يعرض 1 - 20 نتائج من 397 نتيجة بحث عن '"интерлейкин"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 62, No 4 (2024); 348–364 ; Научно-практическая ревматология; Vol 62, No 4 (2024); 348–364 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3600/2384; Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, et al. Large-vessel vasculitis. Nat Rev Dis Primers. 2022;7(1):93. doi:10.1038/s41572-021-00327-5; Buttgereit F, Matteson EL, Dejaco C. Polymyalgia rheumatica and giant cell arteritis. JAMA. 2020;324(10):993-994. doi:10.1001/ jama.2020.10155; Сатыбалдыев АМ, Демидова НВ, Савушкина НМ, Гордеев АВ. Ревматическая полимиалгия. Научно-практическая ревматология. 2018;56(2):215-227. doi:10.14412/1995-4484-2018-215-227; Сатыбалдыев АМ. Эволюция диагностики ревматической полимиалгии. Научно-практическая ревматология. 2019;57(6):693-698. doi:10.14412/1995-4484-2019-693-698; Sharma A, Mohammad AJ, Turesson C. Incidence and prevalence of giant cell arteritis and polymyalgia rheumatica: A systematic literature review. Semin Arthritis Rheum. 2020;50(5):1040-1048. doi:10.1016/j.semarthrit.2020.07.005; Hemmig AK, Gozzoli D, Werlen L, Ewald H, Aschwanden M, Blockmans D, et al. Subclinical giant cell arteritis in new onset polymyalgia rheumatica: A systematic review and meta-analysis of individual patient data. Semin Arthritis Rheum. 2022;55:152017. doi:10.1016/j.semarthrit.2022.152017; Salvarani C, Padoan R, Iorio L, Tomelleri A, Terrier B, Muratore F, et al. Subclinical giant cell arteritis in polymyalgia rheumatica: Concurrent conditions or a common spectrum of inflammatory diseases? Autoimmun Rev. 2024;23(1):103415. doi:10.1016/j.autrev.2023.103415; Owen CE, Poon AMT, Liu B, Liew DFL, Yap LP, Yang V, et al. Characterising polymyalgia rheumatica on whole-body 18F-FDG PET/CT: An atlas. Rheumatol Adv Pract. 2024;8(1):rkae003. doi:10.1093/rap/rkae003; Tomelleri A, van der Geest KSM, Khurshid MA, Sebastian A, Coath F, Robbins D, et al. Disease stratification in GCA and PMR: State of the art and future perspectives. Nat Rev Rheumatol. 2023;19(7):446-459. doi:10.1038/s41584-023-00976-8; Schäfer VS, Brossart P, Warrington KJ, Kurts C, Sendtner GW, Aden CA. The role of autoimmunity and autoinflammation in giant cell arteritis: A systematic literature review. Autoimmun Rev. 2023;22(6):103328. doi:10.1016/j.autrev.2023.103328; Greigert H, Genet C, Ramon A, Bonnotte B, Samson M. New insights into the pathogenesis of giant cell arteritis: Mechanisms involved in maintaining vascular inflammation. J Clin Med. 2022;11(10):2905. doi:10.3390/jcm11102905; Akiyama M, Ohtsuki S, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Innate and adaptive immunity in giant cell arteritis. Front Immunol. 2021;11:621098. doi:10.3389/fimmu.2020.621098; Weyand CM, Goronzy JJ. Immunology of giant cell arteritis. Circ Res. 2023;132(2):238-250. doi:10.1161/CIRCRESAHA.122.322128; Mackie SL, Owen CE, Buchanan RRC, McGonagle D. A shared basis for overlapping immunopathologies in giant cell arteritis and polymyalgia rheumatica. Lancet Rheumatol. 2021;3(12):e826-e829. doi:10.1016/S2665-9913(21)00361-1; Mulhearn B, Ellis J, Skeoch S, Pauling J, Tansley S. Incidence of giant cell arteritis is associated with COVID-19 prevalence: A population-level retrospective study. Heliyon. 2023;9(7):e17899. doi:10.1016/j.heliyon.2023.e17899; Luther R, Skeoch S, Pauling JD, Curd C, Woodgate F, Tansley S. Increased number of cases of giant cell arteritis and higher rates of ophthalmic involvement during the era of COVID-19. Rheumatol Adv Pract. 2020;4(2):rkaa067. doi:10.1093/rap/rkaa067; Aryal B, Kadakia N, Baniya A, Chowdhury T, Adhikari S, Gousy N. Overlapping symptoms of COVID-19 and giant cell arteritis: The need for a higher degree of suspicion for diagnostic differentiation. Cureus. 2022;14(6):e25660. doi:10.7759/cureus.25660; McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892-906. doi:10.1016/j.immuni.2019.03.021; Насонов ЕЛ. Новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний: фокус на ингибиторы интерлейкина 17. Научно-практическая ревматология. 2017;55(1):68-86. doi:10.14412/1995-4484-2017-68-86; Zeisbrich M, Thiel J, Venhoff N. The IL-17 pathway as a target in giant cell arteritis. Front Immunol. 2024;14:1199059. doi:10.3389/fimmu.2023.1199059; Robinette ML, Weeks LD, Kramer RJ, Agrawal M, Gibson CJ, Yu Z, et al. Association of somatic TET2 mutations with giant cell arteritis. Arthritis Rheumatol. 2024;76(3):438-443. doi:10.1002/art.42738; Gutierrez-Rodrigues F, Wells KV, Jones AI, Hironaka D, Rankin C, Gadina M, et al. Clonal haematopoiesis across the age spectrum of vasculitis patients with Takayasu’s arteritis, ANCAassociated vasculitis and giant cell arteritis. Ann Rheum Dis. 2024;83(4):508-517. doi:10.1136/ard-2023-224933; Papo M, Friedrich C, Delaval L, Boysson H, Viallard JF, Bachmeyer C, et al.; French Vasculitis Study Group. Myeloproliferative neoplasms and clonal haematopoiesis in patients with giant cell arteritis: A case-control and exploratory study. Rheumatology (Oxford). 2022;61(2):775-780. doi:10.1093/rheumatology/keab337; Dejaco C, Kerschbaumer A, Aletaha D, Bond M, Hysa E, Camellino D, et al. Treat-to-target recommendations in giant cell arteritis and polymyalgia rheumatica. Ann Rheum Dis. 2024;83(1):48-57. doi:10.1136/ard-2022-223429; Hysa E, Bond M, Ehlers L, Camellino D, Falzon L, Dejaco C, et al. Evidence on treat to target strategies in polymyalgia rheumatica and giant cell arteritis: A systematic literature review. Rheumatology (Oxford). 2024;63(2):285-297. doi:10.1093/rheumatology/kead471; Hellmich B, Agueda A, Monti S, Buttgereit F, de Boysson H, Brouwer E, et al. 2018 update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2020;79(1):19-30. doi:10.1136/annrheumdis-2019-215672; Dejaco C, Singh YP, Perel P, Hutchings A, Camellino D, Mackie S, et al.; European League Against Rheumatism; American College of Rheumatology. 2015 recommendations for the management of polymyalgia rheumatica: A European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann Rheum Dis. 2015;74(10):1799-1807. doi:10.1136/ annrheumdis-2015-207492; Бекетова ТВ, Попов ИЮ, Зеленов ВА. Обзор рекомендаций American College of Rheumatology/Vasculitis Foundation по лечению системных васкулитов крупных сосудов (гигантоклеточного артериита и артериита Такаясу). Научно-практическая ревматология. 2022;60(2):165-173. doi:10.47360/1995-4484-2022-165-173; Monti S, Águeda AF, Luqmani RA, Buttgereit F, Cid M, Dejaco C, et al. Systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis: Focus on giant cell arteritis. RMD Open. 2019;5(2):e001003. doi:10.1136/rmdopen-2019-001003; Scolnik M, Brance ML, Fernández-Ávila DG, Inoue Sato E, de Souza AWS, Magri SJ, et al.; Pan American League of Associations for Rheumatology (PANLAR). Pan American League of Associations for Rheumatology guidelines for the treatment of giant cell arteritis. Lancet Rheumatol. 2022;4(12):e864-e872. doi:10.1016/S2665-9913(22)00260-0; Toyoda T, Armitstead Z, Bhide S, Engamba S, Henderson E, Jones C, et al. Treatment of polymyalgia rheumatica: British Society for Rheumatology guideline scope. Rheumatol Adv Pract. 2024;8(1):rkae002. doi:10.1093/rap/rkae002; Haaversen AB, Brekke LK, Bakland G, Rødevand E, Myklebust G, Diamantopoulos AP. Norwegian society of rheumatology recommendations on diagnosis and treatment of patients with giant cell arteritis. Front Med (Lausanne). 2023;9:1082604. doi:10.3389/fmed.2022.1082604; Turesson C, Börjesson O, Larsson K, Mohammad AJ, Knight A. Swedish Society of Rheumatology 2018 guidelines for investigation, treatment, and follow-up of giant cell arteritis. Scand J Rheumatol. 2019;48(4):259-265. doi:10.1080/03009742.2019.1571223; Ughi N, Padoan R, Crotti C, Sciascia S, Carrara G, Zanetti A, et al. The Italian Society of Rheumatology clinical practice guidelines for the management of large vessel vasculitis. Reumatismo. 2022;73(4). doi:10.4081/reumatismo.2021.1470; Matteson EL, Buttgereit F, Dejaco C, Dasgupta B. Glucocorticoids for management of polymyalgia rheumatica and giant cell arteritis. Rheum Dis Clin North Am. 2016;42(1):75-90viii. doi:10.1016/j.rdc.2015.08.009; Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-allrounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. doi:10.3389/fimmu.2019.01744; Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation. 2010;121(7):906-915. doi:10.1161/CIRCULATIONAHA.109.872903; Estupiñán-Moreno E, Ortiz-Fernández L, Li T, Hernández-Rodríguez J, Ciudad L, Andrés-León E, et al. Methylome and transcriptome profiling of giant cell arteritis monocytes reveals novel pathways involved in disease pathogenesis and molecular response to glucocorticoids. Ann Rheum Dis. 2022;81(9):1290-1300. doi:10.1136/annrheumdis-2022-222156; Mainbourg S, Addario A, Samson M, Puéchal X, François M, Durupt S, et al. Prevalence of giant cell arteritis relapse in patients treated with glucocorticoids: A meta-analysis. Arthritis Care Res (Hoboken). 2020;72(6):838-849. doi:10.1002/acr.23901; Floris A, Piga M, Chessa E, Congia M, Erre GL, Angioni MM, et al. Long-term glucocorticoid treatment and high relapse rate remain unresolved issues in the real-life management of polymyalgia rheumatica: A systematic literature review and meta-analysis. Clin Rheumatol. 2022;41(1):19-31. doi:10.1007/s10067-021-05819-z; Moreel L, Betrains A, Molenberghs G, Blockmans D, Vanderschueren S. Duration of treatment with glucocorticoids in giant cell arteritis: A systematic review and meta-analysis. J Clin Rheumatol. 2023;29(6):291-297. doi:10.1097/RHU.0000000000001897; Dumont A, Parienti JJ, Delmas C, Boutemy J, Maigné G, Martin Silva N, et al. Factors associated with relapse and dependence on glucocorticoids in giant cell arteritis. J Rheumatol. 2020;47(1):108-116. doi:10.3899/jrheum.181127; Tsalapaki C, Lazarini A, Argyriou E, Dania V, Boki K, Evangelatos G, et al. Glucocorticoid discontinuation rate and risk factors for relapses in a contemporary cohort of patients with giant cell arteritis. Rheumatol Int. 2024;44(4):603-610. doi:10.1007/s00296-023-05527-8; Sugihara T, Hasegawa H, Uchida HA, Yoshifuji H, Watanabe Y, Amiya E, et al.; Japan Research Committee of the Ministry of Health, Labour, and Welfare for Intractable Vasculitis (JPVAS). Associated factors of poor treatment outcomes in patients with giant cell arteritis: Clinical implication of large vessel lesions. Arthritis Res Ther. 2020;22(1):72. doi:10.1186/s13075-020-02171-6; de Mornac D, Espitia O Néel A, Connault J, Masseau A, Espitia-Thibault A, et al. Large-vessel involvement is predictive of multiple relapses in giant cell arteritis. Ther Adv Musculoskelet Dis. 2021;13:1759720X211009029. doi:10.1177/1759720X211009029; Esen I, Arends S, Dalsgaard Nielsen B, Therkildsen P, Hansen I, van ‘t Ende A, et al. Metabolic features and glucocorticoidinduced comorbidities in patients with giant cell arteritis and polymyalgia rheumatica in a Dutch and Danish cohort. RMD Open. 2023;9(1):e002640. doi:10.1136/rmdopen-2022-002640; Perrineau S, Ghesquière T, Charles P, Paule R, Samson M, Gayraud M, et al.; French Vasculitis Study Group (FVSG). A French cohort of patients with giant cell arteritis: Glucocorticoid treatment and its associated side effects. Clin Exp Rheumatol. 2021; 129(2 Suppl 39):155-160. doi:10.55563/clinexprheumatol/0nd4kk; Bond M, Tomelleri A, Buttgereit F, Matteson EL, Dejaco C. Looking ahead: Giant-cell arteritis in 10 years time. Ther Adv Musculoskelet Dis. 2022;14:1759720X221096366. doi:10.1177/1759720X221096366; Ricordi C, Pipitone N, Marvisi C, Muratore F, Salvarani C. Steroid-sparing agents in polymyalgia rheumatica: How will they fit into the treatment paradigm? Expert Rev Clin Immunol. 2023;19(10):1195-1203. doi:10.1080/1744666X.2023.2240519; Nepal D, Putman M, Unizony S. Giant cell arteritis and polymyalgia rheumatica: Treatment approaches and new targets. Rheum Dis Clin North Am. 2023;49(3):505-521. doi:10.1016/j.rdc.2023.03.005; Sandovici M, van der Geest N, van Sleen Y, Brouwer E. Need and value of targeted immunosuppressive therapy in giant cell arteritis. RMD Open. 2022;8(1):e001652. doi:10.1136/rmdopen-2021-001652; Watanabe R, Hashimoto M. Perspectives of JAK inhibitors for large vessel vasculitis. Front Immunol. 2022;13:881705. doi:10.3389/fimmu.2022.881705; Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: Achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(6):590-599 (In Russ.)]. doi:10.14412/1995-4484-2017-590-599; Choy EH, De Benedetti F, Takeuchi T, Hashizume M, John MR, Kishimoto T. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol. 2020;16(6):335-345. doi:10.1038/s41584-020-0419-z; Emilie D, Liozon E, Crevon MC, Lavignac C, Portier A, Liozon F, et al. Production of interleukin 6 by granulomas of giant cell arteritis. Hum Immunol. 1994;39(1):17-24. doi:10.1016/0198-8859(94)90096-5; Weyand CM, Fulbright JW, Hunder GG, Evans JM, Goronzy JJ. Treatment of giant cell arteritis: Interleukin-6 as a biologic marker of disease activity. Arthritis Rheum. 2000;43(5):1041-1048. doi:10.1002/1529-0131(200005)43:53.0.CO;2-7; García-Martínez A, Hernández-Rodríguez J, Espígol-Frigolé G, Prieto-González S, Butjosa M, Segarra M, et al. Clinical relevance of persistently elevated circulating cytokines (tumor necrosis factor alpha and interleukin-6) in the long-term follow-up of patients with giant cell arteritis. Arthritis Care Res (Hoboken). 2010;62(6):835-841. doi:10.1002/acr.20043; Carvajal Alegria G, Nicolas M, van Sleen Y. Biomarkers in the era of targeted therapy in giant cell arteritis and polymyalgia rheumatica: Is it possible to replace acute-phase reactants? Front Immunol. 2023;14:1202160. doi:10.3389/fimmu.2023.1202160; Tombetti E, Hysa E, Mason JC, Cimmino MA, Camellino D. Blood biomarkers for monitoring and prognosis of large vessel vasculitides. Curr Rheumatol Rep. 2021;23(3):17. doi:10.1007/s11926-021-00980-5; Visvanathan S, Rahman MU, Hoffman GS, Xu S, García-Martínez A, Segarra M, et al. Tissue and serum markers of inflammation during the follow-up of patients with giant-cell arteritis – A prospective longitudinal study. Rheumatology (Oxford). 2011;50(11):2061-2070. doi:10.1093/rheumatology/ker163; Hernández-Rodríguez J, Segarra M, Vilardell C, Sánchez M, García-Martínez A, Esteban MJ, et al. Tissue production of proinflammatory cytokines (IL-1beta, TNFalpha and IL-6) correlates with the intensity of the systemic inflammatory response and with corticosteroid requirements in giant-cell arteritis. Rheumatology (Oxford). 2004;43(3):294-301. doi:10.1093/rheumatology/keh058; Miyabe C, Miyabe Y, Strle K, Kim ND, Stone JH, Luster AD, et al. An expanded population of pathogenic regulatory T cells in giant cell arteritis is abrogated by IL-6 blockade therapy. Ann Rheum Dis. 2017;76(5):898-905. doi:10.1136/annrheumdis-2016-210070; Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2021;18(1):58-68. doi:10.1038/s41569-020-0431-7; Veroutis D, Argyropoulou OD, Goules AV, Kambas K, Palamidas DA, Evangelou K, et al. Senescent cells in giant cell arteritis display an inflammatory phenotype participating in tissue injury via IL-6-dependent pathways. Ann Rheum Dis. 2024;83(3):342350. doi:10.1136/ard-2023-224467; Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res. 2021;128(11):1728-1746. doi:10.1161/CIRCRESAHA.121.319077; Ghanemi A, St-Amand J. Interleukin-6 as a “metabolic hormone”. Cytokine. 2018;112:132-136. doi:10.1016/j.cyto.2018.06.034; Clifford AH. Cardiovascular disease in large vessel vasculitis: Risks, controversies, and management strategies. Rheum Dis Clin North Am. 2023;49(1):81-96. doi:10.1016/j.rdc.2022.08.004; de Boysson H, Aouba A. An updated review of cardiovascular events giant cell arteritis. J Clin Med. 2022;11(4):1005. doi:10.3390/jcm11041005; Kastrati K, Aletaha D, Burmester GR, Chwala E, Dejaco C, Dougados M, et al. A systematic literature review informing the consensus statement on efficacy and safety of pharmacological treatment with interleukin-6 pathway inhibition with biological DMARDs in immune-mediated inflammatory diseases. RMD Open. 2022;8(2):e002359. doi:10.1136/rmdopen-2022-002359; Nasonov E, Feist E. Interleukin 6 inhibition in rheumatoid arthritis: Highlight on olokizumab. Touch Reviews in RMD. 2023;2(1):17-27. doi:10.17925/RMD.2023.2.1.17; Loricera J, Blanco R, Hernández JL, Castañeda S, Mera A, Pérez-Pampín E, et al. Tocilizumab in giant cell arteritis: Multicenter open-label study of 22 patients. Semin Arthritis Rheum. 2015;44(6):717-723. doi:10.1016/j.semarthrit.2014.12.005; Régent A, Redeker S, Deroux A, Kieffer P, Ly KH, Dougados M, et al.; French Vasculitis Group, the Groupe Francais pour l’Etude de l’Artérite à Cellules Géantes, and the Club Rhumatismes et Inflammation. Tocilizumab in giant cell arteritis: A multicenter retrospective study of 34 patients. J Rheumatol. 2016;43(8):15471552. doi:10.3899/jrheum.151252; Samson M, Devilliers H, Ly KH, Maurier F, Bienvenu B, Terrier B, et al. Tocilizumab as an add-on therapy to glucocorticoids during the first 3 months of treatment of giant cell arteritis: A prospective study. Eur J Intern Med. 2018;57:96-104. doi:10.1016/j.ejim.2018.06.008; Adler S, Reichenbach S, Gloor A, Yerly D, Cullmann JL, Villiger PM. Risk of relapse after discontinuation of tocilizumab therapy in giant cell arteritis. Rheumatology (Oxford). 2019;58(9):1639-1643. doi:10.1093/rheumatology/kez091; Nannini C, Niccoli L, Sestini S, Laghai I, Coppola A, Cantini F. Remission maintenance after tocilizumab dose-tapering and interruption in patients with giant cell arteritis: An open-label, 18-month, prospective, pilot study. Ann Rheum Dis. 2019;78(10):1444-1446. doi:10.1136/annrheumdis-2019-215585; Calderón-Goercke M, Loricera J, Aldasoro V, Castañeda S, Villa I, Humbría A, et al. Tocilizumab in giant cell arteritis. Observational, open-label multicenter study of 134 patients in clinical practice. Semin Arthritis Rheum. 2019;49(1):126-135. doi:10.1016/j.semarthrit.2019.01.003; Amsler J, Kysela I, Tappeiner C, Seitz L, Christ L, Scholz G, et al. Vision loss in patients with giant cell arteritis treated with tocilizumab. Arthritis Res Ther. 2021;23(1):92. doi:10.1186/s13075-021-02480-4; Villiger PM, Adler S, Kuchen S, Wermelinger F, Dan D, Fiege V, et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10031):1921-7. doi:10.1016/S0140-6736(16)00560-2; Stone JH, Tuckwell K, Dimonaco S, Klearman M, Aringer M, Blockmans D, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377(4):317-328. doi:10.1056/NEJ-Moa1613849; Tuckwell K, Collinson N, Dimonaco S, Klearman M, Blockmans D, Brouwer E, et al.; GiACTA Investigators. Newly diagnosed vs. relapsing giant cell arteritis: Baseline data from the GiACTA trial. Semin Arthritis Rheum. 2017;46(5):657-664. doi:10.1016/j.semarthrit.2016.11.002; Unizony S, Matza MA, Jarvie A, O’Dea D, Fernandes AD, Stone JH. Treatment for giant cell arteritis with 8 weeks of prednisone in combination with tocilizumab: A single-arm, open-label, proof-of-concept study. Lancet Rheumatol. 2023;5(12):e736-e742. doi:10.1016/S2665-9913(23)00265-5; Clément J, Duffau P, Constans J, Schaeverbeke T, Viallard JF, Barcat D, et al. Real-world risk of relapse of giant cell arteritis treated with tocilizumab: A retrospective analysis of 43 patients. J Rheumatol. 2021;48(9):1435-1441. doi:10.3899/jrheum.200952; Matza MA, Dagincourt N, Mohan SV, Pavlov A, Han J, Stone JH, et al. Outcomes during and after long-term tocilizumab treatment in patients with giant cell arteritis. RMD Open. 2023;9(2):e002923. doi:10.1136/rmdopen-2022-002923; Loricera J, Castañeda S, Moriano C, Narváez J, Aldasoro V, Maiz O, et al. Tocilizumab in visual involvement of giant cell arteritis: A multicenter study of 471 patients. Ther Adv Musculoskelet Dis. 2022;14:1759720X221113747; Unizony S, McCulley TJ, Spiera R, Pei J, Sidiropoulos PN, Best JH, et al. Clinical outcomes of patients with giant cell arteritis treated with tocilizumab in real-world clinical practice: Decreased incidence of new visual manifestations. Arthritis Res Ther. 2021;23(1):8. doi:10.1186/s13075-020-02377-8; Harigai M, Miyamae T, Hashimoto H, Umetsu K, Yamashita K, Nakaoka Y. A multicentre, large-scale, observational study of tocilizumab in patients with giant cell arteritis in Japan. Mod Rheumatol. 2023 Jul 31:road074. doi:10.1093/mr/road074; Muratore F, Marvisi C, Cassone G, Boiardi L, Mancuso P, Besutti G, et al. Treatment of giant cell arteritis with ultra-short glucocorticoids and tocilizumab: The role of imaging in a prospective observational study. Rheumatology (Oxford). 2024;63(1):64-71. doi:10.1093/rheumatology/kead215; Quinn KA, Dashora H, Novakovich E, Ahlman MA, Grayson PC. Use of 18F-fluorodeoxyglucose positron emission tomography to monitor tocilizumab effect on vascular inflammation in giant cell arteritis. Rheumatology (Oxford). 2021;60(9):4384-4389. doi:10.1093/rheumatology/keaa894; Samec MJ, Rakholiya J, Langenfeld H, Crowson CS, Abril A, Wang B, et al. Relapse risk and safety of long-term tocilizumab use among patients with giant cell arteritis: A single-enterprise cohort study. J Rheumatol. 2023;50(10):1310-1317. doi:10.3899/jrheum.2022-1214; Christ L, Seitz L, Scholz G, Sarbu AC, Amsler J, Bütikofer L, et al. Tocilizumab monotherapy after ultra-short glucocorticoid administration in giant cell arteritis: A single-arm, open-label, proof-of-concept study. Lancet Rheumatol. 2021;3(9):e619-e626. doi:10.1016/S2665-9913(21)00152-1; Tomelleri A, Campochiaro C, Farina N, Mariotti L, Baldissera E, Grayson PC, et al. Effectiveness of a two-year tapered course of tocilizumab in patients with giant cell arteritis: A single-centre prospective study. Semin Arthritis Rheum. 2023;59:152174. doi:10.1016/j.semarthrit.2023.152174; Saito S, Okuyama A, Okada Y, Shibata A, Sakai R, Kurasawa T, et al. Tocilizumab monotherapy for large vessel vasculitis: Results of 104-week treatment of a prospective, single-centre, open study. Rheumatology (Oxford). 2020;59(7):1617-1621. doi:10.1093/rheumatology/kez511; Calderón-Goercke M, Castañeda S, Aldasoro V, Villa I, Moriano C, Romero-Yuste S, et al.; Tocilizumab in Giant Cell Arteritis Spanish Collaborative Group. Tocilizumab in refractory giant cell arteritis. Monotherapy versus combined therapy with conventional immunosuppressive drugs. Observational multicenter study of 134 patients. Semin Arthritis Rheum. 2021;51(2):387-394. doi:10.1016/j.semarthrit.2021.01.006; Seitz L, Christ L, Lötscher F, Scholz G, Sarbu AC, Bütikofer L, et al. Quantitative ultrasound to monitor the vascular response to tocilizumab in giant cell arteritis. Rheumatology (Oxford). 2021;60(11):5052-5059. doi:10.1093/rheumatology/keab484; Grazzini S, Conticini E, Falsetti P, D’Alessandro M, Sota J, Terribili R, et al. Tocilizumab vs methotrexate in a cohort of patients affected by active GCA: A comparative clinical and ultrasonographic study. Biologics. 2023;17:151-160. doi:10.2147/BTT.S431818; Calderón-Goercke M, Loricera J, Moriano C, Castañeda S, Narváez J, Aldasoro V, et al.; Tocilizumab in Giant Cell Arteritis Spanish Collaborative Group. Optimisation of tocilizumab therapy in giant cell arteritis. A multicentre real-life study of 471 patients. Clin Exp Rheumatol. 2023;41(4):829-836. doi:10.55563/clinexprheumatol/oqs8u9; Izumi K, Murata O, Higashida-Konishi M, Kaneko Y, Oshima H, Takeuchi T. Steroid-sparing effect of tocilizumab and methotrexate in patients with polymyalgia rheumatica: A retrospective cohort study. J Clin Med. 2021;10(13):2948. doi:10.3390/jcm10132948; Sánchez-Bilbao L, Loricera J, Castañeda S, Moriano C, Narváez F, Aldasoro V, et al. Intravenous versus subcutaneous tocilizumab in a series of 471 patients with giant cell arteritis. Arthritis Rheumatol. 2022; 74(Suppl 9). URL: https://acrabstracts.org/abstract/intravenous-versus-subcutaneous-tocilizumab-in-a-series-of-471-patients-with-giant-cell-arteritis (Accessed: 14th April, 2024).; Sanchez-Bilbao L, Loricera J, Aldasoro V.; on behalf of Tocilizumab in Giant Cell Arteritis Spanish Collaborative Group. Tocilizumab in cranial and extracranial refractory giant cell arteritis: A multicenter study of 312 cases. Ann Rheum. Dis. 2021;80:34-35.; Beketova TV, Otteva EN, Nasonov EL. Tocilizumab for the treatment of giant cell arteritisand polymyalgia rheumatica in patients with serious comorbidities: experience of two Russian centers. Clinical Pharmacology and Therapy. 2020;29(1):31-35 (In Russ.)]. doi:10.32756/0869-5490-2020-1-31-35; Schmidt WA, Dasgupta B, Luqmani R, Unizony SH, Blockmans D, Lai Z, et al. A multicentre, randomised, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of sirukumab in the treatment of giant cell arteritis. Rheumatol Ther. 2020;7(4):793-810. doi:10.1007/s40744-020-00227-2; Stone JH, Spotswood H, Unizony SH, Aringer M, Blockmans D, Brouwer E, et al. New-onset versus relapsing giant cell arteritis treated with tocilizumab: 3-year results from a randomized controlled trial and extension. Rheumatology (Oxford). 2022;61(7):2915-2922. doi:10.1093/rheumatology/keab780; Stone JH, Han J, Aringer M, Blockmans D, Brouwer E, Cid MC, et al.; GiACTA investigators. Long-term effect of tocilizumab in patients with giant cell arteritis: Open-label extension phase of the Giant Cell Arteritis Actemra (GiACTA) trial. Lancet Rheumatol. 2021;3(5):e328-e336. doi:10.1016/S2665-9913(21)00038-2; Strand V, Dimonaco S Tuckwell K, Klearman M, Collinson N, Stone JH. Health-related quality of life in patients with giant cell arteritis treated with tocilizumab in a phase 3 randomised controlled trial. Arthritis Res Ther. 2019;21(1):64. doi:10.1186/s13075-019-1837-7; Spiera R, Unizony SH, Bao M, Luder Y, Han J, Pavlov A, et al. Tocilizumab vs placebo for the treatment of giant cell arteritis with polymyalgia rheumatica symptoms, cranial symptoms or both in a randomized trial. Semin Arthritis Rheum. 2021;51(2):469-476. doi:10.1016/j.semarthrit.2021.03.006; Castañeda S, Prieto-Peña D, Vicente-Rabaneda EF, TrigueroMartínez A, Roy-Vallejo E, Atienza-Mateo B, et al. Advances in the treatment of giant cell arteritis. J Clin Med. 2022;11(6):1588. doi:10.3390/jcm11061588; Stretton B, Tan Y, Hassall M, Simon S. The role of tocilizumab in glucocorticoid resistant giant cell arteritis: A case series and literature review. J Neuroophthalmol. 2023;43(1):91-95. doi:10.1097/WNO.0000000000001645; Svasti-Salee CR, Mollan SP, Morgan AW, Quick V. Rapid visual recovery following intravenous tocilizumab in glucocorticoid resistant refractory giant cell arteritis. BMJ Case Rep. 2019;12(10):e229236. doi:10.1136/bcr-2019-229236; Khanna RK, Hage R, Lecler A, Sene T, Vignal-Clermont C, Clavel-Refregiers G. Giant cell arteritis with ocular involvement successfully treated with tocilizumab and very short-course glucocorticoids: A case report. J Fr Ophtalmol. 2021;44(4):481-484. doi:10.1016/j.jfo.2020.08.028; Sebastian A, Kayani A, Prieto-Pena D, Tomelleri A, Whitlock M, Mo J, et al. Efficacy and safety of tocilizumab in giant cell arteritis: A single centre NHS experience using imaging (ultrasound and PET-CT) as a diagnostic and monitoring tool. RMD Open. 2020;6(3):e001417. doi:10.1136/rmdopen-2020-001417; Schönau V, Roth J, Tascilar K, Corte G, Manger B, Rech J, et al. Resolution of vascular inflammation in patients with new-onset giant cell arteritis: Data from the RIGA study. Rheumatology (Oxford). 2021;60(8):3851-3861. doi:10.1093/rheumatology/ keab332; Prieto Peña D, Martínez-Rodríguez I, Atienza-Mateo B, Calderón-Goercke M, Banzo I, González-Vela MC, et al. Evidence for uncoupling of clinical and 18-FDG activity of PET/CT scan improvement in tocilizumab-treated patients with large-vessel giant cell arteritis. Clin Exp Rheumatol. 2021;39(Suppl 129(2)):6975. doi:10.55563/clinexprheumatol/mjm8fr; Reichenbach S, Adler S, Bonel H, Cullmann JL, Kuchen S, Bütikofer L, et al. Magnetic resonance angiography in giant cell arteritis: Results of a randomized controlled trial of tocilizumab in giant cell arteritis. Rheumatology (Oxford). 2018;57(6):982-986. doi:10.1093/rheumatology/key015.; Hemmig AK, Rottenburger C, Baruti L, Mensch N, Aschwanden M, Kyburz D, et al. Imaging to predict early relapses after treatment discontinuation in patients with large vessel giant cell arteritis – A cohort study. Semin Arthritis Rheum. 2024;66:152425. doi:10.1016/j.semarthrit.2024.152425; Nepal D, Sattui S, Wallace Z, Putman M. Risk of gastrointestinal perforation among patients with giant cell arteritis who received tocilizumab. Arthritis Rheumatol. 2023; 75(Suppl 9). URL: https://acrabstracts.org/abstract/risk-of-gastrointestinal-perforation-among-patients-with-giant-cell-arteritis-who-received-tocilizumab (Accessed: 17th April, 2024).; Unizony SH, Bao M, Han J, Luder Y, Pavlov A, Stone JH. Treatment failure in giant cell arteritis. Ann Rheum Dis. 2021;80(11):1467-1474. doi:10.1136/annrheumdis-2021-220347; Antonio AA, Santos RN, Abariga SA. Tocilizumab for giant cell arteritis. Cochrane Database Syst Rev. 2021;8(8):CD013484. doi:10.1002/14651858.CD013484.pub2; Patel NJ, Tozzo V, Higgins JM, Stone JH. The effects of daily prednisone and tocilizumab on hemoglobin A1c during the treatment of giant cell arteritis. Arthritis Rheumatol. 2023;75(4):586594. doi:10.1002/art.42405; Buttgereit F, Palmowski A, Esen I, Brouwer E. Tocilizumab in giant cell arteritis: Better understanding the benefits. Arthritis Rheumatol. 2023;75(4):489-492. doi:10.1002/art.42414; Schmidt WA, Dasgupta B, Sloane J, Giannelou A, Xu Y, Unizony SH, et al. A phase 3 randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of sarilumab in patients with giant cell arteritis. Arthritis Res Ther. 2023;25(1):199. doi:10.1186/s13075-023-03177-6; Macchioni P, Boiardi L, Catanoso M, Pulsatelli L, Pipitone N, Meliconi R, et al. Tocilizumab for polymyalgia rheumatica: Report of two cases and review of the literature. Semin Arthritis Rheum. 2013;43(1):113-118. doi:10.1016/j.semarthrit.2013.01.003; Lally L, Forbess L, Hatzis C, Spiera R. Brief report: A prospective open-label phase IIa trial of tocilizumab in the treatment of polymyalgia rheumatica. Arthritis Rheumatol. 2016;68(10):2550-2554. doi:10.1002/art.39740; Ashraf FA, Anjum S, Hussaini A, Fraser A. Refractory PMR with aortitis: Life-saving treatment with anti-IL6 monoclonal antibody (tocilizumab) and surgical reconstruction of the ascending aorta. BMJ Case Rep. 2013;2013:bcr2013009523. doi:10.1136/bcr-2013-009523; Izumi K, Kuda H, Ushikubo M, Kuwana M, Takeuchi T, Oshima H. Tocilizumab is effective against polymyalgia rheumatica: Experience in 13 intractable cases. RMD Open. 2015;1(1):e000162. doi:10.1136/rmdopen-2015-000162; Mori S, Koga Y. Glucocorticoid-resistant polymyalgia rheumatica: Pretreatment characteristics and tocilizumab therapy. Clin Rheumatol. 2016;35(5):1367-1375. doi:10.1007/s10067-014-2650-y; Devauchelle-Pensec V, Berthelot JM, Cornec D, Renaudineau Y, Marhadour T, Jousse-Joulin S, et al. Efficacy of first-line tocilizumab therapy in early polymyalgia rheumatica: A prospective longitudinal study. Ann Rheum Dis. 2016;75(8):1506-1510. doi:10.1136/annrheumdis-2015-208742; Bonelli M, Radner H, Kerschbaumer A, Mrak D, Durechova M, Stieger J, et al. Tocilizumab in patients with new onset polymyalgia rheumatica (PMR-SPARE): A phase 2/3 randomised controlled trial. Ann Rheum Dis. 2022;81(6):838-844. doi:10.1136/ annrheumdis-2021-221126; Devauchelle-Pensec V, Carvajal-Alegria G, Dernis E, Richez C, Truchetet ME, Wendling D, et al. Effect of tocilizumab on disease activity in patients with active polymyalgia rheumatica receiving glucocorticoid therapy: A randomized clinical trial. JAMA. 2022;328(11):1053-1062. doi:10.1001/jama.2022.15459; Chino K, Kondo T, Sakai R, Saito S, Okada Y, Shibata A, et al. Tocilizumab monotherapy for polymyalgia rheumatica: A prospective, single-center, open-label study. Int J Rheum Dis. 2019;22(12):2151-2157. doi:10.1111/1756-185X.13723; Assaraf M, Chevet B, Wendling D, Philippe P, Cailliau E, Roux C, et al. Efficacy and management of tocilizumab in polymyalgia rheumatica: Results of a multicenter retrospective observational study. Rheumatology (Oxford). 2023 Aug 21:kead426. doi:10.1093/rheumatology/kead426; Curtis J, Ford K, Fiore S, Isaman D, Araujo L, Petruski-Ivleva N, et al. Effectiveness of interleukin-6 receptor inhibitors for polymyalgia rheumatica. Arthritis Rheumatol. 2022;74(Suppl 9). URL: https://acrabstracts.org/abstract/effectiveness-of-interleukin-6-receptor-inhibitors-for-polymyalgia-rheumatica (Accessed: 3rd April, 2024).; Spiera RF, Unizony S, Warrington KJ, Sloane J, Giannelou A, Nivens MC, et al.; SAPHYR Investigators. Sarilumab for relapse of polymyalgia rheumatica during glucocorticoid taper. N Engl J Med. 2023;389(14):1263-1272. doi:10.1056/NEJMoa2303452; Akiyama M, Kaneko Y, Takeuchi T. Tocilizumab in isolated polymyalgia rheumatica: A systematic literature review. Semin Arthritis Rheum. 2020;50(3):521-525. doi:10.1016/j.semarthrit.2019.12.005; Farinango M, Ansary A, Dakka A, Nazir Z, Shamim H, Jean M, et al. Is tocilizumab effective and safe in polymyalgia rheumatica and giant-cell arteritis with polymyalgia rheumatica? Cureus. 2022;14(8):e27606. doi:10.7759/cureus.27606; Dasgupta B, Unizony S, Warrington KJ, Lazar JS, Giannelou A, Nivens MC, et al. Sarilumab in patients with relapsing polymyalgia rheumatica: A phase 3, multicenter, randomized, double blind, placebo controlled trial (SAPHYR). Ann Rheum Dis. 2022;81:210-211.; De Miguel E, Karalilova R, Macchioni P, Ponte C, Conticini E, Cowley S, et al. Subclinical giant cell arteritis increases the risk of relapse in polymyalgia rheumatica. Ann Rheum Dis. 2024;83(3):335-341. doi:10.1136/ard-2023-224768; Aletaha D, Kerschbaumer A, Kastrati K, Dejaco C, Dougados M, McInnes IB, et al. Consensus statement on blocking interleukin-6 receptor and interleukin-6 in inflammatory conditions: An update. Ann Rheum Dis. 2023;82(6):773-787. doi:10.1136/ard-2022-222784; Hanberg JS, Miloslavsky EM. Steroid sparing in vasculitis: Myth or reality? Best Pract Res Clin Rheumatol. 2023;37(1):101843. doi:10.1016/j.berh.2023.101843; Oiwa H, Suga T, Hosokawa Y, Araki K. Glucocorticoid-free remission in patients with SLE in the era of biologics: Immune complex disease is likely to benefit from current medications. Lupus. 2024;33(5):502-510. doi:10.1177/09612033241238055; Burmester GR, Buttgereit F, Bernasconi C, Álvaro-Gracia JM, Castro N, Dougados M, et al.; SEMIRA collaborators. Continuing versus tapering glucocorticoids after achievement of low disease activity or remission in rheumatoid arthritis (SEMIRA): A double-blind, multicentre, randomised controlled trial. Lancet. 2020;396(10246):267-276. doi:10.1016/S0140-6736(20)30636-X; Boers M, Hartman L, Opris-Belinski D, Bos R, Kok MR, Da Silva JA, et al.; GLORIA Trial consortium. Low dose, add-on prednisolone in patients with rheumatoid arthritis aged 65+: The pragmatic randomised, double-blind placebo-controlled GLORIA trial. Ann Rheum Dis. 2022;81(7):925-936. doi:10.1136/annrheumdis-2021-221957; Plocque A, Mitri C, Lefèvre C, Tabary O, Touqui L, Philippart F. Should we interfere with the interleukin-6 receptor during COVID-19: What do we know so far? Drugs. 2023;83(1):1-36. doi:10.1007/s40265-022-01803-2; Northcott M, Gearing LJ, Nim HT, Nataraja C, Hertzog P, Jones SA, et al. Glucocorticoid gene signatures in systemic lupus erythematosus and the effects of type I interferon: A cross-sectional and in-vitro study. Lancet Rheumatol. 2021;3(5):e357-e370. doi:10.1016/S2665-9913(21)00006-0; Vieira M, Régnier P, Maciejewski-Duval A, Le Joncour A, Darasse-Jèze G, Rosenzwajg M, et al. Interferon signature in giant cell arteritis aortitis. J Autoimmun. 2022;127:102796. doi:10.1016/j.jaut.2022.102796; Van Nieuwland M, Esen I, Reitsema RD, Abdulahad WH, van Sleen Y, Jiemy WF, et al. Evidence for increased interferon type I activity in CD8+ T cells in giant cell arteritis patients. Front Immunol. 2023;14:1197293. doi:10.3389/fimmu.2023.1197293; Lavergne A, Dumont A, Deshayes S, Boutemy J, Maigné G, Silva NM, et al. Efficacy and tolerance of methotrexate in a real-life monocentric cohort of patients with giant cell arteritis. Semin Arthritis Rheum. 2023;60:152192. doi:10.1016/j.semarthrit.2023.152192; Kramarič J, Rotar Ž, Tomšič M, Hočevar A. Performance of leflunomide as a steroid-sparing agent in giant cell arteritis: A single-center, open-label study. Front Med (Lausanne). 2022;9:1069013. doi:10.3389/fmed.2022.1069013; Tomelleri A, Coath F, Sebastian A, Prieto-Pena D, Kayani A, Mo J, et al. Long-term efficacy and safety of leflunomide in large-vessel giant cell arteritis: A single-center, 10-year experience. J Clin Rheumatol. 2022;28(1):e297-e300. doi:10.1097/RHU.0000000000001703; Kreis L, Dejaco C, Schmidt WA, Németh R, Venhoff N, Schäfer VS. The Meteoritics Trial: Efficacy of methotrexate after remission-induction with tocilizumab and glucocorticoids in giant cell arteritis-study protocol for a randomized, double-blind, placebo-controlled, parallel-group phase II study. Trials. 2024;25(1):56. doi:10.1186/s13063-024-07905-4; Samson M, Greigert H, Ciudad M, Gerard C, Ghesquière T, Trad M, et al. Improvement of Treg immune response after treatment with tocilizumab in giant cell arteritis. Clin Transl Immunology. 2021;10(9):e1332. doi:10.1002/cti2.1332; Matsumoto K, Suzuki K, Takeshita M, Takeuchi T, Kaneko Y. Changes in the molecular profiles of large-vessel vasculitis treated with biological disease-modifying anti-rheumatic drugs and Janus kinase inhibitors. Front Immunol. 2023;14:1197342. doi:10.3389/fimmu.2023.1197342; Adriawan IR, Atschekzei F, Dittrich-Breiholz O, Garantziotis P, Hirsch S, Risser LM, et al. Novel aspects of regulatory T cell dysfunction as a therapeutic target in giant cell arteritis. Ann Rheum Dis. 2022;81(1):124-131. doi:10.1136/annrheumdis-2021-220955; O’Neill L, McCormick J, Gao W, Veale DJ, McCarthy GM, Murphy CC, et al. Interleukin-6 does not upregulate pro-inflammatory cytokine expression in an ex vivo model of giant cell arteritis. Rheumatol Adv Pract. 2019;3(1):rkz011. doi:10.1093/rap/rkz011; Rimland CA, Quinn KA, Rosenblum JS, Schwartz MN, Bates Gribbons K, Novakovich E, et al. Outcome measures in large vessel vasculitis: Relationship between patient-, physician-, imaging-, and laboratory-based assessments. Arthritis Care Res (Hoboken). 2020;72(9):1296-1304. doi:10.1002/acr.24117; Berger CT, Rebholz-Chaves B, Recher M, Manigold T, Daikeler T. Serial IL-6 measurements in patients with tocilizumabtreated large-vessel vasculitis detect infections and may predict early relapses. Ann Rheum Dis. 2019;78(7):1012-1014. doi:10.1136/annrheumdis-2018-214704; Samson M, Bonnotte B. Analysis of IL-6 measurement in patients with GCA treated with tocilizumab should consider concomitant treatment with prednisone. Ann Rheum Dis. 2020;79(8):e102. doi:10.1136/annrheumdis-2019-215697; Carvajal Alegria G, Cornec DYK, Renaudineau Y, Saraux A, Devauchelle-Pensec V. Inflammatory markers are quickly improved by tocilizumab in early polymyalgia rheumatica and might predict early response to interleukin-6 blockade. Rheumatol Ther. 2021;8(2):751-760. doi:10.1007/s40744-021-00299-8; Nouri B, Nair N, Barton A. Predicting treatment response to IL6R blockers in rheumatoid arthritis. Rheumatology (Oxford). 2020;59(12):3603-3610. doi:10.1093/rheumatology/keaa529; Redmond C, Zorc R, Sylvester M, Rankin C, Kuan R, Wells K, et al. Impact of IL-6 receptor small nucleotide polymorphism Asp358Ala on T cell activity and clinical outcomes in patients with giant cell arteritis. Arthritis Rheumatol. 2023;75(Suppl 9). URL: https://acrabstracts.org/abstract/impact-of-il-6-receptorsmall-nucleotide-polymorphism-asp358ala-on-t-cell-activityand-clinical-outcomes-in-patients-with-giant-cell-arteritis/ (Accessed: 14th April, 2024).; Kaymakci MS, Warrington KJ, Kermani TA. New therapeutic approaches to large-vessel vasculitis. Annu Rev Med. 2024;75:427-442. doi:10.1146/annurev-med-060622-100940; Springer JM, Kermani TA. Recent advances in the treatment of giant cell arteritis. Best Pract Res Clin Rheumatol. 2023;37(1):101830. doi:10.1016/j.berh.2023.101830; Venhoff N, Schmidt WA, Bergner R, Rech J, Unger L, Tony HP, et al. Safety and efficacy of secukinumab in patients with giant cell arteritis (TitAIN): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Rheumatol. 2023;5(6):e341-e350. doi:10.1016/S2665-9913(23)00101-7; Cid MC, Unizony SH, Blockmans D, Brouwer E, Dagna L, Dasgupta B, et al.; KPL-301-C001 Investigators. Efficacy and safety of mavrilimumab in giant cell arteritis: A phase 2, randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022;81(5):653-661. doi:10.1136/annrheumdis-2021-221865; Conway R, O’Neill L, Gallagher P, McCarthy GM, Murphy CC, Veale DJ, et al. Ustekinumab for refractory giant cell arteritis: A prospective 52-week trial. Semin Arthritis Rheum. 2018;48(3):523-528. doi:10.1016/j.semarthrit.2018.04.004; Matza MA, Fernandes AD, Stone JH, Unizony SH. Ustekinumab for the treatment of giant cell arteritis. Arthritis Care Res (Hoboken). 2021;73(6):893-897. doi:10.1002/acr.24200; Hoffman GS, Cid MC Rendt-Zagar KE, Merkel PA, Weyand CM, Stone JH, et al.; Infliximab-GCA Study Group. Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: A randomized trial. Ann Intern Med. 2007;146(9):621-630. doi:10.7326/0003-4819-146-9-200705010-00004; Seror R, Baron G, Hachulla E, Debandt M, Larroche C, Puéchal X, et al. Adalimumab for steroid sparing in patients with giant-cell arteritis: Results of a multicentre randomised controlled trial. Ann Rheum Dis. 2014;73(12):2074-2081. doi:10.1136/annrheumdis-2013-203586; Deshayes S, Ly KH, Rieu V, Maigné G, Martin Silva N, Manrique A, et al.; French Study Group for Large Vessel Vasculitis (GEFA). Steroid-sparing effect of anakinra in giant-cell arteritis: A case series with clinical, biological and iconographic long-term assessments. Rheumatology (Oxford). 2021;61(1):400-406. doi:10.1093/rheumatology/keab280; Saraux A, Le Henaff C, Dernis E, Carvajal-Alegria G, Tison A, Quere B, et al. Abatacept in early polymyalgia rheumatica (ALORS): A proof-of-concept, randomised, placebo-controlled, parallel-group trial. Lancet Rheumatol. 2023;5(12):e728-e735. doi:10.1016/S2665-9913(23)00246-1; Rossi D, Cecchi I, Sciascia S, Naretto C, Alpa M, Roccatello D. An agent-to-agent real life comparison study of tocilizumab versus abatacept in giant cell arteritis. Clin Exp Rheumatol. 2021;39 (Suppl 129(2)):125-128. doi:10.55563/clinexprheumatol/l0hd9v; Bolhuis TE, Marsman DE, den Broeder AA, den Broeder N, van der Maas A. 1-year results of treatment with rituximab in polymyalgia rheumatica: An extension study of a randomised double-blind placebo-controlled trial. Lancet Rheumatol. 2023;5(4):e208-e214. doi:10.1016/S2665-9913(23)00032-2; Eriksson P, Skoglund O, Hemgren C, Sjöwall C. Clinical experience and safety of Janus kinase inhibitors in giant cell arteritis: A retrospective case series from Sweden. Front Immunol. 2023;14:1187584. doi:10.3389/fimmu.2023.1187584; Zhang L, Li J, Yin H, Chen D, Li Y, Gu L, et al. Efficacy and safety of tofacitinib in patients with polymyalgia rheumatica: A phase 2 study. Ann Rheum Dis. 2023;82(5):722-724. doi:10.1136/ard-2022-223562; Насонов ЕЛ, Файст Е. Перспективы ингибиции интерлейкина-6 при ревматоидном артрите: олокизумаб (новые моноклональные антитела к ИЛ-6). Научно-практическая ревматология. 2022;60(5):505-518. doi:10.47360/1995-44842022-505-518; https://rsp.mediar-press.net/rsp/article/view/3600

