A. et al. Textural differences in apparent diffusion coefficient between low- and high-stage clear cell renal cell carcinoma // AJR. Am. J. Roentgenol. 2014. Vol. 203, No. 6. Р. W637–W644. doi:10.2214/AJR.14.12570.; Jiang Y., Li W., Huang C. et al. A Computed Tomography-Based Radiomics Nomogram to Preoperatively Predict Tumor Necrosis in Patients With Clear Cell Renal Cell Carcinoma // Front. Oncol. 2020. Vol. 10. Р. 592. doi:10.3389/FONC.2020.00592/BIBTEX.; Tordjman M., Mali R., Madelin G. et al. Diagnostic test accuracy of ADC values for identification of clear cell renal cell carcinoma: systematic review and meta-analysis // Eur. Radiol. 2020. Vol. 30, No. 7. Р. 4023–4038. doi:10.1007/S00330-020-06740-W.; Vendrami C.L., Velichko Y.S., Miller F.H. et al. Differentiation of Papillary Renal Cell Carcinoma Subtypes on MRI: Qualitative and Texture Analysis // AJR. Am. J. Roentgenol. 2018. Vol. 211, No. 6. Р. 1234–1245. doi:10.2214/AJR.17.19213.; Kocak B., Ates E., Durmaz E.S. et al. Influence of segmentation margin on machine learning–based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas // Eur. Radiol. 2019. Vol. 29, No. 9. Р. 4765–4775. doi:10.1007/S00330-019-6003-8/TABLES/5.; Lin F., Cui E.M., Lei Y. et al. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma // Abdom. Radiol. 2019. Vol. 44, No. 7. Р. 2528–2534. doi:10.1007/S00261-019-01992-7/TABLES/2.; Cui E., Li Z., Ma C. et al. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics // Eur. Radiol. 2020. Vol. 30, No. 5. Р. 2912–2921. doi:10.1007/S00330-019-06601-1/FIGURES/3.; Espinasse M., Pitre-Champagnat S., Charmettant B. et al. CT Texture Analysis Challenges: Influence of Acquisition and Reconstruction Parameters: A Comprehensive Review // Diagnostics 2020. Vol. 10, No. 5. Р. 258. doi.org/10.3390/diagnostics10050258.; Buvat I., Orlhac F., Soussan M. Tumor Texture Analysis in PET: Where Do We Stand? // J. Nucl. Med. 2015. Vol. 56, No. 11. Р. 1642–1644. doi:10.2967/JNUMED.115.163469.; Kocak B., Yardimci A.H., Bektas C.T. et al. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation // Eur. J. Radiol. 2018. Vol. 107. Р. 149–157. doi:10.1016/J.EJRAD.2018.08.014.; Lee H. S., Hong H., Jung D.C. et al. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification // Med. Phys. 2017. Vol. 44, No. 7. Р. 3604–3614, doi:10.1002/MP.12258.; Leng S., Takahashi N., Gomez Cardona D. et al. Subjective and objective heterogeneity scores for differentiating small renal masses using contrast-enhanced CT // Abdom. Radiol. 2017. Vol. 42, No. 5. Р. 1485–1492. doi:10.1007/S00261-016-1014-2/FIGURES/5.; Nazari M., Shiri I., Hajianfar G. et al. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning // Radiol. Medica. 2020. Vol. 125, No. 8. Р. 754–762. doi:10.1007/S11547-020-01169-Z/TABLES/4.; Sun J., Pan L., Zha T. et al. The role of MRI texture analysis based on susceptibility-weighted imaging in predicting Fuhrman grade of clear cell renal cell carcinoma // Acta radiol. 2021. Vol. 62, No. 8. Р. 1104–1111. doi:10.1177/0284185120951964/ASSET/IMAGES/LARGE/10.1177_0284185120951964-FIG2.JPEG.; Nguyen K., Schieda N., James N. et al. Effect of phase of enhancement on texture analysis in renal masses evaluated with non-contrast-enhanced, corticomedullary, and nephrographic phase–enhanced CT images // Eur. Radiol. 2021. Vol. 31, No. 3. Р. 1676–1686. doi:10.1007/S00330-020-07233-6/TABLES/5.; Lubner M.G., Stabo N., Abel E.J. et al. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes // Am. J. Roentgenol. 2016. Vol. 207, No. 1. Р. 96–105. doi:10.2214/AJR.15.15451.; Lai S., Sun L., Wu J. et al. Multiphase Contrast-Enhanced CT-Based Machine Learning Models to Predict the Fuhrman Nuclear Grade of Clear Cell Renal Cell Carcinoma // Cancer Manag. Res. 2021. Vol. 13. Р. 999. doi:10.2147/CMAR.S290327.; Deng Y., Soule E., Samuel A. et al. CT texture analysis in the differentiation of major renal cell carcinoma subtypes and correlation with Fuhrman grade // Eur. Radiol. 