-
1Academic Journal
المؤلفون: A. E. Cheberda, D. Yu. Belousov
المصدر: Качественная клиническая практика, Vol 0, Iss 4, Pp 96-107 (2024)
مصطلحات موضوعية: ревматоидный артрит, тофацитиниб, барицитиниб, упадацитиниб, ингибиторы янус-киназ, систематический обзор, метаанализ, haq-di, acr20, Medical technology, R855-855.5, Pharmacy and materia medica, RS1-441
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: I. B. Bashkova, I. V. Madyanov, И. Б. Башкова, И. В. Мадянов
المصدر: Meditsinskiy sovet = Medical Council; № 3 (2024); 139-148 ; Медицинский Совет; № 3 (2024); 139-148 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: таргетные синтетические базисные противовоспалительные препараты, tofacitinib, Janus kinase inhibitors, targeted synthetic baseline anti-inflammatory drugs, тофацитиниб, ингибиторы янус-киназ
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8200/7223; Насонов ЕЛ. Тофацитиниб при ревматоидном артрите: что нового? Клиническая фармакология и терапия. 2020;29(1):5–12. Режим доступа: https://clinpharm-journal.ru/articles/2020-1/tofatsitinib-prirevmatoidnom-artrite-chto-novogo.; Wollenhaupt J, Lee EB, Curtis JR, Silverfield J, Terry K, Soma K et al. Safety and efficacy of tofacitinib for up to 9.5 years in the treatment of rheumatoid arthritis: final results of a global, open-label, long-term extension study. Arthritis Res Ther. 2019;21(1):89. https://doi.org/10.1186/s13075-019-1866-2.; Чичасова НВ, Лила АМ. Эффективность и безопасность тофацитиниба в лечении ревматоидного артрита: итоги 10-летнего применения. Медицинский совет. 2022;16(21):139–145. https://doi.org/10.21518/2079-701X-2022-16-21-139-145.; Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connel CA, Bradley JD et al. Placebo-controlled trial of Tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367(6):495–507. https://doi.org/10.1056/NEJMoa1109071.; Kremer JM, Li ZG, Hall S, Fleischmann R, Genovese M, Martin-Mola E et al. Tofacitinib in combination with nonbilogic disease modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trials. Ann Int Med. 2013;159(4):253–261. https://doi.org/10.7326/0003-4819-159-4-201308200-00006.; Yamanaka H., Tanaka Y., Takeuchi T., Sugiyama N., Yuasa H., Toyoizumi S. et al. Tofacitinib, an oral Janus kinase inhibitor, as monotherapy or with background MTX, in Japanese patients with rheumatoid arthritis: an open-label, long-term extension study. Arthritis Res Ther. 2016;18:34. https://doi.org/10.1186/s13075-016-0932-2.; Boyle DL, Soma K, Hodge J, Kavanaugh A, Mandel D, Mease P et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis. 2015;74(6):1311–1316. https://doi.org/10.1136/annrheumdis-2014-206028.; Новиков ПИ, Иванова ОН, Хачкинаев КА, Давыдова АФ, Сальникова ТС, Моисеев СВ. Эффективность и безопасность тофацитиниба в лечении ревматоидного артрита. Клиническая фармакология и терапия. 2017;26(1):59–65. Режим доступа: https://clinpharm-journal.ru/articles/2017-1/effektivnost-i-bezopasnost-tofatsitiniba-v-lecheniirevmatoidnogo-artrita.; Бабаева АР, Калинина ЕВ, Каратеев ДЕ. Опыт применения тофацитиниба в лечении резистентного ревматоидного артрита. Современная ревматология. 2015;9(2):28–32. Режим доступа: https://mrj.ima-press.net/mrj/article/view/619/604.; Насонов ЕЛ, Лила АМ, Каратеев ДЕ, Мазуров ВИ, Амирджанова ВН, Белов БС и др. Клинические рекомендации: ревматоидный артрит. 2021. Режим доступа: https://cr.minzdrav.gov.ru/schema/250_2.; Smolen JS, Landewe RBM, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 2023;82(1):3–18. https://doi.org/10.1136/ard-2022-223356.; Насонов ЕЛ (ред.). Ревматология. Российские клинические рекомендации. М.: ГЭОТАР-Медиа; 2017. 464 с.; Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet. 2013;381(9865):451–460. https://doi.org/10.1016/S0140-6736(12)61424-X.; Авдеева АС, Мисиюк АС, Сатыбалдыев АМ, Лукина ГВ, Сороцкая ВН, Жиляев ЕВ и др. Анализ результатов терапии тофацитинибом в реальной клинической практике (по данным Общероссийского регистра больных артритом ОРЕЛ). Научно-практическая ревматология. 2020;58(3):262–267. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/2891.; Лучихина ЕЛ, Каратеев ДЕ, Демидова НВ, Мисиюк АС, Александрова ЕН, Новиков АА и др. Эффективность и безопасность терапии тофацитинибом у больных активным ревматоидным артритом с резистентностью к стандартной терапии: предварительные результаты открытого клинического исследования. Современная ревматология. 2016;10(2):17–23. Режим доступа: https://mrj.ima-press.net/mrj/article/view/679/664.; Conaghan PG, Ostergaard M, Bowes MA, Wu C, Fuerst T, van der Heijde D et al. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques. Ann Rheum Dis. 2016;75(6):1024–1033. https://doi.org/10.1136/annrheumdis-2015-208267.; van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012;367(6):508–519. https://doi.org/10.1056/NEJMoa1112072.; Насонов ЕЛ, Коротаева ТВ. Ингибиторы Янус-киназ при иммуновоспалительных заболеваниях: 10 лет клинической практики в ревматологии. Научно-практическая ревматология. 2022;60(2):131–148. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/3145/2169.; Souto A, Salgado E, Maneiro JR, Mera A, Carmona L, Gómez-Reino JJ. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: a systematic review and meta-analysis. Arthritis Rheumatol. 2015;67(1):117–127. https://doi.org/10.1002/art.38894.; Каратеев ДЕ, Лучихина ЕЛ, Мисиюк АС. Российский и международный опыт применения ингибитора Янус-киназ при ревматоидном артрите. Медицинский совет. 2017;(10):87–92. https://doi.org/10.21518/2079-701X-2017-10-87-92.; Чичасова НВ, Лила АМ. Тофацитиниб в лечении ревматоидного артрита – данные реальной практики и рандомизированных клинических исследований. Медицинский совет. 2023;17(13):147–154. https://doi.org/10.21518/ms2023-206.; Мазуров ВИ, Трофимов ЕА, Самигуллина РР, Гайдукова ИЗ. Место тофацитиниба в стратегии лечения ревматоидного артрита. Научнопрактическая ревматология. 2018;56(2):152–156. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/2519/1674.; Каратеев АЕ, Погожева ЕЮ, Амирджанова ВН, Филатова ЕС, Лила АМ, Мазуров ВИ и др. Оценка эффективности тофацитиниба при ревматоидном артрите в реальной клинической практике: взаимосвязь между снижением боли в первые 4 недели и активностью заболевания через 3–6 месяцев. Научно-практическая ревматология. 