  2. 2
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 62, No 4 (2024); 431–434 ; Научно-практическая ревматология; Vol 62, No 4 (2024); 431–434 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3612/2394; Buttgereit F, Matteson EL, Dejaco C. Polymyalgia rheumatica and giant cell arteritis. JAMA. 2020;324(10):993-994. doi:10.1001/jama.2020.10155; Сатыбалдыев АМ, Демидова НВ, Савушкина НМ, Гордеев АВ. Ревматическая полимиалгия. Научно-практическая ревматология. 2018;56(2):215-227. doi:10.14412/1995-4484-2018215-227; Tomelleri A, van der Geest KSM, Khurshid MA, Sebastian A, Coath F, Robbins D, et al. Disease stratification in GCA and PMR: State of the art and future perspectives. Nat Rev Rheumatol. 2023;19(7):446-459. doi:10.1038/s41584-023-00976-8; Dejaco C, Kerschbaumer A, Aletaha D, Bond M, Hysa E, Camellino D, et al. Treat-to-target recommendations in giant cell arteritis and polymyalgia rheumatica. Ann Rheum Dis. 2024;83(1):48-57. doi:10.1136/ard-2022-223429; Hellmich B, Agueda A, Monti S, Buttgereit F, de Boysson H, Brouwer E, et al. 2018 update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2020;79(1):19-30. doi:10.1136/annrheumdis-2019-215672; Toyoda T, Armitstead Z, Bhide S, Engamba S, Henderson E, Jones C, et al. Treatment of polymyalgia rheumatica: British Society for Rheumatology guideline scope. Rheumatol Adv Pract. 2024;8(1):rkae002. doi:10.1093/rap/rkae002; Matteson EL, Buttgereit F, Dejaco C, Dasgupta B. Glucocorticoids for management of polymyalgia rheumatica and giant cell arteritis. Rheum Dis Clin North Am. 2016;42(1):75-90viii. doi:10.1016/j.rdc.2015.08.009; Mainbourg S, Addario A, Samson M, Puéchal X, François M, Durupt S, et al. Prevalence of giant cell arteritis relapse in patients treated with glucocorticoids: A meta-analysis. Arthritis Care Res (Hoboken). 2020;72(6):838-849. doi:10.1002/acr.23901; Floris A, Piga M, Chessa E, Congia M, Erre GL, Angioni MM, et al. Long-term glucocorticoid treatment and high relapse rate remain unresolved issues in the real-life management of polymyalgia rheumatica: A systematic literature review and meta-analysis. Clin Rheumatol. 2022;41(1):19-31. doi:10.1007/s10067-021-05819-z; Nepal D, Putman M, Unizony S. Giant cell arteritis and polymyalgia rheumatica: Treatment approaches and new targets. Rheum Dis Clin North Am. 2023;49(3):505-521. doi:10.1016/j.rdc.2023.03.005; Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при имму новоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-599. doi:10.14412/1995-4484-2017-590-599; Weyand CM, Goronzy JJ. Immunology of giant cell arteritis. Circ Res. 2023;132(2):238-250. doi:10.1161/CIRCRESAHA.122.322128; Kastrati K, Aletaha D, Burmester GR, Chwala E, Dejaco C, Dougados M, et al. A systematic literature review informing the consensus statement on efficacy and safety of pharmacological treatment with interleukin-6 pathway inhibition with biological DMARDs in immune-mediated inflammatory diseases. RMD Open. 2022;8(2):e002359. doi:10.1136/rmdopen-2022-002359; Насонов ЕЛ, Сатыбалдыев АМ, Оттева ЭН, Бекетова ТВ, Баранов АА. Фармакотерапия гигантоклеточного артериита и ревматической полимиалгии: перспективы применения моноклональных антител к интерлейкину 6. Научно-практическая ревматология. 2024;62(3):262-279. doi:10.47360/1995-4484-2024-262-279; Feist E, Nasonov E,. Interleukin 6 inhibition in rheumatoid arthritis: Highlight on olokizumab. Touch Reviews in RMD. 2023;2(1):17-27. doi:10.17925/RMD.2023.2.1.17; Dasgupta B, Cimmino MA, Maradit-Kremers H, Schmidt WA, Schirmer M, Salvarani C, et al. 2012 provisional classification criteria for polymyalgia rheumatica: A European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann Rheum Dis. 2012;71(4):484-492. doi:10.1136/ANNRHEUMDIS-2011-200329; Ponte C, Grayson PC, Robson JC, Suppiah R, Gribbons KB, Judge A, et al. 2022 American College of Rheumatology/EULAR classification criteria for giant cell arteritis. Ann Rheum Dis. 2022;81(12):1647-1653. doi:10.1136/ARD-2022-223480; https://rsp.mediar-press.net/rsp/article/view/3612