2019. Vol. 29, No. 12. Р. 6922–6929. doi:10.1007/S00330-019-06260-2/FIGURES/4.; Feng Z., Shen Q., Li Y. et al. CT texture analysis: A potential tool for predicting the Fuhrman grade of clear-cell renal carcinoma // Cancer Imaging. 2019. Vol. 19, No. 1. Р. 1–7. doi:10.1186/S40644-019-0195-7/FIGURES/2.; Haji-Momenian S., Lin Z., Patel B. et al. Texture analysis and machine learning algorithms accurately predict histologic grade in small (; Scrima A.T., Lubner M.G., Abel E.J. et al. Texture analysis of small renal cell carcinomas at MDCT for predicting relevant histologic and protein biomarkers // Abdom. Radiol. 2019. Vol. 44, No. 6. Р. 1999–2008. doi:10.1007/S00261-018-1649-2/FIGURES/3.; Shu J., Tang Y., Cui J. et al. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade // Eur. J. Radiol. 2018. Vol. 109. Р. 8–12. doi:10.1016/J.EJRAD.2018.10.005.; Wu K., Wu P., Yang K. et al. A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images // Eur. Radiol. 2022. Vol. 32, No. 4. Р. 2255–2265. doi:10.1007/S00330-021-08353-3/FIGURES/4.; Gao R., Qin H., Lin P. et al. Development and Validation of a Radiomic Nomogram for Predicting the Prognosis of Kidney Renal Clear Cell Carcinoma // Front. Oncol. 2021. Vol. 11. Р. 2347. doi:10.3389/FONC.2021.613668/BIBTEX.; Demirjian N.L., Varghese B.A., Cen S.Y. et al. CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma // Eur. Radiol. 2022. Vol. 32, No. 4. Р. 2552–2563. doi:10.1007/S00330-021-08344-4/TABLES/3.; Zhang H., Yin F., Chen M. et al. Development and Validation of a CT-Based Radiomics Nomogram for Predicting Postoperative Progression-Free Survival in Stage I-III Renal Cell Carcinoma // Front. Oncol. 2022. Vol. 11. doi:10.3389/FONC.2021.742547.; Shehata M., Alksas A., Abouelkheir R.T. et al. A Comprehensive Computer-Assisted Diagnosis System for Early Assessment of Renal Cancer Tumors // Sensors. 2021. Vol. 21, No. 14. Р. 4928. doi:10.3390/S21144928.; Goyal A., Razik A., Kandasamy D. et al. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study // Abdom. Radiol. 2019. Vol. 44, No. 10. Р. 3336–3349. doi:10.1007/S00261-019-02122-Z/FIGURES/4.; Wang W., Cao K.M., Jin S.M. et al. Differentiation of renal cell carcinoma subtypes through MRI-based radiomics analysis // Eur. Radiol. 2020. Vol. 30, No. 10. Р. 5738–5747. doi:10.1007/S00330-020-06896-5/FIGURES/2.; Razik A., Goyal A., Sharma R. et al. MR texture analysis in differentiating renal cell carcinoma from lipid-poor angiomyolipoma and oncocytoma // Br. J. Radiol. 2020. Vol. 93, No. 1114. doi:10.1259/BJR.20200569.; https://radiag.bmoc-spb.ru/jour/article/view/934
-
13Academic Journal
المؤلفون: V. Grünwald, T. Powles, E. Kopyltsov, V. Kozlov, T. Alonso-Gordoa, M. Eto, T. Hutson, R. Motzer, E. Winquist, P. Maroto, B. Keam, G. Procopio, S. Wong, B. Melichar, F. Rolland, M. Oya, K. Rodriguez-Lopez, K. Saito, J. McKenzie, C. Porta, Е. Kopyltsov, М. Eto
المساهمون: Данное исследование было спонсировано Eisai Inc., Натли, Нью-Джерси, США и Merck Sharp & Dohme LLC – дочерняя компания Merck & Co., Inc., Рауэй, Нью-Джерси, США. Помощь в написании статьи финансировалась Eisai Inc., Натли, Нью-Джерси, США и Merck Sharp & Dohme LLC – дочерней компанией Merck & Co., Inc., Рауэй, Нью-Джерси, США. Пациентам, получавшим лечение в Мемориальном онкологическом центре им. Слоуна–Кеттеринга, частично оказывалась поддержка за счет гранта поддержки Мемориального онкологического центра им. Слоуна–Кеттеринга/Основного гранта (P30 CA008748)
المصدر: Cancer Urology; Том 19, № 4 (2023); 32-43 ; Онкоурология; Том 19, № 4 (2023); 32-43 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: почечно-клеточный рак, pembrolizumab, sunitinib, depth of response, renal cell carcinoma, пембролизумаб, сунитиниб, степень ответа