2021;(4):394–400. https://doi.org/10.47360/1995-4484-2021-394-400.; Nash P, Kerschbaumer A, Dorner T, Dougados M, Fleischmann RM, Geissler K et al. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: A consensus statement. Ann Rheum Dis. 2021;80(1):71–87. https://doi.org/10.1136/annrheumdis-2020-218398.; Белов БС, Муравьева НВ, Тарасова ГМ, Баранова ММ. Применение ингибиторов янус-киназ в терапии иммуновоспалительных ревматических заболеваний: вопросы безопасности. Медицинский совет. 2021;(2):76–84. https://doi.org/10.21518/2079-701X-2021-2-76-84.; Winthrop KL, Cohen SB. Oral surveillance and JAK inhibitor safety: the theory of relativity. Nat Rev Rheumatol. 2022;18(5):301–304. https://doi.org/10.1038/s41584-022-00767-7.; Pope JE, Keystone E, Jamal S, Wang L, Fallon L, Woolcott J et al. Persistence of Tofacitinib in the Treatment of Rheumatoid Arthritis in Open-Label, Long-Term Extension Studies up to 9.5 Years. ACR Open Rheumatol. 2019.28;1(2):73–82. https://doi.org/10.1002/acr2.1010.; Гриднева ГИ, Аронова ЕС, Белов БС. Удержание на терапии тофацитинибом пациентов с ревматоидным артритом (данные реальной клинической практики). Современная ревматология. 2022;16(6):32–37. https://doi.org/10.14412/1996-7012-2022-6-32-37.; Чичасова НВ. Тофацитиниб: эффективность и безопасность при длительном применении. Медицинский совет. 2019;(1):64–71. https://doi.org/10.21518/2079-701X-2019-1-64-71.; Curtis JR, Xie F, Yang S, Bernatsky S, Chen L, Yun H, Winthrop K. Risk for Herpes Zoster in tofacitinib-treated rheumatoid arthritis patients with and without concomitant methotrexate and glucocorticoids. Arthritis Care Res (Hoboken). 2019;71(9):1249–1254. https://doi.org/10.1002/acr.23769.; Winthrop KL, Curtis JR, Yamaoka K, Lee EB, Hirose T, Rivas JL et al. Clinical management of Herpes Zoster in patients with rheumatoid arthritis or psoriatic arthritis receiving tofacitinib treatment. Rheumatol Ther. 2022;9(1):243–263. https://doi.org/10.1007/s40744-021-00390-0.; https://www.med-sovet.pro/jour/article/view/8200
-
3Academic Journal
المؤلفون: N. N. Potekaev, G. P. Tereshchenko, A. G. Gadzhigoroeva, Н. Н. Потекаев, Г. П. Терещенко, А. Г. Гаджигороева
المصدر: Meditsinskiy sovet = Medical Council; № 2 (2024); 44-53 ; Медицинский Совет; № 2 (2024); 44-53 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: коморбидность, alopecia areata, janus-kinase inhibitors, JAK-STAT, cytokines, comorbidity, гнездная алопеция, ингибиторы янус-киназ, цитокины
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8129/7176; Арсентьева НА, Любимова НЕ, Бацунов ОК, Семенов АВ, Тотолян АА. Особенности цитокинового профиля плазмы крови здоровых жителей Гвинейской Республики. Медицинская иммунология. 2020;22(4):765–778. https://doi.org/10.15789/1563-0625-AOB-2073.; Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs. 2017;77(5):521–546. https://doi.org/10.1007/s40265-017-0701-9.; Howell MD, Kuo FI, Smith PA. Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Front Immunol. 2019;10:2342. https://doi.org/10.3389/fimmu.2019.02342.; Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25–36. https://doi.org/10.1038/nrrheum.2015.167.; O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–328. https://doi.org/10.1146/annurev-med-051113-024537.; Villarino AV, Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18(4):374–384. https://doi.org/10.1038/ni.3691.; Stark GR, Cheon H, Wang Y. Responses to Cytokines and Interferons that Depend upon JAKs and STATs. Cold Spring Harb Perspect Biol. 2018;10(1):a028555. https://doi.org/10.1101/cshperspect.a028555.; Maldonado RA, Soriano MA, Perdomo LC, Sigrist K, Irvine DJ, Decker T, Glimcher LH. Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse. J Exp Med. 2009;206(4):877–892. https://doi.org/10.1084/jem.20082900.; Furumoto Y, Gadina M. The arrival of JAK inhibitors: advancing the treatment of immune and hematologic disorders. BioDrugs. 2013;27(5):431–438. https://doi.org/10.1007/s40259-013-0040-7.; Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–862. https://doi.org/10.1038/nrd.2017.201.; T Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs. 2019;33(1):15–32. https://doi.org/10.1007/s40259-019-00333-w.; McInnes IB, Byers NL, Higgs RE, Lee J, Macias WL, Na S et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther. 2019;21(1):183. https://doi.org/10.1186/s13075-019-1964-1.; Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford). 2019;58(6):953–962. https://doi.org/10.1093/rheumatology/key339.; Новиков ПИ, Шевцова ТП, Щеголева ЕМ, Моисеев СВ. Ингибиторы янус-киназ: фармакологические свойства и сравнительные клиническая эффективность и безопасность. Клиническая фармакология и терапия. 2021;30(1):51–60. https://doi.org/10.32756/0869-5490-2021-1-51-60.; Dogra S, Sharma A, Mehta H, Sarkar R. Emerging role of topical Janus kinase inhibitors in dermatological disorders: a review. Clin Exp Dermatol. 2023;48(10):1102–1112. https://doi.org/10.1093/ced/llad188.; Gilhar A, Keren A, Paus R. JAK inhibitors and alopecia areata. Lancet. 2019;393(10169):318–319. https://doi.org/10.1016/S0140-6736(18)32987-8.; Hoisnard L, Lebrun-Vignes B, Maury S, Mahevas M, El Karoui K, Roy L et al. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Sci Rep. 2022;12(1):7140. https://doi.org/10.1038/s41598-022-10777-w.; Кубанов АА, Намазова-Баранова ЛС, Хаитов РМ, Ильина НИ, Алексеева ЕА, Амбарчян ЭТ и др. Атопический дерматит: клинические рекомендации. М.; 2021. Режим доступа: https://cr.minzdrav.gov.ru/schema/265_2.; Moyle M, Cevikbas F, Harden JL, Guttman-Yassky E. Understanding the immune landscape in atopic dermatitis: The era of biologics and emerging therapeutic approaches. Exp Dermatol. 2019;28(7):756–768. https://doi.org/10.1111/exd.13911.; Klasa B, Cichocka-Jarosz E. Atopic Dermatitis - Current State of Research on Biological Treatment. J Mother Child. 2020;24(1):53–66. https://doi.org/10.34763/jmotherandchild.2020241.2003.0000010.; Leyva-Castillo JM, Hener P, Jiang H, Li M. TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers atopic march in mice. J Invest Dermatol. 2013;133(1):154–163. https://doi.org/10.1038/jid.2012.239.; Wong CK, Hu S, Cheung PF, Lam CW. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am J Respir Cell Mol Biol. 2010;43(3):305–315. https://doi.org/10.1165/rcmb.2009-0168OC.; Klonowska J, Gleń J, Nowicki RJ, Trzeciak M. New Cytokines in the Pathogenesis of Atopic Dermatitis-New Therapeutic Targets. Int J Mol Sci. 2018;19(10):3086. https://doi.org/10.3390/ijms19103086.; Gittler JK, Shemer A, Suárez-Fariñas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–1354. https://doi.org/10.1016/j.jaci.2012.07.012.; Lou H, Lu J, Choi EB, Oh MH, Jeong M, Barmettler S et al. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction, and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway. J Immunol. 2017;198(7):2543–2555. https://doi.org/10.4049/jimmunol.1600126.; Brunner PM, Guttman-Yassky E, Leung DY. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol. 2017;139(4S):S65–S76. https://doi.org/10.1016/j.jaci.2017.01.011.; Алексеева АА, Амбарчян ЭТ, Артемьева СИ, Астафьева НГ, Бакулев АЛ, Бобко СИ и др. Атопический дерматит: клинические рекомендации. М.; 2023. Режим доступа: https://raaci.ru/education/clinic_recomendations/100.html.; Simpson EL, Papp KA, Blauvelt A, Chu CY, Hong HC, Katoh N et al. Efficacy and Safety of Upadacitinib in Patients With Moderate to Severe Atopic Dermatitis: Analysis of Follow-up Data From the Measure Up 1 and Measure Up 2 Randomized Clinical Trials. JAMA Dermatol. 2022;158(4):404–413. https://doi.org/10.1001/jamadermatol.2022.0029.; Reich K, Teixeira HD, de Bruin-Weller M, Bieber T, Soong W, Kabashima K et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2021;397(10290):2169–2181. https://doi.org/10.1016/S0140-6736(21)00589-4.; Bieber T, Thyssen JP, Reich K, Simpson EL, Katoh N, Torrelo A et al. Pooled safety analysis of baricitinib in adult patients with atopic dermatitis from 8 randomized clinical trials. J Eur Acad Dermatol Venereol. 2021;35(2):476–485. https://doi.org/10.1111/jdv.16948.; Thyssen JP, Buhl T, Fernández-Peñas P, Kabashima K, Chen S, Lu N et al. Baricitinib Rapidly Improves Skin Pain Resulting in Improved Quality of Life for Patients with Atopic Dermatitis: Analyses from BREEZE-AD1, 2, and 7. Dermatol Ther (Heidelb). 2021;11(5):1599–1611. https://doi.org/10.1007/s13555-021-00577-x.; Simpson EL, Sinclair R, Forman S, Wollenberg A, Aschoff R, Cork M et al. Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet. 2020;396(10246):255–266. https://doi.org/10.1016/S0140-6736(20)30732-7.; Yosipovitch G, Gooderham MJ, Ständer S, Fonacier L, Szepietowski JC, Deleuran M et al. Interpreting the Relationship Among Itch, Sleep, and Work Productivity in Patients with Moderate-to-Severe Atopic Dermatitis: A Post Hoc Analysis of JADE MONO-2. Am J Clin Dermatol. 2024;25(1):127–138. https://doi.org/10.1007/s40257-023-00810-7.; Blauvelt A, Silverberg JI, Lynde CW, Bieber T, Eisman S, Zdybski J et al. Abrocitinib induction, randomized withdrawal, and retreatment in patients with moderate-to-severe atopic dermatitis: Results from the JAK1 Atopic Dermatitis Efficacy and Safety (JADE) REGIMEN phase 3 trial. J Am Acad Dermatol. 2022;86(1):104–112. https://doi.org/10.1016/j.jaad.2021.05.075.; Eichenfield LF, Flohr C, Sidbury R, Siegfried E, Szalai Z, Galus R et al. Efficacy and Safety of Abrocitinib in Combination With Topical Therapy in Adolescents With Moderate-to-Severe Atopic Dermatitis: The JADE TEEN Randomized Clinical Trial. JAMA Dermatol. 2021;157(10):1165–1173. https://doi.org/10.1001/jamadermatol.2021.2830.; Bieber T, Simpson EL, Silverberg JI, Thaçi D, Paul C, Pink AE et al. Abrocitinib versus Placebo or Dupilumab for Atopic Dermatitis. N Engl J Med. 2021;384(12):1101–1112. https://doi.org/10.1056/NEJMoa2019380.; Reich K, Thyssen JP, Blauvelt A, Eyerich K, Soong W, Rice ZP et al. Efficacy and safety of abrocitinib versus dupilumab in adults with moderate-to-severe atopic dermatitis: a randomised, double-blind, multicentre phase 3 trial. Lancet. 2022;400(10348):273–282. https://doi.org/10.1016/S0140-6736(22)01199-0.; Shi VY, Bhutani T, Fonacier L, Deleuran M, Shumack S, Valdez H et al. Phase 3 efficacy and safety of abrocitinib in adults with moderate-to-severe atopic dermatitis after switching from dupilumab (JADE EXTEND). J Am Acad Dermatol. 2022;87(2):351–358. https://doi.org/10.1016/j.jaad.2022.04.009.; Bertolini M, McElwee K, Gilhar A, Bulfone-Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol. 2020;29(8):703–725. https://doi.org/10.1111/exd.14155.; Paus R, Bulfone-Paus S, Bertolini M. Hair Follicle Immune Privilege Revisited: The Key to Alopecia Areata Management. J Investig Dermatol Symp Proc. 2018;19(1):S12–S17. https://doi.org/10.1016/j.jisp.2017.10.014.; Ito T, Kageyama R, Nakazawa S, Honda T. Understanding the significance of cytokines and chemokines in the pathogenesis of alopecia areata. Exp Dermatol. 2020;29(8):726–732. https://doi.org/10.1111/exd.14129.; Ebrahim AA, Salem RM, El Fallah AA, Younis ET. Serum Interleukin-15 is a Marker of Alopecia Areata Severity. Int J Trichology. 2019;11(1):26–30. https://doi.org/10.4103/ijt.ijt_80_18.; Suárez-Fariñas M, Ungar B, Noda S, Shroff A, Mansouri Y, Fuentes-Duculan J et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–1287. https://doi.org/10.1016/j.jaci.2015.06.032.; Glickman JW, Dubin C, Dahabreh D, Han J, Del Duca E, Estrada YD et al. An integrated scalp and blood biomarker approach suggests the systemic nature of alopecia areata. Allergy. 2021;76(10):3053–3065. https://doi.org/10.1111/all.14814.; Glickman JW, Dubin C, Renert-Yuval Y, Dahabreh D, Kimmel GW, Auyeung K et al. Cross-sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation. J Am Acad Dermatol. 2021;84(2):370–380. https://doi.org/10.1016/j.jaad.2020.04.138.; Guttman-Yassky E, Renert-Yuval Y, Bares J, Chima M, Hawkes JE, Gilleaudeau P et al. Phase 2a randomized clinical trial of dupilumab (anti-IL-4Rα) for alopecia areata patients. Allergy. 2022;77(3):897–906. https://doi.org/10.1111/all.15071.; Renert-Yuval Y, Pavel AB, Del Duca E, Facheris P, Pagan AD, Bose S et al. Scalp biomarkers during dupilumab treatment support Th2 pathway pathogenicity in alopecia areata. Allergy. 2023;78(4):1047–1059. https://doi.org/10.1111/all.15561.; Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol. 2022;13:955035. https://doi.org/10.3389/fimmu.2022.955035.; Wang EHC, Sallee BN, Tejeda CI, Christiano AM. JAK Inhibitors for Treatment of Alopecia Areata. J Invest Dermatol. 