  3. 3
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 62, No 5 (2024); 445-464 ; Научно-практическая ревматология; Vol 62, No 5 (2024); 445-464 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3630/2398; Насонов ЕЛ. Современная концепция аутоиммунитета в ревматологии. Научно-практическая ревматология. 2023;61(4): 397-420.; Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524-533. doi:10.1038/s41586-021-03392-8; Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822-1832. doi:10.1038/s41591-019-0675-0; GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2100-2132. doi:10.1016/S0140-6736(24)00367-2; Насонов ЕЛ. Пандемия коронавирусной болезни 2019 (COVID-19) и аутоиммунные ревматические заболевания: итоги и перспективы. Научно-практическая ревматология. 2024;62(1):32-54. Nasonov EL. Coronavirus disease 2019 (COVID-19) pandemic and autoimmune rheumatic diseases: Outcomes and prospects. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2024;62(1):32-54 (In Russ.). doi:10.47360/1995-4484-2024-32-54; Насонов ЕЛ, Румянцев АГ, Самсонов МЮ. Фармакотерапия аутоиммунных ревматических заболеваний – от моноклональных антител к CAR-T-клеткам: 20 лет спустя. Научно-практическая ревматология. 2024;62(3):262-279.; Fugger L, Jensen LT, Rossjohn J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell. 2020;181(1):63-80. doi:10.1016/j.cell.2020.03.007; Roubille F, Kritikou E, Busseuil D, Barrere-Lemaire S, Tardif JC. Colchicine: An old wine in a new bottle? Antiinflamm Antiallergy Agents Med Chem. 2013;12(1):14-23. doi:10.2174/1871523011312010004; Hartung EF. History of the use of colchicum and related medicaments in gout; with suggestions for further research. Ann Rheum Dis. 1954;13(3):190-200. doi:10.1136/ard.13.3.190; Imazio M, Agrimi C, Cescon L, Panzolli G, Collini V, Sinagra G. Colchicine for the treatment of the spectrum of cardiovascular diseases: Current evidence and ongoing perspectives. J Cardiovasc Med (Hagerstown). 2024;25(9):653-663. doi:10.2459/JCM.0000000000001647; Deftereos SG, Beerkens FJ, Shah B, Giannopoulos G, Vrachatis DA, Giotaki SG, et al. Colchicine in cardiovascular disease: In-depth review. Circulation. 2022;145(1):61-78. doi:10.1161/CIRCULATIONAHA.121.056171; Angelidis C, Kotsialou Z, Kossyvakis C, Vrettou AR, Zacharoulis A, Kolokathis F, et al. Colchicine pharmacokinetics and mechanism of action. Curr Pharm Des. 2018;24(6):659-663. doi:10.2174/138161282466618012; Stamp LK, Horsley C, Te Karu L, Dalbeth N, Barclay M. Colchicine: The good, the bad, the ugly and how to minimize the risks. Rheumatology (Oxford). 2024;63(4):936-944. doi:10.1093/rheumatology/kead625; Stack J, Ryan J, McCarthy G. Colchicine: New insights to an old drug. Am J Ther. 2015;22(5):e151-e157. doi:10.1097/01.mjt.0000433937.07244.e1; Zhang FS, He QZ, Qin CH, Little PJ, Weng JP, Xu SW. Therapeutic potential of colchicine in cardiovascular medicine: A pharmacological review. Acta Pharmacol Sin. 2022;43(9):2173-2190. doi:10.1038/s41401-021-00835-w; Broz P, Dixit VM. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407-420. doi:10.1038/nri.2016.58; Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-632. doi:10.1038/s41584-019-0277-8; Насонов ЕЛ, Елисеев МС. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2016;54(1):60-77.; Broderick L, Hoffman HM. IL-1 and autoinflammatory disease: Biology, pathogenesis and therapeutic targeting. Nat Rev Rheumatol. 2022;18(8):448-463. doi:10.1038/s41584-022-00797-1; Klück V, Liu R, Joosten LAB. The role of interleukin-1 family members in hyperuricemia and gout. Joint Bone Spine. 2021;88(2):105092. doi:10.1016/j.jbspin.2020.105092; Toldo S, Abbate A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol. 2024;21(4):219-237. doi:10.1038/s41569-023-00946-3; Mauro AG, Bonaventura A, Vecchié A, Mezzaroma E, Carbone S, Narayan P, et al. The role of NLRP3 inflammasome in pericarditis: Potential for therapeutic approaches. JACC Basic Transl Sci. 2021;6(2):137-150. doi:10.1016/j.jacbts.2020.11.016; Vecchié A, Del Buono MG, Chiabrando GJ, Dentali F, Abbate A, Bonaventura A. Interleukin-1 and the NLRP3 inflammasome in pericardial disease. Curr Cardiol Rep. 2021;23(11):157. doi:10.1007/s11886-021-01589-x; Насонов ЕЛ, Сукмарова ЗН, Попкова ТВ, Белов БС. Проблемы иммунопатологии и перспективы фармакотерапии идиопатического рецидивирующего перикардита: применение ингибитора интерлейкина 1 (Анакинра). Научно-практическая ревматология. 2023;61(1):47-61.; Potere N, Abbate A, Kanthi Y, Carrier M, Toldo S, Porreca E, et al. Inflammasome signaling, thromboinflammation, and venous thromboembolism. JACC Basic Transl Sci. 2023;8(9):1245-1261. doi:10.1016/j.jacbts.2023.03.017; Del Buono MG, Bonaventura A, Vecchié A, Moroni F, Golino M, Bressi E, et al. Pathogenic pathways and therapeutic targets of inflammation in heart diseases: A focus on interleukin-1. Eur J Clin Invest. 2024;54(2):e14110. doi:10.1111/eci.14110; Reina-Couto M, Pereira-Terra P, Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in human heart failure: Major mediators and therapeutic targets. Front Physiol. 2021;12:746494. doi:10.3389/fphys.2021.746494; Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: A novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol. 2023;20(3):145-167. doi:10.1038/s41569-022-00759-w; Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021;21(11):694-703. doi:10.1038/s41577-021-00588-x; Taylor EW. The mechanism of colchicine inhibition of mitosis I. Kinetics of inhibition and the binding of H3-colchicine. J Cell Biol. 1965;25(1 Suppl):145-160. doi:10.1083/jcb.25.1.145; Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Goutassociated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237-241. doi:10.1038/nature04516; Robertson S, Martínez GJ, Payet CA, Barraclough JY, Celermajer DS, Bursill C, et al. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (Lond). 2016;130(14):1237-1246. doi:10.1042/CS20160090; Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14(5):454-460. doi:10.1038/ni.2550; Marques-da-Silva C, Chaves MM, Castro NG, Coutinho-Silva R, Guimaraes MZ. Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: Implications for its therapeutic action. Br J Pharmacol. 2011;163(5):912-926. doi:10.1111/j.1476-5381.2011.01254.x; Opstal TSJ, Hoogeveen RM, Fiolet ATL, Silvis MJM, The SHK, Bax WA, et al. Colchicine Attenuates inflammation beyond the inflammasome in chronic coronary artery disease: A LoDo-Co2 proteomic substudy. Circulation. 2020;142(20):1996-1998. doi:10.1161/CIRCULATIONAHA.120.050560; Suryono S, Rohman MS, Widjajanto E, Prayitnaningsih S, Wihastuti TA, Oktaviono YH. Effect of colchicine in reducing MMP-9, NOX2, and TGF- β1 after myocardial infarction. BMC Cardiovasc Disord. 2023;23(1):449. doi:10.1186/s12872-023-03464-9; Demidowich AP, Levine JA, Apps R, Cheung FK, Chen J, Fantoni G; CHI Consortium, et al. Colchicine’s effects on metabolic and inflammatory molecules in adults with obesity and metabolic syndrome: Results from a pilot randomized controlled trial. Int J Obes (Lond). 2020;44(8):1793-1799. doi:10.1038/s41366-020-0598-3; Silvis MJM, Fiolet ATL, Opstal TSJ, Dekker M, Suquilanda D, Zivkovic M, et al. Colchicine reduces extracellular vesicle NLRP3 inflammasome protein levels in chronic coronary disease: A LoDoCo2 biomarker substudy. Atherosclerosis. 2021;334:93-100. doi:10.1016/j.atherosclerosis.2021.08.005; Martínez GJ, Robertson S, Barraclough J, Xia Q, Mallat Z, Bursill C, et al. Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J Am Heart Assoc. 2015;4(8):e002128. doi:10.1161/JAHA.115.002128; Cronstein BN, Molad Y, Reibman J, Balakhane E, Levin RI, Weissmann G. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest. 1995;96(2):994-1002. doi:10.1172/JCI118147; Vaidya K, Tucker B, Kurup R, Khandkar C, Pandzic E, Barraclough J, et al. Colchicine inhibits neutrophil extracellular trap formation in patients with acute coronary syndrome after percutaneous coronary intervention. J Am Heart Assoc. 2021;10(1):e018993. doi:10.1161/JAHA.120.018993; Tan Y, Bao X, Li Y, Song G, Lu H, Sun X, et al. Colchicine attenuates microvascular obstruction after myocardial ischemia-reperfusion injury by inhibiting the proliferation of neutrophil in bone marrow. Cardiovasc Drugs Ther. 2023 Dec 8. doi:10.1007/s10557-023-07528-y; Cimmino G, Tarallo R, Conte S, Morello A, Pellegrino G, Loffredo FS, et al. Colchicine reduces platelet aggregation by modulating cytoskeleton rearrangement via inhibition of cofilin and LIM domain kinase 1. Vascul Pharmacol. 2018;111:62-70. doi:10.1016/j.vph.2018.09.004; Shah B, Allen N, Harchandani B, Pillinger M, Katz S, Sedlis SP, et al. Erratum to: Effect of colchicine on platelet-platelet and platelet-leukocyte interactions: A pilot study in healthy subjects. Inflammation. 2016;39(1):501. doi:10.1007/s10753-015-0266-2; Cirillo P, Taglialatela V, Pellegrino G, Morello A, Conte S, Di Serafino L, et al. Effects of colchicine on platelet aggregation in patients on dual antiplatelet therapy with aspirin and clopidogrel. J Thromb Thrombolysis. 2020;50(2):468-472. doi:10.1007/s11239-020-02121-8; Abideen ZU, Pathak DR, Sabanci R, Manu M, Abela GS. The effect of colchicine on cholesterol crystal formation, expansion and morphology: A potential mechanism in atherosclerosis. Front Cardiovasc Med. 2024;11:1345521. doi:10.3389/fcvm.2024.1345521; Schwarz N, Fernando S, Chen YC, Salagaras T, Rao SR, Liyanage S, et al. Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation. FASEB J. 2023;37(4):e22846. doi:10.1096/fj.202201469R; Zuriaga MA, Yu Z, Matesanz N, Truong B, Asensio-Lopez MC, Uddin MM, et al. Colchicine prevents accelerated atherosclerosis development in TET2-mutant clonal hematopoiesis. Eur Heart J. 2023;4(Suppl 2), ehad655.3264. doi.org/10.1093/eurheartj/ehad655.3264; Meyer-Lindemann U, Mauersberger C, Schmidt AC, Moggio A, Hinterdobler J, Li X, et al. Colchicine impacts leukocyte trafficking in atherosclerosis and reduces vascular inflammation. Front Immunol. 2022;13:898690. doi:10.3389/fimmu.2022.898690; Weng JH, Koch PD, Luan HH, Tu HC, Shimada K, Ngan I, et al. Colchicine acts selectively in the liver to induce hepatokines that inhibit myeloid cell activation. Nat Metab. 2021;3(4):513-522. doi:10.1038/s42255-021-00366-y; Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, et al. Gout. Nat Rev Dis Primers. 2019;5(1):69. doi:10.1038/s41572-019-0115-y; Martinon F. Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev. 2010;233(1):218-232. doi:10.1111/j.0105-2896.2009.00860.x; Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout. Clin Ther. 2014;36(10):1465-1479. doi:10.1016/j.clinthera.2014.07.017; McKenzie BJ, Wechalekar MD, Johnston RV, Schlesinger N, Buchbinder R. Colchicine for acute gout. Cochrane Database Syst Rev. 2022;8(8):CD006190. doi:10.1002/14651858.CD006190.pub3; Khanna D, Khanna PP, Fitzgerald JD, Singh MK, Bae S, Neogi T, et al.; American College of Rheumatology. 2012 American College of Rheumatology guidelines for management of gout. Part 2: Therapy and antiinflammatory prophylaxis of acute gouty arthritis. Arthritis Care Res (Hoboken). 2012;64(10):1447-1461. doi:10.1002/acr.21773; Елисеев МС. Рекомендации Американской коллегии ревматологов (2020 г.) по ведению больных подагрой: что нового и что спорно. Научно-практическая ревматология. 2021;59(2):129-133.; Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castañeda-Sanabria J, et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017;76(1):29-42. doi:10.1136/annrheumdis-2016-209707; Елисеев МС. Обновленные рекомендации EULAR по лечению подагры. Комментарии к некоторым позициям. Научно-практическая ревматология. 2017;55(6):600-609.; Насонов ЕЛ (ред.). Ревматология. Клинические рекоменда- ции. М.:ГЭОТАР-Медиа;2020. Nasonov EL (ed.). Rheumatology. Clinical guidelines. Moscow:GEOTAR-Media;2020 (In Russ.).; McCarthy GM, Dunne A. Calcium crystal deposition diseases – beyond gout. Nat Rev Rheumatol. 2018;14(10):592-602. doi:10.1038/s41584-018-0078-5; Владимиров СА, Елисеев МС. Современная стратегия лечения болезни депонирования кристаллов пирофосфата кальция. Научно-практическая ревматология. 2018;56(6):746-752.; Zhang W, Doherty M, Pascual E, Barskova V, Guerne PA, Jansen TL, et al. EULAR recommendations for calcium pyrophosphate deposition. Part II: Management. Ann Rheum Dis. 2011;70(4):571-575. doi:10.1136/ard.2010.139360; Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 2020;72(2):220-233. doi:10.1002/art.41142; Migliore A, Gigliucci G, Alekseeva L, Avasthi S, Bannuru RR, Chevalier X, et al. Treat-to-target strategy for knee osteoarthritis. International technical expert panel consensus and good clinical practice statements. Ther Adv Musculoskelet Dis. 2019;11:1759720X19893800. doi:10.1177/1759720X19893800; Bannuru RR, Osani MC, Vaysbrot EE, Arden NK, Bennell K, Bierma-Zeinstra SMA, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage. 2019;27(11):1578-1589. doi:10.1016/j.joca.2019.06.011; Singh A, Molina-Garcia P, Hussain S, Paul A, Das SK, Leung YY, et al. Efficacy and safety of colchicine for the treatment of osteoarthritis: A systematic review and meta-analysis of intervention trials. Clin Rheumatol. 2023;42(3):889-902. doi:10.1007/s10067-022-06402-w; Davis CR, Ruediger CD, Dyer KA, Lester S, Graf SW, Kroon FPB, et al. Colchicine is not effective for reducing osteoarthritic hand pain compared to placebo: A randomised, placebocontrolled trial (COLAH). Osteoarthritis Cartilage. 2021;29(2):208-214. doi:10.1016/j.joca.2020.11.002; Vincent TL. IL-1 in osteoarthritis: Time for a critical review of the literature. F1000Res. 2019;8. pii: F1000 Faculty Rev-934. doi:10.12688/f1000research.18831.1; Mobasheri A, van Spil WE, Budd E, Uzieliene I, Bernotiene E, Bay-Jensen AC, et al. Molecular taxonomy of osteoarthritis for patient stratification, disease management and drug development: Biochemical markers associated with emerging clinical phenotypes and molecular endotypes. Curr Opin Rheumatol. 2019;31(1):80-89. doi:10.1097/BOR.0000000000000567; Conway R, McCarthy GM. Calcium-containing crystals and osteoarthritis: An unhealthy alliance. Curr Rheumatol Rep. 2018;20(3):13. doi:10.1007/s11926-018-0721-9; Frallonardo P, Ramonda R, Peruzzo L, Scanu A, Galozzi P, Tauro L, et al. Basic calcium phosphate and pyrophosphate crystals in early and late osteoarthritis: relationship with clinical indices and inflammation. Clin Rheumatol. 2018;37(10):2847-2853. doi:10.1007/s10067-018-4166-3; McAllister MJ, Chemaly M, Eakin AJ, Gibson DS, McGilligan VE. NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthritis Cartilage. 2018;26(5):612-619. doi:10.1016/j.joca.2018.02.901; Heijman MWJ, Fiolet ATL, Mosterd A, Tijssen JGP, van den Bemt BJF, Schut A, et al. Association of low-dose colchicine with incidence of knee and hip replacements: Exploratory analyses from a randomized, controlled, double-blind trial. Ann Intern Med. 2023;176(6):737-742. doi:10.7326/M23-0289; Özen S, Batu ED, Demir S. Familial Mediterranean fever: Recent developments in pathogenesis and new recommendations for management. Front Immunol. 2017;8:253. doi:10.3389/fimmu.2017.00253; Lancieri M, Bustaffa M, Palmeri S, Prigione I, Penco F, Papa R, et al. An update on familial Mediterranean fever. Int J Mol Sci. 2023;24(11):9584. doi:10.3390/ijms24119584; Yin X, Tian F, Wu B, Xu T. Interventions for reducing inflammation in familial Mediterranean fever. Cochrane Database Syst Rev. 2022;3(3):CD010893. doi:10.1002/14651858.CD010893; Ozen S, Demirkaya E, Erer B, Livneh A, Ben-Chetrit E, Giancane G, et al. EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis. 2016;75(4):644-651. doi:10.1136/annrheumdis-2015-208690; Ozaltin F, Bilginer Y, Gülhan B, Bajin I, Erdogan O, Hayran M, et al. Diagnostic validity of colchicine in patients with Familial Mediterranean fever. Clin Rheumatol. 2014;33(7):969-674. doi:10.1007/s10067-014-2598-y; Batu ED, Şener S, Arslanoglu Aydin E, Aliyev E, Bagrul İ, Türkmen Ş, et al. A score for predicting colchicine resistance at the time of diagnosis in familial Mediterranean fever: Data from the TURPAID registry. Rheumatology (Oxford). 2024;63(3):791-797. doi:10.1093/rheumatology/kead242; Kilic B, Guler Y, Azman FN, Bostanci E, Ugurlu S. Efficacy and safety of anti-interleukin-1 treatment in familial Mediterranean fever patients: A systematic review and meta-analysis. Rheumatology (Oxford). 2024;63(4):925-935. doi:10.1093/rheumatology/kead514; Butbul Aviel Y, Tatour S, Gershoni Baruch R, Brik R. Colchicine as a therapeutic option in periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis (PFAPA) syndrome. Semin Arthritis Rheum. 2016;45(4):471-474. doi:10.1016/j.semarthrit.2015.07.005; Adrovic A, Sahin S, Barut K, Kasapcopur O. Familial Mediterranean fever and periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome: Shared features and main differences. Rheumatol Int. 2019;39(1):29-36. doi:10.1007/s00296-018-4105-2; Gaggiano C, Rigante D, Sota J, Grosso S, Cantarini L. Treatment options for periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome in children and adults: A narrative review. Clin Rheumatol. 2019;38(1):11-17. doi:10.1007/s10067-018-4361-2; Yazici H, Seyahi E, Hatemi G, Yazici Y. Behçet syndrome: A contemporary view. Nat Rev Rheumatol. 2018;14(2):119. doi:10.1038/nrrheum.2018.3; Алекберова ЗС. Болезнь Великого шелкового пути: от преданий в XXI век. Научно-практическая ревматология. 2015;53(1):5-8.; Gul A. Pathogenesis of Behçet’s disease: Autoinflammatory features and beyond. Semin Immunopathol. 2015;37(4):413-418. doi:10.1007/s00281-015-0502-8; Leccese P, Ozguler Y, Christensen R, Esatoglu SN, Bang D, Bodaghi B, et al. Management of skin, mucosa and joint involvement of Behçet’s syndrome: A systematic review for update of the EULAR recommendations for the management of Behçet’s syndrome. Semin Arthritis Rheum. 2019;48(4):752-762. doi:10.1016/j.semarthrit.2018.05.008; Hatemi G, Christensen R, Bang D, Bodaghi B, Celik AF, Fortune F, et al. 2018 update of the EULAR recommendations for the management of Behçet’s syndrome. Ann Rheum Dis. 2018;77(6):808-818. doi:10.1136/annrheumdis-2018-213225; Лисицына ТА, Алекберова ЗС, Голоева Р.Г. Новые рекомендации по ведению пациентов с болезнью/синдромом Бехчета (EULAR, 2018). Научно-практическая ревматология. 2019;57(2):133-141.; Pakfetrat A, Mansourian A, Momen-Heravi F, Delavarian Z, Momen-Beitollahi J, Khalilzadeh O, et al. Comparison of colchicine versus prednisolone in recurrent aphthous stomatitis: A double-blind randomized clinical trial. Clin Invest Med. 2010;33(3):E189-E195. doi:10.25011/cim.v33i3.13725; Dastoli S, Nisticò SP, Morrone P, Patruno C, Leo A, Citraro R, et al. Colchicine in managing skin conditions: A systematic review. Pharmaceutics. 2022;14(2):294. doi:10.3390/pharmaceutics14020294; Welzel T, Wildermuth AL, Deschner N, Benseler SM, Kuemmerle-Deschner JB. Colchicine – an effective treatment for children with a clinical diagnosis of autoinflammatory diseases without pathogenic gene variants. Pediatr Rheumatol Online J. 2021;19(1):142. doi:10.1186/s12969-021-00588-0; Kuemmerle-Deschner JB, Schock AL, Hansmann S, Benseler S. Colchicine: An effective treatment option for unclassified autoinflammatory diseases in children. Arthritis Rheumatol. 2018;70(Suppl 9):2277.; Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2015;36(42):2921-2964. doi:10.1093/eurheartj/ehv318; Арутюнов ГП, Палеев ФН, Тарловская ЕИ, Моисеева ОМ, Арутюнов АГ, Козиолова НА, и др. Перикардиты. Клинические рекомендации 2022. Российский кардиологический журнал. 2023;28(3):101.; Rodríguez de la Serna A, Guindo Soldevila J, Martí Claramunt V, Bayés de Luna A. Colchicine for recurrent pericarditis. Lancet. 1987;2(8574):1517. doi:10.1016/s0140-6736(87)92641-9; Imazio M, Bobbio M, Cecchi E, Demarie D, Demichelis B, Pomari F, et al. Colchicine in addition to conventional therapy for acute pericarditis: Results of the COlchicine for acute PEricarditis (COPE) trial. Circulation. 2005;112(13):2012-2016. doi:10.1161/CIRCULATIONAHA.105.542738; Imazio M, Bobbio M, Cecchi E, Demarie D, Pomari F, Moratti M, et al. Colchicine as first-choice therapy for recurrent pericarditis: Results of the CORE (COlchicine for REcurrent pericarditis) trial. Arch Intern Med. 2005;165(17):1987-1991. doi:10.1001/archinte.165.17.1987; Imazio M, Brucato A, Cemin R, Ferrua S, Belli R, Maestroni S, et al.; CORP (COlchicine for Recurrent Pericarditis) Investigators. Colchicine for recurrent pericarditis (CORP): A randomized trial. Ann Intern Med. 2011;155(7):409-414. doi:10.7326/0003-4819-155-7-201110040-00359; Imazio M, Brucato A, Cemin R, Ferrua S, Maggiolini S, Beqaraj F, et al.; ICAP Investigators. A randomized trial of colchicine for acute pericarditis. N Engl J Med. 2013;369(16):1522-1528. doi:10.1056/NEJMoa1208536; Imazio M, Belli R, Brucato A, Cemin R, Ferrua S, Beqaraj F, et al. Efficacy and safety of colchicine for treatment of multiple recurrences of pericarditis (CORP-2): A multicentre, doubleblind, placebo-controlled, randomised trial. Lancet. 2014;383(9936):2232-2237. doi:10.1016/S0140-6736(13)62709-9; Sambola A, Roca Luque I, Mercé J, Alguersuari J, Francisco-Pascual J, García-Dorado D, et al. Colchicine administered in the first episode of acute idiopathic pericarditis: A randomized multicenter open-label study. Rev Esp Cardiol (Engl Ed). 2019;72(9):709-716. doi:10.1016/j.rec.2018.11.016; Finkelstein Y, Shemesh J, Mahlab K, Abramov D, Bar-El Y, Sagie A, et al. Colchicine for the prevention of postpericardiotomy syndrome. Herz. 2002;27(8):791-794. doi:10.1007/s00059-002-2376-5; Imazio M, Trinchero R, Brucato A, Rovere ME, Gandino A, Cemin R, et al.; COPPS Investigators. COlchicine for the Prevention of the Post-pericardiotomy Syndrome (COPPS): A multicentre, randomized, double-blind, placebo-controlled trial. Eur Heart J. 2010;31(22):2749-2754. doi:10.1093/eurheartj/ehq319; Imazio M, Brucato A, Ferrazzi P, Pullara A, Adler Y, Barosi A, et al.; COPPS-2 Investigators. Colchicine for prevention of postpericardiotomy syndrome and postoperative atrial fibrillation: The COPPS-2 randomized clinical trial. JAMA. 2014;312(10):1016-1023. doi:10.1001/jama.2014.11026; Meurin P, Lelay-Kubas S, Pierre B, Pereira H, Pavy B, Iliou MC, et al.; French Society of Cardiology. Colchicine for postoperative pericardial effusion: A multicentre, doubleblind, randomised controlled trial. Heart. 2015;101(21):1711-1716. doi:10.1136/heartjnl-2015-307827; Pan T, Jiang CY, Zhang H, Han XK, Zhang HT, Jiang XY, et al. The low-dose colchicine in patients after non-CABG cardiac surgery: A randomized controlled trial. Crit Care. 2023;27(1):49. doi:10.1186/s13054-023-04341-9; Collini V, De Martino M, Andreis A, De Biasio M, Gaspard F, Paneva E, et al. Efficacy and safety of colchicine for the treatment of myopericarditis. Heart. 2024;110(10):735-739. doi:10.1136/heartjnl-2023-323484; van Osch D, Nathoe HM, Jacob KA, Doevendans PA, van Dijk D, Suyker WJ, et al. Determinants of the postpericardiotomy syndrome: A systematic review. Eur J Clin Invest. 2017;47(6):456-467. doi:10.1111/eci.12764; Imazio M, Brucato A, Ferrazzi P, Spodick DH, Adler Y. Postpericardiotomy syndrome: A proposal for diagnostic criteria. J Cardiovasc Med (Hagerstown). 2013;14(5):351-353. doi:10.2459/JCM.0b013e328353807d; Lutschinger LL, Rigopoulos AG, Schlattmann P, Matiakis M, Sedding D, Schulze PC, et al. Meta-analysis for the value of colchicine for the therapy of pericarditis and of postpericardiotomy syndrome. BMC Cardiovasc Disord. 2019;19(1):207. doi:10.1186/12872-019-1190-4; Alsabri M, Elsayed SM, Elsnhory AB, Abouelmagd K, Ayyad M, Alqeeq BF, et al. Efficacy and safety of colchicine in pediatric pericarditis: A systematic review and future directions. Pediatr Cardiol. 2024 Jul 30. doi:10.1007/s00246-024-03606-6; Somani N, Breur H. The efficacy of corticosteroids, NSAIDs, and colchicine in the treatment of pediatric postoperative pericardial effusion. Pediatr Cardiol. 2022;43(2):279-289. doi:10.1007/s00246-022-02820-4; Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135-1143. doi:10.1161/hc0902.104353; Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, et al. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J Am Coll Cardiol. 2018;72(17):2071-2081. doi:10.1016/j.jacc.2018.08.1043; Libby PJ. An interleukin-1 beta as a target for atherosclerosis therapy: Biological basis of CANTOS and beyond. J Amer Coll Cardiol. 2017;70(18):2278-2289. doi:10.1016/j.jacc.2017.09.028; Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145-156. doi:10.1161/CIRCRESAHA.115.306656; Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al.; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119-1131. doi:10.1056/NEJMoa1707914; Насонов ЕЛ, Попкова ТВ. Атеросклероз: перспективы противовоспалительной терапии. Терапевтический архив. 2018;90(5):4-12.; Gager GM, Biesinger B, Hofer F, Winter MP, Hengstenberg C, Jilma B, et al. Interleukin-6 level is a powerful predictor of long-term cardiovascular mortality in patients with acute coronary syndrome. Vascul Pharmacol. 2020;135:106806. doi:10.1016/j.vph.2020.106806; Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res. 2021;128(11): 1728-1746. doi:10.1161/CIRCRESAHA.121.319077; Khan MS, Talha KM, Maqsood MH, Rymer JA, Borlaug BA, Docherty KF, et al. Interleukin-6 and cardiovascular events in healthy adults: MESA. JACC Adv. 2024;3(8):101063. doi:10.1016/j.jacadv.2024.101063; McCarthy CP, McEvoy JW, Januzzi JL Jr. Biomarkers in stable coronary artery disease. Am Heart J. 2018;196:82-96. doi:10.1016/j.ahj.2017.10.016; Pan Z, Cheng J, Yang W, Chen L, Wang J. Effect of colchicine on inflammatory markers in patients with coronary artery disease: A meta-analysis of clinical trials. Eur J Pharmacol. 2022;927:175068. doi:10.1016/j.ejphar.2022.175068; Alam M, Kontopantelis E, Mamas MA, Savinova OV, Jhaveri A, Siddiqui E, et al. Meta-analysis of the effect of colchicine on C-reactive protein in patients with acute and chronic coronary syndromes. Coron Artery Dis. 2023;34(3):210-215. doi:10.1097/MCA.0000000000001220; Sun M, Dubé MP, Hennessy T, Schultz CJ, Barhdadi A, Rhainds D, et al. Low-dose colchicine and high-sensitivity C-reactive protein after myocardial infarction: A combined analysis using individual patient data from the COLCOT and LoDoCo-MI studies. Int J Cardiol. 2022;363:20-22. doi:10.1016/j.ijcard.2022.06.028; Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61(4):404-410. doi:10.1016/j.jacc.2012.10.027; Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al.; LoDoCo2 Trial Investigators. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838-1847. doi:10.1056/NEJMoa2021372; Tong DC, Quinn S, Nasis A, Hiew C, Roberts-Thomson P, Adams H, et al. Colchicine in patients with acute coronary syndrome: The Australian COPS randomized clinical trial. Circulation. 2020;142(20):1890-1900. doi:10.1161/CIRCULATIONAHA.120.050771; Mewton N, Roubille F, Bresson D, Prieur C, Bouleti C, Bochaton T, et al. Effect of colchicine on myocardial injury in acute myocardial infarction. Circulation. 2021;144(11):859-869. doi:10.1161/CIRCULATIONAHA.121.056177; Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497-2505. doi:10.1056/NEJMoa1912388; O’Keefe JH Jr, McCallister BD, Bateman TM, Kuhnlein DL, Ligon RW, Hartzler GO. Ineffectiveness of colchicine for the prevention of restenosis after coronary angioplasty. J Am Coll Cardiol. 1992;19(7):1597-1600. doi:10.1016/0735-1097(92)90624-v; Deftereos S, Giannopoulos G, Raisakis K, Kossyvakis C, Kaoukis A, Panagopoulou V, et al. Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. J Am Coll Cardiol. 2013;61(16):1679-1685. doi:10.1016/j.jacc.2013.01.055; Shah B, Pillinger M, Zhong H, Cronstein B, Xia Y, Lorin JD, et al. Effects of acute colchicine administration prior to percutaneous coronary intervention: COLCHICINE-PCI randomized trial. Circ Cardiovasc Interv. 2020;13(4):e008717. doi:10.1161/CIRCINTERVENTIONS.119.008717; Cole J, Htun N, Lew R, Freilich M, Quinn S, Layland J. Colchicine to Prevent Periprocedural Myocardial Injury in Percutaneous Coronary Intervention: The COPE-PCI pilot trial. Circ Cardiovasc Interv. 2021;14(5):e009992. doi:10.1161/CIRCINTERVENTIONS.120.009992; Imazio M, Brucato A, Ferrazzi P, Rovere ME, Gandino A, Cemin R, et al.; COPPS Investigators. Colchicine reduces postoperative atrial fibrillation: Results of the Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) atrial fibrillation substudy. Circulation. 2011;124(21):2290-2295. doi:10.1161/CIRCULATIONAHA.111.026153; Imazio M, Brucato A, Ferrazzi P, Pullara A, Adler Y, Barosi A, et al.; COPPS-2 Investigators. Colchicine for prevention of postpericardiotomy syndrome and postoperative atrial fibrillation: the COPPS-2 randomized clinical trial. JAMA. 2014;312(10): 1016-1023. doi:10.1001/jama.2014.11026; Sarzaeem M, Shayan N, Bagheri J, Jebelli M, Mandegar M. Low dose colchicine in prevention of atrial fibrillation after coronary artery bypass graft: A double blind clinical trial. Tehran Univ Med J. 2014;72:147-154.; Zarpelon CS, Netto MC, Jorge JC, Fabris CC, Desengrini D, Jardim Mda S, et al. Colchicine to reduce atrial fibrillation in the postoperative period of myocardial revascularization. Arq Bras Cardiol. 2016;107(1):4-9. doi:10.5935/abc.20160082; Tabbalat RA, Alhaddad I, Hammoudeh A, Khader YS, Khalaf HA, Obaidat M, et al. Effect of Low-dose ColchiciNe on the InciDence of Atrial Fibrillation in Open Heart Surgery Patients: END-AF low dose trial. J Int Med Res. 2020;48(7):300060520939832. doi:10.1177/0300060520939832; Deftereos S, Giannopoulos G, Kossyvakis C, Efremidis M, Panagopoulou V, Kaoukis A, et al. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: A randomized controlled study. J Am Coll Cardiol. 2012;60(18):1790-1796. doi:10.1016/j.jacc.2012.07.031; Deftereos S, Giannopoulos G, Efremidis M, Kossyvakis C, Katsivas A, Panagopoulou V, et al. Colchicine for prevention of atrial fibrillation recurrence after pulmonary vein isolation: Mid-term efficacy and effect on quality of life. Heart Rhythm. 2014;11(4):620-628. doi:10.1016/j.hrthm.2014.02.002; Conen D, Ke Wang M, Popova E, Chan MTV, Landoni G, Cata JP, et al.; COP-AF Investigators. Effect of colchicine on perioperative atrial fibrillation and myocardial injury after non-cardiac surgery in patients undergoing major thoracic surgery (COP-AF): An international randomised trial. Lancet. 2023;402(10413):1627-1635. doi:10.1016/S0140-6736(23)01689-6; Shvartz V, Le T, Enginoev S, Sokolskaya M, Ispiryan A, Shvartz E, et al. Colchicine in Cardiac Surgery: The COCS randomized clinical trial. J Cardiovasc Dev Dis. 2022;9(10):363. doi:10.3390/jcdd9100363; Kelly P, Lemmens R, Weimar C, Walsh C, Purroy F, Barber M, et al. Long-term colchicine for the prevention of vascular recurrent events in non-cardioembolic stroke (CONVINCE): A randomised controlled trial. Lancet. 2024;404(10448):125-133. doi:10.1016/S0140-6736(24)00968-1; Li J, Meng X, Shi FD, Jing J, Gu HQ, Jin A, et al.; CHANCE-3 Investigators. Colchicine in patients with acute ischaemic stroke or transient ischaemic attack (CHANCE-3): Multicentre, double blind, randomised, placebo controlled trial. BMJ. 2024;385:e079061. doi:10.1136/bmj-2023-079061; Opstal TSJ, Nidorf SM, Fiolet ATL, Eikelboom JW, Mosterd A, Bax WA, et al. Drivers of mortality in patients with chronic coronary disease in the low-dose colchicine 2 trial. Int J Cardiol. 2023;372:1-5. doi:10.1016/j.ijcard.2022.12.026; Opstal TSJ, Fiolet ATL, van Broekhoven A, Mosterd A, Eikelboom JW, Nidorf SM, et al.; LoDoCo2 Trial Investigators. Colchicine in patients with chronic coronary disease in relation to prior acute coronary syndrome. J Am Coll Cardiol. 2021;78(9):859-866. doi:10.1016/j.jacc.2021.06.037; Mohammadnia N, Los J, Opstal TSJ, Fiolet ATL, Eikelboom JW, Mosterd A, et al. Colchicine and diabetes in patients with chronic coronary artery disease: Insights from the LoDo-Co2 randomized controlled trial. Front Cardiovasc Med. 2023;10:1244529. doi:10.3389/fcvm.2023.1244529; Boczar KE, Shin S, deKemp RA, Dowlatshahi D, Tavoosi A, Wiefels C, et al. The Canadian Study of Arterial Inflammation in Patients with Diabetes and Recent Vascular Events, Evaluation of Colchicine Effectiveness (CADENCE): Protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open. 2023;13(11):e074463. doi:10.1136/bmjopen-2023-074463; Mastrocola R, Penna C, Tullio F, Femminò S, Nigro D, Chiazza F, et al. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid Med Cell Longev. 2016;2016:5271251. doi:10.1155/2016/5271251; Deftereos S, Giannopoulos G, Angelidis C, Alexopoulos N, Filippatos G, Papoutsidakis N, et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: A pilot study. Circulation. 2015;132(15):1395-1403. doi:10.1161/CIRCULATIONAHA.115.017611; Hennessy T, Soh L, Bowman M, Kurup R, Schultz C, Patel S, et al. The Low Dose Colchicine after Myocardial Infarction (LoDoCo-MI) study: A pilot randomized placebo controlled trial of colchicine following acute myocardial infarction. Am Heart J. 2019;215:62-69. doi:10.1016/j.ahj.2019.06.003; Chen T, Liu G, Yu B. A meta-analysis evaluating efficacy and safety of colchicine for prevention of major cardiovascular events in patients with coronary artery disease. Clin Res Cardiol. 2023;112(11):1487-1505. doi:10.1007/s00392-023-02254-9; Akl E, Sahami N, Labos C, Genest J, Zgheib A, Piazza N, et al. Meta-analysis of randomized trials: Efficacy and safety of colchicine for secondary prevention of cardiovascular disease. J Interv Cardiol. 2024;2024:8646351. doi:10.1155/2024/8646351; Zhou Y, Liu Y, Zeng R, Qiu W, Zhao Y, Zhou Y. Early longterm low-dosage colchicine and major adverse cardiovascular events in patients with acute myocardial infarction: A systematic review and meta-analysis. Front Cardiovasc Med. 2023;10:1194605. doi:10.3389/fcvm.2023.1194605; Herrmann J, Lennon RJ, Barsness GW, Sandhu GS, Gulati R, Best PJ, et al. High sensitivity C-reactive protein and outcomes following percutaneous coronary intervention in contemporary practice. Circ Cardiovasc Interv. 2012;5(6):783-790. doi:10.1161/CIRCINTERVENTIONS.112.972182; Shah B, Baber U, Pocock SJ, Krucoff MW, Ariti C, Gibson CM, et al. White blood cell count and major adverse cardiovascular events after percutaneous coronary intervention in the contemporary era: Insights from the PARIS Study (Patterns of Non-Adherence to Anti-Platelet Regimens in Stented Patients Registry). Circ Cardiovasc Interv. 2017;10(9):e004981. doi:10.1161/CIRCINTERVENTIONS.117.004981; Chen A, Lu D, Yang Z, Che X, Xia Y, Shao X, et al. Association between NLRP3 inflammasome and periprocedural myocardial injury following elective PCI. Heliyon. 2023;9(8):e19269. doi:10.1016/j.heliyon.2023.e19269; Shah B, Smilowitz NR, Xia Y, Feit F, Katz SD, Zhong J, et al. Major adverse cardiovascular events after colchicine administration before percutaneous coronary intervention: Follow-up of the Colchicine-PCI trial. Am J Cardiol. 2023;204:26-28. doi:10.1016/j.amjcard.2023.07.029; Kommu S, Arepally S. The effect of colchicine on atrial fibrillation: A systematic review and meta-analysis. Cureus. 2023;15(2):e35120. doi:10.7759/cureus.35120; Zhao H, Chen Y, Mao M, Yang J, Chang J. A meta-analysis of colchicine in prevention of atrial fibrillation following cardiothoracic surgery or cardiac intervention. J Cardiothorac Surg. 2022;17(1):224. doi:10.1186/s13019-022-01958-9; Wang X, Peng X, Li Y, Lin R, Liu X, Ruan Y, et al. Colchicine for prevention of post-cardiac surgery and post-pulmonary vein isolation atrial fibrillation: A meta-analysis. Rev Cardiovasc Med. 2022;23(12):387. doi:10.31083/j.rcm2312387; Zietz A, Gorey S, Kelly PJ, Katan M, McCabe JJ. Targeting inflammation to reduce recurrent stroke. Int J Stroke. 2024;19(4):379-387. doi:10.1177/17474930231207777; Samuel M, Tardif JC, Bouabdallaoui N, Khairy P, Dubé MP, Blondeau L, et al. Colchicine for secondary prevention of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Can J Cardiol. 2021;37(5):776-785. doi:10.1016/j.cjca.2020.10.006; Fiolet ATL, Opstal TSJ, Mosterd A, Eikelboom JW, Jolly SS, Keech AC, et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: A systematic review and metaanalysis of randomized trials. Eur Heart J. 2021;42(28): 2765-2775; Masson W, Lobo M, Molinero G, Masson G, Lavalle-Cobo A. Role of colchicine in stroke prevention: An updated meta-analysis. J Stroke Cerebrovasc Dis. 2020;29(5):104756. doi:10.1016/j.jstrokecerebrovasdis.2020.104756; Yeh JJ, Kuo IL, Yip HT, Hsueh MY, Hsu CY, Kao CH. Effects of colchicine use on ischemic and hemorrhagic stroke risk in diabetic patients with and without gout. Sci Rep. 2022;12(1):9195. doi:10.1038/s41598-022-13133-0; Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2021;18(6):400-423. doi:10.1038/s41569-020-00480-6; Deftereos S, Giannopoulos G, Panagopoulou V, Bouras G, Raisakis K, Kossyvakis C, et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: A prospective, randomized study. JACC Heart Fail. 2014;2(2):131-137. doi:10.1016/j.jchf.2013.11.006; Shchendrygina A, Rachina S, Cherkasova N, Suvorov A, Komarova I, Mukhina N, et al. Colchicine in patients with heart failure and preserved left ventricular ejection fraction: Rationale and design of a prospective, randomised, open-label, crossover clinical trial. Open Heart. 2023;10(2):e002360. doi:10.1136/openhrt-2023-002360; Bourcier L, Bellemare M, Tremblay-Gravel M, Henri C, White M, Bouabdallaoui N. Effects of COLchicine on inflammation, myocardial damage and microvascular dysfunction in heart failure with Preserved Ejection Fraction – the COLpEF trial. Arch Cardiovasc Dis. 2023;15(Suppl):28-59.; Sun X, Duan J, Gong C, Feng Y, Hu J, Gu R, et al. Colchicine ameliorates dilated cardiomyopathy via SIRT2-mediated suppression of NLRP3 inflammasome activation. J Am Heart Assoc. 2022;11(13):e025266. doi:10.1161/JAHA.122.025266; Pi S, Xiong S, Yuan Y, Deng H. The role of inflammasome in abdominal aortic aneurysm and its potential drugs. Int J Mol Sci. 2024;25(9):5001. doi:10.3390/ijms25095001; Chen M, Yang D, Zhou Y, Yang C, Lin W, Li J, et al. Colchicine blocks abdominal aortic aneurysm development by maintaining vascular smooth muscle cell homeostasis. Int J Biol Sci. 2024;20(6):2092-2110. doi:10.7150/ijbs.93544; Hu J, Xu J, Zhao J, Liu Y, Huang R, Yao D, et al. Colchicine ameliorates short-term abdominal aortic aneurysms by inhibiting the expression of NLRP3 inflammasome components in mice. Eur J Pharmacol. 2024;964:176297. doi:10.1016/j.ejphar.2023.176297; Crittenden DB, Lehmann RA, Schneck L, Keenan RT, Shah B, Greenberg JD, et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J Rheumatol. 2012;39(7):1458-1464. doi:10.3899/jrheum.111533; Shah B, Toprover M, Crittenden DB, Jeurling S, Pike VC, Krasnokutsky S, et al. Colchicine use and incident coronary artery disease in male patients with gout. Can J Cardiol. 2020;36(11): 1722-1728. doi:10.1016/j.cjca.2020.05.026; Langevitz P, Livneh A, Neumann L, Buskila D, Shemer J, Amolsky D, et al. Prevalence of ischemic heart disease in patients with familial Mediterranean fever. Isr Med Assoc J. 2001;3(1):9-12.; Solomon DH, Liu CC, Kuo IH, Zak A, Kim SC. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: A cohort study using electronic medical records linked with Medicare claims. Ann Rheum Dis. 2016;75(9):1674-1679. doi:10.1136/annrheumdis-2015-207984; Siddiqui MU, Junarta J, Sathyanarayanan S, Kochar K, Ullah W, Fischman DL. Risk of coronary artery disease in patients with gout on treatment with colchicine: A systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2023;45:101191. doi:10.1016/j.ijcha.2023.101191; Ho GH, Toprover M, Crittenden DB, Shah B, Pillinger MH. Colchicine use and major adverse cardiovascular events in male patients with gout and established coronary artery disease: A veterans affairs nested retrospective cohort study. Gout Urate Cryst Dep Dis. 2023;1(1):11-24. doi:10.3390/gucdd1010003; Елисеев МС, Черёмушкина ЕВ, Желябина ОВ, Чикина МН, Капитонова АА, Новикова АА, и др. Влияние терапии колхицином, метотрексатом и гидроксихлорохином на сердечно-сосудистые исходы у пациентов с болезнью депонирования кристаллов пирофосфата кальция. Современная ревматология. 2021;15(6):76-83.; Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375(6585): 1122-1127. doi:10.1126/science.abm8108; van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. doi:10.1038/s41591-021-01643-9; Reyes AZ, Hu KA, Teperman J, Wampler Muskardin TL, Tardif JC, Shah B, et al. Anti-inflammatory therapy for COVID-19 infection: The case for colchicine. Ann Rheum Dis. 2021;80(5):550-557. doi:10.1136/annrheumdis-2020-219174; Lopes MI, Bonjorno LP, Giannini MC, Amaral NB, Menezes PI, Dib SM, et al. Beneficial effects of colchicine for moderate to severe COVID-19: A randomised, double-blinded, placebocontrolled clinical trial. RMD Open. 2021;7(1):e001455. doi:10.1136/rmdopen-2020-001455; Elshiwy K, Amin GEE, Farres MN, Samir R, Allam MF. The role of colchicine in the management of COVID-19: A metaanalysis. BMC Pulm Med. 2024;24(1):190. doi:10.1186/s12890-024-03001-0; RECOVERY Collaborative Group. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet Respir Med. 2021;9(12):1419-1426. doi:10.1016/S2213-2600(21)00435-5; Tardif JC, Bouabdallaoui N, L’Allier PL, Gaudet D, Shah B, Pillinger MH, et al.; COLCORONA Investigators. Colchicine for community-treated patients with COVID-19 (COLCORONA): A phase 3, randomised, double-blinded, adaptive, placebocontrolled, multicentre trial. Lancet Respir Med. 2021;9(8):924-932. doi:10.1016/S2213-2600(21)00222-8; Mikolajewska A, Fischer AL, Piechotta V, Mueller A, Metzendorf MI, Becker M, et al. Colchicine for the treatment of COVID-19. Cochrane Database Syst Rev. 2021;10(10):CD015045. doi:10.1002/14651858.CD015045; Rabbani A, Rafique A, Wang X, Campbell D, Wang D, Brownell N, et al. Colchicine for the treatment of cardiac injury in hospitalized patients with coronavirus disease-19. Front Cardiovasc Med. 2022;9:876718. doi:10.3389/fcvm.2022.876718; Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, et al. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res. 2023;119(11):2046-2060. doi:10.1093/cvr/cvad084; Zuin M, Imazio M, Rigatelli G, Pasquetto G, Bilato C. Risk of incident pericarditis after coronavirus disease 2019 recovery: A systematic review and meta-analysis. J Cardiovasc Med (Hagerstown). 2023;24(11):822-828. doi:10.2459/JCM.0000000000001536; DeVries A, Shambhu S, Sloop S, Overhage JM. One-year adverse outcomes among US adults with post-COVID-19 condition vs those without COVID-19 in a large commercial insurance database. JAMA Health Forum. 2023;4(3):e230010. doi:10.1001/jamahealthforum.2023.0010; Zuin M, Rigatelli G, Bilato C, Porcari A, Merlo M, Roncon L, et al. One-year risk of myocarditis after COVID-19 infection: A systematic review and meta-analysis. Can J Cardiol. 2023;39(6):839-844. doi:10.1016/j.cjca.2022.12.003; Zuin M, Mazzitelli M, Rigatelli G, Bilato C, Cattelan AM. Risk of ischemic stroke in patients recovered from COVID-19 infection: A systematic review and meta-analysis. Eur Stroke J. 2023;8(4):915-922. doi:10.1177/23969873231190432; Toraldo DM, Satriano F, Rollo R, Verdastro G, Imbriani G, Rizzo E, et al. COVID-19 IgG/IgM patterns, early IL-6 elevation and long-term radiological sequelae in 75 patients hospitalized due to interstitial pneumonia followed up from 3 to 12 months. PLoS One. 2022;17(2):e0262911. doi:10.1371/journal.pone.0262911; Yong SJ, Halim A, Halim M, Liu S, Aljeldah M, Al Shammari BR, et al. Inflammatory and vascular biomarkers in post-COVID-19 syndrome: A systematic review and meta-analysis of over 20 biomarkers. Rev Med Virol. 2023;33(2):e2424. doi:10.1002/rmv.2424; Lai YJ, Liu SH, Manachevakul S, Lee TA, Kuo CT, Bello D. Biomarkers in long COVID-19: A systematic review. Front Med (Lausanne). 2023;10:1085988. doi:10.3389/fmed.2023.1085988; Lu J, He Y, Terkeltaub R, Sun M, Ran Z, Xu X, et al. Colchicine prophylaxis is associated with fewer gout flares after COVID-19 vaccination. Ann Rheum Dis. 2022;81(8):1189-1193. doi:10.1136/annrheumdis-2022-222199; Yeh JJ, Hung TW, Lin CL, Chen TT, Liw PX, Yu YL, et al. Colchicine is a weapon for managing the heart disease among interstitial lung disease with viral infection: Have we found the Holy Grail? Front Cardiovasc Med. 2022;9:925211. doi:10.3389/fcvm.2022.925211; Chidambaram V, Kumar A, Sadaf MI, Lu E, Al’Aref SJ, Tarun T, et al. COVID-19 in the initiation and progression of atherosclerosis: Pathophysiology during and beyond the acute phase. JACC Adv. 2024;3(8):101107. doi:10.1016/j.jacadv.2024.101107; Patrono C. Low-dose aspirin for the prevention of atherosclerotic cardiovascular disease. Eur Heart J. 2024;45(27):2362-2376. doi:10.1093/eurheartj/ehae324; Weber C, Habenicht AJR, von Hundelshausen P. Novel mechanisms and therapeutic targets in atherosclerosis: Inflammation and beyond. Eur Heart J. 2023;44(29):2672-2681. doi:10.1093/eurheartj/ehad304; Samuel M, Tardif JC, Khairy P, Roubille F, Waters DD, Grégoire JC, et al. Cost-effectiveness of low-dose colchicine after myocardial infarction in th Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J Qual Care Clin Outcomes. 2021;7(5):486-495. doi:10.1093/ehjqcco/qcaa045; Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al.; IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387-2397. doi:10.1056/NEJMoa1410489; Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al.; FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713-1722. doi:10.1056/NEJMoa1615664; Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al.; ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097-2107. doi:10.1056/NEJMoa1801174; Buckley LF, Libby P. Colchicine’s role in cardiovascular disease management. Arterioscler Thromb Vasc Biol. 2024;44(5):1031-1041. doi:10.1161/ATVBAHA.124.319851; Nelson K, Fuster V, Ridker PM. Low-dose colchicine for secondary prevention of coronary artery disease: JACC review topic of the week. J Am Coll Cardiol. 2023;82(7):648-660. doi:10.1016/j.jacc.2023.05.055; Ridker PM. The time to initiate anti-inflammatory therapy for patients with chronic coronary atherosclerosis has arrived. Circulation. 2023;148(14):1071-1073. doi:10.1161/CIRCULATIONAHA.123.066510; Ridker PM. Targeting residual inflammatory risk: The next frontier for atherosclerosis treatment and prevention. Vascul Pharmacol. 2023;153:107238. doi:10.1016/j.vph.2023.107238; Li Z, Lin C, Cai X, Hu S, Lv F, Yang W, et al. Anti-inflammatory therapies were associated with reduced risk of myocardial infarction in patients with established cardiovascular disease or high cardiovascular risks: A systematic review and meta-analysis of randomized controlled trials. Atherosclerosis. 2023;379:117181. doi:10.1016/j.atherosclerosis.2023.06.972; Karpouzas GA, Ormseth SR, van Riel PLCM, Gonzalez-Gay MA, Corrales A, Rantapää-Dahlqvist S, et al. Biological use influences the impact of inflammation on risk of major adverse cardiovascular events in rheumatoid arthritis. RMD Open. 2024;10(3):e004546. doi:10.1136/rmdopen-2024-004546; Robinson PC, Terkeltaub R, Pillinger MH, Shah B, Karalis V, Karatza E, et al. Consensus statement regarding the efficacy and safety of long-term low-dose colchicine in gout and cardiovascular disease. Am J Med. 2022;135(1):32-38. doi:10.1016/j.amjmed.2021.07.025; Алекберова ЗС, Насонов ЕЛ. Перспективы применения колхицина в медицине: новые данные. Научно-практическая ревматология. 2020;58(2):183-190.; Nidorf SM, Ben-Chetrit E, Ridker PM. Low-dose colchicine for atherosclerosis: Long-term safety. Eur Heart J. 2024;45(18):1596-1601. doi:10.1093/eurheartj/ehae208; Stewart S, Yang KCK, Atkins K, Dalbeth N, Robinson PC. Adverse events during oral colchicine use: A systematic review and meta-analysis of randomised controlled trials. Arthritis Res Ther. 2020;22(1):28. doi:10.1186/s13075-020-2120-7; Yeh JJ, Liw PX, Wong YS, Kao HM, Lee CH, Lin CL, et al. The effect of colchicine on cancer risk in patients with immunemediated inflammatory diseases: A time-dependent study based on the Taiwan’s National Health Insurance Research Database. Eur J Med Res. 2024;29(1):245. doi:10.1186/s40001-024-01836-1; Elwood P, Morgan G, Watkins J, Protty M, Mason M, Adams R, et al. Aspirin and cancer treatment: Systematic reviews and metaanalyses of evidence: For and against. Br J Cancer. 2024;130(1):3-8. doi:10.1038/s41416-023-02506-5; Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG, Nissen SE; PROMINENT, REDUCE-IT, and STRENGTH Investigators. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet. 2023;401(10384): 1293-1301. doi:10.1016/S0140-6736(23)00215-5; Ridker PM. From CANTOS to CIRT to COLCOT to Clinic: Will all atherosclerosis patients soon be treated with combination lipid-lowering and inflammation-inhibiting agents? Circulation. 2020;141(10):787-789. doi:10.1161/CIRCULATIONAHA.119.045256; Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al.; ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34): 3227-3337. doi:10.1093/eurheartj/ehab484; Institut de Cardiologie de Montréal. Health Canada approval of lowdose colchicine for cardiovascular disease based on the COLCOT study media release. 2021. URL: https://www.icmmhi.org/en/pressroom/news/health-canada-approval-low-dosecolchicine-cardiovascular-disease-based-colcot-study (Accessed: DD November 2023).