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1786/1493; National Cancer Institute. Surveillance, Epidemiology, and End Results Program (SEER). Cancer stat facts: kidney and renal pelvis cancer. Available at: https://seer.cancer.gov/statfacts/html/kidrp.html.; International Agency for Research on Cancer (IARC). GLOBOCAN 2020. Cancer Today. Available at: https://gco.iarc.fr/today/home.; Padala S.A., Barsouk A., Thandra K.C. et al. Epidemiology of renal cell carcinoma. World J Oncol 2020;11(3):79–87. DOI:10.14740/wjon1279; Li P., Wong Y.N., Armstrong K. et al. Survival among patients with advanced renal cell carcinoma in the pretargeted versus targeted therapy eras. Cancer Med 2016;5(2):169–81. DOI:10.1002/cam4.574; Choueiri T.K., Motzer R.J. Systemic therapy for metastatic renalcell carcinoma. N Engl J Med 2017;376(4):354–66. DOI:10.1056/NEJMra1601333; Choueiri T.K., Kaelin Jr W.G. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med 2020;26(10):1519–30. DOI:10.1038/s41591-020-1093-z; Choueiri T.K., Powles T., Burotto M. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2021;384(9):829–41. DOI:10.1056/NEJMoa2026982; Motzer R.J., Tannir N.M., McDermott D.F. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018;378(14):1277–90. DOI:10.1056/NEJMoa1712126; Motzer R., Alekseev B., Rha S.Y. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med 2021;384(14):1289–300. DOI:10.1056/NEJMoa2035716; Motzer R.J., Penkov K., Haanen J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1103–15. DOI:10.1056/NEJMoa1816047; Rini B.I., Plimack E.R., Stus V. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1116–27. DOI:10.1056/NEJMoa1816714; Rassy E., Flippot R., Albiges L. Tyrosine kinase inhibitors and immunotherapy combinations in renal cell carcinoma. Ther Adv Med Oncol 2020;12:1758835920907504. DOI:10.1177/1758835920907504; National Comprehensive Cancer Network clinical practice guidelines in oncology (NCCN Guidelines). Kidney cancer. Version 3.2022. Available at: http://www.nccn.org/professionals/physician_gls/PDF/kidney.pdf.; Bedke J., Albiges L., Capitanio U. et al. Updated European Association of Urology guidelines on renal cell carcinoma: nivolumab plus cabozantinib joins immune checkpoint inhibition combination therapies for treatment-naïve metastatic clear-cell renal cell carcinoma. Eur Urol 2021;79(3):339–42. DOI:10.1016/j.eururo.2020.12.005; Powles T., Albiges L., Bex A. et al. ESMO clinical practice guideline update on the use of immunotherapy in early stage and advanced renal cell carcinoma. Ann Oncol 2021;32(12):1511–9. DOI:10.1016/j.annonc.2021.09.014; Motzer R.J., Hutson T.E., Glen H. et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 2015;16(15):1473–82. DOI:10.1016/S1470-2045(15)00290-9; Pal S.K., Puente J., Heng D.Y.C. et al. Phase II trial of lenvatinib (LEN) at two starting doses + everolimus (EVE) in patients (pts) with renal cell carcinoma (RCC): results by independent imaging review (IIR) and prior immune checkpoint inhibition (ICI) [abstract]. J Clin Oncol 2021;39(6 Suppl):307.; Larkin J.M.G., Tykodi S.S., Donskov F. et al. First-line pembrolizumab (pembro) monotherapy in advanced clear cell renal cell carcinoma (ccRCC): updated follow-up for KEYNOTE-427 cohort A. Ann Oncol 2019;30(Suppl 5):v381–2, Abstract 949P.; Lee J.L., Ziobro M., Gafanov R. et al. KEYNOTE-427 cohort B: first-line pembrolizumab (pembro) monotherapy for advanced nonclear cell renal cell carcinoma (NCC-RCC). J Clin Oncol 2019;37(15 Suppl):4569.; Lee C.H., Shah A.Y., Rasco D. et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (study 111/KEYNOTE-146): a phase 1b/2 study. Lancet Oncol 2021;22(7):946–58. DOI:10.1016/S1470-2045(21)00241-2; Grünwald V., McKay R.R., Krajewski K.M. et al. Depth of remission is a prognostic factor for survival in patients with metastatic renal cell carcinoma. Eur Urol 2015;67(5):952–8. DOI:10.1016/j.eururo.2014.12.036; Motzer R., Porta C., Alekseev B. et al. Health-related quality of life outcomes in patients with advanced renal cell carcinoma treated with