2018;138(9):1911–1916. https://doi.org/10.1016/j.jid.2018.05.027.; Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20(9):1043–1049. https://doi.org/10.1038/nm.3645.; Craiglow BG, King BA. Killing two birds with one stone: oral tofacitinib reverses alopecia universalis in a patient with plaque psoriasis. J Invest Dermatol. 2014;134(12):2988–2990. https://doi.org/10.1038/jid.2014.260.; Kennedy Crispin M, Ko JM, Craiglow BG, Li S, Shankar G, Urban JR et al. Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight. 2016;1(15):e89776. https://doi.org/10.1172/jci.insight.89776.; Jerjen R, Meah N, Trindade de Carvalho L, Wall D, Eisman S, Sinclair R. Treatment of alopecia areata in pre-adolescent children with oral tofacitinib: A retrospective study. Pediatr Dermatol. 2021;38(1):103–108. https://doi.org/10.1111/pde.14422.; Guo L, Feng S, Sun B, Jiang X, Liu Y. Benefit and risk profile of tofacitinib for the treatment of alopecia areata: a systemic review and meta-analysis. J Eur Acad Dermatol Venereol. 2020;34(1):192–201. https://doi.org/10.1111/jdv.15937.; King B, Ohyama M, Kwon O, Zlotogorski A, Ko J, Mesinkovska NA et al. Two Phase 3 Trials of Baricitinib for Alopecia Areata. N Engl J Med. 2022;386(18):1687–1699. https://doi.org/10.1056/NEJMoa2110343.; Ramírez-Marín HA, Tosti A. Evaluating the Therapeutic Potential of Ritlecitinib for the Treatment of Alopecia Areata. Drug Des Devel Ther. 2022;16:363–374. https://doi.org/10.2147/DDDT.S334727.; Xu H, Jesson MI, Seneviratne UI, Lin TH, Sharif MN, Xue L et al. PF-06651600, a Dual JAK3/TEC Family Kinase Inhibitor. ACS Chem Biol. 2019;14(6):1235–1242. https://doi.org/10.1021/acschembio.9b00188.; King B, Zhang X, Harcha WG, Szepietowski JC, Shapiro J, Lynde C et al. Efficacy and safety of ritlecitinib in adults and adolescents with alopecia areata: a randomised, double-blind, multicentre, phase 2b-3 trial. Lancet. 2023;401(10387):1518–1529. https://doi.org/10.1016/S0140-6736(23)00222-2.; Mackay-Wiggan J, Jabbari A, Nguyen N, Cerise JE, Clark C, Ulerio G et al. Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight. 2016;1(15):e89790. https://doi.org/10.1172/jci.insight.89790.; Liu LY, King BA. Ruxolitinib for the treatment of severe alopecia areata. J Am Acad Dermatol. 2019;80(2):566–568. https://doi.org/10.1016/j.jaad.2018.08.040.; King B, Mesinkovska N, Mirmirani P, Bruce S, Kempers S, Guttman-Yassky E et al. Phase 2 randomized, dose-ranging trial of CTP-543, a selective Janus Kinase inhibitor, in moderate-to-severe alopecia areata. J Am Acad Dermatol. 2022;87(2):306–313. https://doi.org/10.1016/j.jaad.2022.03.045.; Гаджигороева АГ, Потекаев НН. Лечение пациентов с гнездной алопецией с учетом степени активности процесса и площади потери волос. М.; 2019. 24 с. Режим доступа: https://www.mosderm.ru/uploads/pages/method_rec/5e41c4f616f7.pdf.; Oliveira C, Torres T. More than skin deep: the systemic nature of atopic dermatitis. Eur J Dermatol. 2019;29(3):250–258. https://doi.org/10.1684/ejd.2019.3557.; Itamura M, Sawada Y. Involvement of Atopic Dermatitis in the Development of Systemic Inflammatory Diseases. Int J Mol Sci. 2022;23(21):13445. https://doi.org/10.3390/ijms232113445.; Paller A, Jaworski JC, Simpson EL, Boguniewicz M, Russell JJ, Block JK et al. Major Comorbidities of Atopic Dermatitis: Beyond Allergic Disorders. Am J Clin Dermatol. 2018;19(6):821-838. https://doi.org/10.1007/s40257-018-0383-4.; Furue M, Chiba T, Tsuji G, Ulzii D, Kido-Nakahara M, Nakahara T, Kadono T. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol Int. 2017;66(3):398–403. https://doi.org/10.1016/j.alit.2016.12.002.; Thyssen JP, Halling AS, Schmid-Grendelmeier P, Guttman-Yassky E, Silverberg JI. Comorbidities of atopic dermatitis-what does the evidence say? J Allergy Clin Immunol. 2023;151(5):1155–1162. https://doi.org/10.1016/j.jaci.2022.12.002.; Narla S, Silverberg JI. Association between atopic dermatitis and autoimmune disorders in US adults and children: A cross-sectional study. J Am Acad Dermatol. 2019;80(2):382–389. https://doi.org/10.1016/j.jaad.2018.09.025.; Mohan GC, Silverberg JI. Association of Vitiligo and Alopecia Areata With Atopic Dermatitis: A Systematic Review and Meta-analysis. JAMA Dermatol. 2015;151(5):522–528. https://doi.org/10.1001/jamadermatol.2014.3324.; Sun R, Kong D. Bilateral Association Between Atopic Dermatitis and Alopecia Areata: A Systematic Review and Meta-Analysis. Dermatitis. 2023. https://doi.org/10.1089/derm.2023.0114.; Ikeda T. A new classification of alopecia areata. Dermatologica. 1965;131(6):421–445. https://doi.org/10.1159/000254503.; Miot HA, Criado PR, de Castro CCS, Ianhez M, Talhari C, Ramos PM. JAK-STAT pathway inhibitors in dermatology. An Bras Dermatol. 2023;98(5):656–677. https://doi.org/10.1016/j.abd.2023.03.001.; Gambardella A, Licata G, Calabrese G, De Rosa A, Alfano R, Argenziano G. Dual Efficacy of Upadacitinib in 2 Patients With Concomitant Severe Atopic Dermatitis and Alopecia Areata. Dermatitis. 2021;32(1S):e85–e86. https://doi.org/10.1097/DER.0000000000000780.; Cantelli M, Martora F, Patruno C, Nappa P, Fabbrocini G, Napolitano M. Upadacitinib improved alopecia areata in a patient with atopic dermatitis: A case report. Dermatol Ther. 2022;35(4):e15346. https://doi.org/10.1111/dth.15346.; Zhao J, Liu L. A case of atopic dermatitis with alopecia universalis in a patient treated with abrocitinib. JAAD Case Rep. 2022;22:99–100. https://doi.org/10.1016/j.jdcr.2022.02.027.; Bennett M, Moussa A, Sinclair R. Successful treatment of chronic severe alopecia areata with abrocitinib. Australas J Dermatol. 2022;63(2):274–276. https://doi.org/10.1111/ajd.13836.; Uchida H, Kamata M, Nagata M, Fukaya S, Hayashi K, Fukuyasu A et al. Baricitinib improved alopecia areata concomitant with atopic dermatitis: A case report. J Dermatol. 2021;48(9):e472–e473. https://doi.org/10.1111/1346-8138.16024.; https://www.med-sovet.pro/jour/article/view/8129
-
4Academic Journal
المؤلفون: D. S. Fomina, S. S. Andreev, G. V. Andrenova, T. S. Kruglova, D. M. Demidchik, O. S. Kovalevskaya, Z. Yu. Mutovina, E. A. Dokukina, O. V. Filon, A. V. Petkova, E. K. Khanonina, M. Yu. Samsonov, Д. С. Фомина, С. С. Андреев, Г. В. Андренова, Т. С. Круглова, Д. М. Демидчик, О. С. Ковалевская, З. Ю. Мутовина, Е. А. Докукина, О. В. Филон, А. В. Петкова, Е. К. Ханонина, М. Ю. Самсонов
المساهمون: The study was sponsored by R-Pharm group of companies., Исследование проводилось при финансировании Группы компаний «Р-Фарм».
