يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"карбоксамиды"', وقت الاستعلام: 0.42s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study was carried out with the support of the Russian Science Foundation (RSF) (grant No. 20-15-00001) and was performed as a part of Russia Strategic Academic Leadership Program (“Priority-2030”) of Kazan (Volga Region) Federal University, Исследование выполнено при поддержке Российского научного фонда (грант № 20-15-00001) и проведено в рамках Программы стратегического академического лидерства ФГАОУ ВО «Казанский (Приволжский) федеральный университет» («Приоритет-2030»)

    المصدر: Advances in Molecular Oncology; Том 11, № 2 (2024); 130-146 ; Успехи молекулярной онкологии; Том 11, № 2 (2024); 130-146 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/683/355; Bhardwaj V., Gumber D., Abbot V. et al. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 2015;5:15233–66. DOI:10.1039/C4RA15710A; DeSimone R.W., Currie K.S., Mitchell S.A. et al. Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 2004;7(5):473–93. DOI:10.2174/1386207043328544; Duarte C.D., Barreiro E.J., Fraga C.A.M. Privileged structures: a useful concept for the rational design of new lead drug candidates. Mini-Rev Med Chem 2007;7(11):1108–19. DOI:10.2174/138955707782331722; Li Petri G., Spanò V., Spatola R. et al. Bioactive pyrrole-based compounds with target selectivity. Eur J Med Chem 2020;208:112783. DOI:10.1016/j.ejmech.2020.112783; Walsh C.T., Garneau-Tsodikova S., Howard-Jones A.R. Biological formation of pyrroles: Nature’s logic and enzymatic machinery. Nat Prod Rep 2006;23:517–31. DOI:10.1039/b605245m; Ahmad S., Alam O., Naim M.J. et al. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem 2018;157:527–61. DOI:10.1016/j.ejmech.2018.08.002; Bianco M.C.A.D., Marinho D.I.L.F., Hoelz L.V.B. et al. Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors. Pharmaceuticals 2021;14(9):893. DOI:10.3390/ph14090893; La Regina G., Bai R., Coluccia A. et al. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J Med Chem 2014;57:6531–52. DOI:10.1021/jm500561a; Jadala C., Prasad B., Prasanthi A.V.G. et al. Transition metal-free one-pot synthesis of substituted pyrroles by employing aza-Wittig reaction. RSC Adv 2019;9:30659–65. DOI:10.1039/C9RA06778G; Tang S., Zhou Z., Jiang Z. et al. Indole-based tubulin inhibitors: binding modes and sars investigations. Molecules 2022;27(5):1587. DOI:10.3390/molecules27051587; Romagnoli R., Oliva P., Salvador M.K. et al. A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem 2021;214:113229. DOI:10.1016/j.ejmech.2021.113229; Sun J., Chen L., Liu C. et al. Synthesis and biological evaluations of 1,2-diaryl pyrroles as analogues of combretastatin A-4. Chem Biol Drug Des 2015;86(6):1541–7. DOI:10.1111/cbdd.12617; Ma Z., Ma Z., Zhang D. Synthesis of multi-substituted pyrrole derivatives through [3+2] cycloaddition with tosylmethyl isocyanides (TosMICs) and electron-deficient compounds. Molecules 2018;23(10):2666. DOI:10.3390/molecules23102666; Mowery P., Mejia F.B., Franceschi C.L. et al. Synthesis and evaluation of the anti-proliferative activity of diaryl-3-pyrrolin-2-ones and fused analogs. Bioorganic Med Chem Lett 2017;27(2):191–5. DOI:10.1016/j.bmcl.2016.11.076; Boichuk S., Galembikova A., Syuzov K. et al. The design, synthesis, and biological activities of pyrrole-based carboxamides: the novel tubulin inhibitors targeting the colchicine-binding site. Molecules 2021;26(19):5780. DOI:10.3390/molecules26195780; Findeisen P., Mühlhausen S., Dempewolf S. et al. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 2014;6(9):2274–88. DOI:10.1093/gbe/evu187; Avila J. Microtubule functions. Life Sci 1992;50(5):327–34. DOI:10.1016/0024-3205(92)90433-P; Vukušić K., Buđa R., Tolić I.M. Force-generating mechanisms of anaphase in human cells. J Cell Sci 2019;132(18):jcs231985. DOI:10.1242/jcs.231985; de Forges H., Bouissou A., Perez F. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 2012;44(2):266–74. DOI:10.1016/j.biocel.2011.11.009; Bonifacino J.S., Neefjes J. Moving and positioning the endolysosomal system. Curr Opin Cell Biol 2017;47:266–74. DOI:10.1016/j.ceb.2017.01.008; Wood K.W., Cornwell W.D., Jackson J.R. Past and future of the mitotic spindle as an oncology target. Curr Opin Pharmacol 2001;1(4):370–7. DOI:10.1016/s1471-4892(01)00064-9; von Hoff D.D. The taxoids: Same roots, different drugs. Semin Oncol 1997;24(13):S13-3–10.; Bollag D.M., McQueney P.A., Zhu J. et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995;55(11):2325–33.; Gigant B., Wang C., Ravelli R.B.G. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435(7041):519–22. DOI:10.1038/nature03566; Hastie S.B. Interactions of colchicine with tubulin. Pharmacol Ther 1991;51(3):377–401. DOI:10.1016/0163-7258(91)90067-V; Mooberry S.L., Tien G., Hernandez A.H. et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999;59(3):653–60.; Hamel E. Natural products which interact with tubulin in the vinca domain: Maytansine, rhizoxin, phomopsin a, dolastatins 10 and 15 and halichondrin B. Pharmacol Ther 1992;55(1):31–51. DOI:10.1016/0163-7258(92)90028-X; Jordan M.A., Wilson L. Microtubules as a target for anticancer drugs. Nat Cancer 2004;4(4):253–65. DOI:10.1038/nrc1317; Stanton R.A., Gernert K.M., Nettles J.H. et al. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 2011;31(3):443–81. DOI:10.1002/med.20242; Ravelli R.B., Gigant G., Curmi B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004;428(6979):198–202. DOI:10.1038/nature02393; Yang J., Wang Y., Wang T. et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 2016;7:12103. DOI:10.1038/ncomms12103; Prota A.E., Setter J., Waight A.B. et al. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J Mol Biol 2016;428(15):2981–8. DOI:10.1016/j.jmb.2016.06.023; Steinmetz M.O., Prota A.E. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28(10):776–92. DOI:10.1016/j.tcb.2018.05.001; Fanale D., Bronte G., Passiglia F. et al. Stabilizing versus destabilizing the microtubules: A double-edge sword for an effective cancer treatment option? Anal Cell Pathol (Amst) 2015;2015:690916. DOI:10.1155/2015/690916; West L.M., Northcote P.T., Battershill C.N. Peloruside A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65(2):445–9. DOI:10.1021/jo991296y; Prota A.E., Bargsten K., Northcote P.T. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53(6):1621–5. DOI:10.1002/anie.201307749.; Chaplin D.J., Hill S.A. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol 2002;54(5):1491–6. DOI:10.1016/S0360-3016(02)03924-X; Siemann D.W., Shi W. Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503). Anticancer Res 2008;28(4 B):2027–31.; Lindamulage I.K., Vu H.-Y., Karthikeyan C. et al. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci Rep 2017;7(1):10298. DOI:10.1038/s41598-017-10972-0; Gupta S., Banerjee M., Poddar A. et al. Biphasic kinetics of the colchicine−tubulin interaction: role of amino acids surrounding the A ring of bound colchicine molecule. Biochemistry 2005;44(30):10181–8. DOI:10.1021/bi050599l; McLoughlin E.C., O’Boyle N.M. Colchicine-binding site inhibitors from chemistry to clinic : a review. Pharmaceuticals 2020;13(1):8. DOI:10.3390/ph13010008; Arnst K.E., Banerjee S., Chen H. et al. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med Res Rev 2019;39(4):1398–426. DOI:10.1002/med.21568; Зыкова С.С., Бойчук С.В., Галембикова А.Р. и др. 3-гидрокси-1,5-диарил-4-пивалоил-2,5-дигидро-2-пирролоны нарушают процессы митоза и индуцируют гибель опухолевых клеток in vitro. Цитология 2014;56:439–42. – Zykova S.S., Boychuk S.V., Galimbekova A.R. et al. 3-hydroxy-1,5-diaryl-4-pivaloyl-2,5-dihydro-2-pyrrolone disrupt the processes of mitosis and induce the death of tumor cells in vitro. Citologiya = Cytology 2014;56:439–42. (In Russ.).; Boichuk S., Galembikova A., Zykova S. et al. Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro. Anti-Cancer Drugs 2016;27(7):620–34. DOI:10.1097/CAD.0000000000000372; Boichuk S., Galembikova A., Dunaev P. et al. Ethyl-2-amino-pyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs 2019;30(5):475–84. DOI:10.1097/CAD.0000000000000753; Boichuk S., Bikinieva F., Mustafin I. et al. 2-Amino-pyrrole-carboxylate attenuates homology-mediated DNA repair and sensitizes cancer cells to doxorubicin. Biochemistry (Mosc) 2022;87(5):391–9. DOI:10.1134/S0006297922050017; Boichuk S., Syuzov K., Bikinieva F. et al. Computational-based discovery of the anti-cancer activities of pyrrole-based compounds targeting the colchicine-binding site of tubulin. Molecules 2022;27(9):2873. DOI:10.3390/molecules27092873; Boichuk S., Galembikova A., Bikinieva F. et al. 2-APCAs, the novel microtubule targeting agents active against distinct cancer cell lines. Molecules 2021;26(3):616. DOI:10.3390/molecules26030616; Галембикова А.Р., Дунаев П.Д., Бикиниева Ф.Ф. и др. Механизмы цитотоксической активности пиррол-карбоксамидов в отношении опухолевых клеточных сублиний с множественной лекарственной устойчивостью. Успехи молекулярной онкологии 2023;10(3):59–71. DOI:10.17650/2313-805X-2023-10-3-59-71; Carta D., Bortolozzi R., Sturlese M. et al. Synthesis, structure-activity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur J Med Chem 2017;127:643–60. DOI:10.1016/j.ejmech.2016.10.026; Brindisi M., Ulivieri C., Alfano G. et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2019;162:290–320. DOI:10.1016/j.ejmech.2018.11.004; Zykova S.S., Galembikova A.R., Ramazanov B.R. et al. Synthesis and cytotoxic activity of ethyl 2-amino-1-benzamido-4-oxo-5-(2-oxo-2-arylethylidene)-4,5-dihydro-1H-pyrrole-3-carboxylates. Pharm Chem J 2016;49(12):817–20. DOI:10.1007/s11094-016-1378-1; Zykova S.S., Igidov N.M., Zakhmatov A.V. et al. Synthesis and biological activity of 2-amino-1-aryl-5-(3,3-dimethyl-2-oxobutylidene)-4-oxo-n-(thiazol-5-yl)-4,5-dihydro-1H-pyrrole-3-carboxamides. Pharm Chem J 2018;52(3):198–204.; Zykova S.S., Kizimova I.A., Syutkina A.I. et al. Synthesis and cytostatic activity of (e)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden)-4-oxo-1- (2-phenylaminobenzamido)-4,5-dihydro-1hpyrrol-3-carboxylate. Pharm Chem J 2020;53:895–8. DOI:10.1007/s11094-020-02096-z; Boichuk S., Galembikova A., Sitenkov A. et al. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017;14(4):5039–45. DOI:10.3892/ol.2017.6795; Boichuk S., Bikinieva F., Valeeva E. et al. Establishment and characterization of multi-drug resistant p53-negative osteosarcoma SaOS-2 subline. Diagnostics (Basel) 2023;13(16):2646. DOI:10.3390/diagnostics13162646; Хуснутдинов Р.Р., Галембикова А.Р., Бойчук С.