lenvatinib plus pembrolizumab or everolimus versus sunitinib: a randomized phase 3 study (CLEAR trial). Lancet Oncol 2022;23(6):768–80. DOI:10.1016/S1470-2045(22)00212-1; Powles T., Plimack E.R., Soulières D. et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended followup from a randomised, open-label, phase 3 trial. Lancet Oncol 2020;21(12):1563–73. DOI:10.1016/S1470-2045(20)30436-8; Motzer R.J., Escudier B., McDermott D.F. et al. Survival outcomes and independent response assessment with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma: 42-month follow-up of a randomized phase 3 clinical trial. J Immunother Cancer 2020;8(2):e000891. DOI:10.1136/jitc-2020-000891; Rini B.I., Plimack E.R., Stus V. et al. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for advanced clear cell renal cell carcinoma (ccRCC): results from 42-month follow-up of KEYNOTE-426. J Clin Oncol 2021;39(15 Suppl):4500.; Haanen J.B.A.G., Larkin J., Choueiri T.K. et al. Efficacy of avelumabaxitinib (AAx) versus sunitinib (S) by IMDC risk group in advanced renal cell carcinoma (aRCC): extended follow-up results from JAVELIN Renal 101. J Clin Oncol 2021;39(15 Suppl):4574.; Albiges L., Tannir N.M., Burotto M. et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open 2020;5(6):e001079. DOI:10.1136/esmoopen-2020-001079; Leary A., Larkin J.M., Pickering L.M. Cytokine therapy for renal cell cancer: the evolving role of immunomodulation. Therapy 2011;8:347–58.; Fisher R.I., Rosenberg S.A., Fyfe G. Long-term survival update for highdose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am 2000;6(Suppl 1):S55–7.; https://oncourology.abvpress.ru/oncur/article/view/1786
-
14Academic Journal
المؤلفون: I. M. Shevchuk, N. D. Movchan, И. М. Шевчук, Н. Д. Мовчан
المصدر: Cancer Urology; Том 19, № 4 (2023); 44-51 ; Онкоурология; Том 19, № 4 (2023); 44-51 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: акситиниб, Pembroria®, biosimilar, metastatic renal cell carcinoma, lenvatinib, axitinib, Пемброриа®, биосимиляр, метастатический почечно-клеточный рак, ленватиниб
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1787/1504; Рак паренхимы почки. Клинические рекомендации 2023 г. Доступно по: https://oncology-association.ru/wp-content/uploads/2023/11/rak-pochki_23.pdf.; Powles T., Albiges L., Bex A. et al. ESMO Clinical Practice Guideline update on the use of immunotherapy in early stage and advanced renal cell carcinoma. Ann Oncol 2021;32(12):1511–9. DOI:10.1016/j.annonc.2021.09.014; Motzer R., Jonasch E., Agarwal N. et al. Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022;20(1):71–90. DOI:10.6004/jnccn.2022.0001; Ljungberg B., Albiges L., Abu-Ghanem Y. et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur Urol 2019;75(5):799–810. DOI:10.1016/j.eururo.2019.02.011; Powles T., Plimack E.R., Soulières D. et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial [published correction appears in Lancet Oncol 2020;21(12):e553]. Lancet Oncol 2020;21(12):1563–73. DOI:10.1016/S1470-2045(20)30436-8; Motzer R.J., Porta C., Eto M. et al. Phase 3 trial of lenvatinib (LEN) plus pembrolizumab (PEMBRO) or everolimus (EVE) versus sunitinib (SUN) monotherapy as a first-line treatment for patients (pts) with advanced renal cell carcinoma (RCC) (CLEAR study). J Clin Oncol 2021;39(suppl 6):269. DOI:10.1200/JCO.2021.39.6_suppl.269; Инструкция по применению медицинского препарата Пемброриа. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=b50afaa4-67c8-4d9c-9392-366a3322a7ec.; Eisenhauer E.A., Therasse P., Bogaerts J. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45(2):228–47. DOI:10.1016/j.ejca.2008.10.026; Heng D.Y., Xie W., Regan M.M. et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol 2009;27:5794–9. DOI:10.1200/JCO.2008.21.4809; Grünwald V. Poster presented at the ASCO Annual Meeting; 04–08 June, 2021; Virtual Format; abstract #4560. J Clin Oncol 2021;39:15_suppl:4560.; Rini B., Plimack E., Stus V. et al. Pembrolizumab plus axitinib versus sunitinib as first-line therapy for advanced clear cell renal cell carcinoma: 5-year analysis of KEYNOTE-426. J Clin Oncol 2023;41(suppl 17):abstr LBA4501. DOI:10.1200/JCO.2023.41.17_suppl.LBA450; Motzer R., Porta C., Alekseev B. et al. Health-related quality-of-life outcomes in patients with advanced renal cell carcinoma treated with lenvatinib plus pembrolizumab or everolimus versus sunitinib (CLEAR): a randomised, phase 3 study. Lancet Oncol 2022;23(6):768–80. DOI:10.1016/S1470-2045(22)00212-1; https://oncourology.abvpress.ru/oncur/article/view/1787
-
15Academic Journal
المؤلفون: S. A. Zvezda, N. M. Fedorov, R. I. Tamrazov, R. D. Novikov, E. M. Frank, E. B. Podgalnaya, D. S. Butenko, S. I. Gudz, С. А. Звезда, Н. М. Федоров, Р. И. Тамразов, Р. Д. Новиков, Е. М. Франк, Е. Б. Подгальняя, Д. С. Бутенко, С. И. Гудзь
المصدر: Surgery and Oncology; Том 14, № 2 (2024); 63-72 ; Хирургия и онкология; Том 14, № 2 (2024); 63-72 ; 2949-5857
مصطلحات موضوعية: Тюменская область, morbidity, mortality, gastric signet ring cell carcinoma, Tyumen region, заболеваемость, смертность, перстневидно-клеточный рак желудка
وصف الملف: application/pdf
Relation: https://www.onco-surgery.info/jour/article/view/713/469; Sung H., Ferlay J., Siegel R.L. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI:10.3322/caac.21660; Kim T., Seo S.I., Lee K.J. et al. Decreasing incidence of gastric cancer with increasing time after Helicobacter pylori treatment: a nationwide population-based cohort study. Antibiotics (Basel) 2022;11(8):1052. DOI:10.3390/antibiotics11081052; Волченко Н.Н., Баранова И.Б., Борисова О.В. Перстневидноклеточный рак желудка. Возможности цитологической диагностики. Клинический случай. Новости клинической цитологии России 2021;25(1):09–16. DOI:10.24412/1562-4943-2021-1-0002; Данилова Н.В., Олейникова Н.А., Мальков П.Г. Классификация эпителиальных опухолей желудка ВОЗ 2019 г., 5-е издание. Архив патологии 2020;82(4):58–69. DOI:10.17116/patol20208204158; Taghavi S., Jayarajan S.N., Davey A., Willis A.I. Prognostic significance of signet ring gastric cancer. J Clin Oncol 2012;30(28):3493–8. DOI:10.1200/JCO.2012.42.6635; Kwon K.J., Shim K.N., Song E.M. et al. Clinicopathological characteristics and prognosis of signet ring cell carcinoma of the stomach. Gastric Cancer 2014;17:43–53. DOI:10.1007/s10120-013-0234-1; Неред С.Н., Клименков А.А., Перевощиков А.Г. Клинико-морфологические особенности перстневидно-клеточного рака желудка. Вестник РОНЦ им. Н.Н. Блохина РАМН 2004;15(3):37–42.; Benesch M.G.K., Mathieson A. Epidemiology of signet ring cell adenocarcinomas. Cancers (Basel) 2020;12(6):1544. DOI:10.3390/cancers12061544; https://www.onco-surgery.info/jour/article/view/713
-
16Academic Journal
المؤلفون: V. V. Kopat, A. A. Riabchenkova, E. L. Chirak, E. R. Chirak, A. I. Saenko, I. V. Kudryavtsev, A. S. Trulioff, T. V. Savin, E. V. Zueva, A. S. Simbirtsev, A. A. Totolyan, I. V. Dukhovlinov, В. В. Копать, А. А. Рябченкова, Е. Л. Чирак, Е. Р. Чирак, А. И. Саенко, И. В. Кудрявцев, А. С. Трулёв, Т. В. Савин, Е. В. Зуева, А. С. Симбирцев, А. А. Тотолян, И. В. Духовлинов
المصدر: Medical Immunology (Russia); Том 26, № 3 (2024); 591-606 ; Медицинская иммунология; Том 26, № 3 (2024); 591-606 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: диагностикум, COVID-19, coronavirus antigen Cord_PS, chromatography, enzyme-linked immunosorbent assay, CD4+T cells, CD8+T cells, IFNγ, T cell immune response, diagnosticum, коронавирусный антиген Cord_PS, хроматография, иммуноферментный анализ, CD4+Т-клетки, CD8+Т-клетки, Т-клеточный иммунный ответ