المصدر: PULMONOLOGIYA; Том 33, № 5 (2023); 623-632 ; Пульмонология; Том 33, № 5 (2023); 623-632 ; 2541-9617 ; 0869-0189
مصطلحات موضوعية: интерлейкин-6, new coronavirus infection (COVID-19), Janus kinase inhibitors, acute respiratory distress syndrome, interleukin-6, новая коронавирусная инфекция (COVID-19), ингибиторы янус-киназ, острый респираторный дистресссиндром
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/4370/3565; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4370/2227; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4370/2228; Woolf S.H., Chapman D.A., Lee J. H. COVID-19 as the leading cause of death in the United States. JAMA. 2021; 325 (2): 123–124. DOI:10.1001/jama.2020.24865.; COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available at: https://coronavirus.jhu.edu/map.html [Accessed: September 04, 2023].; ARDS Definition Task Force; Ranieri V.M., Rubenfeld G.D., Thompson B.T. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012; 307 (23): 2526–2533. DOI:10.1001/jama.2012.5669.; Yang X., Yu Y., Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020; 8 (5): 475–481. DOI:10.1016/s2213-2600(20)30079-5.; Ochani R.K., Asad A., Yasmin F. et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez. Med. 2021; 29 (1): 20–36. Available at: https://www.infezmed.it/media/journal/Vol_29_1_2021_3.pdf; Chilamakuri R., Agarwal S. COVID-19: characteristics and therapeutics. Cells. 2021; 10 (2): 206. DOI:10.3390/cells10020206.; Zhang J., Dong X., Liu G.H., Gao Y.D. Risk and protective factors for COVID-19 morbidity, severity, and mortality. Clin. Rev. Allergy Immunol. 2023; 64 (1): 90–107. DOI:10.1007/s12016-022-08921-5.; National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. 2020. Available at: https://www.covid19treatmentguidelines.nih.gov/; Министерство здравоохранения Российской Федерации. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 17 (14.12.2022). Доступно на: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/252/original/%D0%92%D0%9C%D0%A0_COVID-19_V17.pdf [Дата обращения: 06.09.23].; https://journal.pulmonology.ru/pulm/article/view/4370
-
5Academic Journal
المؤلفون: G. I. Gridneva, E. S. Aronova, Г. И. Гриднева, Е. С. Аронова
المصدر: Meditsinskiy sovet = Medical Council; № 21 (2023); 143-150 ; Медицинский Совет; № 21 (2023); 143-150 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: безопасность, psoriatic arthritis, Janus kinase inhibitors, JAK inhibitor, efficacy, safety, псориатический артрит, ингибиторы янус-киназ, JAK-ингибитор, эффективность
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7942/7054; Stern RS, Nijsten T, Feldman SR, Margolis DJ, Rolstad T. Psoriasis is common, carries a substantial burden even when not extensive, and is associated with widespread treatment dissatisfaction. J Investig Dermatol Symp Proc. 2004;9(2):136–139. https://doi.org/10.1046/j.1087-0024.2003.09102.x.; Gladman DD, Antoni C, Mease P, Clegg DO, Nash P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann Rheum Dis. 2005;64(Suppl 2):ii14–ii17. https://doi.org/10.1136/ard.2004.032482.; Mahler R, Jackson C, Ijacu H. The burden of psoriasis and barriers to satisfactory care: results from a Canadian patient survey. J Cutan Med Surg. 2009;13(6):283–293. https://doi.org/10.2310/7750.2009.08083.; Strober B, Karki C, Mason M, Guo N, Holmgren SH, Greenberg JD, Lebwohl M. Characterization of disease burden, comorbidities, and treatment use in a large, US-based cohort: Results from the Corrona Psoriasis Registry. J Am Acad Dermatol. 2018;78(2):323–332. https://doi.org/10.1016/j.jaad.2017.10.012.; Kaine J, Song X, Kim G, Hur P, Palmer JB. Higher Incidence Rates of Comorbidities in Patients with Psoriatic Arthritis Compared with the General Population Using U.S. Administrative Claims Data. J Manag Care Spec Pharm. 2019;25(1):122–132. https://doi.org/10.18553/jmcp.2018.17421.; Насонов ЕЛ, Авдеева АС, Лила АМ. Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть I). Научно-практическая ревматология. 2020;58(1):62–79. https://doi.org/10.14412/1995-4484-2020-62-79.; Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–4243. https://doi.org/10.4049/jimmunol.1003668.; Mease P, Hall S, FitzGerald O, van der Heijde D, Merola JF, Avila-Zapata F et al. Tofacitinib or Adalimumab versus Placebo for Psoriatic Arthritis. N Engl J Med. 2017;377(16):1537–1550. https://doi.org/10.1056/NEJMoa1615975.; Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A et al. Tofacitinib for Psoriatic Arthritis in Patients with an Inadequate Response to TNF Inhibitors. N Engl J Med. 2017;377(16):1525–1536. https://doi.org/10.1056/NEJMoa1615977.; Padda IS, Bhatt R, Parmar M. Tofacitinib. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK572148/.; van der Togt CJT, Verhoef LM, van den Bemt BJF, den Broeder N, Ter Heine R, den Broeder AA. Pharmacokinetic boosting to enable a once-daily reduced dose of tofacitinib in patients with rheumatoid arthritis and psoriatic arthritis (the PRACTICAL study). Ther Adv Musculoskelet Dis. 2022;14:1759720X22 1142277. https://doi.org/10.1177/1759720X221142277.; Кубанов АА, Насонов ЕЛ, Бакулев АЛ, Знаменская ЛФ, Карамова АЭ, Коротаева ТВ и др. Псориаз артропатический. Псориатический артрит: клинические рекомендации. М.; 2021. Режим доступа: https://cr.minzdrav.gov.ru/schema/562_2.; Чичасова НВ, Лила АМ. Эффективность и безопасность тофацитиниба в лечении ревматоидного артрита: итоги 10-летнего применения. Медицинский совет. 2022;16(21):139–145. https://doi.org/10.21518/2079-701X-2022-16-21-139-145.; Насонов ЕЛ, Авдеева АС, Лила АМ. Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть II). Научно-практическая ревматология. 2020;58(2):214–224. https://doi.org/10.14412/1995-4484-2020-214-224.; Leng X, Lin W, Liu S, Kanik K, Wang C, Wan W et al. Efficacy and safety of tofacitinib in Chinese patients with active psoriatic arthritis: a phase 3, randomised, double-blind, placebo-controlled study. RMD Open. 2023;9(1):e002559. https://doi.org/10.1136/rmdopen-2022-002559.; Yang V, Kragstrup TW, McMaster C, Reid P, Singh N, Haysen SR et al. Managing Cardiovascular and Cancer Risk Associated with JAK Inhibitors. Drug Saf. 2023. https://doi.org/10.1007/s40264-023-01333-0.; Eder L, Gladman DD, Mease P, Pollock RA, Luna R, Aydin SZ et al. Sex differences in the efficacy, safety and persistence of patients with psoriatic arthritis treated with tofacitinib: a post-hoc analysis of phase 3 trials and long-term extension. RMD Open. 2023;9(1):e002718. https://doi.org/10.1136/rmdopen-2022-002718.; Coates LC, Bushmakin AG, FitzGerald O, Gladman DD, Fallon L, Cappelleri JC et al. Relationships between psoriatic arthritis composite measures of disease activity with patient-reported outcomes in phase 3 studies of tofacitinib. Arthritis Res Ther. 2021;23(1):94. https://doi.org/10.1186/s13075-021-02474-2.; Glintborg B, Di Giuseppe D, Wallman JK, Nordström DC, Gudbjornsson B, Hetland ML et al. Uptake and effectiveness of newer biologic and targeted synthetic disease-modifying antirheumatic drugs in psoriatic arthritis: results from five Nordic biologics registries. Ann Rheum Dis. 2023;82(6):820–828. https://doi.org/10.1136/ard-2022-223650.; Логинова ЕЮ, Коротаева ТВ, Губарь ЕЕ, Корсакова ЮЛ, Глухова СИ, Василенко ЕА и др. Сравнительная эффективность тофацитиниба и адалимумаба у пациентов с псориатическим артритом в реальной клинической практике. Данные Общероссийского регистра пациентов с псориатическим артритом. Современная ревматология. 