В. Получение клона клеток гастроинтестинальной стромальной опухоли с признаками множественной лекарственной устойчивости и оценка его свойств. Современные технологии в медицине 2016;8(4):36–41. DOI:10.17691/stm2016.8.4.05; Taguchi T., Sonobe H., Toyonaga S. et al. Conventionaland molecular cytogenetic characterization of a newhuman cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab Invest 2002;82(5):663–5. DOI:10.1038/labinvest.3780461; Wittmann C., Sivchenko A.S., Bacher F. et al. Inhibition of microtubule dynamics in cancer cells by indole-modified latonduine derivatives and their metal complexes. Inorg Chem 2022;61(3):1456–70. DOI:10.1021/acs.inorgchem.1c03154; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Marupudi N.I., Han J.E., Li K.W. et al. Paclitaxel : a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 2007;6(5):609–21. DOI:10.1517/14740338.6.5.609; Young J.A., Howell S.B., Green M.R. Pharmacokinetics and toxicity of 5-day continuous infusion of vinblastine. Cancer Chemother Pharmacol 1984;12(1):43–5. DOI:10.1007/BF00255908; Mora E., Smith E.M., Donohoe C. et al. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am J Cancer Res 2016;6(11):2416–30.; Abu Samaan T.M., Samec M., Liskova A. et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789. DOI:10.3390/biom9120789; Hashemi M., Zandieh M.A., Talebi Y. et al. Paclitaxel and docetaxel resistance in prostate cancer: molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023;160:114392. DOI:10.1016/j.biopha.2023.114392; Zhang Y., Yang S.H., Guo X.L. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed Pharmacother 2017;96:659–66. DOI:10.1016/j.biopha.2017.10.041; Toledo B., González-Titos A., Hernández-Camarero P. et al. A brief review on chemoresistance; targeting cancer stem cells as an alternative approach. Int J Mol Sci 2023;24(5):4487. DOI:10.3390/ijms24054487; Distefano M., Scambia G., Ferlini C. et al. Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 1998;13(5):489–99.; Liu J., Yang X., Gao S. et al. DDX11-AS1 modulates DNA damage repair to enhance paclitaxel resistance of lung adenocarcinoma cells. Pharmacogenomics 2023;24(3):163–72. DOI:10.2217/pgs-2022-0121; Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig 1997;100(5): 1282–93. DOI:10.1172/JCI119642; Poruchynsky M.S., Giannakakou P., Ward Y. et al. Accompanying protein alterations in malignant cells with a microtubule-polymerizing drug-resistance phenotype and a primary resistance mechanism. Biochem Pharmacol 2001;62(11):1469–80. DOI:10.1016/s0006-2952(01)00804-8; Houghton J.A., Houghton P.J., Hazelton B.J. et al. In situ selection of a human rhabdomyosarcoma resistant to vincristine with altered beta-tubulins. Cancer Res 1985;45(6):2706–12.; Stengel C., Newman S.P., Leese M.P. et al. Class III β-tubulin expression and in vitro resistance to microtubule targeting agents. Br J Cancer 2009;102:316–24. DOI:10.1038/sj.bjc.6605489; Rodríguez-Antona C. Pharmacogenomics of paclitaxel. Pharmacogenomics 2010;11(5):621–3. DOI:10.2217/pgs.10.32; Ezrahi S., Aserin A., Garti N. Basic principles of drug delivery systems – the case of paclitaxel. Adv Colloid Interface Sci 2019;263:95–130. DOI:10.1016/j.cis.2018.11.004; Tuy H.D., Shiomi H., Mukaisho K.I. et al. ABCG2 expression in colorectal adenocarcinomas may predict resistance to irinotecan. Oncol Lett 2016;12(4):2752–60. DOI:10.3892/ol.2016.4937; Mooberry S.L., Weiderhold K.N., Dakshanamurthy S. et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007;72(1):132–40. DOI:10.1124/mol.107.034876; https://umo.abvpress.ru/jour/article/view/683