  4. 4
    Academic Journal

    المصدر: AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; Vol. 3 No. 2 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 276-284 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 2 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 276-284 ; 2181-3469

    وصف الملف: application/pdf

  5. 5
    Academic Journal

    المساهمون: The article is sponsored by Generium., Статья спонсируется компанией «Генериум».

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 16, No 3 (2024); 117-122 ; Неврология, нейропсихиатрия, психосоматика; Vol 16, No 3 (2024); 117-122 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2024-3

    وصف الملف: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2278/1665; Anaya JM, Ramirez-Santana C, Alzate MA, et al. The Autoimmune Ecology. Front Immunol. 2016 Apr 26;7:139. doi:10.3389/fimmu.2016.00139; Pittock SJ, Weinshenker BG, Lucchinetti CF, et al. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol. 2006 Jul;63(7):964-8. doi:10.1001/archneur.63.7.964; Wingerchuk DM, Banwell B, Bennett JL, et al. International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015 Jul 14;85(2):177-89. doi:10.1212/WNL.0000000000001729. Epub 2015 Jun 19.; Simaniv TO, Vasil'ev AV, Askarova LSh, Zakharova MN. Neuromyelitis optica and neuromyelitis optica spectrum disorders. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10-2):35-48. doi:10.17116/jnevro20191191035 (In Russ.).; Vekhina EA, Shumakov IE, Matson MD, et al. Clinical and epidemiological characteristics of patients with neuromyelitis optica spectrum disorders in the Yaroslavl region. Nervnye bolezni. 2023;(1):40-7 (In Russ.).; Ganguli M. Can the DSM-5 framework enhance the diagnosis of MCI? Neurology. 2013 Dec 3;81(23):2045-50. doi:10.1212/01.wnl.0000436944.01023.e5. Epub 2013 Oct 30.; Stokin GB, Krell-Roesch J, Petersen RC, et al. Mild Neurocognitive Disorder: An Old Wine in a New Bottle. Harv Rev Psychiatry. 2015 Sep-Oct;23(5):368-76. doi:10.1097/HRP.0000000000000084; Sachdev PS, Blacker D, Blazer DG, et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol. 2014 Nov;10(11):634-42. doi:10.1038/nrneu-rol.2014.181. Epub 2014 Sep 30.; Bai W, Chen P, Cai H, et al. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: a meta-analysis and systematic review of epidemiology studies. Age Ageing. 2022 Aug 2;51(8):afac173. doi:10.1093/ageing/afac173; Hendriks S, Peetoom K, Bakker C, et al. Global Prevalence of Young-Onset Dementia: A Systematic Review and Meta-analysis. JAMA Neurol. 2021 Sep 1;78(9):1080-90. doi:10.1001/jamaneurol.2021.2161; Moghadasi AN, Mirmosayyeb O, Mohammadi A, et al. The prevalence of cognitive impairment in patients with neuromyelitis optica spectrum disorders (NMOSD): A systematic review and meta-analysis. Mult Scler Relat Disord. 2021 Apr;49:102757. doi:10.1016/j.msard.2021.102757. Epub 2021 Jan 15.; Blanc F, Zephir H, Lebrun C, et al. Cognitive functions in neuromyelitis optica. Arch Neurol. 2008 Jan;65(1):84-8. doi:10.1001/archneurol.2007.16; Kawahara Y, Ikeda M, Deguchi K, et al. Cognitive and affective assessments of multiple sclerosis (MS) and neuromyelitis optica (NMO) patients utilizing computerized touch paneltype screening tests. Intern Med. 2014;53(20):2281-90. doi:10.2169/inter-nalmedicine.53.2571. Epub 2014 Oct 15.; Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977 Apr;44(2):367-73. doi:10.2466/pms.1977.44.2.367; Meng H, Xu J, Pan C, et al. Cognitive dysfunction in adult patients with neuromyelitis optica: a systematic review and meta-analysis. J Neurol. 2017 Aug;264(8):1549-58. doi:10.1007/s00415-016-8345-3. Epub 2016 Dec 1.; Drake AS, Weinstock-Guttman B, Morrow SA, et al. Psychometrics and normative data for the Multiple Sclerosis Functional Composite: replacing the PASAT with the Symbol Digit Modalities Test. Mult Scler. 2010 Feb;16(2):228-37. doi:10.1177/1352458509354552. Epub 2009 Dec 22.; Oertel FC, Schliesseit J, Brandt AU, et al. Cognitive Impairment in Neuromyelitis Optica Spectrum Disorders: A Review of Clinical and Neuroradiological Features. Front Neurol. 2019 Jun 12;10:608. doi:10.3389/fneur.2019.00608; Chavarro VS, Bellmann-Strobl J, Zimmermann HG, et al. Visual system damage and network maladaptation are associated with cognitive performance in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2020 Oct;45:102406. doi:10.1016/j.msard.2020.102406. Epub 2020 Jul 17.; Delis DC, Freeland J, Kramer JH, et al. Integrating clinical assessment with cognitive neuroscience: construct validation of the California Verbal Learning Test. J Consult Clin Psychol. 1988 Feb;56(1):123-30. doi:10.1037//0022-006x.56.1.123; Ruff RM, Light RH, Parker SB, et al. Benton Controlled Oral Word Association Test: reliability and updated norms. Arch Clin Neuropsychol. 1996;11(4):329-38.; Kong L, Lang Y, Wang X, et al. Identifying different cognitive phenotypes and their relationship with disability in neuromyelitis optica spectrum disorder. Front Neurol. 2022 Sep 16;13:958441. doi:10.3389/fneur.2022.958441; Calabrese P, Kalbe E, Kessler J.Ein neu-ropsychologisches Screening zur Erfassung kogni-tiver Storungen bei MS-Patienten. Das Multiple Sklerose Inventarium Cognition (MUSIC). Psychoneuro. 2004;30(7):384e8. doi:10.1055/s-2004-831083; Hummert MW, Stern C, Paul F, et al. Cognition in patients with neuromyelitis optica spectrum disorders: A prospective multicentre study of 217 patients (CogniNMO-Study). Mult Scler. 2023 Jun;29(7):819-31. doi:10.1177/13524585231151212. Epub 2023 Feb 14.; Saji E, Arakawa M, Yanagawa K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann Neurol. 2013 Jan;73(1):65-76. doi:10.1002/ana.23721; Barzegar M, Mirmosayyeb O, Nehzat N, et al. Frequency of comorbidities in Neuromyelitis Optica spectrum disorder. Mult Scler Relat Disord. 2021 Feb;48:102685. doi:10.1016/j.msard.2020.102685. Epub 2020 Dec 9.; Gholizadeh S, Exuzides A, Lewis KE, et al. Clinical and epidemiological correlates of treatment change in patients with NMOSD: insights from the CIRCLES cohort. J Neurol. 2023 Apr;270(4):2048-58. doi:10.1007/s00415-022-11529-6. Epub 2022 Dec 24.; Fujisawa C, Saji N, Takeda A, et al. Early-onset Alzheimer Disease Associated With Neuromyelitis Optica Spectrum Disorder. Alzheimer Dis Assoc Disord. 2023 Jan-Mar 01;37(1):85-7. doi:10.1097/WAD.0000000000000517. Epub 2022 Jul 18.; Cho EB, Jung SY, Jung JH, et al. The risk of dementia in multiple sclerosis and neuromyelitis optica spectrum disorder. Front Neurosci. 2023 Jun 15;17:1214652. doi:10.3389/fnins.2023.1214652; Grosset L, Jouvent E. Cerebral Small-Vessel Diseases: A Look Back from 1991 to Today. Cerebrovasc Dis. 2022;51(2):131-7. doi:10.1159/000522213. Epub 2022 Feb 21.; Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry. 2008 Aug 15;64(4):273-80. doi:10.1016/j.biopsych.2008.03.024. Epub 2008 May 8.; Wang KY, Chetta J, Bains P, et al. Spectrum of MRI brain lesion patterns in neuromyelitis optica spectrum disorder: a pictorial review. Br J Radiol. 2018 Jun;91(1086):20170690. doi:10.1259/bjr.20170690. Epub 2018 Feb 5.; Kim HJ, Paul F, Lana-Peixoto MA, et al. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology. 2015 Mar 17;84(11):1165-73. doi:10.1212/WNL.0000000000001367. Epub 2015 Feb 18.; Matsushita T, Isobe N, Matsuoka T, et al. Extensive vasogenic edema of anti-aquaporin-4 antibody-related brain lesions. Mult Scler. 2009 Sep;15(9):1113-7. doi:10.1177/1352458509106613. Epub 2009 Jul 22.; Kim SH, Huh SY, Hyun JW, et al. A longitudinal brain magnetic resonance imaging study of neuromyelitis optica spectrum disorder. PLoS One. 2014 Sep 26;9(9):e108320. doi:10.1371/journal.pone.0108320; Sinnecker T, D'Iht J, Pfueller CF, et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology. 2012 Aug 14;79(7):708-14. doi:10.1212/WNL.0b013e3182648bc8. Epub 2012 Aug 1.; Kim W, Lee JE, Kim SH, et al. Cerebral Cortex Involvement in Neuromyelitis Optica Spectrum Disorder. J Clin Neurol. 2016 Apr;12(2):188-93. doi:10.3988/jcn.2016.12.2.188. Epub 2016 Jan 28.; Calandrelli R, Panfili M, Onofrj V, et al. Brain atrophy pattern in patients with mild cognitive impairment: MRI study. Transl Neurosci. 2022 Sep 27;13(1):335-48. doi:10.1515/tnsci-2022-0248; Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 2017 Aug;134(2):187-205. doi:10.1007/s00401-017-1709-7. Epub 2017 Apr 11.; Masuda H, Mori M, Hirano S, et al. Silent progression of brain atrophy in aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J Neurol Neurosurg Psychiatry. 2022 Jan;93(1):32-40. doi:10.1136/jnnp-2021-326386. Epub 2021 Aug 6.; Tian DC, Xiu Y, Wang X, et al. Cortical Thinning and Ventricle Enlargement in Neuromyelitis Optica Spectrum Disorders. Front Neurol. 2020 Aug 27;11:872. doi:10.3389/fneur.2020.00872; Cacciaguerra L, Rocca MA, Storelli L, et al. Mapping white matter damage distribution in neuromyelitis optica spectrum disorders with a multimodal MRI approach. Mult Scler. 2021 May;27(6):841-54. doi:10.1177/1352458520941493. Epub 2020 Jul 16.; Kato S, Hagiwara A, Yokoyama K, et al. Microstructural white matter abnormalities in multiple sclerosis and neuromyelitis optica spectrum disorders: Evaluation by advanced diffusion imaging. J Neurol Sci. 2022 May 15;436:120205. doi:10.1016/j.jns.2022.120205. Epub 2022 Feb 24.; Klawiter EC, Xu J, Naismith RT, et al. Increased radial diffusivity in spinal cord lesions in neuromyelitis optica compared with multiple sclerosis. Mult Scler. 2012 Sep;18(9):1259-68. doi:10.1177/1352458512436593. Epub 2012 Feb 21.; Yang Y, Rui Q, Han S, et al. Reduced GABA levels in the medial prefrontal cortex are associated with cognitive impairment in patients with NMOSD. Mult Scler Relat Disord. 2022 Feb;58:103496. doi:10.1016/j.msard.2022.103496. Epub 2022 Jan 4.; Cho EB, Han CE, Seo SW, et al. White Matter Network Disruption and Cognitive Dysfunction in Neuromyelitis Optica Spectrum Disorder. Front Neurol. 2018 Dec 17;9:1104. doi:10.3389/fneur.2018.01104; Bartosik-Psujek H, Stelmasiak Z.The CSF levels of total-tau and phosphotau in patients with relapsing-remitting multiple sclerosis. J Neural Transm (Vienna). 2006 Mar;113(3):339-45. doi:10.1007/s00702-005-0327-z. Epub 2005 Jul 6.; Virgilio E, Vecchio D, Crespi I, et al. Cerebrospinal Tau levels as a predictor of early disability in multiple sclerosis. Mult Scler Relat Disord. 2021 Nov;56:103231. doi:10.1016/j.msard.2021.103231. Epub 2021 Aug 29.; Magliozzi R, Howell OW, Reeves C, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010 Oct;68(4):477-93. doi:10.1002/ana.22230; Szu JI, Binder DK. The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory. Front Integr Neurosci. 2016 Feb 24;10:8. doi:10.3389/fnint.2016.00008; Attardo A, Fitzgerald JE, Schnitzer MJ. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015 Jul 30;523(7562):592-6. doi:10.1038/nature14467. Epub 2015 Jun 22.; Hinson SR, Roemer SF, Lucchinetti CF, et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med. 2008 Oct 27;205(11):2473-81. doi:10.1084/jem.20081241. Epub 2008 Oct 6.; Zakani M, Nigritinou M, Ponleitner M, et al. Paths to hippocampal damage in neuromyelitis optica spectrum disorders. Neuropathol Appl Neurobiol. 2023 Apr;49(2):e12893. doi:10.1111/nan.12893; McKee CG, Hoffos M, Vecchiarelli HA, et al. Microglia: A pharmacological target for the treatment of age-related cognitive decline and Alzheimer's disease. Front Pharmacol. 2023 Feb 9;14:1125982. doi:10.3389/fphar.2023.1125982; Romero-Sevilla R, Lopez-Espuela F, Fuentes JM, et al. Role of Inflammatory Cytokines in the Conversion of Mild Cognitive Impairment to Dementia: A Prospective Study. Curr Alzheimer Res. 2022;19(1):68-75. doi:10.2174/1567205019666220127102640; Dejanovic B, Huntley MA, De Maziere A, et al. Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies. Neuron. 2018 Dec 19;100(6):1322-1336.e7. doi:10.1016/j.neu-ron.2018.10.014. Epub 2018 Nov 1.; Gyorffy BA, Kun J, Torok G, et al. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6303-8. doi:10.1073/pnas.1722613115. Epub 2018 May 29.; Moinfar Z, Zamvil SS. Microglia complement astrocytes in neuromyelitis optica. J Clin Invest. 2020 Aug 3;130(8):3961-4. doi:10.1172/JCI138804; Saab G, Munoz DG, Rotstein DL. Chronic Cognitive Impairment in AQP4+ NMOSD With Improvement in Cognition on Eculizumab: A Report of Two Cases. Front Neurol. 2022 May 13;13:863151. doi:10.3389/fneur.2022.863151; Uzawa A, Mori M, Arai K, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler. 2010 Dec;16(12):1443-52. doi:10.1177/1352458510379247. Epub 2010 Aug 25.; Donzis EJ, Tronson NC. Modulation of learning and memory by cytokines: signaling mechanisms and long term consequences. Neurobiol Learn Mem. 2014 Nov;115:68-77. doi:10.1016/j.nlm.2014.08.008. Epub 2014 Aug 21.; Leung R, Proitsi P, Simmons A, et al. Inflammatory proteins in plasma are associated with severity of Alzheimer's disease. PLoS One. 2013 Jun 10;8(6):e64971. doi:10.1371/journal.pone.0064971; Uslu S, Akarkarasu ZE, Ozbabalik D, et al. Levels of amyloid beta-42, interleukin-6 and tumor necrosis factor-alpha in Alzheimer's disease and vascular dementia. Neurochem Res. 2012 Jul;37(7):1554-9. doi:10.1007/s11064-012-0750-0. Epub 2012 Mar 22.; Li JY, Xue HR, Wang L, et al. Relationship of immune cells with disability and cognitive impairment in patients with neuromyelitis optica spectrum disorder. Eur Rev Med Pharmacol Sci. 2023 Oct;27(20):9721-8. doi:10.26355/eurrev_202310_34143; https://nnp.ima-press.net/nnp/article/view/2278

  6. 6
    Academic Journal

    المساهمون: Статья спонсируется компанией АО «БИОКАД».

    المصدر: Modern Rheumatology Journal; Том 18, № 1 (2024); 35-46 ; Современная ревматология; Том 18, № 1 (2024); 35-46 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1529/1436; Эрдес ШФ, Бадокин ВВ, Бочкова АГ и др. О терминологии спондилоартритов. Научно-практическая ревматология. 2015;53(6):657-60.; Румянцева ДГ, Эрдес ШФ. Аксиальный спондилоартрит: современный взгляд на концепцию и эволюцию болезни. Современная ревматология. 2019;13(4):4-10. doi:10.14412/1996-7012-2019-4-4-10; Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017 Jul 1;390(10089):73-84. doi:10.1016/S0140-6736(16)31591-4. Epub 2017 Jan 20.; Van der Heijde D, Baraliakos X, Gensler LS, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018 Dec 1; 392(10162):2378-2387. doi:10.1016/S0140-6736(18)32463-2. Epub 2018 Oct 22.; Deodhar A, Sliwinska-Stanczyk P, Xu H, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2021 Aug;80(8):1004-1013. doi:10.1136/annrheumdis-2020-219601. Epub 2021 Apr 27.; Ramiro S, Nikiphorou E, Sepriano A, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann Rheum Dis. 2023 Jan;82(1):19-34. doi:10.1136/ard-2022-223296. Epub 2022 Oct 21.; Braun J, Brandt J, Listing J, et al. Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet. 2002 Apr 6;359(9313):1187-93. doi:10.1016/s0140-6736(02)08215-6.; Baraliakos X, Listing J, Fritz C, et al. Persistent clinical efficacy and safety of infliximab in ankylosing spondylitis after 8 years – early clinical response predicts long-term outcome. Rheumatology (Oxford). 2011 Sep;50(9): 1690-9. doi:10.1093/rheumatology/ker194. Epub 2011 Jun 14.; Mounach A, El Maghraoui A. Efficacy and safety of adalimumab in ankylosing spondylitis. Open Access Rheumatol. 2014 Aug 13:6: 83-90. doi:10.2147/OARRR.S44550. eCollection 2014.; Baraliakos X, Listing J, Brandt J, et al. Clinical response to discontinuation of antiTNF therapy in patients with ankylosing spondylitis after 3 years of continuous treatment with infliximab. Arthritis Res Ther. 2005;7(3):R439-44. doi:10.1186/ar1693. Epub 2005 Feb 21.; Kalden JR, Schulze-Koops H. Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat Rev Rheumatol. 2017 Nov 21;13(12): 707-718. doi:10.1038/nrrheum.2017.187.; Owczarczyk-Saczonek A, Owczarek W, Osmola-Mankowska A, et al. Secondary failure of TNF-α inhibitors in clinical practice. Dermatol Ther. 2019 Jan;32(1):e12760. doi:10.1111/dth.12760. Epub 2018 Nov 18.; Braun J, Kiltz U, Heldmann F, Baraliakos X. Emerging drugs for the treatment of axial and peripheral spondyloarthritis. Expert Opin Emerg Drugs. 2015 Mar;20(1):1-14. doi:10.1517/14728214.2015.993378. Epub 2015 Jan 9.; Baraliakos X, Braun J, Deodhar A, et al. Long-term efficacy and safety of secukinumab 150 mg in ankylosing spondylitis: 5-year results from the phase III MEASURE 1 extension study. RMD Open. 2019 Sep 3;5(2):e001005. doi:10.1136/rmdopen-2019-001005. eCollection 2019.; Deodhar A, Poddubnyy D, Rahman P, et al. Long-Term Safety and Efficacy of Ixekizumab in Patients With Axial Spondyloarthritis: 3-year Data From the COAST Program. J Rheumatol. 2023 Aug;50(8):1020-1028. doi:10.3899/ jrheum.221022. Epub 2023 Feb 15.; Gentileschi S, Rigante D, Sota J, et al. Long-Term Effectiveness of Secukinumab in Patients with Axial Spondyloarthritis. Mediators Inflamm. 2020 Mar 31:2020:6983272. doi:10.1155/2020/6983272. eCollection 2020.; Van der Heijde D, Deodhar A, Baraliakos X, et al. Efficacy and safety of bimekizumab in axial spondyloarthritis: results of two parallel phase 3 randomised controlled trials. Ann Rheum Dis. 2023 Apr;82(4):515-526. doi:10.1136/ard-2022-223595. Epub 2023 Jan 17.; Мазуров ВИ, Гайдукова ИЗ, Эрдес Ш. Эффективность и безопасность нетакимаба, моноклонального антитела против интерлейкина-17А, у пациентов с активным анкилозирующим спондилитом. Результаты международного многоцентрового рандомизированного двойного слепого клинического исследования III фазы BCD-085-5/ASTERA. Научно-практическая ревматология. 2020;58(4):376-86.; Мазуров ВИ, Эрдес ШФ, Гайдукова ИЗ и др. Долгосрочная эффективность и безопасность нетакимаба при лечении анкилозирующего спондилита: результаты международного многоцентрового рандомизированного двойного слепого клинического исследования III фазы BCD-085-5/ ASTERA. Современная ревматология. 2020;14(4):39-49. doi:10.14412/1996-7012-2020-4-39-49; Дубинина ТВ, Дёмина АБ, Агафонова ЕМ и др. Долгосрочное влияние нетакимаба на качество жизни, боль в спине и работоспособность пациентов с анкилозирующим спондилитом: результаты международного многоцентрового рандомизированного двойного слепого клинического исследования III фазы BCD-085-5/ ASTERA. Современная ревматология. 2023;17(6):52-8. doi:10.14412/1996-7012-2023-6-52-58; Эрдес Ш, Мазуров В, Гайдукова И и др. Эффективность, безопасность и удержание на терапии нетакимабом при лечении пациентов с анкилозирующим спондилитом в условиях реальной клинической практики: результаты первого года пострегистрационного исследования безопасности LIBRA. Научно-практическая ревматология. 2023;61(6):700-10.; Brandt J, Listing J, Sieper J, et al. Development and preselection of criteria for short term improvement after anti-TNF alpha treatment in ankylosing spondylitis. Ann Rheum Dis. 2004 Nov;63(11):1438-44. doi:10.1136/ard.2003.016717. Epub 2004 Mar 25.; Machado P, Navarro-Compan V, Landewe R, et al. Calculating the ankylosing spondylitis disease activity score if the conventional c-reactive protein level is below the limit of detection or if high-sensitivity c-reactive protein is used: an analysis in the DESIR cohort. Arthritis Rheumatol. 2015 Feb;67(2):408-13. doi:10.1002/art.38921.; Anderson JJ, Baron G, van der Heijde D, et al. Ankylosing spondylitis assessment group preliminary definition of short-term improvement in ankylosing spondylitis. Arthritis Rheum. 2001 Aug;44(8):1876-86. doi:10.1002/1529-0131(200108)44:83.0.CO;2-F.; Machado P, Landewe R, Lie E, et al. Ankylosing Spondylitis Disease Activity Score (ASDAS): defining cut-off values for disease activity states and improvement scores. Ann Rheum Dis. 2011 Jan;70(1):47-53. doi:10.1136/ard.2010.138594. Epub 2010 Nov 10.; Garrett S, Jenkinson T, Kennedy LG, et al. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol. 1994 Dec;21(12):2286-91.; Calin A, Garrett S, Whitelock H, et al. A new approach to defining functional ability in ankylosing spondylitis: the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol. 1994 Dec;21(12):2281-5.; Jones SD, Porter J, Garrett SL, et al. A new scoring system for the Bath Ankylosing Spondylitis Metrology Index (BASMI). J J Rheumatol. 1995 Aug;22(8):1609.; Heuft-Dorenbosch L, Spoorenberg A, van Tubergen A, et al. Assessment of enthesitis in ankylosing spondylitis. Ann Rheum Dis. 2003 Feb;62(2):127-32. doi:10.1136/ard.62.2.127.; Baraliakos X, Deodhar A, Dougados M, et al. Safety and Efficacy of Bimekizumab in Patients With Active Ankylosing Spondylitis: Three-Year Results From a Phase IIb Randomized Controlled Trial and Its Open-Label Extension Study. Arthritis Rheumatol. 2022 Dec;74(12):1943-1958. doi:10.1002/art.42282. Epub 2022 Nov 7.; Yin Y, Wang M, Liu M, et al. Efficacy and safety of IL-17 inhibitors for the treatment of ankylosing spondylitis: a systematic review and meta-analysis. Arthritis Res Ther. 2020 May 12;22(1):111. doi:10.1186/s13075-020-02208-w.; Papp KA, Bachelez H, Blauvelt A, et al. Infections from seven clinical trials of ixekizumab, an anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2017 Dec;177(6): 1537-1551. doi:10.1111/bjd.15723. Epub 2017 Nov 16.; Mease P, Roussou E, Burmester GR, et al. Safety of Ixekizumab in Patients With Psoriatic Arthritis: Results From a Pooled Analysis of Three Clinical Trials. Arthritis Care Res (Hoboken). 2019 Mar;71(3):367-378. doi:10.1002/acr.23738. Epub 2019 Feb 12.; Elewski BE, Baddley JW, Deodhar AA, et al. Association of Secukinumab Treatment With Tuberculosis Reactivation in Patients With Psoriasis, Psoriatic Arthritis, or Ankylosing Spondylitis. JAMA Dermatol. 2021 Jan 1;157(1):43-51. doi:10.1001/jamadermatol.2020.3257.; Ngoc CT, Khoa BD, Nguyen HK, et al. Active pulmonary tuberculosis in a patient with secukinumab treatment. Radiol Case Rep. 2022 Nov 2;18(1):239-242. doi:10.1016/j.radcr.2022.10.032. eCollection 2023 Jan.; Griffiths CEM, Gooderham M, Colombel JF, et al. Safety of Ixekizumab in Adult Patients with Moderate-to-Severe Psoriasis: Data from 17 Clinical Trials with Over 18,000 Patient-Years of Exposure. Dermatol Ther (Heidelb). 2022 Jun;12(6):1431-1446. doi:10.1007/s13555-022-00743-9. Epub 2022 May 27.; Cantini F, Nannini C, Niccoli L, et al. Risk of Tuberculosis Reactivation in Patients with Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Receiving NonAnti-TNF-Targeted Biologics. Mediators Inflamm. 2017:2017:8909834. doi:10.1155/2017/8909834. Epub 2017 Jun 1.; Davidson L, van den Reek J, Bruno M, et al. Risk of candidiasis associated with interleukin-17 inhibitors: A real-world observational study of multiple independent sources. Lancet Reg Health Eur. 2021 Nov 22:13: 100266. doi:10.1016/j.lanepe.2021.100266. eCollection 2022 Feb.; https://mrj.ima-press.net/mrj/article/view/1529

  7. 7
    Academic Journal

    المساهمون: The article was prepared within the framework of research work, government task № 1021051403074-2. The investigation has not been sponsored, Статья подготовлена в рамках научно-исследовательской работы, государственное задание № 1021051403074-2. Исследование не имело спонсорской поддержки

    المصدر: Modern Rheumatology Journal; Том 18, № 3 (2024); 14-24 ; Современная ревматология; Том 18, № 3 (2024); 14-24 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1584/1467; GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023 Aug 21;5(9):e508-e522. doi:10.1016/S2665-9913(23)00163-7.; Muthu S. Osteoarthritis, an old wine in a new bottle! World J Orthop. 2023 Jan 18;14(1): 1-5. doi:10.5312/wjo.v14.i1.1.; Мазуров ВИ, Лила АМ, Алексеева ЛИ и др. Мультиморбидность при остеоартрите и плейотропные эффекты симптоматических средств замедленного действия. Резолюция международного мультидисциплинарного совета экспертов. Современная ревматология. 2023;17(5):123-131. doi:10.14412/1996-7012-2023-5-123-131.; Sanchez-Lopez E, Coras R, Torres A, et al. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 2022 May;18(5): 258-275. doi:10.1038/s41584-022-00749-9.; Herrero-Beaumont G, Roman-Blas JA, Bruyere O, et al. Clinical settings in knee osteoarthritis: Pathophysiology guides treatment. Maturitas 2017 Feb:96:54-57. doi:10.1016/j.maturitas.2016.11.013.; Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017 Feb 2;19(1):18. doi:10.1186/s13075-017-1229-9.; Calvet J, Berenguer-Llergo A, Orellana C, et al. Specific-cytokine associations with outcomes in knee osteoarthritis subgroups: breaking down disease heterogeneity with phenotyping. Arthritis Res Ther. 2024 Jan 11;26(1):19. doi:10.1186/s13075-023-03244-y.; Dell'Isola A, Allan R, Smith SL, et al. Identification of clinical phenotypes in knee osteoarthritis : a systematic review of the literature. BMC Musculoskelet Disord. 2016 Oct 12;17(1):425. doi:10.1186/s12891-016-1286-2.; Henrotin Y. Osteoarthritis in year 2021: biochemical markers. Osteoarthritis Cartilage. 2022 Feb;30(2):237-248. doi:10.1016/j.joca.2021.11.001. Epub 2021 Nov 16.; Angelini F, Widera P, Mobasheri A, et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann Rheum Dis. 2022 May;81(5):666-675. doi:10.1136/annrheumdis-2021-221763.; Li S, Cao P, Chen T, Ding C. Latest insights in disease-modifying osteoarthritis drugs development. Ther Adv Musculoskelet Dis. 2023 May 13:15:1759720X231169839. doi:10.1177/1759720X231169839.; Vrouwe JPM, Burggraaf J, Kloppenburg M, Stuurman FE. Challenges and opportunities of pharmacological interventions for osteoarthritis: A review of current clinical trials and developments. Osteoarthr Cartil Open. 2021 Sep 8;3(4):100212. doi:10.1016/j.ocarto.2021.100212.; Лапкина НА, Баранов АА, Левшин НЮ и др. Динамика клинических проявлений и концентрации цитокинов у больных ревматоидным артритом на фоне терапии олокизумабом. Научно-практическая ревматология. 2023;61(4):475-484.; Akeson G, Malemud CJ. A Role for Soluble IL-6 Receptor in Osteoarthritis. J Funct Morphol Kinesiol. 2017;2(3):27. doi:10.3390/jfmk2030027. Epub 2017 Aug 2.; Beekhuizen M, Gierman LM, van Spil WE, et al. An explorative study comparing levels of soluble mediators in control and osteoarthritic synovial fluid. Osteoarthritis Cartilage. 2013 Jul;21(7):918-22. doi:10.1016/j.joca.2013.04.002. Epub 2013 Apr 15.; Sohn DH, Sokolove J, Sharpe O, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via toll-like receptor 4. Arthritis Res Ther. 2012 Jan 8;14(1):R7. doi:10.1186/ar3555.; Wang ZW, Chen L, Hao XR, et al. Elevated levels of interleukin-1beta, interleukin-6, tumor necrosis factoralpha and vascular endothelial growth factor in patients with knee articular cartilage injury. World J Clin Cases. 2019 Jun 6;7(11):1262-1269. doi:10.12998/wjcc.v7.i11.1262.; Livshits G, Zhai G, Hart DJ et al. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford Study. Arthritis Rheum 2009;60 (7):2037–45. doi:10.1002/art.24598.; Stannus O, Jones G, Cicuttini F, et al. Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis Cartilage. 2010 Nov;18(11):1441-7. doi:10.1016/j.joca.2010.08.016. Epub 2010 Sep 16.; Goekoop RJ, Kloppenburg M, Kroon HM, et al. Low innate production of interleukin-1beta and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthritis Cartilage. 2010 Jul;18(7):942-7. doi:10.1016/j.joca.2010.03.016. Epub 2010 Apr 22.; Tsuchida AI, Beekhuizen M, Rutgers M, et al. Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther. 2012 Dec 3;14(6):R262. doi:10.1186/ar4107.; Tsuchida AI, Beekhuizen M, `t Hart MC, et al. Cytokine profiles in the joint depend on pathology, but are different between synovial fluid, cartilage tissue and cultured chondrocytes. Arthritis Res Ther. 2014 Sep 26;16(5):441. doi:10.1186/s13075-014-0441-0.; Guerne PA, Zuraw BL, Vaughan JH, et al. Synovium as a source of interleukin 6 in vitro. Contribution to local and systemic manifestations of arthritis. J Clin Invest. 1989 Feb;83(2): 585-92. doi:10.1172/JCI113921.; Bondeson J, Wainwright SD, Lauder S, et al. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther. 2006;8(6): R187. doi:10.1186/ar2099.; Nguyen HN, Noss EH, Mizoguchi F, et al. Autocrine loop involving IL-6 family member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators. Immunity. 2017 Feb 21; 46(2):220-232. doi:10.1016/j.immuni.2017.01.004.; Wiegertjes R, van de Loo FAJ, Blaney Davidson EN. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology (Oxford). 2020 Oct 1;59(10):2681-2694. doi:10.1093/rheumatology/keaa248.; Distel E, Cadoudal T, Durant S, et al. The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum. 2009 Nov; 60(11):3374-7. doi:10.1002/art.24881.; Pearson MJ, Herndler-Brandstetter D, Tariq MA, et al. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep. 2017 Jun 14;7(1):3451. doi:10.1038/s41598-017-03759-w.; Richette P, Latourte A, Sellam J, et al. Efficacy of tocilizumab in patients with hand osteoarthritis: double blind, randomised, placebo-controlled, multicentre trial. Ann Rheum Dis. 2021 Mar;80(3):349-355. doi:10.1136/annrheumdis-2020-218547.; Sanchez Huerta JM, Galvez-Romero J, Lopez-Rodriguez W, Lopez A. UTILITY OF Tocilizumab in clinical manifestations of erosive osteoarthrosis of hands regional hospital issste puebla, Mεxico. Ann Rheum Dis. 2017; 76(Suppl 2):974. doi:10.1136/annrheumdis-2017-eular.6483.; Kretsos K, Golor G, Jullion A, et al. Safety and pharmacokinetics of olokizumab, an anti-IL-6 monoclonal antibody, administered to healthy male volunteers: A randomized phase I study. Clin Pharmacol Drug Dev. 2014 Sep;3(5):388-95. doi:10.1002/cpdd.121. Epub 2014 May 26.; https://mrj.ima-press.net/mrj/article/view/1584