2021;15(3):35–42. https://doi.org/10.14412/1996-7012-2021-3-35-42.; Coates LC, Moverley AR, McParland L, Brown S, Navarro-Coy N, O’Dwyer JL et al. Effect of tight control of inflammation in early psoriatic arthritis (TICOPA): a UK multicentre, open-label, randomised controlled trial. Lancet. 2015;386(10012):2489–2498. https://doi.org/10.1016/S0140-6736(15)00347-5.; Gladman DD, Coates LC, Wu J, Fallon L, Bacci ED, Cappelleri JC et al. Time to response for clinical and patient-reported outcomes in patients with psoriatic arthritis treated with tofacitinib, adalimumab, or placebo. Arthritis Res Ther. 2022;24(1):40. https://doi.org/10.1186/s13075-022-02721-0.; Merola JF, Shrom D, Eaton J, Dworkin C, Krebsbach C, Shah-Manek B, Birt J. Patient Perspective on the Burden of Skin and Joint Symptoms of Psoriatic Arthritis: Results of a Multi-National Patient Survey. Rheumatol Ther. 2019;6(1):33–45. https://doi.org/10.1007/s40744-018-0135-1.; Taylor PC, Bushmakin AG, Cappelleri JC, Young P, Germino R, Merola JF, Yosipovitch G. Relationships of dermatologic symptoms and quality of life in patients with psoriatic arthritis: analysis of two tofacitinib phase III studies. J Dermatolog Treat. 2022;33(5):2614–2620. https://doi.org/10.1080/09546634.2022.2060924.; Schneeberger EE, Citera G, Nash P, Smolen JS, Mease PJ, Soriano ER et al. Comparison of disease activity index for psoriatic arthritis (DAPSA) and minimal disease activity (MDA) targets for patients with psoriatic arthritis: A post hoc analysis of data from phase 3 tofacitinib studies. Semin Arthritis Rheum. 2023;58:152134. https://doi.org/10.1016/j.semarthrit.2022.152134.; Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2021;80(8):1004–1013. https://doi.org/10.1136/annrheumdis-2020-219601.; Proft F, Torgutalp M, Muche B, Rios Rodriguez V, Verba M, Poddubnyy D. Efficacy of tofacitinib in reduction of inflammation detected on MRI in patients with Psoriatic ArthritiS presenTing with axial involvement (PASTOR): protocol of a randomised, double-blind, placebo-controlled, multicentre trial. BMJ Open. 2021;11(11):e048647. https://doi.org/10.1136/bmjopen-2021-048647.; Губарь ЕЕ, Корсакова ЮЛ, Логинова ЕЮ, Смирнов АВ, Глухова СИ, Коротаева ТВ. Влияние терапии тофацитинибом на динамику активного сакроилиита у больных псориатическим артритом. Научно-практическая ревматология. 2021;59(2):134–140. https://doi.org/10.47360/1995-4484-2021-134-140.; Jubber A, Tahir H, Moorthy A. Clinical efficacy of JAK inhibitors on enthesitis in spondyloarthropathy: A scoping literature review. Musculoskeletal Care. 2023. https://doi.org/10.1002/msc.1802.; Mease PJ, Orbai AM, FitzGerald O, Bedaiwi M, Fleishaker DL, Mundayat R et al. Efficacy of tofacitinib on enthesitis in patients with active psoriatic arthritis: analysis of pooled data from two phase 3 studies. Arthritis Res Ther. 2023;25(1):153. https://doi.org/10.1186/s13075-023-03108-5.; Orbai AM, Mease PJ, Helliwell PS, FitzGerald O, Fleishaker DL, Mundayat R, Young P. Effect of tofacitinib on dactylitis and patient-reported outcomes in patients with active psoriatic arthritis: post-hoc analysis of phase III studies. BMC Rheumatol. 2022;6(1):68. https://doi.org/10.1186/s41927-022-00298-4.; de Vlam K, Mease PJ, Bushmakin AG, Fleischmann R, Ogdie A, Azevedo VF et al. Identifying and Quantifying the Role of Inflammation in Pain Reduction for Patients With Psoriatic Arthritis Treated With Tofacitinib: A Mediation Analysis. Rheumatol Ther. 2022;9(5):1451–1464. https://doi.org/10.1007/s40744-022-00482-5.; Dougados M, Taylor PC, Bingham CO 3rd, Fallon L, Brault Y, Roychoudhury S et al. The effect of tofacitinib on residual pain in patients with rheumatoid arthritis and psoriatic arthritis. RMD Open. 2022;8(2):e002478. https://doi.org/10.1136/rmdopen-2022-002478.; Harkins P, Burke E, Swales C, Silman A, Conway R. Are Janus kinase inhibitors safe and effective in treating the key clinical domains of psoriatic arthritis? A systematic review and meta-analysis. Int J Rheum Dis. 2023;26(1):31–42. https://doi.org/10.1111/1756-185X.14447.; Бадокин ВВ. Псориатический артрит (клиника, диагностика, лечение). Научно-практическая ревматология. 2006;44(2s):65–77. https://doi.org/10.14412/1995-4484-2006-1433.; Xue H, Ci X, Luo M, Wu L, Du X, Li L, Lu X. Tofacitinib combined with leflunomide for treatment of psoriatic arthritis with IgA nephropathy: a case report with literature review. Clin Rheumatol. 2022;41(7):2225–2231. https://doi.org/10.1007/s10067-022-06113-2.; Гриднева ГИ, Аронова ЕС, Белов БС. Удержание на терапии тофацитинибом пациентов с ревматоидным артритом (данные реальной клинической практики). Современная ревматология. 2022;16(6):32–37. https://doi.org/10.14412/1996-7012-2022-6-32-37.; Egeberg A, Rosenø NAL, Aagaard D, Lørup EH, Nielsen ML, Nymand L et al. Drug survival of biologics and novel immunomodulators for rheumatoid arthritis, axial spondyloarthritis, psoriatic arthritis, and psoriasis – A nationwide cohort study from the DANBIO and DERMBIO registries. Semin Arthritis Rheum. 2022;53:151979. https://doi.org/10.1016/j.semarthrit.2022.151979.; Charles-Schoeman C, Buch MH, Dougados M, Bhatt DL, Giles JT, Ytterberg SR et al. Risk of major adverse cardiovascular events with tofacitinib versus tumour necrosis factor inhibitors in patients with rheumatoid arthritis with or without a history of atherosclerotic cardiovascular disease: a post hoc analysis from ORAL Surveillance. Ann Rheum Dis. 2023;82(1):119–129. https://doi.org/10.1136/ard-2022-222259.; Coates LC, Kavanaugh A, Mease PJ, Soriano ER, Laura Acosta-Felquer M, Armstrong AW, et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis Rheumatol. 2016;68(5):1060–1071. https://doi.org/10.1002/art.39573.; Merola JF, Lockshin B, Mody EA. Switching biologics in the treatment of psoriatic arthritis. Semin Arthritis Rheum. 2017;47(1):29–37. https://doi.org/10.1016/j.semarthrit.2017.02.001.; Curtis JR, Yamaoka K, Chen YH, Bhatt DL, Gunay LM, Sugiyama N et al. Malignancy risk with tofacitinib versus TNF inhibitors in rheumatoid arthritis: results from the open-label, randomised controlled ORAL Surveillance trial. Ann Rheum Dis. 2023;82(3):331–343. https://doi.org/ 10.1136/ard-2022-222543.; Balanescu AR, Citera G, Pascual-Ramos V, Bhatt DL, Connell CA, Gold D et al. Infections in patients with rheumatoid arthritis receiving tofacitinib versus tumour necrosis factor inhibitors: results from the open-label, randomised controlled ORAL Surveillance trial. Ann Rheum Dis. 2022;81(11):1491–1503. https://doi.org/10.1136/ard-2022-222405.; Burmester GR, Coates LC, Cohen SB, Tanaka Y, Vranic I, Nagy E et al. Post-Marketing Safety Surveillance of Tofacitinib over 9 Years in Patients with Psoriatic Arthritis and Rheumatoid Arthritis. Rheumatol Ther. 2023;10(5):1255–1276. https://doi.org/10.1007/s40744-023-00576-8.; Kristensen LE, Strober B, Poddubnyy D, Leung YY, Jo H, Kwok K et al. et al. Association between baseline cardiovascular risk and incidence rates of major adverse cardiovascular events and malignancies in patients with psoriatic arthritis and psoriasis receiving tofacitinib. Ther Adv Musculoskelet Dis. 2023;15:1759720X221149965. https://doi.org/10.1177/1759720X221149965.; Elmariah SB, Smith JS, Merola JF. JAK in the (Black) Box: A Dermatology Perspective on Systemic JAK Inhibitor Safety. Am J Clin Dermatol. 2022;23(4):427–431. https://doi.org/10.1007/s40257-022-00701-3.; Kleinrensink NJ, Perton FT, Pouw JN, Vincken NLA, Hartgring SAY, Jansen MP et al. TOFA-PREDICT study protocol: a stratification trial to determine key immunological factors predicting tofacitinib efficacy and drug-free remission in psoriatic arthritis (PsA). BMJ Open. 2022;12(10):e064338. https://doi.org/10.1136/bmjopen-2022-064338.; https://www.med-sovet.pro/jour/article/view/7942