  2. 2
    Academic Journal

    المساهمون: The study was carried out with the support of the Russian Science Foundation (grant No. 21-75-00014) and was performed as a part of Russia Strategic Academic Leadership Program (PRIORITY-2030) of Kazan Federal University of Ministry of Health., Исследование выполнено при поддержке Российского научного фонда (грант № 21-75-00014) и в рамках Программы стратегического академического лидерства Казанского (Приволжского) федерального университета (ПРИОРИТЕТ-2030).

    المصدر: Advances in Molecular Oncology; Том 10, № 3 (2023); 59-71 ; Успехи молекулярной онкологии; Том 10, № 3 (2023); 59-71 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-3

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/571/312; Parker A.L., Kavallaris M., McCarroll J.A. Microtubules and their role in cellular stress in cancer. Front Oncol 2014;4:1–19. DOI:10.3389/fonc.2014.00153; Dumontet C., Jordan M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9(10): 790–803. DOI:10.1038/nrd3253; Gigant B., Wang C., Ravelli R.B. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435(7041):519–22. DOI:10.1038/nature03566; Ravelli R.B., Gigant G., Curmi B. et al. Insight into tubulin regulation from a complex with colchicine and a stathminlike domain. Nature 2004;428(6979):198–202. DOI:10.1038/nature02393; Yang J., Wang Y., Wang T. et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 2016;7:12103. DOI:10.1038/ncomms12103; Prota A.E., Setter J., Waight A.B. et al. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J Mol Biol 2016;428(15):2981–8. DOI:10.1016/j.jmb.2016.06.023; Steinmetz M.O., Prota A.E. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28(10):776–92. DOI:10.1016/j.tcb.2018.05.001; Fanale D., Bronte G., Passiglia F. et al. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol 2015;2015:690916. DOI:10.1155/2015/690916; Mooberry S.L., Tien G., Hernandez A.H. et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999;59(3):653–60.; West L.M., Northcote P.T., Battershill C.N., Peloruside A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65(2):445–9. DOI:10.1021/jo991296y; Prota A.E., Bargsten K., Northcote P.T. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53(6):1621–5. DOI:10.1002/anie.201307749; Munshi N., Jeay S., Li Y. et al. ARQ 197, a novel and selective inhibitor of the human c-met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther 2010;9(6):1544–53. DOI:10.1158/1535-7163.MCT-09-1173; Katayama R., Aoyama A., Yamori T. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res 2013;73(10):3087–96. DOI:10.1158/0008-5472.CAN-12-3256; Aoyama A., Katayama R., Oh-Hara T. et al. Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance. Mol Cancer Ther 2014;13(12):2978–90. DOI:10.1158/1535-7163.MCT-14-0462; Gumireddy K., Reddy M.V.R., Cosenza S.C. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 2005;7:275–86. DOI:10.1016/j.ccr.2005.02.009; Jost M., Chen Y., Gilbert L.A. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubuledestabilizing agent. Mol Cell 2017;68(1):210–23. DOI:10.1016/j.molcel.2017.09.012; Park H., Hong S., Hong S. Nocodazole is a high-affinity ligand for the cancer-related kinases ABL, c-KIT, BRAF, and MEK. Chem Med Chem 2012;7(1):53–6. DOI:10.1002/cmdc.201100410; Guo X., Zhang X., Li Y. et al. Nocodazole increases the ERK activity to enhance MKP-1 expression which inhibits p38 activation induced by TNF-α. Mol Cell Biochem 2012;364(1–2):373–80. DOI:10.1007/s11010-012-1239-5; Tanabe K. Microtubule depolymerization by kinase inhibitors: unexpected findings of dual inhibitors. Int J Mol Sci 2017;18(12):2508. DOI:10.3390/ijms18122508; Ramirez-Rios S., Michallet S., Peris L. et al. A new quantitative cell-based assay reveals unexpected microtubule stabilizing activity of certain kinase inhibitors, clinically approved or in the process of approval. Front Pharmacol 2020;11:543. DOI:10.3389/fphar.2020.00543; Krishna R., Mayer L.D. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265–83. DOI:10.1016/S0928-0987(00)00114-7; Mechetner E., Kyshtoobayeva A., Zonis S. et al. Levels of multidrug resistance (MDR1) P-glycoprotein expressing by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998;4(2):389–98.; Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig 1997;100(5):1282– 93. DOI:10.1172/JCI119642; Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010;10(3):194–204. DOI:10.1038/nrc2803; Зыкова С.