  8. 8
    Academic Journal

    المصدر: Acta Biomedica Scientifica; Том 9, № 3 (2024); 38-48 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4814/2786; Данусевич И.Н. Частота встречаемости хронического эндометрита у женщин с различными вариантами репродуктивных нарушений. Acta biomedica scientifica. 2013; 4(92): 14-16.; Wang WJ, Zhang H, Chen ZQ, Zhang W, Liu XM, Fang JY, et al. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod Biol Endocrinol. 2019; 17(1): 1-9. doi:10.1186/ s12958-018-0444-9; Wu D, Kimura F, Zheng L, Ishida M, Niwa Y, Hirata K, et al. Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod Biol Endocrinol. 2017; 15(1): 1-10. doi:10.1186/s12958-017-0233-x; Kitaya K, Yasuo T. Immunohistochemistrical and clinicopathological characterization of chronic endometritis. Am J Reprod Immunol. 2011; 66(5): 410-415. doi:10.1111/j.1600-0897.2011.01051.x; Асатурова А.В., Бадлаева А.С., Трегубова А.В., Табеева Г.И. Воспроизводимость диагностики хронического эндометрита до и после применения иммуногистохимического исследования плазматических клеток в эндометрии. Новости клинической цитологии России. 2023; 27(1): 5-10.; Yasuo T, Kitaya K. Challenges in clinical diagnosis and management of chronic endometritis. Diagnostics (Basel). 2022; 12(11): 2711. doi:10.3390/diagnostics12112711; Воспалительные болезни женских тазовых органов. Клинические рекомендации. М.; 2021.; Шарифулин Э.М., Игумнов И.А., Круско О.В., Аталян А.В., Сутурина Л.В., Особенности хронического эндометрита у женщин репродуктивного возраста с синдромом поликистозных яичников. Acta biomedica scientifica. 2020; 5(6): 27-36.; Иевлева К.Д., Данусевич И.Н., Аталян А.В., Шарифулин Э.М., Лазарева Л.М., Наделяева Я.Г., и др. Уровень адипокинов и их ассоциация с хроническим эндометритом у женщин репродуктивного возраста. Вопросы гинекологии, акушерства и перинатологии. 2023; 22(5): 60-68.; Ткаченко Л.В., Свиридова Н.И., Жаркин Н.А., Бурова Н.А., Белан Э.Б. Оценка цитокинового статуса у пациенток с хроническим эндометритом в сочетании с гиперпластическими процессами эндометрия в репродуктивном периоде. Инфекция и иммунитет. 2020; 10(4): 762-768.; Мотовилова Т.М., Качалина Т.С., Гречканев Г.О., Боровкова Л.В., Зиновьев А.Н., Николаева О.А., и др. Определение биомаркеров в менструальной крови как возможность неинвазивной диагностики воспалительного процесса в полости матки. Медицинский альманах. 2016; 45(5): 88-91.; Bays HE, Bindlish S, Clayton TL. Obesity, diabetes mellitus, and cardiometabolic risk: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS). Obesity Pillars. 2023; 2023: 100056. doi:10.1016/j.obpill.2023.100056; Daan NMP, Koster MPH, de Wilde MA, Dalmeijer GW, Evelein AMV, Fauser BCJM, et al. Biomarker profiles in women with PCOS and PCOS offspring; a pilot study. PLoS One. 2016; 11(11): e0165033. doi:10.1371/journal. pone.0165033; Шарифулин Э.М., Лазарева Л.М., Каня О.В., Стефаненкова А.А., Белых Д.В., Сутурина Л.В. Состояние эндометрия при синдроме поликистозных яичников в репродуктивном возрасте. Acta biomedica scientifica. 2018; 3(3): 136-142.; Calabro P, Chang DW, Willerson JT, Yeh ETH. Release of Creactive protein in response to inflammatory cytokines by human adipocytes: Linking obesity to vascular inflammation. J Am Coll Cardiol. 2005; 46(6): 1112-1113. doi:10.1016/j.jacc.2005.06.017; Yeaman GR, Collins JE, Currie JK, Guyre PM, Wira CR, Fanger MW. IFN gamma is produced by polymorphonuclear neutrophils in human uterine endometrium and by cultured peripheral blood polymorphonuclear neutrophils. J Immunol. 1998; 160: 5145-5153.; Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MA. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol. 2014; 58: 247-259. doi:10.1387/ijdb.140083ms; Pioli PA, Weaver LK, Schaefer TM, Wright JA, Wira CR, Guyre PM. Lipopolysaccharide-induced IL-1 beta production by human uterine macrophages up-regulates uterine epithelial cell expression of human beta-defensin 2. J Immunol. 2006; 176: 6647-6655. doi:10.4049/jimmunol.176.11.6647; D’Ippolito S, Di Nicuolo F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbesand microbiome: Recent insights on the inflammatory and immune “players” of the human endometrium. Am J Reprod Immunol. 2018; 80: e13065. doi:10.1111/aji.13065; Zhu N, Yang X, Liu Q, Chen Y, Wang X, Li H, et al. “Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium. Front Immunol. 2022; 13: 928475. doi:10.3389/fimmu.2022.928475; Danusevich IN, Sharifulin EM, Nemchenko UM, Kolesnikova LI. Features of the immune system functioning with persistence of infectious agents in women with chronic endometrial inflammation and reproductive disorders. Int J Biomed. 2020; 10(4): 362-368. doi:10.21103/Article10(4)_OA6; Danusevich IN, Lazareva LM, Nemchenko UM, Kolesnikova LI. Endometrial cytokines in women with reproductive disorders. Int J Biomed. 2021. 11(4): 526-531. doi:10.21103/Article11(4)_OA20; Tortorella C, Piazzolla G, Matteo M, Pinto V, Tinelli R, Sabbà C, et al. Interleukin-6, interleukin-1β, and tumor necrosis factor α in menstrual effluents as biomarkers of chronic endometritis. Fertil Steril. 2014; 101(1): 242-247. doi:10.1016/j.fertnstert. 2013.09.041; Кольцов И.П., Храмова И.А. Взаимосвязь секреторно-синтетических процессов в моноцитах/макрофагах с уровнем секреции интерлейкина-8 моноцитами крови при эндометрите. Тихоокеанский медицинский журнал. 2011; (3): 58-60.; Сорокин Ю.А., Гизингер О.А., Радзинский В.Е. Клинико-иммунологическое обоснование ультразвуковой кавитации в комплексном лечении бесплодия при хроническом эндометрите. Гинекология. 2022; 24(5): 355-361.; https://www.actabiomedica.ru/jour/article/view/4814

  9. 9
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 62, No 4 (2024); 365–368 ; Научно-практическая ревматология; Vol 62, No 4 (2024); 365–368 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3601/2385; Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC). Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921-2964. doi:10.1093/eurheartj/ehv318; Mann DL. The emerging field of cardioimmunology: Past, present and foreseeable future. Circ Res. 2024;134(12):1663-1680. doi:10.1161/CIRCRESAHA.123.323656; Abbate A, Weber B, Garschick M, Adamo L, Beavers C. Inflammation and heart diseases: Immunology, cardiology, and rheumatology. J Cardiovasc Pharmacol. 2024;83(5):361-363. doi:10.1097/FJC.0000000000001531; Imazio M. Medical therapy of pericarditis: tips and tricks for clinical practice. J Cardiovasc Med (Hagerstown). 2024;25(6):420-425. doi:10.2459/JCM.0000000000001618; Furqan MM, Verma BR, Cremer PC, Imazio M, Klein AL. Pericardial diseases in COVID19: A contemporary review. Curr Cardiol Rep. 2021;23(7):90. doi:10.1007/s11886-021-01519-x; Ghantous E, Szekely Y, Lichter Y, Levi E, Taieb P, Banai A, et al. Pericardial involvement in patients hospitalized with COVID-19: Prevalence, associates, and clinical implications. J Am Heart Assoc. 2022;11(7):e024363. doi:10.1161/JAHA.121.024363; Corrao G, Franchi M, Cereda D, Bortolan F, Leoni O, Vignati E, et al. Increased risk of myocarditis and pericarditis and reduced likelihood of severe clinical outcomes associated with COVID19 vaccination: A cohort study in Lombardy, Italy. BMC Infect Dis. 2022;22(1):844. doi:10.1186/s12879-022-07823-3; Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583-590. doi:10.1038/s41591-022-01689-3; Сукмарова ЗН, Овчинников ЮВ, Гудима ГО, Ибрагимова ФМ, Афонина ОВ, Мачкалян КЭ. Усиление эхо-сигнала от перикарда у реципиентов вакцин против SARS-CoV-2. Инфекционные болезни. 2021;19(4):43-50. doi:10.20953/1729-9225-2021-4-43-50; Насонов ЕЛ, Сукмарова ЗН, Попкова ТВ, Белов БС. Проблемы иммунопатологии и перспективы фармакотерапии идиопатического рецидивирующего перикардита: применение ингибитора интерлейкина 1 (Анакинра). Научно-практическая ревматология. 2023;61(1):47-61. doi:10.47360/1995-4484-2023-47-61; Imazio M, Brucato A, Maestroni S, Cumetti D, Dominelli A, Natale G, et al. Prevalence of C-reactive protein elevation and time course of normalization in acute pericarditis: Implications for the diagnosis, therapy, and prognosis of pericarditis. Circulation. 2011;123(10): 1092-1097. doi:10.1161/CIRCULATIONAHA.110.986372; Imazio M. Pericardial involvement in systemic inflammatory diseases. Heart. 2011;97(22):1882-1892. doi:10.1136/heartjnl-2011-300054; Imazio M, Demichelis B, Parrini I, Giuggia M, Cecchi E, Gaschino G, et al. Day-hospital treatment of acute pericarditis: A management program for outpatient therapy. J Am Coll Cardiol. 2004;43(6):1042-1046. doi:10.1016/j.jacc.2003.09.055; Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Lowdose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61(4):404-410. doi:10.1016/j.jacc.2012.10.027; Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497-2505. doi:10.1056/NEJMoa1912388; Samuel M, Tardif JC, Khairy P, Roubille F, Waters DD, Grégoire JC, et al. Cost-effectiveness of low-dose colchicine after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J Qual Care Clin Outcomes. 2021;7(5):486-495. doi:10.1093/ehjqcco/qcaa045; https://rsp.mediar-press.net/rsp/article/view/3601

  10. 10
    Academic Journal

    المساهمون: The study was financially supported by the Russian Science Foundation in the form of scientific project No. 22-15-00424, scientific grant "The role of activation of the WNT signaling cascade, the processes of its epigenetic regulation and immune-mediated inflammation in the progression of atherosclerosis and the possibility of influencing it by therapeutic neoangiogenesis in patients with stable ischemic heart disease"., Исследование выполнено при финансовой поддержке Российского научного фонда в виде научного проекта № 22-15-00424, научного гранта «Роль активации сигнального каскада WNT, процессов его эпигенетической регуляции и иммуноопосредованного воспаления в прогрессировании атеросклероза и возможности влияния на него методом терапевтического неоангиогенеза у пациентов со стабильной ишемической болезнью сердца».

    المصدر: Rational Pharmacotherapy in Cardiology; Vol 19, No 1 (2023); 26-33 ; Рациональная Фармакотерапия в Кардиологии; Vol 19, No 1 (2023); 26-33 ; 2225-3653 ; 1819-6446

    وصف الملف: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2892/2405; Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153-e639. DOI:10.1161/CIR.0000000000001052.; Payab M, Abedi M, Foroughi Heravani N et al. Brown adipose tissue transplantation as a novel alternative to obesity treatment: a systematic review. Int J Obes (London). 2021;45(1):109-21. DOI:10.1038/s41366-020-0616-5.; Liu C, Han D, Liang P, Li Y, Cao F. The Current Dilemma and Breakthrough of Stem Cell Therapy in Ischemic Heart Disease. Front Cell Dev Biol. 2021;9:636136. DOI:10.3389/fcell.2021.636136.; Müller P, Lemcke H, David R. Stem Cell Therapy in Heart Diseases - Cell Types, Mechanisms and Improvement Strategies. Cell Physiol Biochem. 2018;48(6):2607-55. DOI:10.1159/000492704.; Chacko L, P Howard J, Rajkumar C, et al. Effects of Percutaneous Coronary Intervention on Death and Myocardial Infarction Stratified by Stable and Unstable Coronary Artery Disease: A Meta-Analysis of Randomized Controlled Trials. Circ Cardiovasc Qual Outcomes. 2020;13(2):e006363. DOI:10.1161/CIRCOUTCOMES.119.006363.; Soehnlein O, Libby P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589-610. DOI:10.1038/s41573-021-00198-1.; Cochain C, Zernecke A. Macrophages in vascular inflammation and atherosclerosis. Pflugers Arch. 2017;469(3-4):485-99. DOI:10.1007/s00424-017-1941-y.; Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095-147. PMID:8630372.; IL6R Genetics Consortium Emerging Risk Factors Collaboration; Sarwar N, Butterworth AS, Freitag DFet al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;379(9822):1205-13. DOI:10.1016/S0140-6736(11)61931-4.; Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium; Swerdlow DI, Holmes MV, Kuchenbaecker KB, et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379(9822):1214-24. DOI:10.1016/S0140-6736(12)60110-X.; Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61(4):404-10. DOI:10.1016/j.jacc.2012.10.027.; Ridker PM, Everett BM, Thuren T, et al. CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-31. DOI:10.1056/NEJMoa1707914.; Radico F, Zimarino M, Fulgenzi F, et al. Determinants of long-term clinical outcomes in patients with angina but without obstructive coronary artery disease: a systematic review and meta-analysis. Eur Heart J. 2018;39(23):2135-46. DOI 10.1093/eurheartj/ehy185.; Jespersen L, Abildstrom SZ, Hvelplund A, et al. Burden of hospital admission and repeat angiography in angina pectoris patients with and without coronary artery disease: a registry-based cohort study. PLoS One. 2014;9(4):e93170. DOI:10.1371/journal.pone.0093170.; Shaw LJ, Merz CN, Pepine CJ, et al.; Women's Ischemia Syndrome Evaluation (WISE) Investigators. The economic burden of angina in women with suspected ischemic heart disease: results from the National Institutes of Health--National Heart, Lung, and Blood Institute--sponsored Women's Ischemia Syndrome Evaluation. Circulation. 2006;114(9):894-904. DOI:10.1161/CIRCULATIONAHA.105.609990.; Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149-60. DOI:10.3758/BRM.41.4.1149.; Mohammad-Rezaei M, Ahmadi R, Rafiei A, et al. Serum levels of IL-32 in patients with coronary artery disease and its relationship with the serum levels of IL-6 and TNF-α. Mol Biol Rep. 2021;48(5):4263-71. DOI:10.1007/s11033-021-06441-7.; Ma W, Shen D, Liu J, et al. Statin Function as an Anti-inflammation Therapy for Depression in Patients With Coronary Artery Disease by Downregulating Interleukin-1β. J Cardiovasc Pharmacol. 2016;67(2):129-35. DOI:10.1097/FJC.0000000000000323.; Benjamin EJ, Muntner P, Alonso A, Virani SS, et al.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-e528. DOI:10.1161/CIR.0000000000000659.; Koenig W. Inflammation Revisited: Atherosclerosis in The Post-CANTOS Era. Eur Cardiol. 2017;12(2):89-91. DOI:10.15420/ecr.2017:18:1.; Musher DM, Abers MS, Corrales-Medina VF. Acute Infection and Myocardial Infarction. N Engl J Med. 2019;380(2):171-6. DOI:10.1056/NEJMra1808137.; Sabatine MS, Giugliano RP, Keech AC, et al.; FOURIER Steering Committee and Investigators. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713-22. DOI:10.1056/NEJMoa1615664.; Schuett H, Luchtefeld M, Grothusen C, et al. How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb Haemost. 2009;102(2):215-22. DOI:10.1160/TH09-05-0297.; Schieffer B, Selle T, Hilfiker A, et al. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation. 2004;110(22):3493-500. DOI:10.1161/01.CIR.0000148135.08582.97.; Niu W, Liu Y, Qi Y, et al. Association of interleukin-6 circulating levels with coronary artery disease: a meta-analysis implementing mendelian randomization approach. Int J Cardiol. 2012;157(2):243-52. DOI:10.1016/j.ijcard.2011.12.098.; Held C, White HD, Stewart RAH, et al.; STABILITY Investigators. Inflammatory Biomarkers Interleukin-6 and C-Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences From the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc. 2017;6(10):e005077. DOI:10.1161/JAHA.116.005077.; Rai H, Colleran R, Cassese S, et al. Association of interleukin 6 -174 G/C polymorphism with coronary artery disease and circulating IL-6 levels: a systematic review and meta-analysis. Inflamm Res. 2021;70(10-12):1075-87. DOI:10.1007/s00011-021-01505-7.; Enayati S, Seifirad S, Amiri P, et al. Interleukin-1 beta, interferon-gamma, and tumor necrosis factor-alpha gene expression in peripheral blood mononuclear cells of patients with coronary artery disease. ARYA Atheroscler. 2015;11(5):267-74.; https://www.rpcardio.com/jour/article/view/2892

  11. 11
    Academic Journal

    المصدر: Acta Biomedica Scientifica; Том 8, № 2 (2023); 170-178 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4084/2533; Wynn TA. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat Med. 2012; 18(7): 1028-1040. doi:10.1038/nm.2807; Tripathi RC. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res. 1994; 59: 723-727. doi:10.1006/exer.1994.1158; Волкова Н.В., Малышева Ю.В., Юрьева Т.Н., Колесников С.И. Роль биологически активных молекул влаги передней камеры глаза и слёзной жидкости в реализации гипотензивного эффекта непроникающей глубокой склерэктомии (НГСЭ). Acta biomedica scientifica. 2021; 6(2):126-132. doi:10.29413/ ABS.2021-6.2.14; Yamanaka O. Pathobiology of wound healing after glaucoma filtration surgery. BMC Ophthalmol. 2015; 15: 157. doi:10.1186/s12886-015-0134-8; Kingsley DM. The TGF-beta superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994; 8: 133-146. doi:10.1101/gad.8.2.133; Rodrigues ML. Immunohistochemical expression of HLADR in the conjunctiva of patients under topical prostaglandin analogs treatment. J Glaucoma. 2009; 18: 197-200. doi:10.1097/IJG.0b013e31818153f4; Furtado JM, Paula JS, Soares EG, Dhegaide NH, Rocha EM, Donadi E, et al. Conjunctival inflammation in patients under topical glaucoma treatment with indication to surgery. Acta Cir Bras. 2012; 27: 732-735. doi:10.1590/s0102-86502012001000011; Юрьева Е.Н., Малышева Ю.В., Клименков И.В., Судаков Н.П. Иммуногистохимическая идентификация лимфатического оттока в фильтрационных подушках после непроникающей глубокой склерэктомии (НГСЭ). Офтальмохирургия. 2021; 3: 48-54. doi:10.25276/0235-4160-2021-3-48-54; Bouhenni RA, Al Jadaan I, Rassavong H, Al Shahwan S, Al Katan H, Dunmire J, et al. Lymphatic and blood vessel density in human conjunctiva after glaucoma filtration surgery. J Glaucoma. 2016; 25(1): 35-38. doi:10.1097/IJG.0000000000000199; Юрьева Т.Н., Малышева Ю.В., Курсакова Ю.В., Мускатина Е.В. Некоторые аспекты формирования фильтрационных подушек у больных с первичной открытоугольной глаукомой после непроникающей глубокой склерэктомии. Национальный журнал Глаукома. 2022; 21(4): 13-21. doi:10.53432/2078-41042022-21-4-13-21; Клинические рекомендации. Глаукома, ПОУГ. 2020. URL: http://avo-portal.ru/doc/fkr/odobrennye-nps-iutverzhdennye-avo/item/246-glaukoma-otkrytougolnaya [дата доступа: 23.12.2022].; Петров С.Ю. Современная концепция борьбы с избыточным рубцеванием после фистулизирующей хирургии глаукомы. Противовоспалительные препараты и новые тенденции. Офтальмология. 2017; 14(2): 99-105. doi:10.18008/18165095-2017-2-99-105; Петров С.Ю., Сафонова Д.М. Эффективность нидлинга в пролонгации отдаленного гипотензивного эффекта синустрабекулэктомии. Современные технологии в офтальмологии. 2020; 35(4): 142-143. doi:10.25276/2312-4911-2020-4-142-143; Khoo YJ. Use of trypan blue to assess lymphatic function following trabeculectomy. Clin Experiment Ophthalmol. 2019; 47(7): 892-897. doi:10.1111/ceo.13534; https://www.actabiomedica.ru/jour/article/view/4084

  12. 12
    Academic Journal

    المصدر: Andrology and Genital Surgery; Том 24, № 1 (2023); 150-156 ; Андрология и генитальная хирургия; Том 24, № 1 (2023); 150-156 ; 2412-8902 ; 2070-9781

    وصف الملف: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/645/512; Aitken R.J., Best F.S.M., Richardson D.W. et al. An analysis of sperm function in cases of unexplained infertility: conventional criteria, movement characteristics, and fertilizing capacity. Fertil Steril 1982;38(2):212–21. DOI:10.1016/S0015-0282(16)46462-9; Agarwal A., Saleh R.A. Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin North Am 2002;29(4):817–27. DOI:10.1016/s0094-0143(02)00081-2; Sharma R.K., Agarwal A. Role of reactive oxygen species in male infertility. Urology 1996;48(6):835–50. DOI:10.1016/s0090-4295(96)00313-5; Sanocka D., Jedrzejczak P., Szumała-Kaekol A. et al. Male genital tract inflammation: the role of selected interleukins in regulation of pro-oxidant and antioxidant enzymatic substances in seminal plasma. J Androl 2003;24(3):448–55. DOI:10.1002/j.1939-4640.2003.tb02693.x; Koçak I., Yenisey C., Dündar M. et al. Relationship between seminal plasma interleukin-6 and tumor necrosis factor alpha levels with semen parameters in fertile and infertile men. Urol Res 2002;30(4):263–7. DOI:10.1007/s00240-002-0269-y; Gruschwitz M.S., Brezinschek R., Brezinschek H.P. Cytokine levels in the seminal plasma of infertile males. J Androl 1996;17(2):158–63.; Elfassy Y., Bongrani A., Levy P. et al. Relationships between metabolic status, seminal adipokines, and reproductive functions in men from infertile couples. Eur J Endocrinol 2020;182(1):67–7. DOI:10.1530/EJE-19-0615; Grande G., Milardi D., Baroni S. et al. Identification of seminal markers of male accessory gland inflammation: from molecules to proteome. Am J Reprod Immunol 2018;80(2):e12992. DOI:10.1111/aji.12992; Seshadri S., Bates M., Vince G., Jones D.I.L. The role of cytokine expression in different subgroups of subfertile men. Am J Reprod Immunol 2009;62(5):275–82. DOI:10.1111/j.1600-0897.2009.00736.x; https://agx.abvpress.ru/jour/article/view/645

  13. 13
  14. 14
    Academic Journal

    المؤلفون: Азамат, Тешаев

    المصدر: AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; Vol. 2 No. 5 (2023): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 100-104 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 2 № 5 (2023): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 100-104 ; 2181-3469

    وصف الملف: application/pdf

  15. 15
    Academic Journal

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 3 (2023); 428-434 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 3 (2023); 428-434 ; 2541-8017 ; 2223-9022

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1675/1339; Streitz JM Jr, Shapshay SM. Airway injury after tracheotomy and endotracheal intubation. Surg Clin North Am. 1991;71(6):1211–1230. https://doi.org/10.1016/s0039-6109(16)45586-6 PMID: 1948570; Fernandez-Bussy S, Mahajan B, Folch E, Caviedes I, Guerrero J, Majid A. Tracheostomy Tube Placement: Early and Late Complications. J Bronchology Interv Pulmonol. 2015;22(4):357–364. https://doi.org/10.1097/LBR.0000000000000177 PMID: 26348694; Norwood S, Vallina VL, Short K, Saigusa M, Fernandez LG, McLarty JW. Incidence of tracheal stenosis and other late complications after percutaneous tracheostomy. Ann Surg. 2000;232(2):233–241. https://doi.org/10.1097/00000658-200008000-00014 PMID: 10903603; Kim SS, Khalpey Z, Hsu C, Little AG. Changes in tracheostomyand intubation-related tracheal stenosis: implications for surgery. Ann Thorac Surg. 2017;104(3):964–970. https://doi.org/10.1016/j.athoracsur.2017.03.063 PMID: 28619544; Паршин В.Д., Порханов В.А. Хирургия трахеи с атласом оперативной хирургии. Москва: Альди-Принт; 2010.; Паршин В.Д., Королева И.М., Мищенко М.А., Паршин В.В. Диагностика и лечение приобретенной трахеомаляции у пациентов с рубцовым стенозом трахеи. Хирургия. Журнал им. Н.И. Пирогова. 2016;(8):73–82. https://doi.org/10.17116/hirurgia2016873-82; Mark EJ, Meng F, Kradin RL, Mathisen DJ, Matsubara O. Idiopathic tracheal stenosis: a clinicopathologic study of 63 cases and comparison of the pathology with chondromalacia. Am J Surg Pathol. 2008;32(8):1138– 1143. https://doi.org/10.1097/PAS.0b013e3181648d4a PMID: 18545144; Maldonado F, Loiselle A, Depew ZS, Edell ES, Ekbom DC, Malinchoc M, et al. Idiopathic subglottic stenosis: an evolving therapeutic algorithm. Laryngoscope. 2014;124(2):498-503. https://doi.org/10.1002/lary.24287 PMID: 23818139; Nakagishi Y, Morimoto Y, Fujita M, Ozeki Y, Maehara T, Kikuchi M. Rabbit model of airway stenosis induced by scraping of the tracheal mucosa. Laryngoscope. 2005;115(6):1087–1092. https://doi.org/10.1097/01.MLG.0000163105.86513.6D PMID: 15933527; Eyre D. Collagen of articular cartilage. Arthritis Res. 2002;4(1):30–35. https://doi.org/10.1186/ar380 PMID: 11879535; Божокин М.С., Божкова С.А., Нетылько Г.И. Возможности современных клеточных технологий для восстановления повреждённого суставного хряща (аналитический обзор литературы). Травматология и ортопедия России. 2016;22(3):122–134. https://doi.org/10.21823/2311-2905-2016-22-3-122-134; Божокин М.С., Божкова С.А., Нетылько Г.И., Румакин В.П., Наконечный Д.Г., Чепурненко М.Н. Морфофункциональная характеристика хондрорегенераторного процесса в экспериментальном локальном дефекте поверхности суставного хряща. Международный журнал прикладных и фундаментальных исследований. 2017;(8-2):302–306.; Eyre DR, Weis MA, Wu J-J. Articular cartilage collagen: an irreplaceable framework? Eur Cells Mater. 2006;12:57–63. PMID: 17083085 https://doi.org/10.22203/ecm.v012a07; Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol. 2018;71– 72:51–69. https://doi.org/10.1016/j.matbio.2018.05.005 PMID: 29803938; Курганский И.С., Махутов В.Н., Лепехова С.А. Способы лечения и профилактики рубцовых стенозов трахеи. Вестник оториноларингологии. 2016;(1):66–71. https://doi.org/10.17116/otorino201681166-71; Недзьведь М.К., Татур А.А., Леонович С.И., Неровня А.М. Морфологические изменения в трахее при постинтубационном рубцовом стенозе. Медицинский журнал. 2008;(1):43–46.; Sime PJ, O’Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol. 2001;99(3):308– 319. https://doi.org/10.1006/clim.2001.5008 PMID: 11358425; Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255–2273. https://doi.org/10.1056/NEJMra2026131 PMID: 33264547; Wei P, Huang Z, Gan L, Li Y, Qin C, Liu G. Nintedanib ameliorates tracheal stenosis by activating HDAC2 and suppressing IL-8 and VEGF in rabbit. Am J Transl Res. 2020;12(8):4739–4748. eCollection 2020. PMID: 32913546; Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–528. https://doi.org/10.1007/s00281-017-0639-8 PMID: 28555385; Lin JX, Leonard WJ. Fine-Tuning Cytokine Signals. Annu Rev Immunol. 2019;37:295–324. https://doi.org/10.1146/annurev-immunol-042718041447 PMID: 30649989; Oppenheim JJ. The Future of the Cytokine Discipline. Cold Spring Harb Perspect Biol. 2018;10(9):a028498. https://doi.org/10.1101/cshperspect.a028498 PMID: 28847901; Weledji EP. Citocynes and metabolic response to surgery. J Clin Cell Immunol. 2014;5(2). https://doi.org/10.4172/2155-9899.1000197 Available at: https://www.researchgate.net/publication/341265387_Cytokines_and_the_Metabolic_Response_to_Surgery [Accessed 04.10. 2021]; Ильина А.Е., Станислав М.Л., Денисов Л.Н., Насонов Е.Л. Интерлейкин-1 как медиатор воспаления и терапевтическая мишень. Научно-практическая ревматология. 2011;(3):62–71.; Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells. 2019;8(9):969. https://doi.org/10.3390/cells8090969 PMID: 31450621; Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol. 2009;182(12):7937–7945. https://doi.org/10.4049/jimmunol.0803991 PMID: 19494318; Витковский Ю.А. Влияние интерлейкинов 4 и 10 на систему гемостаза in vitro. Иммунология. 2004;(1):43–46.; Li M, Jia J, Li S, Cui B, Huang J, Guo Z, et al. Exosomes derived from tendon stem cells promote cell proliferation and migration through the TGF β signal pathway. Biochem Biophys Res Commun. 2021;536:88–94. https://doi.org/10.1016/j.bbrc.2020.12.057 PMID: 33370718; Vander Ark A, Cao J, Li X. TGF-β receptors: In and beyond TGFβ signaling. Cell Signal. 2018;52:112–120. https://doi.org/10.1016/j.cellsig.2018.09.002 PMID: 30184463; Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev. 2018;43:38–46. https://doi.org/10.1016/j.cytogfr.2018.07.001 PMID: 30031632; Garcia-Rendueles AR, Rodrigues JS, Garcia-Rendueles ME, SuarezFariña M, Perez-Romero S, Barreiro F, et al. Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene. 2017;36(5):652–666. https://doi.org/10.1038/onc.2016.233 PMID: 27452523; Симбирцев А.С., Тотолян А.А. Цитокины в лабораторной диагностике. Инфекционные болезни: Новости. Мнения. Обучение. 2015;2 (11):82–98.; Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. Eur J Pharm Biopharm. 2017;114:69–78. https://doi.org/10.1016/j.ejpb.2016.12.021 PMID: 28087378; Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–336. https://doi.org/10.1038/nature01657 PMID: 12748651; Huang Z, Wei P, Gan L, Li W, Zeng T, Qin C, et al. Protective effects of different anti-inflammatory drugs on tracheal stenosis following injury and potential mechanisms. Mol Med Rep. 2021;23(5):314. https://doi.org/10.3892/mmr.2021.11953 PMID: 34240225; Greaves NS, Asheroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatal Sci. 2013;72(3):206–217. https://doi.org/10.1016/j.jdermsci.2013.07.008 PMID: 23958517; Maher TM. Pirfenidone in idiopathic pulmonary fibrosis. Drugs Today (Barc). 2010;46(7):473–482. https://doi.org/10.1358/dot.2010.46.7.1488336 PMID: 20683502; Есаков Ю.С., Дубова Е.А., Жестков К.Г., Щеголев А.И. Морфологические изменения при постинтубационном стенозе трахеи. Хирургия. Журнал им. Н.И. Пирогова. 2010;(2):60–63.; Yanagawa Y, Hiraide S, Iizuka K. Isoform-specific regulation of transforming growth factor-β mRNA expression in macrophages in response to adrenoceptor stimulation. Microbiol Immunol. 2016;60(1):56–63. https://doi.org/10.1111/1348-0421.12344 PMID: 26612065; Li LH, Xu MP, Gan LM, Li Y, Liang YL, Li WT, et al. Effect of low dose erythromycin on the proliferation of granulation tissue after tracheal injury. Zhonghua Yi Xue Za Zhi. 2017;97(10):777–781. (In Chinese) https://doi.org/10.3760/cma.j.issn.0376-2491.2017.10.012 PMID: 28316160; Zhang J, Li Q, Bai C, Han Y, Huang Y. Inhalation of TGF-beta1 antibody: A new method to inhibit the airway stenosis induced by the endobronchial tuberculosis. Med Hypotheses. 2009;73(6):1065–1066. https://doi.org/10.1016/j.mehy.2009.04.037 PMID: 19819641; Lee YC, Hung MH, Liu LY, Chang KT, Chou TY, Wang YC, et al. The roles of transforming growth factor-beta (1) and vascular endothelial growth factor in the tracheal granulation formation. Pulm Pharmacol Ther. 2011;24(1):23–31. https://doi.org/10.1016/j.pupt.2010.10.016 PMID: 21056681; Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. https://doi.org/10.1101/cshperspect.a021873 PMID: 27141051; Derynck R, Budi E. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12(570):eaav5183. https://doi.org/10.1126/scisignal.aav5183 PMID: 30808818; Shao T, Song P, Hua H, Zhang H, Sun X, Kong Q, et al. Gamma synuclein is a novel Twist1 target that promotes TGF-β-induced cancer cell migration and invasion. Cell Death Dis. 2018;9(6):625. https://doi.org/10.1038/s41419-018-0657-z PMID: 29795373; Rockey DC, Bell PD, Hill JA. Fibrosis-a common pathway to organ injury and failure. N Engl J Med. 2015;372(12):1138–1149. PMID: 25785971 https://doi.org/10.1056/NEJMra1300575; Shiromizu CM, Jancic CC. Review. gammadelta T Lymphocytes: An Effector Cell in Autoimmunity and Infection. Front Immunol. 2018;9:2389. https://doi.org/10.3389/fimmu.2018.02389 eCollection 2018. PMID: 30386339; Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelialmesenchymal transition of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. https://doi.org/10.1038/nrm3758 PMID: 24556840; Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210. https://doi.org/10.1002/path.2277 PMID: 18161745; Yang J, Weinberg RA. Epitelial-Mesenchymal Transition: at the Crossroads of Development and Tumor Metastasis. Dev Cell. 2002;14(6):818–829. https://doi.org/10.1016/j.devcel.2008.05.009 PMID: 18539112; Xu J, Lamouille S, Derynck R. TGF –induced epithelial to mesenchymal Transition. Сell Res. 2009;19(2):156–172. https://doi.org/10.1038/cr.2009.5 PMID: 19153598; Datta A, Scotton CJ, Chambers RC. Novel therapeutic approaches for pulmonary fibrosis. Br J Phamacol. 2011;163(1):141–172. https://doi.org/10.1111/j.1476-5381.2011.01247 PMID: 21265830; Motz KM, Gelbard A. The role of inflammatory cytokines in the development of idiopathic subglottic stenosis. Transl Cancer Res. 2020;9(3):2102–2107. https://doi.org/10.21037/tcr.2019.12.37 PMID: 35117565; Griffits M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in acute human wounds. Tissuee Engl. 2004;10(7–8):1180– 1195. https://doi.org/10.1089/ten.2004.10.1180 PMID: 15363174; Zhao J, Shi W, Wang YL, Chen H, Bringas P Jr, Datto MB, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L585–593. https://doi.org/10.1152/ajplung.00151.2001 PMID: 11839555; Roberts AB, Russo A, Felici A, Flanders KC. Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann N Y Acad Sci. 2003;995:1–10. https://doi.org/10.1111/j.1749-6632.2003.tb03205.x PMID: 12814934; Elmallah RK, Cherian JJ, Jauregui JJ, Pierce TP, Beaver WB, Mont MA. Genetically modified chondrocytes expressing TGF-β1: a revolutionary treatment for articular cartilage damage? Expert Opin Biol Ther. 2015;15(3):455–464. https://doi.org/10.1517/14712598.2015.1009886 PMID: 25645308; Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585– 600. https://doi.org/10.1038/nri3707 PMID: 25145755; Zhang Y, Alexander PB, Wang XF. TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol. 2017;9(4):a022145. https://doi.org/10.1101/cshperspect.a022145 PMID: 27920038; Morrison RJ, Katsantonis NG, Motz KM, Hillel AT, Garrett CG, Netterville JL, et al. Pathologic fibroblasts in idiopathic subglottic stenosis amplify local inflammatory signals. Otolaryngol Head Neck Surg. 2019;160(1):107–115. https://doi.org/10.1177/0194599818803584 PMID: 30322354; Hillel AT, Namba D, Ding D, Pandian V, Elisseeff JH, Horton MR. An in situ, in vivo murine model for the study of laryngotracheal stenosis. JAMA Otolaryngol Head Neck Surg. 2014;140(10):961–966. https://doi.org/10.1001/jamaoto.2014.1663 PMID: 25144860; https://www.jnmp.ru/jour/article/view/1675