-
6Academic Journal
المؤلفون: O. B. Tamrazova, A. S. Stadnikova, E. A. Glukhova, N. F. Dubovets, A. S. Vorobeva, E. R. Radchenko, О. Б. Тамразова, А. С. Стадникова, Е. А. Глухова, Н. Ф. Дубовец, А. С. Воробьева, Е. Р. Радченко
المصدر: Meditsinskiy sovet = Medical Council; № 6 (2023); 193-200 ; Медицинский Совет; № 6 (2023); 193-200 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: упадацитиниб, adolescence, systemic therapy, Janus kinase inhibitors, upadacitinib, подростковый возраст, системная терапия, ингибиторы янус-киназ
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7445/6640; Frazier W., Bhardwaj N. Atopic Dermatitis: Diagnosis and Treatment. Am Fam Physician. 2020;101(10):590–598. Available at: https://pubmed.ncbi.nlm.nih.gov/32412211.; Silverwood R.J., Forbes H.J., Abuabara K., Ascott A., Schmidt M., Schmidt S.A.J. et al. Severe and predominantly active atopic eczema in adulthood and long term risk of cardiovascular disease: population based cohort study. BMJ. 2018;23(361):1786. https://doi.org/10.1136/bmj.k1786.; Mancini A.J., Kaulback K., Chamlin S.L. The socioeconomic impact of atopic dermatitis in the United States: a systematic review. Pediatr Dermatol. 2008;25(1):1–6. https://doi.org/10.1111/j.1525-1470.2007.00572.x.; Kim J.P., Chao L.X., Simpson E.L., Silverberg J.I. Persistence of atopic dermatitis (AD): a systematic review and meta-analysis. J Am Acad Dermatol. 2016;75(4):681–687. https://doi.org/10.1016/j.jaad.2016.05.028.; Schmitt J., Langan S., Deckert S., Svensson A., von Kobyletzki L., Thomas K. et al. Assessment of clinical signs of atopic dermatitis: a systematic review and recommendation. J Allergy Clin Immunol. 2013;132:1337. https://doi.org/10.1016/j.jaci.2013.07.008.; Spuls P.I., Gerbens L.A.A., Simpson E., Apfelbacher C.J., Chalmers J.R., Thomas K.S. et al. Patient-Oriented Eczema Measure (POEM), a core instrument to measure symptoms in clinical trials: a Harmonising Outcome Measures for Eczema (HOME) statement. Br J Dermatol. 2017;176:979. https://doi.org/10.1111/bjd.15179.; von Kobyletzki L.B., Thomas K.S., Schmitt J., Chalmers J.R., Deckert S., Aoki V. et al. What Factors are Important to Patients when Assessing Treatment Response: An International Cross-sectional Survey. Acta Derm Venereol. 2017;97:86. https://doi.org/10.2340/00015555-2480.; Beattie P.E., Lewis-Jones M.S. Parental knowledge of topical therapies in the treatment of childhood atopic dermatitis. Clin Exp Dermatol. 2003;28(5):549. https://doi.org/10.1046/j.1365-2230.2003.01357.x.; Zuberbier T., Orlow S.J., Paller A.S., Taïeb A., Allen R., Hernanz-Hermosa J.M. et al. Patient perspectives on the management of atopic dermatitis. J Allergy Clin Immunol. 2006;118:226. https://doi.org/10.1016/j.jaci.2006.02.031.; Krejci-Manwaring J., Tusa M.G., Carroll C., Camacho F., Kaur M., Carr D. et al. Stealth monitoring of adherence to topical medication: adherence is very poor in children with atopic dermatitis. J Am Acad Dermatol. 2007;56(2):211. https://doi.org/10.1016/j.jaad.2006.05.073.; Ohya Y., Williams H., Steptoe A., Saito H., Iikura Y., Anderson R., Akasawa A. Psychosocial factors and adherence to treatment advice in childhood atopic dermatitis. J Invest Dermatol. 2001;117:852. https://doi.org/10.1046/j.0022-202x.2001.01475.x.; Stalder J.F., Aubert H., Anthoine E., Futamura M., Marcoux D., Morren M.-A. et al. Topical corticosteroid phobia in atopic dermatitis: International feasibility study of the TOPICOP score. Allergy. 2017;72:1713. https://doi.org/10.1111/all.13189.; El Hachem M., Gesualdo F., Ricci G., Diociaiuti A., Giraldi L., Ametrano O. et al. Topical corticosteroid phobia in parents of pediatric patients with atopic dermatitis: a multicentre survey. Ital J Pediatr. 2017;43:22. https://doi.org/10.1186/s13052-017-0330-7.; Li A.W., Yin E.S., Antaya R.J. Topical Corticosteroid Phobia in Atopic Dermatitis: A Systematic Review. JAMA Dermatol. 2017;153:1036. https://doi.org/10.1001/jamadermatol.2017.2437.; Тамразова О.Б. Патогенетическая терапия детей, страдаю щих тяжелыми формами атопического дерматита. РМЖ. 2013;(2):108. Режим доступа: https://www.rmj.ru/articles/pediatriya/Patogeneticheskaya_terapiya_detey_stradayuschih_tyaghelymi_formami_atopicheskogo_dermatita.; Ревякина В.А., Ларькова И.А., Кувшинова Е.Д., Шавкина М.И., Мухортых В.А. Фенотипы пищевой аллергии у детей. Вопросы питания. 2016;85(1):75–80. Режим доступа: https://www.voprosy-pitaniya.ru/ru/jarticles_diet/426.html?SSr=20013461c911ffffffff27c__07e501150b1409-a84.; Sun D., Ong P.Y. Infectious complications in atopic dermatitis. Immunol Allergy Clin North Am. 2017;37(1):75–93. https://doi.org/10.1016/j.iac.2016.08.01508.; Klinnert M.D., Booster G., Copeland M., Darr J.M., Meltzer L.J., Miller M. et al. Role of behavioral health in management of pediatric atopic dermatitis. Ann Allergy Asthma Immunol. 2018;120(1):42–48. https://doi.org/10.1016/j.anai.2017.10.023.; Di Domenico E.G., Cavallo I., Capitanio B., Ascenzioni F., Pimpinelli F., Morrone A., Ensoli F. Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis. Microorganisms. 2019;7(9):301. https://doi.org/10.3390/microorganisms7090301.; Totté J.E., van der Feltz W.T., Hennekam M., van Belkum A., van Zuuren E.J., Pasmans S.G.M.A. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687–695. https://doi.org/10.1111/bjd.14566.; Karlberg A.T., Bergström M.A., Börje A., Luthman K., Nilsson J.L.G. Allergic contact dermatitis-formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol. 2008;21:53. https://doi.org/10.1021/tx7002239.; Coloe J., Zirwas M.J. Allergens in corticosteroid vehicles. Dermatitis. 2008;19:38. Available at: https://pubmed.ncbi.nlm.nih.gov/18346395.; Iliev D., Wüthrich B. Occupational protein contact dermatitis with type I allergy to different kinds of meat and vegetables. Int Arch Occup Environ Health. 1998;71:289. https://doi.org/10.1007/s004200050283.; Lodén M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am J Clin Dermatol. 2003;4:771. https://doi.org/10.2165/00128071-200304110-00005.; Pirker C., Möslinger T., Wantke F., Götz M., Jakrisch R. Ethylmercuric chloride: the responsible agent in thimerosal hypersensitivity. Contact Dermatitis. 1993;29:152. https://doi.org/10.1111/j.1600-0536.1993.tb03514.x.; VanArsdel P.P.Jr., Larson E.B. Diagnostic tests for patients with suspected allergic disease. Utility and limitations. Ann Intern Med. 1989;110:304. https://doi.org/10.7326/0003-4819-110-4-304.; Corazza M., Mantovani L., Maranini C., Bacilieri S., Virgili A. Contact sensitization to corticosteroids: increased risk in long term dermatoses. Eur J Dermatol. 