С., Бойчук С.В., Галембикова А.Р. и др. 3-гидрокси-1,5-диарил-4-пивалоил-2,5-дигидро-2-пирролоны нарушают процессы митоза и индуцируют гибель опухолевых клеток in vitro. Цитология 2014;56:439–42.; Boichuk S., Galembikova A., Zykova S. et al. Ethyl-2-aminopyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro. Anti-Cancer Drugs 2016;27(7):620–34. DOI:10.1097/CAD.0000000000000372; Boichuk S., Galembikova A., Dunaev P. et al. Ethyl-2-aminopyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs 2019;30(5):475–84. DOI:10.1097/CAD.0000000000000753; Carta D., Bortolozzi R., Sturlese M. et al. Synthesis, structureactivity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur J Med Chem 2017;127:643–60. DOI:10.1016/j.ejmech.2016.10.026; Brindisi M., Ulivieri C., Alfano G. et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2019;162:290–320. DOI:10.1016/j.ejmech.2018.11.004; Boichuk S., Galembikova A., Syuzov K. et al. The design, synthesis, and biological activities of pyrrole-based carboxamides: the novel tubulin inhibitors targeting the colchicine-binding site. Molecules 2021;26(19):5780. DOI:10.3390/molecules26195780; Boichuk S., Galembikova A., Sitenkov A. et al. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017;14(4):5039–45. DOI:10.3892/ol.2017.6795; Zykova S., Kizimova I., Syutkina A. et al. Synthesis and cytostatic activity of (E)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden-4oxo-1-(2-phenylaminobenzamido)-4,5-dihydro-1Hpyrrol-3carboxylate. Pharm Chem J 2020;53:895–8. DOI:10.1007/s11094020-02096-z; Boichuk S., Bikinieva F., Valeeva E. et al. Establishment and characterization of multi-drug resistant p53-negative osteosarcoma SaOS-2 subline. Diagnostics 2023;13:2646. DOI:10.3390/diagnostics13162646; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Distefano M., Scambia G., Ferlini C. et al. Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 1998;13(5):489–99.; Pirol Ş.C., Çalışkan B., Durmaz I. et al. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3carboxylic acid amides with potent anti-proliferative activity on human cancer cell lines. Eur J Med Chem 2014;87:140–9. DOI:10.1016/j.ejmech.2014.09.056; Ke J., Lu Q., Wang X. et al. Discovery of 4,5-dihydro-1Hthieno[2’,3’:2,3]thiepino [4,5-c]pyrazole-3-carboxamide derivatives as the potential epidermal growth factor receptors for tyrosine kinase inhibitors. Molecules 2018;23:1980. DOI:10.3390/molecules23081980; Lin T., Li J., Liu L. et al. Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors. Eur J Med Chem 2021;215:113281. DOI:10.1016/j.ejmech.2021.113281; Yasuda Y., Arakawa T., Nawata Y. et al. Design, synthesis, and structure-activity relationships of 1-ethylpyrazole-3-carboxamide compounds as novel hypoxia-inducible factor (HIF)-1 inhibitors. Bioorg Med Chem 2015;23(8):1776–87. DOI:10.1016/j.bmc.2015.02.038; Gul H.I., Mete E., Eren S.E. et al. Designing, synthesis and bioactivities of 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydropyrazol-1-yl]benzenesulfonamides. J Enzyme Inhib Med Chem 2017;32(1):169–75. DOI:10.1080/14756366.2016.1243536; Gul H.I., Yamali C., Bulbuller M. et al. Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes. Bioorg Chem 2018;78: 290–7. DOI:10.1016/j.bioorg.2018.03.027; Gul H.I., Yamali C., Sakagami H. et al. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg Chem 2018;77:411–9. DOI:10.1016/j.bioorg.2018.01.021; Yamali C., Sakagami H., Uesawa Y. et al. Comprehensive study on potent and selective carbonic anhydrase inhibitors: synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1Hpyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 2021;217:113351. DOI:10.1016/j.ejmech.2021.113351; Mooberry S.L., Weiderhold K.N., Dakshanamurthy S. et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007;72(1):132–40. DOI:10.1124/mol.107.034876; Da C., Telang N., Barelli P. et al. Pyrrole-based antitubulin agents: two distinct binding modalities are predicted for C-2 analogues in the colchicine site. ACS Med Chem Lett 2012;3(1):53–7. DOI:10.1021/ml200217u; Romagnoli R., Oliva P., Salvador M.K. et al. A facile synthesis of diary l pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem 2021;214:113229. DOI:10.1016/j.ejmech.2021.113229; https://umo.abvpress.ru/jour/article/view/571