  16. 16
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 61, No 4 (2023); 475-484 ; Научно-практическая ревматология; Vol 61, No 4 (2023); 475-484 ; 1995-4492 ; 1995-4484

    مصطلحات موضوعية: олокизумаб, IL-6, olokizumab, интерлейкин 6

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3402/2307; Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001. doi:10.1038/nrdp.2018.1; Favalli EG. Understanding the role of interleukin-6 (IL-6) in the joint and beyond: A comprehensive review of IL-6 inhibition for the management of rheumatoid arthritis. Rheumatol Ther. 2020; 7(3):473-516. doi:10.1007/s40744-020-00219-2; Choy EH, De Benedetti F, Takeuchi T, Hashizume M, John MR, Kishimoto T. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol. 2020;16(6):335-345. doi:10.1038/s41584-020-0419-z; Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина-6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-599. [Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: Achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(6):590-599 (In Russ.)]. doi:10.14412/1995-4484-2017-590-599; Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина-6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-599. [Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: Achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(6):590-599 (In Russ.)]. doi:10.14412/1995-4484-2017-590-599ы; Scott LJ. Tocilizumab: A review in rheumatoid arthritis. Drugs. 2017;77(17):1865-1879. doi:10.1007/s40265-017-0829-7; Насонов ЕЛ, Лила АМ. Эффективность и безопасность сарилумаба (полностью человеческие моноклональные антитела к рецептору интерлейкина-6) при ревматоидном артрите: новые данные. Научно-практическая ревматология. 2019;57(5):564-577. [Nasonov EL, Lila AM. The efficacy and safety of sarilumab, fully human monoclonal antibodies against interleukin 6 receptor, in rheumatoid arthritis: New evidence. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(5):564-577 (In Russ.)]. doi:10.14412/1995-4484-2019-564-57; Serio I, Tovoli F. Rheumatoid arthritis: New monoclonal antibodies. Drugs Today (Barc). 2018;54(3):219-230. doi:10.1358/dot.2018.54.3.2788019; Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting interleukin-6 signaling in clinic. Immunity. 2019;50(4):1007-1023. doi:10.1016/j.immuni.2019.03.026; Tanaka Y, Martin Mola E. IL-6 targeting compared to TNF targeting in rheumatoid arthritis: Studies of olokizumab, sarilumab and sirukumab. Ann Rheum Dis. 2014;73(9):1595-1597. doi:10.1136/annrheumdis-2013-205002; Shaw S, Bourne T, Meier C, Carrington B, Gelinas R, Henry A, et al. Discovery and characterization of olokizumab: A humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. MAbs. 2014;6(3):774-782. doi:10.4161/mabs.28612; Насонов ЕЛ, Файст Е. Перспективы ингибиции интерлейки-на-6 при ревматоидном артрите: олокизумаб (новые моноклональные антитела к ИЛ-6). Научно-практическая ревматология. 2022;60(5):505-518. [Nasonov EL, Feist E. The prospects of interleukin-6 inhibition in rheumatoid arthritis: Olokizumab (novel monoclonal antibodies to IL-6). Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2022;60(5):505-518 (In Russ.)]. doi:10.47360/1995-4484-2022-505-518; Моисеев СВ, Новиков ПИ, Чеботарева НВ, Гуляев СВ, Буланов НМ, Шевцова ТП, и др. Олокизумаб в лечении ревматоидного артрита. Клиническая фармакология и терапия. 2021;30(2): 67-74. [Moiseev SV, Novikov PI, Chebotareva NV, Gulyaev SV, Bulanov NM, Shevtsova TP, et al. Olokizumab for treatment of rheumatoid arthritis. Clinical Pharmacolology and Therapy. 2021; 30(2):67-74 (In Russ.)]. doi:10.32756/0869-5490-2021-2-67-74; Акимова АА, Банщикова НЕ, Сизиков АЭ, Муллагалиев АА, Летягина ЕА, Ильина НА, и др. Результаты 12-недельного открытого неинтервенционного исследования эффективности и безопасности терапии препаратом олокизумаб у пациентов с ревматоидным артритом после переключения с анти-B-клеточной терапии в условиях пандемии SARS-CoV-2. Научно-практическая ревматология. 2023;61(1):25-33. [Akimova AA, Banshchikova NE, Sizikov AE, Mullagaliev AA, Letyagina EA, Ilina NA, et al. Results of a 12-week open-label, noninterventional study of the efficacy and safety of olokizumab therapy in patients with rheumatoid arthritis after switching from anti-B-cell therapy during the SARS-CoV-2 pandemic (review). Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(1): 25-33 (In Russ.)]. doi:10.47360/1995-4484-2023-25-33; Лисицына ТА, Абрамкин АА, Вельтищев ДЮ, Серавина ОФ, Ковалевская ОБ, Борисова АБ, и др. Эффективность олокизу маба в отношении коморбидного депрессивного расстройства у больных ревматоидным артритом: предварительные результаты исследования. Научно-практическая ревматология. 2023;61(2):188-198. [Lisitsyna TA, Abramkin AA, Veltishchev DYu, Seravina OF, Kovalevskaya OB, Borisova AB, et al. Efficacy of olokizumab against comorbid depressive disorder in patients with rheumatoid arthritis: Preliminary results of the study. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(2):188-198 (In Russ.)]. doi:10.47360/1995-4484-2023-188-198; Баранов АА, Виноградова ИБ, Аношенкова ОН, Антипова ОВ, Богданова ЕА, Грабовецкая ЮЮ, и др. Ведение больных ревматоидным артритом в реальной клинической практике: опыт переключения с терапии ингибитором рецепторов интерлейкина-6 на ингибитор интерлейкина-6 (олокизумаб). Научно-практическая ревматология. 2023;61(3):307-319. [Baranov AA, Vinogradova IB, Anoshenkova ON, Antipova OV, Bogdanova EA, Grabovetskaya YY, et al. Management of patients with rheumatoid arthritis in real clinical practice: Switching from interleukin 6 receptor inhibitors to interleukin 6 inhibitor (olokizumab). Nauchno-Prakticheskaya Revmato logia = Rheumatology Science and Practice. 2023;61(3):307-319 (In Russ.)]. doi:10.47360/1995-4484-2023-307-319; Kretsos K, Jullion A, Zamacona M, Harari O, Shaw S, Boulanger B, et al. Model-based optimal design and execution of the first-inpatient trial of the anti-IL-6, olokizumab. CPT Pharmacometrics Syst Pharmacol. 2014;3(6):e119. doi:10.1038/psp.2014.17; Fleischmann R, Kivitz AJ, Wagner F, Feinstein JA, Fuhr U, Rech J, et al. A pilot study investigating the tolerability and pharmacodynamic effect of single intravenous/subcutaneous doses of olokizumab, an anti-interleukin-6 monoclonal antibody, in patients with rheumatoid arthritis. Arthr Rheumat. 2012;64(10 Suppl):576-577.; Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569-2581. doi:10.1002/art.27584; Насонов ЕЛ (ред.). Ревматоидный артрит. Ревматология. Российские клинические рекомендации. М.:ГЭОТАР-Медиа;2020. [Nasonov EL (ed). Rheumatoid arthritis. Rheumatology. Russian clinical guidelines. Moscow:GEOTAR-Media;2020 (In Russ.)].; Aletaha D, Kerschbaumer A, Kastrati K, Dejaco C, Dougados M, McInnes IB, et al. Consensus statement on blocking interleukin-6 receptor and interleukin-6 in inflammatory conditions: An update. Ann Rheum Dis. 2023;82(6):773-787. doi:10.1136/ard-2022-222784; Nasonov E, Fatenejad S, Feist E, Ivanova M, Korneva E, Krechikova DG, et al. Olokizumab, a monoclonal antibody against interleukin 6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by methotrexate: Efficacy and safety results of a randomised controlled phase III study. Ann Rheum Dis. 2022;81(4):469-479. doi:10.1136/annrheumdis-2021-219876; Smolen JS, Feist E, Fatenejad S, Grishin SA, Korneva EV, Nasonov EL, et al.; CREDO2 Group. Olokizumab versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med. 2022;387(8):715-726. doi:10.1056/NEJMoa2201302; Feist E, Fatenejad S, Grishin S, Korneva E, Luggen ME, Nasonov E, et al. Olokizumab, a monoclonal antibody against interleukin-6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by tumour necrosis factor inhibitor therapy: Efficacy and safety results of a randomised controlled phase III study. Ann Rheum Dis. 2022;81(12):1661-1668. doi:10.1136/ard-2022-222630; Kretsos K, Golor G, Jullion A, Hickling M, McCabe S, Shaw S, et al. Safety and pharmacokinetics of olokizumab, an anti-IL-6 monoclonal antibody, administered to healthy male volunteers:A randomized phase I study. Clin Pharmacol Drug Dev. 2014;3(5):388-395. doi:10.1002/cpdd.121; A multicenter, randomized, double-blind, placebo-controlled, single dose study to evaluate the pharmacokinetics, pharmacodynamics, safety and tolerability of intravenous and subcutaneous CDP6038 in male and female subjects with rheumatoid arthritis on a stable dose of methotrexate: Clinical Study Report RA0010 (final). UCB Celltech;2011.; Robak T, Gladalska A, Stepień H, Robak E. Serum levels of interleukin-6 type cytokines and soluble interleukin-6 receptor in patients with rheumatoid arthritis. Mediators Inflamm. 1998;7(5):347-353. doi:10.1080/09629359890875; Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, Kakehi T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood. 2008;112(10):3959-3964. doi:10.1182/blood-2008-05-155846; Мазуров ВИ, Зоткин ЕГ, Гайдукова ИЗ, Иливанова ЕП, Кропотина ТВ, Плаксина ТВ, и др. Эффективность и безопасность применения левилимаба в комбинации с метотрексатом у пациентов с ревматоидным артритом: результаты II фазы исследования AURORA. Научно-практическая ревматология. 2021;59(2):141-151. [Mazurov VI, Zotkin EG, Gaydukova IZ, Ilivanova EP, Kropotina TV, Plaksina TV, et al. Efficacy and safety of levilimab in combination with methotrexate in subjects with rheumatoid arthritis: Results of phase II AURORA study. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(2):141-151 (In Russ.)]. doi:10.47360/1995-4484-2021-141-151; Hayakawa M, Izumi K, Higashida-Konishi M, Ushikubo M, Tsukamoto M, Akiya K, et al. Tocilizumab-induced psoriasis-like eruption resolved by shortening the dose interval in a patient with rheumatoid arthritis: A case-based review. Rheumatol Int. 2019;9(1):161-166. doi:10.1007/s00296-018-4175-1; Chen YT, Chang CH. Tocilizumab-induced psoriasis in a patient with rheumatoid arthritis: A case report and literature review. Dermatol Sin. 2021;39:89-90. doi:10.4103/ds.ds_57_20; Лапкина НА, Баранов АА, Абайтова НЕ, Левшин НЮ, Авдеева АС, Леонтьева ЕА, и др. Динамика клинических проявлений и концентрации цитокинов у больных ревматоидным артритом на фоне терапии тофацитинибом. Научно-практическая ревматология. 2021;59(6):693-699. [Lapkina NA, Baranov AA, Abaytova NE, Levshin NYu, Avdeyeva AS, Leontyeva EA, et al. Dynamics of clinical manifestations and cytokine concentrations in rheumatoid arthritis patients on tofacitinib therapy. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(6):693-699 (In Russ.)]. doi:10.47360/1995-4484-2021-693-699; Насонов ЕЛ. Новые подходы к фармакотерапии ревматоидного артрита: тофацитиниб. Научно-практическая ревматология. 2014;52(2):209-221. [Nasonov EL. New approaches to pharmacotherapy of rheumatoid arthritis: Tofacitinib. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2014;52(2):209-221 (In Russ.)]. doi:10.14412/1995-4484-2014-209-221; https://rsp.mediar-press.net/rsp/article/view/3402

  17. 17
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 61, No 2 (2023); 165-180 ; Научно-практическая ревматология; Vol 61, No 2 (2023); 165-180 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3319/2272; Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4: 18001. doi:10.1038/nrdp.2018.1; McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205-2219. doi:10.1056/NEJMra1004965; Насонов ЕЛ. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294. doi:10.14412/1995-4484-2017-277-294; Насонов ЕЛ (ред.). Генно-инженерные биологические препараты в лечении ревматоидного артрита. М.:ИМА-ПРЕСС;2013.; Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi:10.14412/1995-4484-2017-409-419; Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi:10.1136/annrheumdis-2017-211555; Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al.; T2T Expert Committee. Treating rheumatoid arthritis to target: Recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631-637. doi:10.1136/ard.2009.123919; Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685-699. doi:10.1136/annrheumdis-2019-216655; Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2021;73(7):924-939. doi:10.1002/acr.24596; Winthrop KL, Isaacs JD, Mease PJ, Boumpas DT, Baraliakos X, Gottenberg JE, et al. Unmet need in rheumatology: Reports from the Advances in Targeted Therapies meeting, 2022. Ann Rheum Dis. 2023 Jan 26:ard-2022-223528. doi:10.1136/ard-2022-223528; Ajeganova S, Huizinga T. Sustained remission in rheumatoid arthritis: Latest evidence and clinical considerations. Ther Adv Musculoskelet Dis. 2017;9(10):249-262. doi:10.1177/1759720X17720366; Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nat Rev Rheumatol. 2015;11(5):276-289. doi:10.1038/nrrheum.2015.8; Zhao J, Guo S, Schrodi SJ, He D. Molecular and cellular heterogeneity in rheumatoid arthritis: Mechanisms and clinical implications. Front Immunol. 2021;12:790122. doi:10.3389/fimmu.2021.790122; Lewis MJ, Barnes MR, Blighe K, Goldmann K, Rana S, Hackney JA, et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 2019;28(9):2455-2470.e5. doi:10.1016/j.celrep.2019.07.091; Humby F, Lewis M, Ramamoorthi N, Hackney JA, Barnes MR, Bombardieri M, et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann Rheum Dis. 2019;78(6):761-772. doi:10.1136/annrheumdis-2018-214539; Rivellese F, Surace AEA, Goldmann K, Sciacca E, Çubuk C, Giorli G, et al.; R4RA collaborative group. Rituximab versus tocilizumab in rheumatoid arthritis: Synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat Med. 2022;28(6):1256-1268. doi:10.1038/s41591-022-01789-0; Ridgley LA, Anderson AE, Pratt AG. What are the dominant cytokines in early rheumatoid arthritis? Curr Opin Rheumatol. 2018;30(2):207-214. doi:10.1097/BOR.0000000000000470; Taylor PC, Atzeni F, Balsa A, Gossec L, Müller-Ladner U, Pope J. The key comorbidities in patients with rheumatoid arthritis: A narrative review. J Clin Med. 2021;10(3):509. doi:10.3390/jcm10030509; Aletaha D. Precision medicine and management of rheumatoid arthritis. J Autoimmun. 2020;110:102405. doi:10.1016/j.jaut.2020.102405; Sebastiani M, Vacchi C, Manfredi A, Cassone G. Personalized medicine and machine learning: A roadmap for the future. J Clin Med. 2022;11(14):4110. doi:10.3390/jcm11144110; Lin CMA, Cooles FAH, Isaacs JD. Precision medicine: The precision gap in rheumatic disease. Nat Rev Rheumatol. 2022;18(12):725-733. doi:10.1038/s41584-022-00845-w; Pitzalis C, Choy EHS, Buch MH. Transforming clinical trials in rheumatology: Towards patient-centric precision medicine. Nat Rev Rheumatol. 2020;16(10):590-599. doi:10.1038/s41584-020-0491-4; Heutz J, de Jong PHP. Possibilities for personalised medicine in rheumatoid arthritis: Hype or hope. RMD Open. 2021; 7:e001653. doi:10.1136/rmdopen-2021-001653; Mucke J, Krusche M, Burmester GR. A broad look into the future of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2022;14:1759720X221076211. doi:10.1177/1759720X221076211; Nagy G, Roodenrijs NMT, Welsing PMJ, Kedves M, Hamar A, van der Goes MC, et al. EULAR points to consider for the management of difficult-to-treat rheumatoid arthritis. Ann Rheum Dis. 2022;81(1):20-33. doi:10.1136/annrheumdis-2021-220973; Tan Y, Buch MH. ‘Difficult to treat’ rheumatoid arthritis: Current position and considerations for next steps. RMD Open. 2022;8(2):e002387. doi:10.1136/rmdopen-2022-002387; Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-271. doi:10.14412/1995-4484-2018-263-271; Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542(7639):110-114. doi:10.1038/nature20810; Paroli M, Caccavale R, Fiorillo MT, Spadea L, Gumina S, Candela V, et al. The double game played by Th17 cells in infection: Host defense and immunopathology. Pathogens. 2022;11(12):1547. doi:10.3390/pathogens11121547; Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi:10.1038/s41577-022-00746-9; Miossec P, Kolls JK. Targeting IL-17 and Th17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763-76. doi:10.1038/nrd3794; Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11(7):415-429. doi:10.1038/nrrheum.2015.53; Насонов ЕЛ, Коротаева ТВ, Дубинина ТВ, Лила АМ. Ингибиторы ИЛ23/ИЛ17 при иммуновоспалительных ревматических заболеваниях: новые горизонты. Научно-практическая ревматология. 2019;57(4):400-406. doi:10.14412/1995-4484-2019-400-406; van Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun. 2018;87:69-81. doi:10.1016/j.jaut.2017.12.006; Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol. 2022;44(1):47-62. doi:10.1007/s00281-022-00912-0; McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892-906. doi:10.1016/j.immuni.2019.03.021; Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol. 2019;15(8):491-501. doi:10.1038/s41584-019-0243-5; Robert M, Miossec P, Hot A. The Th17 pathway in vascular inflammation: Culprit or consort? Front Immunol. 2022;13:888763. doi:10.3389/fimmu.2022.888763; Jiang X, Zhou R, Zhang Y, Zhu T, Li Q, Zhang W. Interleukin-17 as a potential therapeutic target for chronic pain. Front Immunol. 2022;13:999407. doi:10.3389/fimmu.2022.999407; Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторные клетки при ревматоидном артрите. Научно-практическая ревматология. 2014;52(4):430-437. doi:10.14412/1995-4484-2014-430-437; Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668-677. doi:10.1016/j.autrev.2013.12.004; Miossec P. Local and systemic effects of IL-17 in joint inflammation: A historical perspective from discovery to targeting. Cell Mol Immunol. 2021;18(4):860-865. doi:10.1038/s41423-021-00644-5; Robert M, Miossec P. IL-17 in rheumatoid arthritis and precision medicine: From synovitis expression to circulating bioactive levels. Front Med (Lausanne). 2019;5:364. doi:10.3389/fmed.2018.00364; Taams LS. Interleukin-17 in rheumatoid arthritis: Trials and tribulations. J Exp Med. 2020;217(3):e20192048. doi:10.1084/jem.20192048; Zwicky P, Unger S, Becher B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J Exp Med. 2020;217(1):e20191123. doi:10.1084/jem.20191123; Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283-297. doi:10.1007/s00281-019-00733-8; Pöllinger B, Junt T, Metzler B, Walker UA, Tyndall A, Allard C, et al. Th17 cells, not IL-17+ γδ T cells, drive arthritic bone destruction in mice and humans. J Immunol. 2011;186(4):2602-2612. doi:10.4049/jimmunol.1003370; Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol. 2003;171(11):6173-6177. doi:10.4049/jimmunol.171.11.6173; Plater-Zyberk C, Joosten LA, Helsen MM, Koenders MI, Baeuerle PA, van den Berg WB. Combined blockade of granulocyte-macrophage colony stimulating factor and interleukin 17 pathways potently suppresses chronic destructive arthritis in a tumour necrosis factor alpha-independent mouse model. Ann Rheum Dis. 2009;68(5):721-728. doi:10.1136/ard.2007.085431; Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 2004;50(2):650-659. doi:10.1002/art.20001; Bush KA, Farmer KM, Walker JS, Kirkham BW. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 2002;46(3):802-805. doi:10.1002/art.10173; Chao CC, Chen SJ, Adamopoulos IE, Davis N, Hong K, Vu A, et al. Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis. Autoimmunity. 2011;44(3):243-252. doi:10.3109/08916934.2010.517815; Koenders MI, Lubberts E, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Di Padova FE, et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol. 2005;167(1):141-149. doi:10.1016/S0002-9440(10)62961-6; Ishiguro A, Akiyama T, Adachi H, Inoue J, Nakamura Y. Therapeutic potential of anti-interleukin-17A aptamer: suppression of interleukin-17A signaling and attenuation of autoimmunity in two mouse models. Arthritis Rheum. 2011;63(2):455-466. doi:10.1002/art.30108; Zhang Y, Ren G, Guo M, Ye X, Zhao J, Xu L, et al. Synergistic effects of interleukin-1β and interleukin-17A antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol. 2013;15(2):199-205. doi:10.1016/j.intimp.2012.12.010; Li Q, Ren G, Xu L, Wang Q, Qi J, Wang W, et al. Therapeutic efficacy of three bispecific antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol. 2014;21(1):119-127. doi:10.1016/j.intimp.2014.04.018; Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42(5):963-970. doi:10.1002/1529-0131(199905)42:53.0.CO;2-E; Chabaud M, Fossiez F, Taupin JL, Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol. 1998;161(1):409-414.; Chabaud M, Page G, Miossec P. Enhancing effect of IL-1, IL-17, and TNF-alpha on macrophage inflammatory protein-3alpha production in rheumatoid arthritis: Regulation by soluble receptors and Th2 cytokines. J Immunol. 2001;167(10):6015-6020. doi:10.4049/jimmunol.167.10.6015; Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine. 2000; 12(7):1092-1099. doi:10.1006/cyto.2000.0681; Hot A, Miossec P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis. 2011; 70(5):727-732. doi:10.1136/ard.2010.143768; Hot A, Zrioual S, Toh ML, Lenief V, Miossec P. IL-17A-versus IL-17F-induced intracellular signal transduction pathways and modulation by IL-17RA and IL-17RC RNA interference in rheumatoid synoviocytes. Ann Rheum Dis. 2011; 70(2):341-348. doi:10.1136/ard.2010.132233; Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther. 2004; 6(2):R120-R128. doi:10.1186/ar1038; Zrioual S, Toh ML, Tournadre A, Zhou Y, Cazalis MA, Pachot A, et al. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol. 2008; 180(1):655-663. doi:10.4049/jimmunol.180.1.655; Li G, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M, et al. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol Immunol. 2013; 53(3):227-236. doi:10.1016/j.molimm.2012.08.018; Hot A, Zrioual S, Lenief V, Miossec P. IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann Rheum Dis. 2012; 71(8):1393-1401. doi:10.1136/annrheumdis-2011-200867; Moran EM, Mullan R, McCormick J, Connolly M, Sullivan O, Fitzgerald O, et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: Synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res Ther. 2009; 11(4):R113. doi:10.1186/ar2772; Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010; 12(1):R29. doi:10.1186/ar2936; Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006; 203(12):2673-2682. doi:10.1084/jem.20061775; Lavocat F, Maggi L, Annunziato F, Miossec P. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes. Cytokine. 2016; 88:241-250. doi:10.1016/j.cyto.2016.09.019; Lavocat F, Osta B, Miossec P. Increased sensitivity of rheumatoid synoviocytes to Schnurri-3 expression in TNF-α and IL-17A induced osteoblastic differentiation. Bone. 2016; 87:89-96. doi:10.1016/j.bone.2016.04.008; Dharmapatni AA, Smith MD, Crotti TN, Holding CA, Vincent C, Weedon HM, et al. TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis. Arthritis Res Ther. 2011;13(2):R51. doi:10.1186/ar3294; Park JS, Park MK, Lee SY, Oh HJ, Lim MA, Cho WT, et al. TWEAK promotes the production of interleukin-17 in rheumatoid arthritis. Cytokine. 2012;60(1):143-149. doi:10.1016/j.cyto.2012.06.285; Daoussis D, Andonopoulos AP, Liossis SN. Wnt pathway and IL-17: novel regulators of joint remodeling in rheumatic diseases. Looking beyond the RANK-RANKL-OPG axis. Semin Arthritis Rheum. 2010;39(5):369-383. doi:10.1016/j.semarthrit.2008.10.008; Honorati MC, Neri S, Cattini L, Facchini A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage. 2006; 14(4):345-352. doi:10.1016/j.joca.2005.10.004; Zhang Q, Wu J, Cao Q, Xiao L, Wang L, He D, et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2009;60(12):3602-3612. doi:10.1002/art.24999; Lee SY, Kwok SK, Son HJ, Ryu JG, Kim EK, Oh HJ, et al. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Res Ther. 2013;15(1):R31. doi:10.1186/ar4179; Benedetti G, Bonaventura P, Lavocat F, Miossec P. IL-17A and TNF-α increase the expression of the antiapoptotic adhesion molecule Amigo-2 in arthritis synoviocytes. Front Immunol. 2016; 7:254. doi:10.3389/fimmu.2016.00254; Toh ML, Gonzales G, Koenders MI, Tournadre A, Boyle D, Lubberts E, et al. Role of interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression. PLoS One. 2010;5(10):e13416. doi:10.1371/journal.pone.0013416; Kim EK, Kwon JE, Lee SY, Lee EJ, Kim DS, Moon SJ, et al. IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis. 2017;8(1):e2565. doi:10.1038/cddis.2016.490; Eljaafari A, Tartelin ML, Aissaoui H, Chevrel G, Osta B, Lavocat F, et al. Bone marrow-derived and synovium-derived mesenchymal cells promote Th17 cell expansion and activation through caspase 1 activation: Contribution to the chronicity of rheumatoid arthritis. Arthritis Rheum. 2012;64(7):2147-2157. doi:10.1002/art.34391; Noack M, Ndongo-Thiam N, Miossec P. Interaction among activated lymphocytes and mesenchymal cells through podoplanin is critical for a high IL-17 secretion. Arthritis Res Ther. 2016;18:148. doi:10.1186/s13075-016-1046-6; Metawi SA, Abbas D, Kamal MM, Ibrahim MK. Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA. Clin Rheumatol. 2011;30(9):1201-1207. doi:10.1007/s10067-011-1737-y; Suurmond J, Dorjée AL, Boon MR, Knol EF, Huizinga TW, Toes RE, et al. Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther. 2011;13(5):R150. doi:10.1186/ar3466; Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol. 2000;164(5):2832-2838. doi:10.4049/jimmunol.164.5.2832; Misra S, Mondal S, Chatterjee S, Dutta S, Sinha D, Bhattacharjee D, et al. Interleukin-17 as a predictor of subclinical synovitis in the remission state of rheumatoid arthritis. Cytokine. 2022;153:155837. doi:10.1016/j.cyto.2022.155837; Ndongo-Thiam N, Miossec P. A cell-based bioassay for circulating bioactive IL-17: Application to destruction in rheumatoid arthritis. Ann Rheum Dis. 2015;74(8):1629-1631. doi:10.1136/annrheumdis-2014-207110; Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345-1352. doi:10.1172/JCI5703; Siloşi I, Boldeanu MV, Cojocaru M, Biciuşcă V, Pădureanu V, Bogdan M, et al. The relationship of cytokines IL-13 and IL-17 with autoantibodies profile in early rheumatoid arthritis. J Immunol Res. 2016;2016:3109135. doi:10.1155/2016/3109135; Costa CM, Santos MATD, Pernambuco AP. Elevated levels of inflammatory markers in women with rheumatoid arthritis. J Immunoassay Immunochem. 2019;40(5):540-554. doi:10.1080/15321819.2019.1649695; Schofield C, Fischer SK, Townsend MJ, Mosesova S, Peng K, Setiadi AF, et al. Characterization of IL-17AA and IL-17FF in rheumatoid arthritis and multiple sclerosis. Bioanalysis. 2016;8(22):2317-2327. doi:10.4155/bio-2016-0207; Lee YH, Bae SC. Associations between circulating IL-17 levels and rheumatoid arthritis and between IL-17 gene polymorphisms and disease susceptibility: A meta-analysis. Postgrad Med J. 2017;93(1102):465-471. doi:10.1136/postgradmedj-2016-134637; Honorati MC, Meliconi R, Pulsatelli L, Canè S, Frizziero L, Facchini A. High in vivo expression of interleukin-17 receptor in synovial endothelial cells and chondrocytes from arthritis patients. Rheumatology (Oxford). 2001;40(5):522-527. doi:10.1093/rheumatology/40.5.522; Kirkham BW, Lassere MN, Edmonds JP, Juhasz KM, Bird PA, Lee CS, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: A two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 2006;54(4):1122-1131. doi:10.1002/art.21749; Kim KW, Cho ML, Park MK, Yoon CH, Park SH, Lee SH, et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther. 2005;7(1):R139-R148. doi:10.1186/ar1470; Zrioual S, Ecochard R, Tournadre A, Lenief V, Cazalis MA, Miossec P. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol. 2009;182(5):3112-3120. doi:10.4049/jimmunol.0801967; Lee K, Min HK, Koh SH, Lee SH, Kim HR, Ju JH, et al. Prognostic signature of interferon-γ and interleurkin-17A in early rheumatoid arthritis. Clin Exp Rheumatol. 2022;40(5):999-1005. doi:10.55563/clinexprheumatol/mkbvch; Kokkonen H, Söderström I, Rocklöv J, Hallmans G, Lejon K, Rantapää Dahlqvist S. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010;62(2):383-391. doi:10.1002/art.27186; Raza K, Falciani F, Curnow SJ, Ross EJ, Lee CY, Akbar AN, et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther. 2005;7(4):R784-R795. doi:10.1186/ar1733; van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63(1):73-83. doi:10.1002/art.30093; Kotake S, Nanke Y, Yago T, Kawamoto M, Kobashigawa T, Yamanaka H. Elevated ratio of Th17 cell-derived Th1 cells (CD161(+)Th1 cells) to CD161(+)Th17 cells in peripheral blood of early-onset rheumatoid arthritis patients. Biomed Res Int. 2016;2016:4186027. doi:10.1155/2016/4186027; Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol. 2001;19:163-196. doi:10.1146/annurev.immunol.19.1.163; Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593-2603. doi:10.1084/jem.183.6.2593; Hartupee J, Liu C, Novotny M, Li X, Hamilton T. IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol. 2007;179(6):4135-4141. doi:10.4049/jimmunol.179.6.4135; Hartupee J, Liu C, Novotny M, Sun D, Li X, Hamilton TA. IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J Immunol. 2009;182(3):1660-1666. doi:10.4049/jimmunol.182.3.1660; Herjan T, Hong L, Bubenik J, Bulek K, Qian W, Liu C, et al. IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nat Immunol. 2018;19(4):354-365. doi:10.1038/s41590-018-0071-9; Beringer A, Thiam N, Molle J, Bartosch B, Miossec P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin Exp Immunol. 2018;193(2):221-233. doi:10.1111/cei.13140; Dayer JM. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology (Oxford). 2003;42(Suppl 2):ii3-ii10. doi:10.1093/rheumatology/keg326; Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 2001;3(3):168-177. doi:10.1186/ar294; Kehlen A, Pachnio A, Thiele K, Langner J. Gene expression induced by interleukin-17 in fibroblast-like synoviocytes of patients with rheumatoid arthritis: upregulation of hyaluronan-binding protein TSG-6. Arthritis Res Ther. 2003;5(4):R186-R192. doi:10.1186/ar762; Wu Q, Wang Y, Wang Q, Yu D, Wang Y, Song L, et al. The bispecific antibody aimed at the vicious circle of IL-1β and IL-17A, is beneficial for the collagen-induced rheumatoid arthritis of mice through NF-κB signaling pathway. Immunol Lett. 2016;179:68-79. doi:10.1016/j.imlet.2016.09.001; Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A promising target in inflammation and autoimmunity. Immunotargets Ther. 2020;9:225-240. doi:10.2147/ITT.S262566; van Nieuwenhuijze AE, van de Loo FA, Walgreen B, Bennink M, Helsen M, van den Bersselaar L, et al. Complementary action of granulocyte macrophage colony-stimulating factor and interleukin-17A induces interleukin-23, receptor activator of nuclear factor-κB ligand, and matrix metalloproteinases and drives bone and cartilage pathology in experimental arthritis: Rationale for combination therapy in rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):163. doi:10.1186/s13075-015-0683-5; Dakin SG, Coles M, Sherlock JP, Powrie F, Carr AJ, Buckley CD. Pathogenic stromal cells as therapeutic targets in joint inflammation. Nat Rev Rheumatol. 2018;14(12):714-726. doi:10.1038/s41584-018-0112-7; Liu D, Cao T, Wang N, Liu C, Ma N, Tu R, et al. IL-25 attenuates rheumatoid arthritis through suppression of Th17 immune responses in an IL-13-dependent manner. Sci Rep. 2016;6:36002. doi:10.1038/srep36002; Lavocat F, Ndongo-Thiam N, Miossec P. Interleukin-25 produced by synoviocytes has anti-inflammatory effects by acting as a receptor antagonist for interleukin-17A function. Front Immunol. 2017;8:647. doi:10.3389/fimmu.2017.00647; Ndongo-Thiam N, Clement A, Pin JJ, Razanajaona-Doll D, Miossec P. Negative association between autoantibodies against IL-17, IL-17/anti-IL-17 antibody immune complexes and destruction in rheumatoid arthritis. Ann Rheum Dis. 2016;75(7):1420-1422. doi:10.1136/annrheumdis-2016-209149; Fischer JA, Hueber AJ, Wilson S, Galm M, Baum W, Kitson C, et al. Combined inhibition of tumor necrosis factor α and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: Development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015;67(1):51-62. doi:10.1002/art.38896; Fleischmann RM, Wagner F, Kivitz AJ, Mansikka HT, Khan N, Othman AA, et al. Safety, tolerability, and pharmacodynamics of ABT-122, a tumor necrosis factor- and interleukin-17-targeted dual variable domain immunoglobulin, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69(12):2283-2291. doi:10.1002/art.40319; Khatri A, Goss S, Jiang P, Mansikka H, Othman AA. Pharmacokinetics of ABT-122, a TNF-α- and IL-17A-targeted dual-variable domain immunoglobulin, in healthy subjects and patients with rheumatoid arthritis: Results from three phase I trials. Clin Pharmacokinet. 2018;57(5):613-623. doi:10.1007/s40262-017-0580-y; Lyman M, Lieuw V, Richardson R, Timmer A, Stewart C, Granger S, et al. A bispecific antibody that targets IL-6 receptor and IL-17A for the potential therapy of patients with autoimmune and inflammatory diseases. J Biol Chem. 2018;293(24):9326-9334. doi:10.1074/jbc.M117.818559; Qi J, Kan F, Ye X, Guo M, Zhang Y, Ren G, et al. A bispecific antibody against IL-1β and IL-17A is beneficial for experimental rheumatoid arthritis. Int Immunopharmacol. 2012;14(4):770-778. doi:10.1016/j.intimp.2012.10.005; Benschop RJ, Chow CK, Tian Y, Nelson J, Barmettler B, Atwell S, et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs. 2019;11(6):1175-1190. doi:10.1080/19420862.2019.1624463; Blanco FJ, Möricke R, Dokoupilova E, Codding C, Neal J, Andersson M, et al. Secukinumab in active rheumatoid arthritis: A phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 2017;69(6):1144-1153. doi:10.1002/art.40070; Tahir H, Deodhar A, Genovese M, Takeuchi T, Aelion J, Van den Bosch F, et al. Secukinumab in active rheumatoid arthritis after anti-TNFα therapy: A randomized, double-blind placebo-controlled phase 3 study. Rheumatol Ther. 2017;4(2):475-488. doi:10.1007/s40744-017-0086-y; Burmester GR, Durez P, Shestakova G, Genovese MC, Schulze-Koops H, Li Y, et al. Association of HLA-DRB1 alleles with clinical responses to the anti-interleukin-17A monoclonal antibody secukinumab in active rheumatoid arthritis. Rheumatology (Oxford). 2016;55(1):49-55. doi:10.1093/rheumatology/kev258; Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol. 2014;66(7):1693-1704. doi:10.1002/art.38617; Pavelka K, Chon Y, Newmark R, Lin SL, Baumgartner S, Erondu N. A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol. 2015;42(6):912-919. doi:10.3899/jrheum.141271; Glatt S, Taylor PC, McInnes IB, Schett G, Landewé R, Baeten D, et al. Efficacy and safety of bimekizumab as add-on therapy for rheumatoid arthritis in patients with inadequate response to certolizumab pegol: A proof-of-concept study. Ann Rheum Dis. 2019;78(8):1033-1040. doi:10.1136/annrheumdis-2018-214943; Genovese MC, Weinblatt ME, Aelion JA, Mansikka HT, Peloso PM, Chen K, et al. ABT-122, a bispecific dual variable domain immunoglobulin targeting tumor necrosis factor and interleukin-17A, in patients with rheumatoid arthritis with an inadequate response to methotrexate: A randomized, double-blind study. Arthritis Rheumatol. 2018;70(11):1710-1720. doi:10.1002/art.40580; Smolen JS, Agarwal SK, Ilivanova E, Xu XL, Miao Y, Zhuang Y, et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann Rheum Dis. 2017;76(5):831-839. doi:10.1136/annrheumdis-2016-209831; Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al.; Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72. doi:10.1126/scitranslmed.3001107; Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: A phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863-869. doi:10.1136/annrheumdis-2012-201601; Strand V, Kosinski M, Gnanasakthy A, Mallya U, Mpofu S. Secukinumab treatment in rheumatoid arthritis is associated with incremental benefit in the clinical outcomes and HRQoL improvements that exceed minimally important thresholds. Health Qual Life Outcomes. 2014;12:31. doi:10.1186/1477-7525-12-31; Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014;41(3):414-421. doi:10.3899/jrheum.130637; Tlustochowicz W, Rahman P, Seriolo B, Krammer G, Porter B, Widmer A, et al. Efficacy and safety of subcutaneous and intravenous loading dose regimens of secukinumab in patients with active rheumatoid arthritis: Results from a randomized phase II study. J Rheumatol. 2016;43(3):495-503. doi:10.3899/jrheum.150117; de Almeida DE, Ling S, Holoshitz J. New insights into the functional role of the rheumatoid arthritis shared epitope. FEBS Lett. 2011;585(23):3619-3626. doi:10.1016/j.febslet.2011.03.035; Koenders MI, Marijnissen RJ, Joosten LA, Abdollahi-Roodsaz S, Di Padova FE, van de Loo FA, et al. T cell lessons from the rheumatoid arthritis synovium SCID mouse model: CD3-rich synovium lacks response to CTLA-4Ig but is successfully treated by interleukin-17 neutralization. Arthritis Rheum. 2012;64(6): 1762-1770. doi:10.1002/art.34352; Huang Y, Fan Y, Liu Y, Xie W, Zhang Z. Efficacy and safety of secukinumab in active rheumatoid arthritis with an inadequate response to tumor necrosis factor inhibitors: A meta-analysis of phase III randomized controlled trials. Clin Rheumatol. 2019;38(10):2765-2776. doi:10.1007/s10067-019-04595-1; Dokoupilová E, Aelion J, Takeuchi T, Malavolta N, Sfikakis PP, Wang Y, et al. Secukinumab after anti-tumour necrosis factor-α therapy: A phase III study in active rheumatoid arthritis. Scand J Rheumatol. 2018;47(4):276-281. doi:10.1080/03009742.2017.1390605; Genovese MC, Weinblatt ME, Mease PJ, Aelion JA, Peloso PM, Chen K, et al. Dual inhibition of tumour necrosis factor and interleukin-17A with ABT-122: Open-label long-term extension studies in rheumatoid arthritis or psoriatic arthritis. Rheumatology (Oxford). 2018;57(11):1972-1981. doi:10.1093/rheumatology/key173; Georgantas RW III, Ruzek M, Davis JW, Hong F, Asque E, Idler K, et al. Genomic and epigenetic bioinformatics demonstrate dual TNF-α and IL17A target engagement by ABT-122, and suggest mainly TNF-α-mediated relative target contribution to drug response in MTX-IR rheumatoid arthritis patients. Arthritis Rheumatol. 2016;68(Suppl 10). URL: https://acrabstracts.org/abstract/genomic-and-epigenetic-bioinformatics-demonstrate-dual-tnf-%ce%b1-and-il17a-target-engagement-by-abt-122-and-suggest-mainly-tnf-%ce%b1-mediated-relative-target-contribution-to-drug-response-i/. (Accessed: DD Month 2023).; Mease PJ, Genovese MC, Weinblatt ME, Peloso PM, Chen K, Othman AA, et al. Phase II study of ABT-122, a tumor necrosis factor- and interleukin-17A-targeted dual variable domain immunoglobulin, in patients with psoriatic arthritis with an inadequate response to methotrexate. Arthritis Rheumatol. 2018;70(11):1778-1789. doi:10.1002/art.40579; Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005;353(11):1114-1123. doi:10.1056/NEJMoa050524; Smolen JS, Kay J, Doyle M, Landewé R, Matteson EL, Gaylis N, et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumor necrosis factor α inhibitors: Findings with up to five years of treatment in the multicenter, randomized, double-blind, placebo-controlled, phase 3 GO-AFTER study. Arthritis Res Ther. 2015;17(1):14. doi:10.1186/s13075-015-0516-6; Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis. 2008;67(11):1516-1523. doi:10.1136/ard.2008.092932; Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, et al.; REFLEX Trial Group. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006;54(9):2793-2806. doi:10.1002/art.22025; Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF. How cytokine networks fuel inflammation: Toward a cytokine-based disease taxonomy. Nat Med. 2013;19(7):822-824. doi:10.1038/nm.3260; McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis – shaping the immunological landscape. Nat Rev Rheumatol. 2016;12(1):63-68. doi:10.1038/nrrheum.2015.171; Schett G, McInnes IB, Neurath MF. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N Engl J Med. 2021;385(7):628-639. doi:10.1056/NEJMra1909094; He C, Xue C, Zhu G, Kang P. Efficacy and safety of interleukin-17 inhibitors in the treatment of chronic rheumatic diseases: A combined and updated meta-analysis. J Clin Pharm Ther. 2021;46(4):895-906. doi:10.1111/jcpt.13416; Tam HKJ, Robinson PC, Nash P. Inhibiting IL-17A and IL-17F in rheumatic disease: Therapeutics help to elucidate disease mechanisms. Curr Rheumatol Rep. 2022;24(10):310-320. doi:10.1007/s11926-022-01084-4; van Baarsen LG, Lebre MC, van der Coelen D, Aarrass S, Tang MW, Ramwadhdoebe TH, et al. Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: Possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther. 2014;16(4):426. doi:10.1186/s13075-014-0426-z; Gullick NJ, Evans HG, Church LD, Jayaraj DM, Filer A, Kirkham BW, et al. Linking power Doppler ultrasound to the presence of Th17 cells in the rheumatoid arthritis joint. PLoS One. 2010;5(9):e12516. doi:10.1371/journal.pone.0012516; Chen DY, Chen YM, Chen HH, Hsieh CW, Lin CC, Lan JL. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res Ther. 2011;13(4):R126. doi:10.1186/ar3431; Alzabin S, Abraham SM, Taher TE, Palfreeman A, Hull D, McNamee K, et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann Rheum Dis. 2012;71(10):1741-1748. doi:10.1136/annrheumdis-2011-201024; Hull DN, Williams RO, Pathan E, Alzabin S, Abraham S, Taylor PC. Anti-tumour necrosis factor treatment increases circulating T helper type 17 cells similarly in different types of inflammatory arthritis. Clin Exp Immunol. 2015;181(3):401-406. doi:10.1111/cei.12626; Hull DN, Cooksley H, Chokshi S, Williams RO, Abraham S, Taylor PC. Increase in circulating Th17 cells during anti-TNF therapy is associated with ultrasonographic improvement of synovitis in rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):303. doi:10.1186/s13075-016-1197-5; Yue C, You X, Zhao L, Wang H, Tang F, Zhang F, et al. The effects of adalimumab and methotrexate treatment on peripheral Th17 cells and IL-17/IL-6 secretion in rheumatoid arthritis patients. Rheumatol Int. 2010;30(12):1553-1557. doi:10.1007/s00296-009-1179-x; Aerts NE, De Knop KJ, Leysen J, Ebo DG, Bridts CH, Weyler JJ, et al. Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression. Rheumatology (Oxford). 2010;49(12):2264-2272. doi:10.1093/rheumatology/keq224; Basdeo SA, Cluxton D, Sulaimani J, Moran B, Canavan M, Orr C, et al. Ex-Th17 (nonclassical Th1) cells are functionally distinct from classical Th1 and Th17 cells and are not constrained by regulatory T cells. J Immunol. 2017;198(6):2249-2259. doi:10.4049/jimmunol.1600737; Millier MJ, Fanning NC, Frampton C, Stamp LK, Hessian PA. Plasma interleukin-23 and circulating IL-17A+IFNγ+ ex-Th17 cells predict opposing outcomes of anti-TNF therapy in rheumatoid arthritis. Arthritis Res Ther. 2022;24(1):57. doi:10.1186/s13075-022-02748-3; Дибров ДА. АЦЦП-негативный ревматоидный артрит – клинические и иммунологические особенности. Научно-практическая ревматология. 2022;60(3):314-326. doi:10.47360/1995-4484-2022-314-326; Li K, Wang M, Zhao L, Liu Y, Zhang X. ACPA-negative rheumatoid arthritis: from immune machanisms to clinical rtanskation. eBioMed. 2022;m83:104233. doi: 10/10/1016/jebiom.2022.104233; Myasoedova E, Davis J, Matteson EL, Crowson CS. Is the epidemiology of rheumatoid arthritis changing? Results from a population-based incidence study, 1985–2014. Ann Rheum Dis. 202079(4):440-444. doi:10.1136/annrheumdis-2019-216694; Barra L, Pope JE, Orav JE, Boire G, Haraoui B, Hitchon C, et al.; CATCH Investigators. Prognosis of seronegative patients in a large prospective cohort of patients with early inflammatory arthritis. J Rheumatol. 2014;41(12):2361-2369. doi:10.3899/jrheum.140082; Carbonell-Bobadilla N, Soto-Fajardo C, Amezcua-Guerra LM, Batres-Marroquín AB, Vargas T, Hernández-Diazcouder A, et al. Patients with seronegative rheumatoid arthritis have a different phenotype than seropositive patients: A clinical and ultrasound study. Front Med (Lausanne). 2022;9:978351. doi:10.3389/fmed.2022.978351; Nordberg LB, Lillegraven S, Lie E, Aga AB, Olsen IC, Hammer HB, et al.; and the ARCTIC working group. Patients with seronegative RA have more inflammatory activity compared with patients with seropositive RA in an inception cohort of DMARD-naïve patients classified according to the 2010 ACR/EULAR criteria. Ann Rheum Dis. 2017;76(2):341-345. doi:10.1136/annrheumdis-2015-208873; Choi S, Lee KH. Clinical management of seronegative and seropositive rheumatoid arthritis: A comparative study. PLoS One. 2018;13(4):e0195550. doi:10.1371/journal.pone.0195550; Qu C-H, Hou Y, Bi YF, Han QR, Jiao QR, Zou QF. Diagnostic vakues of serum IL-10 and IL-17 in rheumatoid arthritis and their correlation with serum 14-304g prorein. Eur Rev Med Pharmacol Scu. 2019;23:1898-1906.; Mease PJ, Bhutani MK, Hass S, Yi E, Hur P, Kim N. Comparison of clinical manifestations in rheumatoid arthritis vs. spondyloarthritis: A systematic literature review. Rheumatol Ther. 2022;9(2):331-378. doi:10.1007/s40744-021-00407-8; Merola JF, Espinoza LR, Fleischmann R. Distinguishing rheumatoid arthritis from psoriatic arthritis. RMD Open. 2018;4(2):e000656. doi:10.1136/rmdopen-2018-000656; Paalanen K, Puolakka K, Nikiphorou E, Hannonen P, Sokka T. Is seronegative rheumatoid arthritis true rheumatoid arthritis? A nationwide cohort study. Rheumatology (Oxford). 2021;60(5):2391-2395. doi:10.1093/rheumatology/keaa623; Osman N, Mohamed FI, Hassan AA. Kamel SR, Ahmed SS. Frequency of inflammatory back pain and sacroiliitis in Egyptian patients with rheumatoid arthritis. Egypt J Radiol Nucl Med. 2019;50:25. doi:10.1186/s43055-019-0019-6; Can G, Solmaz D, Binicier O, Akar S, Birlik M, Soysal O, et al. High frequency of inflammatory back pain and other features of spondyloarthritis in patients with rheumatoid arthritis. Rheumatol Int. 2013;33(5):1289-1293. doi:10.1007/s00296-012-2553-7; Flores-Robles BJ, Labrador-Sánchez E, Andrés-Trasahedo E, Pinillos-Aransay V, Joven-Zapata MY, Torrecilla Lerena L, et al. Concurrence of rheumatoid arthritis and ankylosing spondylitis: Analysis of seven cases and literature review. Case Rep Rheumatol. 2022;2022:8500567. doi:10.1155/2022/8500567; Zhao GW, Huang LF, Li D, Zeng Y. Ankylosing spondylitis coexists with rheumatoid arthritis and Sjögren’s syndrome: A case report with literature review. Clin Rheumatol. 2021;40(5):2083-2086. doi:10.1007/s10067-020-05350-7; Isaacs JD, Cohen SB, Emery P, Tak PP, Wang J, Lei G, et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: A meta-analysis. Ann Rheum Dis. 2013;72(3):329-336. doi:10.1136/annrheumdis-2011-201117; Gottenberg JE, Courvoisier DS, Hernandez MV, Iannone F, Lie E, Canhão H, et al. Brief report: Association of rheumatoid factor and anti-citrullinated protein antibody positivity with better effectiveness of abatacept: Results from the pan-European registry analysis. Arthritis Rheumatol. 2016;68(6):1346-1352. doi:10.1002/art.39595; Harrold LR, Litman HJ, Connolly SE, Kelly S, Hua W, Alemao E, et al. Effect of anticitrullinated protein antibody status on response to abatacept or antitumor necrosis factor-α therapy in patients with rheumatoid arthritis: A US national observational study. J Rheumatol. 2018;45(1):32-39. doi:10.3899/jrheum.170007; Mulhearn B, Barton A, Viatte S. Using the immunophenotype to predict response to biologic drugs in rheumatoid arthritis. J Pers Med. 2019;9(4):46. doi:10.3390/jpm9040046; Potter C, Hyrich KL, Tracey A, Lunt M, Plant D, Symmons DP, et al.; BRAGGSS. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann Rheum Dis. 2009;68(1):69-74. doi:10.1136/ard.2007.084715; https://rsp.mediar-press.net/rsp/article/view/3319