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2942/1917; https://www.mimmun.ru/mimmun/article/view/2942/1943; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13285; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13286; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13287; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13288; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13289; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13290; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13291; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13292; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13293; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13294; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13295; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13296; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13297; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13298; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13532; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13533; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13534; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2942/13535; Копать В.В., Рябченкова А.А., Чирак Е.Л., Чирак Е.Р., Саенко А.И., Колмаков Н.Н., Симбирцев А.С., Духовлинов И.В., Тотолян А.А. Разработка структуры и штамма-продуцента E. coli для антигена, содержащего последовательности белков N, S, M, E коронавируса SARS-CоV-2 // Инфекция и иммунитет, 2023. Т. 13, № 4, C. 653-662.; ОФС. 1.7.1.0007.15. Лекарственные средства, получаемые методами рекомбинантных ДНК. Государственная фармакопея Российской Федерации. XIII изд. 2016. С. 521-541. [; Bertoletti A., le Bert N., Qui M., Tan A.T. SARS-CoV-2-specific T cells in infection and vaccination. Cell. Mol. Immunol., 2021, Vol. 18, no. 10, pp. 2307-2312.; Bertoletti A., le Bert N., Tan A.T. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity, 2022, Vol. 55, no. 10, pp. 1764-1778.; Burgess R.R. Refolding solubilized inclusion body proteins. Methods Enzymol., 2009, Vol. 463, pp. 259-282.; Clark E.D.B. Protein refolding for industrial processes. Curr. Opin. Biotechnol., 2001, Vol. 12, no. 2, pp. 202-207.; Čejka J., Vodrázka Z., Salák J. Carbamylation of globin in electrophoresis and chromatography in the presence of urea. Biochim. Biophys. Acta, 1968, Vol. 154, no. 3, pp. 589-591.; Datar R.V., Cartwright T., Rosen C.G. Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Biotechnology, 1993, Vol. 11, no. 3, pp. 349-357.; Fahnert B., Lilie H., Neubauer P. Inclusion bodies: formation and utilization. Adv. Biochem. Eng. Biotechnol., 2004, Vol. 89, pp. 93-142.; Fallet B., Foglierini M., Porret R., Alcaraz-Serna A., Sauvage C., Jenelten R., Caplanusi T., Gilliet M., Perez L., Fenwick C., Genolet R., Harari A., Bobisse S., Gottardo R., Pantaleo G., Muller Y.D. Intradermal skin test with mRNA vaccines as a surrogate marker of T cell immunity in immunocompromised patients. J. Infect., 2023, Vol. 87, no. 2, pp. 111-119.; GeurtsvanKessel C.H., Geers D., Schmitz K.S., Mykytyn A.Z., Lamers M.M., Bogers S., Scherbeijn S., Gommers L., Sablerolles R.S.G., Nieuwkoop N.N., Rijsbergen L.C., van Dijk L.L.A., de Wilde J., Alblas K., Breugem T.I., Rijnders B.J.A., de Jager H., Weiskopf D., van der Kuy P.H.M., Sette A., de Vries R.D. Divergent SARSCoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol., 2022, Vol. 7, no. 69, eabo2202. doi:10.1126/sciimmunol.abo2202.; Hagel P., Gerding J.J., Fieggen W., Bloemendal H. Cyanate formation in solutions of urea: I. Calculation of cyanate concentrations at different temperature and pH. Biochim. Biophys. Acta, 1971, Vol. 243, no. 3, pp. 366-373.; Hartley D.L., Kane J.F. Properties of inclusion bodies from recombinant Escherichia coli. Biochem. Soc. Trans., 1988, Vol.16, no. 2, pp. 101-102.; Kalimuddin S., Tham C.Y.L., Qui M., de Alwis R., Sim J.X.Y., Lim J.M.E., Tan H.C., Syenina A., Zhang S.L., le Bert N., Tan A.T., Leong Y.S., Yee J.X., Ong E.Z., Ooi E.E., Bertoletti A., Low J.G. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med, 2021, Vol. 2, no. 6, pp. 682-688.; Laslo A.C., Ganea E., Obinger C. Refolding of hexameric porcine leucine aminopeptidase using a cationic detergent and dextrin-10 as artificial chaperones. J. Biotechnol., 2009, Vol. 140, no. 3-4, pp. 162-168.; Lin M.F., Williams C., Murray M.V., Conn G., Ropp P.A. Ion chromatographic quantification of cyanate in urea solutions: estimation of the efficiency of cyanate scavengers for use in recombinant protein manufacturing. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, Vol. 803, no. 2, pp. 353-362.; Lippincott J., Apostol I. Carbamylation of cysteine: a potential artifact in peptide mapping of hemoglobins in the presence of urea. Analyt. Biochem., 1999, Vol. 267, no. 1, pp. 57-64.; Liu L., Wang P., Nair M.S., Yu J., Rapp M., Wang Q., Luo Y., Chan J.F., Sahi V., Figueroa A., Guo X.V., Cerutti G., Bimela J., Gorman J., Zhou T., Chen Z., Yuen K.Y., Kwong P.D., Sodroski J.G., Yin M.T., Ho D.D. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, Vol. 584, no. 7821, pp. 450-456.; Matyushenko V., Isakova-Sivak I., Kudryavtsev I., Goshina A., Chistyakova A., Stepanova E., Prokopenko P., Sychev I., Rudenko L. Detection of IFNγ-secreting CD4+ and CD8+ memory T cells in COVID-19 convalescents after stimulation of peripheral blood mononuclear cells with live SARS-CoV-2. Viruses, 2021, Vol. 13, no. 8, 1490. doi:10.3390/v13081490.; Mitraki A., Fane B., Haase-Pettingell C., Sturtevant J., King J. Global suppression of protein folding defects and inclusion body formation. Science, 1991, Vol. 253, no. 5015, pp. 54-58.; Moga E., Lynton-Pons E., Domingo P. The robustness of cellular immunity determines the fate of SARSCoV-2 infection. Front. Immunol., 2022, Vol. 13, 904686. doi:10.3389/fimmu.2022.904686.; Patra A.K., Mukhopadhyay R., Mukhija R., Krishnan A., Garg L.C., Panda A.K. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr. Purif., 2000, Vol. 18, no. 2, pp. 182-192.; Rudolph R., Lilie H. In vitro folding of inclusion body proteins. FASEB J., 1996, Vol. 10, no. 1, pp. 49-56.; Sekine T., Perez-Potti A., Rivera-Ballesteros O., Strålin K., Gorin J.B., Olsson A., Llewellyn-Lacey S., Kamal H., Bogdanovic G., Muschiol S., Wullimann D.J., Kammann T., Emgård J., Parrot T., Folkesson E., Karolinska COVID-19 Study Group, Rooyackers O., Eriksson L.I., Henter J.I., Sönnerborg A., Buggert M. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell, 2020, Vol. 183, no. 1, pp. 158-168.; Singh S.M., Panda A.K. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng., 2005, Vol. 99, no. 4, pp. 303-310.; Stark G.R. Reactions of cyanate with functional groups of proteins. III. Reactions with amino and carboxyl groups. Biochemistry, 1965, Vol. 4, no. 6, pp. 1030-1036.; Sun S., Zhou J.Y., Yang W., Zhang H. Inhibition of protein carbamylation in urea solution using ammoniumcontaining buffers. Analyt. Biochem., 2014, Vol. 446, pp. 76-81.; Volkin D.B., Mach H., Middaugh C.R. Degradative covalent reactions important to protein stability. Mol. Biotechnol., 1997, Vol. 8, pp. 105-122.; https://www.mimmun.ru/mimmun/article/view/2942
-
17Academic Journal
المؤلفون: Турсунова , Barno, Урунова , Манзура, Ибрагимова , Марина
المصدر: International Journal of Scientific Pediatrics; Vol. 2 No. 12 (2023): December; 428-430 ; Международный журнал научной педиатрии; Том 2 № 12 (2023): Декабрь; 428-430 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 2 No. 12 (2023): Dekabr; 428-430 ; 2181-2926
مصطلحات موضوعية: острый бронхиолит, клеточный иммунитет, диагностика, эпизодически болеющие дети, часто болеющие дети, acute bronchiolitis, cellular immunity, diagnosis, children who are occasionally ill, children who are often ill
وصف الملف: application/pdf
Relation: https://ijsp.uz/index.php/journal/article/view/199/168; https://ijsp.uz/index.php/journal/article/view/199
-
18Academic Journal
المؤلفون: Savin T.V., Kopat V.V., Riabchenkova A.A., Chirak E.L., Chirak E.R., Saenko A.I., Dukhovlinov I.V., Sysoeva G.M., Gamaley S.G., Shimina G.G., Taranov O.S., Danilenko E.D., Simbirtsev A.S., Totolian A.A.