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Journal of Organic and Pharmaceutical Chemistry; Vol. 13 No. 4(52) (2015); 39-43 ; Журнал органической и фармацевтической химии; Том 13 № 4(52) (2015); 39-43 ; Журнал органічної та фармацевтичної хімії; Том 13 № 4(52) (2015); 39-43 ; 2518-1548 ; 2308-8303

    وصف الملف: application/pdf

  5. 5
  6. 6
    Electronic Resource

    Additional Titles: Изучение закономерностей связи структура – анальгетическая активность в серии 4-гидрокси-N-(пиридин-2-ил)-2,2-диоксо-1H-2λ6,1-бензотиазин-3-карбоксамидов
    Вивчення закономірностей зв’язку структура – аналгетична активність у серії 4-гідрокси-N-(піридин-2-іл)-2,2-діоксо-1H-2λ6,1-бензотіазин-3-карбоксамідів

    المصدر: Journal of Organic and Pharmaceutical Chemistry; Том 13, № 4(52) (2015): Журнал органічної та фармацевтичної хімії; 39-43; Журнал органической и фармацевтической химии; Том 13, № 4(52) (2015): Журнал органічної та фармацевтичної хімії; 39-43; Журнал органічної та фармацевтичної хімії; Том 13, № 4(52) (2015): Журнал органічної та фармацевтичної хімії; 39-43; 2518-1548; 2308-8303

  7. 7
    Electronic Resource

    Additional Titles: Изучение закономерностей связи структура – анальгетическая активность в серии 4-гидрокси-N-(пиридин-2-ил)-2,2-диоксо-1H-2λ6,1-бензотиазин-3-карбоксамидов
    Вивчення закономірностей зв’язку структура – аналгетична активність у серії 4-гідрокси-N-(піридин-2-іл)-2,2-діоксо-1H-2λ6,1-бензотіазин-3-карбоксамідів

    المصدر: Žurnal organìčnoï ta farmacevtičnoï hìmìï; Том 13, № 4(52) (2015): Журнал органічної та фармацевтичної хімії; 39-43; Журнал органической и фармацевтической химии; Журнал органічної та фармацевтичної хімії; 2518-1548; 2308-8303