  18. 18
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 61, No 2 (2023); 236-241 ; Научно-практическая ревматология; Vol 61, No 2 (2023); 236-241 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3326/2279; McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3(8):297. doi:10.1371/journal.pmed.0030297; Peckham D, Scambler T, Savic S, McDermott MF. The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol. 2017;241(2):123-139. doi:10.1002/path.4812; McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133-144. doi:10.1016/s0092-8674(00)80721-7; Mitroulis I, Skendros P, Ritis K. Targeting IL-1beta in disease; the expanding role of NLRP3 inflammasome. Eur J Intern Med. 2010;21(3):157-163. doi:10.1016/j.ejim.2010.03.005; Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol. 2017;18(8):832-842. doi:10.1038/ni.3777; Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319-325. doi:10.1016/s1074-7613(04)00046-9; Насонов ЕЛ, Елисеев МС. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2016;54(1):60-77. doi:10.14412/1995-4484-2016-60-77; Klück V, Liu R, Joosten LAB. The role of interleukin-1 family members in hyperuricemia and gout. Joint Bone Spine. 2021;88(2):105092. doi:10.1016/j.jbspin.2020.105092; Елисеев МС, Чикина МН, Новикова АМ. Применение колхицина при подагре. Медицинский совет. 2021;(10):148-153. doi:10.21518/2079-701X-2021-10-148-153; Елисеев МС. Обновленные рекомендации EULAR по лечению подагры. Комментарии к некоторым позициям. Научно-практическая ревматология. 2017;55(6):600-609. doi:10.14412/1995-4484-2017-600-609; Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: The molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621-668. doi:10.1146/annurev.immunol.25.022106.141627; Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell. 1997;90(4):797-807. doi:10.1016/s0092-8674(00)80539-5; Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci USA. 2006;103(26):9982-9987. doi:10.1073/pnas.0602081103; Chae JJ, Aksentijevich I, Kastner DL. Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br J Haematol. 2009;146(5):467-478. doi:10.1111/j.1365-2141.2009.07733.x; Chae JJ, Wood G, Richard K, Jaffe H, Colburn NT, Masters SL, et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment. Blood. 2008;112(5):1794-1803. doi:10.1182/blood-2008-01-134932; Melikoglu MA. Two birds with one stone: Anakinra for both gout and familial Mediterranean fever attacks in a patient with renal transplant. Nefrologia (Engl Ed). 2020;40(6):680. doi:10.1016/j.nefro.2019.11.008; Ben-Zvi I, Kukuy O, Giat E, Pras E, Feld O, Kivity S, et al. Anakinra for colchicine-resistant familial Mediterranean fever: A random ized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2017;69(4):854-862. doi:10.1002/art.39995; Janssen CA, Oude Voshaar MAH, Vonkeman HE, Jansen TLTA, Janssen M, Kok MR, et al. Anakinra for the treatment of acute gout flares: A randomized, double-blind, placebo-controlled, active-comparator, non-inferiority trial. Rheumatology (Oxford). 2019 Jan 2. doi:10.1093/rheumatology/key402; Sohar E, Gafni J, Pras M, Heller H. Familial Mediterranean fever. A survey of 470 cases and review of the literature. Am J Med. 1967;43(2):227-253. doi:10.1016/0002-9343(67)90167-2; Lidar M, Yonath H, Shechter N, Sikron F, Sadetzki S, Langevitz P, et al. Incomplete response to colchicine in M694V homozygote FMF patients. Autoimmun Rev. 2012;12(1):72-76. doi:10.1016/j.autrev.2012.07.025; Gögebakan H, Akkececi NS, Cetin GY. Relationship between metabolic syndrome and uric acid levels in patients with familial Mediterranean fever. Arch Iran Med. 2019;22(10):566-573.; Елисеев МС, Барскова ВГ. Метаболический синдром и подагра. Вестник Российской академии медицинских наук. 2008;(6):29-32.; Kozan M, Ozan ZT, Demir V, Ede H. The relation of novel cardiovascular risk parameters in patients with familial Mediterranean fever. JRSM Cardiovasc Dis. 2019;8:2048004018823856. doi:10.1177/2048004018823856; Елисеев МС, Денисов ИС, Маркелова ЕИ, Глухова СИ, Насонов ЕЛ. Независимые факторы риска развития тяжелых сердечно-сосудистых осложнений у мужчин с подагрой: Результаты 7-летнего проспективного исследования. Терапевтический архив. 2017;89(5):10-19. doi:10.17116/terarkh201789510-19; Yüksel S, Ayvazyan L, Gasparyan AY. Familial Mediterranean fever as an emerging clinical model of atherogenesis associated with low-grade inflammation. Open Cardiovasc Med J. 2010;4:51-56. doi:10.2174/1874192401004020051; Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al.; LoDoCo2 Trial Investigators. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838-1847. doi:10.1056/NEJMoa2021372; Solomon DH, Liu CC, Kuo IH, Zak A, Kim SC. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: A cohort study using electronic medical records linked with Medicare claims. Ann Rheum Dis. 2016;75(9):1674-1679. doi:10.1136/annrheumdis-2015-207984; Langevitz P, Livneh A, Neumann L, Buskila D, Shemer J, Amolsky D, et al. Prevalence of ischemic heart disease in patients with familial Mediterranean fever. Isr Med Assoc J. 2001;3(1):9-12.; Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al.; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119-1131. doi:10.1056/NEJMoa1707914; Ridker PM, MacFadyen JG, Glynn RJ, Koenig W, Libby P, Everett BM, et al. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J Am Coll Cardiol. 2018;71(21):2405-2414. doi:10.1016/j.jacc.2018.03.490; Solomon DH, Glynn RJ, MacFadyen JG, Libby P, Thuren T, Everett BM, et al. Relationship of interleukin-1β blockade with incident gout and serum uric acid levels: Exploratory analysis of a randomized controlled trial. Ann Intern Med. 2018;169(8):535-542. doi:10.7326/M18-1167; Ikonomidis I, Tzortzis S, Andreadou I, Paraskevaidis I, Katseli C, Katsimbri P, et al. Increased benefit of interleukin-1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ Cardiovasc Imaging. 2014;7(4):619-628. doi:10.1161/CIRCIMAGING.113.001193; Ottaviani S, Moltó A, Ea HK, Neveu S, Gill G, Brunier L, et al. Efficacy of anakinra in gouty arthritis: A retrospective study of 40 cases. Arthritis Res Ther. 2013;15(5):R123. doi:10.1186/ar4303; Neogi T, Chen C, Niu J, Chaisson C, Hunter DJ, Zhang Y. Alcohol quantity and type on risk of recurrent gout attacks: An internet-based case-crossover study. Am J Med. 2014;127(4):311-318. doi:10.1016/j.amjmed.2013.12.019; Balkarli A, Tepeli E, Balkarli H, Kaya A, Cobankara V. A variant allele of the Mediterranean-fever gene increases the severity of gout. Int J Rheum Dis. 2018;21(1):338-346. doi:10.1111/1756-185X.12872; Sari I, Simsek I, Tunca Y, Kisacik B, Erdem H, Pay S, et al. Existe uma relação entre a artrite gotosa e as mutações genéticas da febre familiar do Mediterrâneo? [Is there a relationship between gouty arthritis and Mediterranean fever gene mutations?]. Rev Bras Reumatol. 2015;55(4):325-329 (In Portuguese). doi:10.1016/j.rbr.2014.10.008; Salehzadeh F, Mohammadikebar Y, Haghi RN, Asl SH, Enteshary A. Familial Mediterranean fever gene mutations and gout as an auto-inflammatory arthropathy. Med Arch. 2019;73(1):55-57. doi:10.5455/medarh.2019.73.55-57; Stankovic Stojanovic K, Delmas Y, Torres PU, Peltier J, Pelle G, Jéru I, et al. Dramatic beneficial effect of interleukin-1 inhibitor treatment in patients with familial Mediterranean fever complicated with amyloidosis and renal failure. Nephrol Dial Transplant. 2012;27(5):1898-1901. doi:10.1093/ndt/gfr528; Bilginer Y, Ayaz NA, Ozen S. Anti-IL-1 treatment for secondary amyloidosis in an adolescent with FMF and Behçet’s disease. Clin Rheumatol. 2010;29(2):209-210. doi:10.1007/s10067-009-1279-8; Moser C, Pohl G, Haslinger I, Knapp S, Rowczenio D, Russel T, et al. Successful treatment of familial Mediterranean fever with Anakinra and outcome after renal transplantation. Nephrol Dial Transplant. 2009;24(2):676-678. doi:10.1093/ndt/gfn646; Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010;11(10):897-904. doi:10.1038/ni.1935; https://rsp.mediar-press.net/rsp/article/view/3326