المساهمون: 1
المصدر: Russian Journal of Infection and Immunity; Vol 14, No 2 (2024); 238-250 ; Инфекция и иммунитет; Vol 14, No 2 (2024); 238-250 ; 2313-7398 ; 2220-7619
مصطلحات موضوعية: SARS-CoV-2, COVID-19, coronavirus antigen Cord_PS, CD4+ T cells, CD8+ T cells, IFNγ, T cell immune response, коронавирусный антиген Cord_PS, CD4+ Т-клетки, CD8+ Т-клетки, Т-клеточный иммунный ответ
وصف الملف: application/pdf
Relation: https://iimmun.ru/iimm/article/view/17661/1967; https://iimmun.ru/iimm/article/view/17661/2015; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137242; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137243; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137244; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137245; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137246; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137247; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137248; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137286; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137287; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137288; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137289; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137290; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137291; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137292; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137293; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137294; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137295; https://iimmun.ru/iimm/article/downloadSuppFile/17661/137335; https://iimmun.ru/iimm/article/view/17661
-
19Academic Journal
المؤلفون: Afridonova Z.E., Toptygina A.P., Semikina E.L.
المصدر: Russian Journal of Infection and Immunity; Vol 14, No 1 (2024); 35-45 ; Инфекция и иммунитет; Vol 14, No 1 (2024); 35-45 ; 2313-7398 ; 2220-7619
مصطلحات موضوعية: COVID-19, SARS-CoV-2, antibodies, cellular immunity, immunological memory, breakthrough immunity, антитела, клеточный иммунитет, иммунологическая память, прорывной иммунитет
وصف الملف: application/pdf
Relation: https://iimmun.ru/iimm/article/view/17596/1922; https://iimmun.ru/iimm/article/view/17596/1939; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136600; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136601; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136602; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136603; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136604; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136605; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136606; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136607; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136608; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136609; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136610; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136611; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136617; https://iimmun.ru/iimm/article/downloadSuppFile/17596/136857; https://iimmun.ru/iimm/article/downloadSuppFile/17596/137115; https://iimmun.ru/iimm/article/downloadSuppFile/17596/137116; https://iimmun.ru/iimm/article/downloadSuppFile/17596/137117; https://iimmun.ru/iimm/article/downloadSuppFile/17596/137118; https://iimmun.ru/iimm/article/downloadSuppFile/17596/137119; https://iimmun.ru/iimm/article/view/17596
-
20Academic Journal
المؤلفون: Zafranskaya M.M., Nizheharodava D.B., Shatova O.G., Russkih I.I., Velichko A.V., Vanslau M.I., Novitskaya S.F., Denisevich T.L., Kolyadko M.G., Kurlyanskaya E.K.
المصدر: Russian Journal of Infection and Immunity; Vol 14, No 3 (2024); 443-450 ; Инфекция и иммунитет; Vol 14, No 3 (2024); 443-450 ; 2313-7398 ; 2220-7619
مصطلحات موضوعية: heart transplant recipients, vaccination, COVID-19, humoral immune response, cellular immune response, hybrid immunity, specific antibodies, реципиенты сердечного трансплантата, вакцинация, гуморальный иммунный ответ, клеточный иммунный ответ, гибридный иммунитет, специфические антитела
وصف الملف: application/pdf