  19. 19
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 61, No 1 (2023); 47-61 ; Научно-практическая ревматология; Vol 61, No 1 (2023); 47-61 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3278/2258; Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC). Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921-2964. doi:10.1093/eurheartj/ehv318; Klein A, Cremer P, Kontzias A, Furqan M, Forsythe A, Crotty C, et al. Clinical burden and unmet need in recurrent pericarditis: A systematic literature review. Cardiol Rev. 2022;30(2):59-69. doi:10.1097/CRD.0000000000000356; Mager A, Hammer Y, Ofek H, Kedmi I, Iakobishvili Z, Kornowski R. Prognostic and diagnostic significance of serum high-sensitivity C-reactive protein level in patients with acute idiopathic pericarditis. Isr Med Assoc J. 2019;21(11):747-751.; Imazio M, Brucato A, Maestroni S, Cumetti D, Dominelli A, Natale G, et al. Prevalence of C-reactive protein elevation and time course of normalization in acute pericarditis: Implications for the diagnosis, therapy, and prognosis of pericarditis. Circulation. 2011;123(10):1092-1097. doi:10.1161/CIRCULATIONAHA.110.986372; Yılmaz F, Yılmaz FK, Karagöz A, Yıldırım A, Gunes HM, Akbas RB, et al. Usefulness of neutrophil-to-lymphocyte ratio for predicting acute pericarditis outcomes. Acta Cardiol. 2022;77(5):422-430. doi:10.1080/00015385.2021.1951998; Kumar AK, Yesilyaprak A, Furqan MM, Jain V, Montane B, Imazio M, et al. Prognostic value of inflammatory markers in idiopathic recurrent pericarditis. J Am Coll Cardiol. 2022;79(16):1644-1645. doi:10.1016/j.jacc.2022.02.016; Brucato A, Imazio M, Cremer PC, Adler Y, Maisch B, Lazaros G, et al. Recurrent pericarditis: Still idiopathic? The pros and cons of a well-honoured term. Intern Emerg Med. 2018;13(6):839-844. doi:10.1007/s11739-018-1907-x; Lazarou E, Tsioufis P, Vlachopoulos C, Tsioufis C, Lazaros G. Acute pericarditis: Update. Curr Cardiol Rep. 2022;24(8):905-913. doi:10.1007/s11886-022-01710-8; Kontzias A, Barkhodari A, Yao Q. Pericarditis in systemic rheumatologic diseases. Curr Cardiol Rep. 2020;22(11):142. doi:10.1007/s11886-020-01415-w; Sen G, Gordon P, Sado DM. Cardiac manifestations of rheumatological disease: A synopsis for the cardiologist. Heart. 2021; 107(14):1173-1181. doi:10.1136/heartjnl-2019-316460; Белов БС, Тарасова ГМ. Перикардиты в ревматологии: современные клинико-диагностические аспекты и вопросы терапии. Consilium Medicum. 2020;22(1):26-30. doi:10.26442/20751753.2020.1.200060; Rey F, Delhumeau-Cartier C, Meyer P, Genne D. Is acute idiopathic pericarditis associated with recent upper respiratory tract infection or gastroenteritis? A case-control study. BMJ Open. 2015; 5(11):e009141. doi:10.1136/bmjopen-2015-009141; Furqan MM, Verma BR, Cremer PC, Imazio M, Klein AL. Pericardial diseases in COVID-19: A contemporary review. Curr Cardiol Rep. 2021;23(7):90. doi:10.1007/s11886-021-01519-x; Ghantous E, Szekely Y, Lichter Y, Levi E, Taieb P, Banai A, et al. Pericardial involvement in patients hospitalized with COVID-19: Prevalence, associates, and clinical implications. J Am Heart Assoc. 2022;11(7):e024363. doi:10.1161/JAHA.121.024363; Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARSCoV-2 infection. Nat Med. 2022;28(2):410-422. doi:10.1038/s41591-021-01630-0; Diaz GA, Parsons GT, Gering SK, Meier AR, Hutchinson IV, Robicsek A. Myocarditis and pericarditis after vaccination for COVID-19. JAMA. 2021;326(12):1210-1212. doi:10.1001/jama.2021.13443; Basso C, Leone O, Rizzo S, De Gaspari M, van der Wal AC, Aubry MC, et al. Pathological features of COVID-19-associated myocardial injury: A multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827-3835. doi:10.1093/eurheartj/ehaa664; Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: A post-mortem study. Lancet Microbe. 2020;1(6):e245-e253. doi:10.1016/S2666-5247(20)30115-4; Imazio M, Brucato A, Cemin R, Ferrua S, Maggiolini S, Beqaraj F, et al.; ICAP Investigators. A randomized trial of colchicine for acute pericarditis. N Engl J Med. 2013;369(16):1522-1528. doi:10.1056/NEJMoa1208536; Imazio M, Belli R, Brucato A, Cemin R, Ferrua S, Beqaraj F, et al. Efficacy and safety of colchicine for treatment of multiple recurrences of pericarditis (CORP-2): A multicentre, double-blind, placebo-controlled, randomised trial. Lancet. 2014;383(9936): 2232-2237. doi:10.1016/S0140-6736(13)62709-9; Cremer PC, Kumar A, Kontzias A, Tan CD, Rodriguez ER, Imazio M, et al. Complicated pericarditis: Understanding risk factors and pathophysiology to inform imaging and treatment. J Am Coll Cardiol. 2016;68(21):2311-2328. doi:10.1016/j.jacc.2016.07.785; Myachikova VYu, Maslyanskiy AL, Moiseeva OM. Idiopathic recurrent pericarditis – a new orphan autoinflammatory disease? A retrospective analysis of cases of idiopathic recurrent pericarditis and a design of а double-blind, randomized, placebo-controlled study to evaluate the efficacy and safety of RPH-104 treatment in patients with idiopathic recurrent pericarditis. Kardiologiia. 2021;61(1):72-77. doi:10.18087/cardio.2021.1.n1475; Imazio M, Cecchi E, Demichelis B, Ierna S, Demarie D, Ghisio A, et al. Indicators of poor prognosis of acute pericarditis. Circulation. 2007;115(21):2739-2744. doi:10.1161/CIRCULATIONAHA.106.662114; Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. doi:10.1136/bmj.n160; Maestroni S, Di Corato PR, Cumetti D, Chiara DB, Ghidoni S, Prisacaru L, et al. Recurrent pericarditis: autoimmune or autoinflammatory? Autoimmun Rev. 2012;12(1):60-65. doi:10.1016/j.autrev.2012.07.023; Assayag M, Abbas R, Chanson N, Perozziello A, Ducrocq G, Alexandra JF, et al. Diagnosis of systemic inflammatory diseases among patients admitted for acute pericarditis with pericardial effusion. J Cardiovasc Med (Hagerstown). 2017;18(11):875-880. doi:10.2459/JCM.0000000000000576; Blank N, Lorenz HM. Idiopathic pericarditis – an autoinflammatory disease? Curr Rheumatol Rep. 2019;21(5):18. doi:10.1007/s11926-019-0820-2; Bizzi E, Trotta L, Pancrazi M, Nivuori M, Giosia V, Matteucci L, et al. Autoimmune and autoinflammatory pericarditis: Definitions and new treatments. Curr Cardiol Rep. 2021;23(9):128. doi:10.1007/s11886-021-01549-5; Lopalco G, Rigante D, Cantarini L, Imazio M, Lopalco A, Emmi G, et al. The autoinflammatory side of recurrent pericarditis: Enlightening the pathogenesis for a more rational treatment. Trends Cardiovasc Med. 2021;31(5):265-274. doi:10.1016/j.tcm.2020.04.006; Brucato A, Brambilla G. Recurrent idiopathic pericarditis: Familial occurrence. Int J Cardiol. 2005;102(3):529. doi:10.1016/j.ijcard.2004.06.012; Lazaros G, Karavidas A, Spyropoulou M, Tsiachris D, Halapas A, Zacharoulis A, et al. The role of the immunogenetic background in the development and recurrence of acute idiopathic pericarditis. Cardiology. 2011;118(1):55-62. doi:10.1159/000324309; Caforio AL, Brucato A, Doria A, Brambilla G, Angelini A, Ghirardello A, et al. Anti-heart and anti-intercalated disk autoantibodies: Evidence for autoimmunity in idiopathic recurrent acute pericarditis. Heart. 2010;96(10):779-784. doi:10.1136/hrt.2009.187138; Pankuweit S, Wädlich A, Meyer E, Portig I, Hufnagel G, Maisch B. Cytokine activation in pericardial fluids in different forms of pericarditis. Herz. 2000;25(8):748-754. doi:10.1007/pl00001993; Ristić AD, Pankuweit S, Maksimović R, Moosdorf R, Maisch B. Pericardial cytokines in neoplastic, autoreactive, and viral pericarditis. Heart Fail Rev. 2013;18(3):345-353. doi:10.1007/s10741-012-9334-y; Vecchié A, Del Buono MG, Chiabrando GJ, Dentali F, Abbate A, Bonaventura A. Interleukin-1 and the NLRP3 inflammasome in pericardial disease. Curr Cardiol Rep. 2021;23(11):157. doi:10.1007/s11886-021-01589-x; Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: Back to the future. Immunity. 2013;39(6):1003-1018. doi:10.1016/j.immuni.2013.11.010; Насонов ЕЛ, Елисеев МС. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2016;54(1):60-77. doi:10.14412/1995-4484-2016-60-77; Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019;50(4):778-795. doi:10.1016/j.immuni.2019.03.012; Broderick L, Hoffman HM. IL-1 and autoinflammatory disease: Biology, pathogenesis and therapeutic targeting. Nat Rev Rheumatol. 2022;18(8):448-463. doi:10.1038/s41584-022-00797-1; Mauro AG, Bonaventura A, Vecchie A, Mezzaroma E, Carbone S, Narayan P, et al. The role of NLRP3 inflammasome in pericarditis: Potential for therapeutic approaches. JACC Basic Transl Sci. 2021;6(2):137-150. doi:10.1016/j.jacbts.2020.11.016; Jiang Q, Wang X, Huang E, Wang Q, Wen C, Yang G, et al. Inflammasome and its therapeutic targeting in rheumatoid arthritis. Front Immunol. 2022;12:816839. doi:10.3389/fimmu.2021.816839; Zhang Y, Yang W, Li W, Zhao Y. NLRP3 inflammasome: Checkpoint connecting innate and adaptive immunity in autoimmune diseases. Front Immunol. 2021;12:732933. doi:10.3389/fimmu.2021.732933; Diamond MS, Kanneganti TD. Innate immunity: The first line of defense against SARS-CoV-2. Nat Immunol. 2022;23(2):165-176. doi:10.1038/s41590-021-01091-0; Olsen MB, Gregersen I, Sandanger Ø, Yang K, Sokolova M, Halvorsen BE, et al. Targeting the inflammasome in cardiovascular disease. JACC Basic Transl Sci. 2021;7(1):84-98. doi:10.1016/j.jacbts.2021.08.006; Carty M, Guy C, Bowie AG. Detection of viral infections by innate immunity. Biochem Pharmacol. 2021;183:114316. doi:10.1016/j.bcp.2020.114316; Peet CJ, Rowczenio D, Omoyinmi E, Papadopoulou C, Mapalo BRR, Wood MR, et al. Pericarditis and autoinflammation: A clinical and genetic analysis of patients with idiopathic recurrent pericarditis and monogenic autoinflammatory diseases at a national referral center. J Am Heart Assoc. 2022;11(11):e024931. doi:10.1161/JAHA.121.024931; Lachmann HJ, Sengül B, Yavuzşen TU, Booth DR, Booth SE, Bybee A, et al. Clinical and subclinical inflammation in patients with familial Mediterranean fever and in heterozygous carriers of MEFV mutations. Rheumatology (Oxford). 2006;45(6):746-750. doi:10.1093/rheumatology/kei279; Stoler I, Freytag J, Orak B, Unterwalder N, Henning S, Heim K, et al. Gene-dose effect of MEFV gain-of-function mutations determines ex vivo neutrophil activation in familial Mediterranean fever. Front Immunol. 2020;11:716. doi:10.3389/fimmu.2020.00716; Kilic A, Varkal MA, Durmus MS, Yildiz I, Yıldırım ZN, Turunc G, et al. Relationship between clinical findings and genetic mutations in patients with familial Mediterranean fever. Pediatr Rheumatol Online J. 2015;13:59. doi:10.1186/s12969-015-0057-1; Cantarini L, Lucherini OM, Brucato A, Barone L, Cumetti D, Iacoponi F, et al. Clues to detect tumor necrosis factor receptor-associated periodic syndrome (TRAPS) among patients with idiopathic recurrent acute pericarditis: Results of a multicentre study. Clin Res Cardiol. 2012;101(7):525-531. doi:10.1007/s00392-012-0422-8; Cantarini L, Rigante D, Merlini G, Vitale A, Caso F, Lucherini OM, et al. The expanding spectrum of low-penetrance TNFRSF1A gene variants in adults presenting with recurrent inflammatory attacks: Clinical manifestations and long-term follow-up. Semin Arthritis Rheum. 2014;43(6):818-823. doi:10.1016/j.semarthrit.2013.12.002; Алекберова ЗС, Насонов ЕЛ. Перспективы применения колхицина в медицине: новые данные. Научно-практическая ревматология. 2020;58(2):183-190. doi:10.14412/1995-4484-2020-183-190; Goldar G, Garraud C, Sifuentes AA, Wassif H, Jain V, Klein AL. Autoimmune pericarditis: Multimodality imaging. Curr Cardiol Rep. 2022;24(11):1633-1645. doi:10.1007/s11886-022-01785-3; Al-Khadra Y, Darmoch F, Moussa Pacha H, Soud M, Kaki AM, Alraies MC. P5341 Autoimmune disease association with pericardial diseases: An analysis of the national inpatient sample. Eur Heart J. 2018;39(Suppl 1):ehy566.P5341. doi:10.1093/eurheartj/ehy566.P5341; Corrao S, Messina S, Pistone G, Calvo L, Scaglione R, Licata G. Heart involvement in rheumatoid arthritis: Systematic review and meta-analysis. Int J Cardiol. 2013;167(5):2031-2038. doi:10.1016/j.ijcard.2012.05.057; Kruzliak P, Novak M, Piler P, Kovacova G. Pericardial involvement in systemic lupus erythematosus: Current diagnosis and therapy. Acta Cardiol. 2013;68(6):629-633. doi:10.1080/ac.68.6.8000011; Rangarajan V, Matiasz R, Freed BH. Cardiac complications of systemic sclerosis and management: Recent progress. Curr Opin Rheumatol. 2017;29(6):574-584. doi:10.1097/BOR.0000000000000439; Melissaropoulos K, Bogdanos D, Dimitroulas T, Sakkas LI, Kitas GD, Daoussis D. Primary Sjögren’s syndrome and cardiovascular disease. Curr Vasc Pharmacol. 2020;18(5):447-454. doi:10.2174/1570161118666200129125320; Ungprasert P, Wannarong T, Panichsillapakit T, Cheungpasitporn W, Thongprayoon C, Ahmed S, et al. Cardiac involvement in mixed connective tissue disease: A systematic review. Int J Cardiol. 2014;171(3):326-330. doi:10.1016/j.ijcard.2013.12.079; Schwartz T, Diederichsen LP, Lundberg IE, Sjaastad I, Sanner H. Cardiac involvement in adult and juvenile idiopathic inflammatory myopathies. RMD Open. 2016;2(2):e000291. doi:10.1136/rmdopen-2016-000291; Moosig F, Bremer JP, Hellmich B, Holle JU, Holl-Ulrich K, Laudien M, et al. A vasculitis centre based management strategy leads to improved outcome in eosinophilic granulomatosis and polyangiitis (Churg-Strauss, EGPA): Monocentric experiences in 150 patients. Ann Rheum Dis. 2013;72(6):1011-1017. doi:10.1136/annrheumdis-2012-201531; Thompson GE, Bourne MH Jr, Casal Moura M, Baqir M, CartinCeba R, Makol A, et al. Pleuritis and pericarditis in antineutrophil cytoplasmic autoantibody-associated vasculitis. Chest. 2021;160(2): 572-581. doi:10.1016/j.chest.2021.02.049; Pagnoux C, Guillevin L. Cardiac involvement in small and medium-sized vessel vasculitides. Lupus. 2005;14(9):718-722. doi:10.1191/0961203305lu2207oa; Walsh M, Flossmann O, Berden A, Westman K, Höglund P, Stegeman C, et al.; European Vasculitis Study Group. Risk factors for relapse of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2012;64(2):542-548. doi:10.1002/art.33361; Nguyen Y, Pagnoux C, Karras A, Quéméneur T, Maurier F, Hamidou M, et al.; French Vasculitis Study Group. Microscopic polyangiitis: Clinical characteristics and long-term outcomes of 378 patients from the French Vasculitis Study Group Registry. J Autoimmun. 2020;112:102467. doi:10.1016/j.jaut.2020.102467; Sönmez HE, Armağan B, Ayan G, Barut K, Batu ED, Erden A, et al. Polyarteritis nodosa: Lessons from 25 years of experience. Clin Exp Rheumatol. 2019;117(2):52-56.; Pagnoux C, Seror R, Henegar C, Mahr A, Cohen P, Le Guern V, et al.; French Vasculitis Study Group. Clinical features and outcomes in 348 patients with polyarteritis nodosa: A systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group Database. Arthritis Rheum. 2010;62(2):616-626. doi:10.1002/art.27240; Liu FF, Liu HH, Qiu Z, Wang JJ, Samadli S, Wu Y, et al. Clinical observation of noncoronary cardiac abnormalities in Chinese children with Kawasaki disease. Eur J Clin Invest. 2020;50(4): e13210. doi:10.1111/eci.13210; Printz BF, Sleeper LA, Newburger JW, Minich LL, Bradley T, Cohen MS, et al.; Pediatric Heart Network Investigators. Noncoronary cardiac abnormalities are associated with coronary artery dilation and with laboratory inflammatory markers in acute Kawasaki disease. J Am Coll Cardiol. 2011;57(1):86-92. doi:10.1016/j.jacc.2010.08.619; Geri G, Wechsler B, Thi Huong DL, Isnard R, Piette JC, Amoura Z, et al. Spectrum of cardiac lesions in Behçet disease: A series of 52 patients and review of the literature. Medicine (Baltimore). 2012;91(1):25-34. doi:10.1097/MD.0b013e3182428f49; Yafasova A, Fosbøl EL, Schou M, Gustafsson F, Rossing K, Bundgaard H, et al. Long-term adverse cardiac outcomes in patients with sarcoidosis. J Am Coll Cardiol. 2020;76(7):767-777. doi:10.1016/j.jacc.2020.06.038; Efthimiou P, Kontzias A, Hur P, Rodha K, Ramakrishna GS, Nakasato P. Adult-onset Still’s disease in focus: Clinical manifestations, diagnosis, treatment, and unmet needs in the era of targeted therapies. Semin Arthritis Rheum. 2021;51(4):858-874. doi:10.1016/j.semarthrit.2021.06.004; Koca B, Sahin S, Adrovic A, Barut K, Kasapcopur O. Cardiac involvement in juvenile idiopathic arthritis. Rheumatol Int. 2017;37(1):137-142. doi:10.1007/s00296-016-3534-z; Ciancia S, Cappella M, De Fanti A, Iughetti L. Perimyocarditis as first sign of systemic onset juvenile idiopathic arthritis treated successfully with anakinra: A case-based review. Acta Biomed. 2020;91(4):ahead of print. doi:10.23750/abm.v91i4.9093; Dabestani A, Noble LM, Child JS, Krivokapich J, Schwabe AD. Pericardial disease in familial Mediterranean fever: An echocardiographic study. Chest. 1982;81(5):592-595. doi:10.1378/chest.81.5.592; Lachmann HJ, Papa R, Gerhold K, Obici L, Touitou I, Cantarini L, et al.; Paediatric Rheumatology International Trials Organisation (PRINTO), the EUROTRAPS and the Eurofever Project. The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann Rheum Dis. 2014; 73(12):2160-2167. doi:10.1136/annrheumdis-2013-204184; El Hasbani G, Masri BK, Rebeiz AG, Uthman I. Recurrent pericarditis as an initial presentation of rheumatoid arthritis. Am J Med. 2020;133(2):e50-e51. doi:10.1016/j.amjmed.2019.07.038; Dein E, Douglas H, Petri M, Law G, Timlin H. Pericarditis in lupus. Cureus. 2019;11(3):e4166. doi:10.7759/cureus.4166; Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 2019;71(9): 1400-1412. doi:10.1002/art.40930; Jakab L, Laki J, Sallai K, Temesszentandrási G, Pozsonyi T, Kalabay L, et al. Association between early onset and organ manifestations of systemic lupus erythematosus (SLE) and a down-regulating promoter polymorphism in the MBL2 gene. Clin Immunol. 2007;125(3):230-236. doi:10.1016/j.clim.2007.08.020; Perricone C, Ciccacci C, Ceccarelli F, Di Fusco D, Spinelli FR, Cipriano E, et al. TRAF3IP2 gene and systemic lupus erythematosus: Association with disease susceptibility and pericarditis development. Immunogenetics. 2013;65(10):703-709. doi:10.1007/s00251-013-0717-6; Ciccacci C, Perricone C, Politi C, Rufini S, Ceccarelli F, Cipriano E, et al. A polymorphism upstream MIR1279 gene is associated with pericarditis development in systemic lupus erythematosus and contributes to definition of a genetic risk profile for this complication. Lupus. 2017;26(8):841-848. doi:10.1177/0961203316679528; Ciccacci C, Perricone C, Ceccarelli F, Rufini S, Di Fusco D, Alessandri C, et al. A multilocus genetic study in a cohort of Italian SLE patients confirms the association with STAT4 gene and describes a new association with HCP5 gene. PLoS One. 2014;9(11):e111991. doi:10.1371/journal.pone.0111991; Li HM, Zhang TP, Leng RX, Li XP, Wang DG, Li XM, et al. Association of leptin and leptin receptor gene polymorphisms with systemic lupus erythematosus in a Chinese population. J Cell Mol Med. 2017;21(9):1732-1741. doi:10.1111/jcmm.13093; Erer B, Cosan F, Oku B, Ustek D, Inanc M, Aral O, et al. MEFV gene variations in patients with systemic lupus erythematosus. Mod Rheumatol. 2014;24(1):93-96. doi:10.3109/14397595.2013.854049; Barcat D, Guérin V, Ryman A, Constans J, Vernhes JP, Vergnes C, et al. Thrombophilia and thrombosis in systemic lupus erythematosus: A case-control study. Ann Rheum Dis. 2003;62(10):1016-1017. doi:10.1136/ard.62.10.1016; Lucena-Silva N, de Souza VS, Gomes RG, Fantinatti A, Muniz YC, de Albuquerque RS, et al. HLA-G 3’ untranslated region polymorphisms are associated with systemic lupus erythematosus in 2 Brazilian populations. J Rheumatol. 2013;40(7):1104-1113. doi:10.3899/jrheum.120814; Pereira KM, Faria AG, Liphaus BL, Jesus AA, Silva CA, Carneiro-Sampaio M, et al. Low C4, C4A and C4B gene copy numbers are stronger risk factors for juvenile-onset than for adult-onset systemic lupus erythematosus. Rheumatology (Oxford). 2016;55(5):869-873. doi:10.1093/rheumatology/kev436; Markel G, Imazio M, Koren-Morag N, Galore-Haskel G, Schachter J, Besser M, et al. CEACAM1 and MICA as novel serum biomarkers in patients with acute and recurrent pericarditis. Oncotarget. 2016;7(14):17885-17895. doi:10.18632/oncotarget.7530; Imazio M, Lazaros G, Brucato A, Gaita F. Recurrent pericarditis: New and emerging therapeutic options. Nat Rev Cardiol. 2016;13(2):99-105. doi:10.1038/nrcardio.2015.115; Hagerty T, Kluge MA, LeWinter MM. Recurrent pericarditis: A stubborn opponent meets new treatments in 2022. Curr Cardiol Rep. 2022;24(8):915-923. doi:10.1007/s11886-022-01719-z; Vecchié A, Del Buono MG, Mauro AG, Cremer PC, Imazio M, Klein AL, et al. Advances in pharmacotherapy for acute and recurrent pericarditis. Expert Opin Pharmacother. 2022;23(6):681-691. doi:10.1080/14656566.2022.2054327; Kumar S, Khubber S, Reyaldeen R, Agrawal A, Cremer PC, Imazio M, et al. Advances in imaging and targeted therapies for recurrent pericarditis: A review. JAMA Cardiol. 2022;7(9):975-985. doi:10.1001/jamacardio.2022.2584; Melendo-Viu M, Marchán-Lopez Á, Guarch CJ, Roubín SR, AbuAssi E, Meneses RT, et al. A systematic review and meta-analysis of randomized controlled trials evaluating pharmacologic therapies for acute and recurrent pericarditis. Trends Cardiovasc Med. 2022 Feb 5:S1050-1738(22)00024-X. doi:10.1016/j.tcm.2022.02.001; Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633-652. doi:10.1038/nrd3800; Mistry A, Savic S, van der Hilst JCH. Interleukin-1 blockade: An update on emerging indications. BioDrugs. 2017;31(3):207-221. doi:10.1007/s40259-017-0224-7; Arnold DD, Yalamanoglu A, Boyman O. Systematic review of safety and efficacy of IL-1-targeted biologics in treating immune-mediated disorders. Front Immunol. 2022;13:888392. doi:10.3389/fimmu.2022.888392; Lo Presti S, Elajami TK, Reyaldeen R, Anthony C, Imazio M, Klein AL. Emerging therapies for recurrent pericarditis: Interleukin-1 inhibitors. J Am Heart Assoc. 2021;10(19):e021685. doi:10.1161/JAHA.121.021685; Abadie BQ, Cremer PC. Interleukin-1 antagonists for the treatment of recurrent pericarditis. BioDrugs. 2022;36(4):459-472. doi:10.1007/s40259-022-00537-7; Cheema AH, Chaludiya K, Khalid M, Nwosu M, Konka S, Agyeman WY, et al. Efficacy of anakinra in pericarditis: A systematic review. Cureus. 2022;14(10):e29862. doi:10.7759/cureus.29862; Imazio M, Lazaros G, Gattorno M, LeWinter M, Abbate A, Brucato A, et al. Anti-interleukin-1 agents for pericarditis: A primer for cardiologists. Eur Heart J. 2022;43(31):2946-2957. doi:10.1093/eurheartj/ehab452; Correia ETO, Dos Santos Barbetta LM, de Almeida JPCL, Mesquita ET. Anakinra in recurrent pericarditis: Current evidence on clinical use, effectiveness, and safety. J Cardiovasc Pharmacol. 2020;76(1):42-49. doi:10.1097/FJC.0000000000000839; Cvetkovic RS, Keating G. Anakinra. BioDrugs. 2002;16(4):303-311. doi:10.2165/00063030-200216040-00005; Насонов ЕЛ, Самсонов МЮ. Роль интерлейкина 1 в развитии заболеваний человека: фокус на анакинре (рецепторном антагонисте ИЛ-1). Научно-практическая ревматология. 2022;60(3):280-298. doi:10.47360/1995-4484-2022-280-298; Picco P, Brisca G, Traverso F, Loy A, Gattorno M, Martini A. Successful treatment of idiopathic recurrent pericarditis in children with interleukin-1beta receptor antagonist (anakinra): An unrecognized autoinflammatory disease? Arthritis Rheum. 2009;60(1):264-248. doi:10.1002/art.24174; Vassilopoulos D, Lazaros G, Tsioufis C, Vasileiou P, Stefanadis C, Pectasides D. Successful treatment of adult patients with idiopathic recurrent pericarditis with an interleukin-1 receptor antagonist (anakinra). Int J Cardiol. 2012;160(1):66-68. doi:10.1016/j.ijcard.2012.05.086; Scott IC, Hajela V, Hawkins PN, Lachmann HJ. A case series and systematic literature review of anakinra and immunosuppression in idiopathic recurrent pericarditis. J Cardiol Cases. 2011;4(2):e93-e97. doi:10.1016/j.jccase.2011.07.003; Camacho-Lovillo M, Mendez-Santos A. Successful treatment of idiopathic recurrent pericarditis with interleukin-1 receptor antagonist (Anakinra). Pediatr Cardiol. 2013;34:1293-1294. doi:10.1007/s00246-013-0663-y; Theodoropoulou K, von Scheven-Gête A, Bressieux-Degueldre S, Prsa M, Angelini F, Boulos T, et al. A case of corticoster oid-dependent recurrent pericarditis with different response to two IL-1 blocking agents. Pediatr Rheumatol. 2015;13(Suppl 1):155. doi:10.1186/1546-0096-13-S1-P155; Scardapane A, Brucato A, Chiarelli F, Breda L. Efficacy of an interleukin-1β receptor antagonist (anakinra) in idiopathic recurrent pericarditis. Pediatr Cardiol. 2013;34(8):1989-1991. doi:10.1007/s00246-012-0532-0; Murias Loza S, García-Guereta Silva L, Alcobendas Rueda RM, Remesal Camba A. Eficacia de anakinra como tratamiento de la pericarditis recurrente [Efficacy of anakinra as a treatment for recurrent pericarditis]. An Pediatr (Engl Ed). 2018;88(4):223-224. doi:10.1016/j.anpedi.2017.05.002; Tomelleri A, Cavalli G, De Luca G, Campochiaro C, D’Aliberti T, Tresoldi M, et al. Treating heart inflammation with interleukin-1 blockade in a case of Erdheim-Chester disease. Front Immunol. 2018;9:1233. doi:10.3389/fimmu.2018.01233; Rodriguez-Gonzalez M, Ruiz-Gonzalez E, Castellano-Martinez A. Anakinra as rescue therapy for steroid-dependent idiopathic recurrent pericarditis in children: Case report and literature review. Cardiol Young. 2019;29(2):241-243. doi:10.1017/S1047951118002020; Dagan A, Langevitz P, Shoenfeld Y, Shovman O. Anakinra in idiopathic recurrent pericarditis refractory to immunosuppressive therapy; a preliminary experience in seven patients. Autoimmun Rev. 2019;18(6):627-631. doi:10.1016/j.autrev.2019.01.005; Saad Shaukat MH, Shabbir MA, Mookherjee S, PeredoWende R. Successful use of anakinra for colchicine-intolerant, corticosteroid-dependent recurrent pericarditis secondary to postcardiac injury syndrome after pacemaker placement. BMJ Case Rep. 2019;12(4):e229117. doi:10.1136/bcr-2018-229117; Wohlford GF, Buckley LF, Vecchié A, Kadariya D, Markley R, Trankle CR, et al. Acute Effects of interleukin-1 blockade using Anakinra in patients with acute pericarditis. J Cardiovasc Pharmacol. 2020;76(1):50-52. doi:10.1097/FJC.0000000000000847; Signa S, D’Alessandro M, Consolini R, Miniaci A, Bustaffa M, Longo C, et al. Failure of anti interleukin-1β monoclonal antibody in the treatment of recurrent pericarditis in two children. Pediatr Rheumatol Online J. 2020;18(1):51. doi:10.1186/s12969-020-00438-5; Sicignano LL, Massaro MG, Savino M, Rigante D, Gerardino L, Manna R. Early introduction of anakinra improves acute pericarditis and prevents tamponade in Staphylococcal sepsis. Intern Emerg Med. 2021;16(5):1391-1394. doi:10.1007/s11739-020-02627-2; Thallapally VK, Gupta S, Gundepalli SG, Nahas J. Use of Anakinra in steroid dependent recurrent pericarditis: A case report and review of literature. J Community Hosp Intern Med Perspect. 2021;11(4):543-546. doi:10.1080/20009666.2021.1933716; Karadeniz H, Yamak BA, Özger HS, Sezenöz B, Tufan A, Emmi G. Anakinra for the treatment of COVID-19-associated pericarditis: A case report. Cardiovasc Drugs Ther. 2020;34(6):883-885. doi:10.1007/s10557-020-07044-3; Perna F, Verecchia E, Pinnacchio G, Gerardino L, Brucato A, Manna R. Rapid resolution of severe pericardial effusion using anakinra in a patient with COVID-19 vaccine-related acute pericarditis relapse: A case report. Eur Heart J Case Rep. 2022;6(4):ytac123. doi:10.1093/ehjcr/ytac123; Lazaros G, Vasileiou P, Koutsianas C, Antonatou K, Stefanadis C, Pectasides D, et al. Anakinra for the management of resistant idiopathic recurrent pericarditis. Initial experience in 10 adult cases. Ann Rheum Dis. 2014;73(12):2215-2217. doi:10.1136/annrheumdis-2014-205990; Finetti M, Insalaco A, Cantarini L, Meini A, Breda L, Alessio M, et al. Long-term efficacy of interleukin-1 receptor antagonist (anakinra) in corticosteroid-dependent and colchicine-resistant recurrent pericarditis. J Pediatr. 2014;164(6):1425-1431.e1. doi:10.1016/j.jpeds.2014.01.065; Jain S, Thongprayoon C, Espinosa RE, Hayes SN, Klarich KW, Cooper LT, et al. Effectiveness and safety of Anakinra for management of refractory pericarditis. Am J Cardiol. 2015;116(8):1277-1279. doi:10.1016/j.amjcard.2015.07.047; Imazio M, Brucato A, Pluymaekers N, Breda L, Calabri G, Cantarini L, et al. Recurrent pericarditis in children and adolescents: A multicentre cohort study. J Cardiovasc Med (Hagerstown). 2016;17(9):707-712. doi:10.2459/JCM.0000000000000300; Brucato A, Imazio M, Gattorno M, Lazaros G, Maestroni S, Carraro M, et al. Effect of Anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence: The AIRTRIP randomized clinical trial. JAMA. 2016;316(18):1906-1912. doi:10.1001/jama.2016.15826; Imazio M, Andreis A, De Ferrari GM, Cremer PC, Mardigyan V, Maestroni S, et al. Anakinra for corticosteroid-dependent and colchicine-resistant pericarditis: The IRAP (International Registry of Anakinra for Pericarditis) study. Eur J Prev Cardiol. 2020;27(9):956-964. doi:10.1177/2047487319879534; Andreis A, Imazio M, Giustetto C, Brucato A, Adler Y, De Ferrari GM. Anakinra for constrictive pericarditis associated with incessant or recurrent pericarditis. Heart. 2020;106(20):1561-1565. doi:10.1136/heartjnl-2020-316898; Lopalco G, Venerito V, Brucato A, Emmi G, Giacomelli R, Cauli A, et al. Anakinra effectiveness in refractory polyserositis: An Italian multicenter study. Joint Bone Spine. 2022;89(2):105299. doi:10.1016/j.jbspin.2021.105299; Affas Z R, Rasool B Q, Sebastian S A, Affas RS, Mohamadtahr SKet al. Rilonacept and Anakinra in Recurrent Pericarditis: A Systematic Review and Meta-Analysis. Cureus 2022; 14(11): e31226. doi:10.7759/cureus.31226; Imazio M, Andreis A, Piroli F, Lazaros G, Gattorno M, Lewinter M, et al. Anti-interleukin 1 agents for the treatment of recurrent pericarditis: A systematic review and meta-analysis. Heart. 2021 Mar 18:heartjnl-2020-318869. doi:10.1136/heartjnl-2020-318869; Avondo S, Andreis A, Casula M, Biondi-Zoccai G, Imazio M. Pharmacologic treatment of acute and recurrent pericarditis: A systematic review and meta-analysis of controlled clinical trials. Panminerva Med. 2021;63(3):314-323. doi:10.23736/S0031-0808.21.04263-4; Lazaros G, Vasileiou P, Danias P, Koutsianas C, Vlachopoulos C, Tousoulis D, et al. Effusive-constrictive pericarditis successfully treated with anakinra. Clin Exp Rheumatol. 2015;33(6):945.; Brucato A, Emmi G, Cantarini L, Di Lenarda A, Gattorno M, Lopalco G, et al. Management of idiopathic recurrent pericarditis in adults and in children: A role for IL-1 receptor antagonism. Intern Emerg Med. 2018;13(4):475-489. doi:10.1007/s11739-018-1842-x; Imazio M, Hoit BD. Post-cardiac injury syndromes. An emerging cause of pericardial diseases. Int J Cardiol. 2013;168(2):648-652. doi:10.1016/j.ijcard.2012.09.052; Schatz A, Trankle C, Yassen A, Chipko C, Rajab M, Abouzaki N, et al. Resolution of pericardial constriction with Anakinra in a patient with effusive-constrictive pericarditis secondary to rheumatoid arthritis. Int J Cardiol. 2016;223:215-216. doi:10.1016/j.ijcard.2016.08.131; Ocon AJ, Kwiatkowski AV, Peredo-Wende R, Blinkhorn R. Adult-onset Still’s disease with haemorrhagic pericarditis and tamponade preceded by acute Lyme disease. BMJ Case Rep. 2018;2018:bcr2018225517. doi:10.1136/bcr-2018-225517; Cafarelli F, Coladonato L, Lopalco G, Cacciapaglia F, Cantarini L, Iannone F. Successful treatment with anakinra of refractory pericarditis in systemic lupus erythematosus. Clin Exp Rheumatol. 2021;39:227.; Ahmed T, Meredith D, Klein AL. Granulomatosis with polyangiitis (Wegener’s granulomatosis) complicated by pericarditis: Our experience of two cases and comparative review of literature. CASE (Phila). 2021;5(2):126-136. doi:10.1016/j.case.2020.11.008; Shaukat MH, Singh S, Davis K, Torosoff M, Peredo-Wende R. Efficacy of anakinra for idiopathic and non-idiopathic pericarditis refractory or intolerant to conventional therapy. Eur Heart J Acute Cardiovasc Care. 2020;9(8):888-892. doi:10.1177/2048872619886309; Mertens M, Singh JA. Anakinra for rheumatoid arthritis. Cochrane Database Syst Rev. 2009(1):CD005121. doi:10.1002/14651858.CD005121; McGonagle D, Watad A, Savic S. Mechanistic immunological based classification of rheumatoid arthritis. Autoimmun Rev. 2018;17(11):1115-1123. doi:10.1016/j.autrev.2018.06.001; Tan Y, Buch MH. ‘Difficult to treat’ rheumatoid arthritis: Current position and considerations for next steps. RMD Open. 2022;8(2):e002387. doi:10.1136/rmdopen-2022-002387; Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-271. doi:10.14412/1995-4484-2018-263-271; Rashad NM, Soliman MH, El-Shal A, Said D, Samir GM. Effect of interleukin-1β gene polymorphisms on clinicopathological features and disease activity of systemic lupus erythematosus. Egypt J Intern Med. 2019;31:235-242. doi:10.4103/ejim.ejim_92_18; Rus V, Atamas SP, Shustova V, Luzina IG, Selaru F, Magder LS, et al. Expression of cytokine- and chemokine-related genes in peripheral blood mononuclear cells from lupus patients by cDNA array. Clin Immunol. 2002;102(3):283-290. doi:10.1006/clim.2001.5182; Treatment of acute pericarditis with anakinra. 2021. URL: https://clinicaltrials.gov/ct2/show/NCT03224585 (Accessed: DD August 2022).; Yang BB, Gozzi P, Sullivan JT. Pharmacokinetics of anakinra in subjects of heavier vs. lighter body weights. Clin Transl Sci. 2019;12:371-378. doi:10.1111/cts.12622; Yang BB, Baughman S, Sullivan JT. Pharmacokinetics of anakinra in subjects with different levels of renal function. Clin Pharmacol Ther. 2003;74(1):85-94. doi:10.1016/S0009-9236(03)00094-8; Kumar A, Sato K, Verma BR, Ala CK, Betancor J, Yzeiraj E, et al. Quantitative assessment of pericardial delayed hyperenhancement helps identify patients with ongoing recurrences of pericarditis. Open Heart. 2018;5(2):e000944. doi:10.1136/openhrt-2018-000944; Imazio M, Pivetta E, Palacio Restrepo S, Sormani P, Pedrotti P, Quarta G, et al. Usefulness of cardiac magnetic resonance for recurrent pericarditis. Am J Cardiol. 2020;125(1):146-151. doi:10.1016/j.amjcard.2019.09.026; Ajeganova S, De Becker A, Schots R. Efficacy of high-dose anakinra in refractory macrophage activation syndrome in adultonset Still’s disease: When dosage matters in overcoming secondary therapy resistance. Ther Adv Musculoskelet Dis. 2020;12:1759720X20974858. doi:10.1177/1759720X20974858; Imazio M, Brucato A, Cumetti D, Brambilla G, Demichelis B, Ferro S, et al. Corticosteroids for recurrent pericarditis: High versus low doses: A nonrandomized observation. Circulation. 2008;118(6):667-671. doi:10.1161/CIRCULATIONAHA; Cremer PC, Tariq MU, Karwa A, Alraies MC, Benatti R, Schuster A, et al. Quantitative assessment of pericardial delayed hyperenhancement predicts clinical improvement in patients with constrictive pericarditis treated with anti-inflammatory therapy. Circ Cardiovasc Imaging. 2015;8(5):e003125. doi:10.1161/CIRCIMAGING.114.003125; Tombetti E, Giani T, Brucato A, Cimaz R. Recurrent pericarditis in children and adolescents. Front Pediatr. 2019;7:419. doi:10.3389/fped.2019.00419; https://rsp.mediar-press.net/rsp/article/view/3278

  20. 20
    Academic Journal

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 15 (2023): (Suppl. 1); 15-21 ; Неврология, нейропсихиатрия, психосоматика; Vol 15 (2023): (Suppl. 1); 15-21 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-0

    وصف الملف: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2072/1569; Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011 Jul;74(1):1-13. doi:10.1111/j.1365-3083.2011.02536.x; Chen G, Shannon M. Transcription factors and Th17 cell development in experimental autoimmune encephalomyelitis. Crit Rev Immunol. 2013;33(2):165-82. doi:10.1615/critrevimmunol.2013006959.; Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006 Jul 1;177(1):566-73. doi:10.4049/jimmunol.177.1.566; Saitoh K, Kon S, Nakatsuru T, et al. Anti-IL-17A blocking antibody reduces cyclosporin A-induced relapse in experimental autoimmune encephalomyelitis mice. Biochem Biophys Rep. 2016 Aug 26;8:139-45. doi:10.1016/j.bbrep.2016.08.021; Matusevicius D, Kivisäkk P, He B, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler. 1999 Apr;5(2):101-4. doi:10.1177/135245859900500206; Li YF, Zhang SX, Ma XW, et al. Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with multiple sclerosis: A meta-analysis. Mult Scler Relat Disord. 2017 Nov;18:20-5. doi:10.1016/j.msard.2017.09.003. Epub 2017 Sep 13.; Havrdova E, Belova A, Goloborodko A, et al. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study. J Neurol. 2016 Jul;263(7):1287-95. doi:10.1007/s00415-016-8128-x. Epub 2016 May 3.; Hauser SL, Waubant E, Arnold DL, et al; HERMES Trial Group. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008 Feb 14;358(7):676-88. doi:10.1056/NEJMoa0706383; Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007 Apr;130(Pt 4):1089-104. doi:10.1093/brain/awm038; Bermejo DA, Jackson SW, Gorosito-Serran M, et al. Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat Immunol. 2013 May;14(5):514-22. doi:10.1038/ni.2569. Epub 2013 Apr 7.; Agrawal S, Gupta S. TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J Clin Immunol. 2011 Feb;31(1):89-98. doi:10.1007/s10875-010-9456-8. Epub 2010 Sep 7. Erratum in: J Clin Immunol. 2011 Feb;31(1):136.; Monson NL, Cravens P, Hussain R, et al. Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis. PLoS One. 2011 Feb 16;6(2):e17103. doi:10.1371/journal.pone.0017103; Dalai SK, Mirshahidi S, Morrot A, et al. Anergy in memory CD4+ T cells is induced by B cells. J Immunol. 2008 Sep 1;181(5):3221-31. doi:10.4049/jimmunol.181.5.3221; Morlacchi S, Soldani C, Viola A, Sarukhan A. Self-antigen presentation by mouse B cells results in regulatory T-cell induction rather than anergy or clonal deletion. Blood. 2011 Jul 28;118(4):984-91. doi:10.1182/blood-2011-02-336115. Epub 2011 Jun 7.; Kuhle J, Pohl C, Mehling M, et al. Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med. 2007 Jan 25;356(4):371-8. doi:10.1056/NEJMoa063602; Good KL, Avery DT, Tangye SG. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol. 2009 Jan 15;182(2):890-901. doi:10.4049/jimmunol.182.2.890; Pierson ER, Stromnes IM, Goverman JM. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system. J Immunol. 2014 Feb 1;192(3):929-39. doi:10.4049/jimmunol.1302171. Epub 2013 Dec 23.; Serafini B, Rosicarelli B, Veroni C, et al. RORγt Expression and Lymphoid Neogenesis in the Brain of Patients with Secondary Progressive Multiple Sclerosis. J Neuropathol Exp Neurol. 2016 Sep;75(9):877-88. doi:10.1093/jnen/nlw063. Epub 2016 Jul 13.; https://nnp.ima-press.net/nnp/article/view/2072