2000;10(7):533. Available at: https://pubmed.ncbi.nlm.nih.gov/11056424.; Spergel J.M. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105(2):99–106. https://doi.org/10.1016/j.anai.2009.10.002.; Tran M.M., Lefebvre D.L., Dharma C., Dai D., Lou W.Y.W., Subbarao P. et al. Predicting the atopic march: Results from the Canadian Healthy Infant Longitudinal Development Study. J Allergy Clin Immunol. 2018;141:601. https://doi.org/10.1016/j.jaci.2017.08.024.; Eigenmann P.A., Calza A.M. Diagnosis of IgE-mediated food allergy among Swiss children with atopic dermatitis. Pediatr Allergy Immunol. 2000;11(2):95. https://doi.org/10.1034/j.1399-3038.2000.00071.x.; García C., El-Qutob D., Martorell A., Febrer I., Rodríguez M., Cerdá J.C., Félix R. Sensitization in early age to food allergens in children with atopic dermatitis. Allergol Immunopathol (Madr). 2007;35:15. https://doi.org/10.1157/13099090.; Bartnikas L.M., Gurish M.F., Burton O.T., Leisten S., Janssen E., Oettgen H.C. et al. Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J Allergy Clin Immunol. 2013;131:451. https://doi.org/10.1016/j.jaci.2012.11.032.; Brough H.A., Simpson A., Makinson K., Hankinson J., Brown S., Douiri A. et al. Peanut allergy: effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J Allergy Clin Immunol. 2014;134(4):867. https://doi.org/10.1016/j.jaci.2014.08.011.; Brough H.A., Liu A.H., Sicherer S., Makinson K., Douiri A., Brown S.J. et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135(1):164. https://doi.org/10.1016/j.jaci.2014.10.007.; Silverwood R.J., Forbes H.J., Abuabara K., Ascott A., Schmidt M., Schmidt S.A.J. et al. Severe and predominantly active atopic eczema in adulthood and long term risk of cardiovascular disease: population based cohort study. BMJ. 2018;361:k1786. https://doi.org/10.1136/bmj.k1786.; Mansfield K.E., Schmidt S.A.J., Darvalics B., Mulick A., Abuabara K., Wong A.Y.S. et al. Association Between Atopic Eczema and Cancer in England and Denmark. JAMA Dermatol. 2020;156(10):1086–1097. https://doi.org/10.1001/jamadermatol.2020.1948.; Yaghmaie P., Koudelka C.W., Simpson E.L. Mental health comorbidity in patients with atopic dermatitis. J Allergy Clin Immunol. 2013;131(2):428. https://doi.org/10.1016/j.jaci.2012.10.041.; Slattery M.J., Essex M.J., Paletz E.M., Vanness E.R., Infante M., Rogers G.M., Gern J.E. Depression, anxiety, and dermatologic quality of life in adolescents with atopic dermatitis. J Allergy Clin Immunol. 2011;128(3):668. https://doi.org/10.1016/j.jaci.2011.05.003.; Lewis-Jones S. Quality of life and childhood atopic dermatitis: the misery of living with childhood eczema. Int J Clin Pract. 2006;60(8):984. https://doi.org/10.1111/j.1742-1241.2006.01047.x.; Wan J., Mitra N., Hooper S.R., Hoffstad O.J., Margolis D.J. Association of Atopic Dermatitis Severity With Learning Disability in Children. JAMA Dermatol. 2021;157(6):651–657. https://doi.org/10.1001/jamadermatol.2021.0008.; Rodrigues M.A., Torres T. JAK/STAT inhibitors for the treatment of atopic dermatitis. J Dermatolog Treat. 2020;31(1):33–40. https://doi.org/10.1080/09546634.2019.1577549.; Howell M.D., Fitzsimons C., Smith P.A. JAK/STAT inhibitors and other small molecules cytokine antagonists for the treatment of allergic disease. Ann. Allergy Asthma Immunol. 2018;120(4):367–375. https://doi.org/10.1016/j.anai.2018.02.012.; Stark G.R., Cheon H., Wang Y. Responses to cytokine and interferons that depend upon JAKs and STATs. Cold Spring Harb Perspect Biol. 2018;10(1):a028555. https://doi.org/10.1101/cshperspect.a028555.; Esaki H., Ewald D.A., Ungar B., Rozenblit M., Zheng X., Xu H. et al. Identification of novel immune and barier genes in atopic dermatitis by means of laser capture microdissection. J Allergy Clin Immunol. 2015;135(1):153–163. https://doi.org/10.1016/j.jaci.2014.10.037.; Suarez-Farinas M., Ungar B., Correa da Rossa J., Ewald D.A., Rozenblit M., Gonzalez J. et al. RNA sequencing atopic dermatitis transcriptome profiling provides insihgts into novel disease mechanisms with potential therapeutic implication. J Allergy Clin Immunol. 2015;135(5):1218–1227. https://doi.org/10.1016/j.jaci.2015.03.003.; Bao L., Zhang H., Chan L.S. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT. 2013;2(3):e24137. https://doi.org/10.4161/jkst.24137.; Gunduz O. JAK/STAT pathway modulation: Does it work in dermatology? Dermatology. 2019;32(3):e12903. Available at: https://pubmed.ncbi.nlm.nih.gov/30964573.; Howell M.D., Kuo F.I., Smith P.A. Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Front Immunol. 2019;10:2342. https://doi.org/10.3389/fimmu.2019.02342.; Guttman-Yassky E., Teixeira H.D., Simpson E.L., Papp K.A., Pangan A.L., Blauvelt A. et al. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-blind, randomised controlled phase 3 trials. Lancet. 2021;397(10290):2151–2168. https://doi.org/10.1016/S0140-6736(21)00588-2.; Reich K., Teixeira H.D., de Bruin-Weller M., Bieber T., Soong W., Kabashima K. et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2021;397(10290):2169–2181. https://doi.org/10.1016/S0140-6736(21)00589-4.; https://www.med-sovet.pro/jour/article/view/7445
-
7Academic Journal
المؤلفون: Yu. Kovaleva S., M. Orobei V., N. Zyablitskaya K., Ю. Ковалева С., М. Оробей В., Н. Зяблицкая К.
المصدر: Meditsinskiy sovet = Medical Council; № 3 (2022); 103-110 ; Медицинский Совет; № 3 (2022); 103-110 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: atopic dermatitis, Janus kinases, Janus kinase inhibitors, JAK – STAT signaling pathway, upadacitinib, атопический дерматит, янус-киназы, ингибиторы янус-киназ, сигнальный путь JAK – STAT, упадацитиниб
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/6747/6089; Хаитов Р.М., Ильина Н.И. (ред.). Аллергология и иммунология: национальное руководство. М.: ГЭОТАР-Медиа; 2009. 656 с.; Смолкин Ю.С., Балаболкин И.И., Горланов И.А., Круглова Л.С., Кудрявцева А.В., Мешкова Р.Я. и др. Согласительный документ АДАИР: атопический дерматит у детей – обновление 2019 (краткая версия). Часть 1. Аллергология и иммунология в педиатрии. 2020;60(1):4–25. https://doi.org/10.24411/2500-1175-2020-10001.; Mortz C.G., Andersen K.E., Dellgren C., Barington T., Bindslev-Jensen C. Atopic dermatitis from adolescence to adulthood in the TOACS cohort: prevalence, persistence and comorbidities. Allergy. 2015;70(7):836–845. https://doi.org/10.1111/all.12619.; Gustaffson D., Sjoberg O., Foucard T. Development of allergies and asthma in infants and young children with atopic dermatitis – a prospective follow-up to 7 years of age. Allergy. 2000;55(3):240–245. https://doi.org/10.1034/j.1398-9995.2000.00391.x.; Wollenberg A., Barbarot S., Bieber T., Christen-Zaech S., Deleuran M., Fink-Wagner A. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. J Eur Acad Dermatol Venereol. 2018;32(6):850–878. https://doi.org/10.1111/jdv.14888.; Schneider L., Hanifin J., Boguniewicz M., Eichenfield L.F., Spergel J.M., Dakovic R., Paller A.S. Study of the Atopic March: Development of Atopic Comorbidities. Pediatr Dermatol Trial. 2016;33(4):388–398. https://doi.org/10.1111/pde.12867.; Намазова-Баранова Л.С., Баранов А.А., Кубанова А.А., Ильина Н.И., Курбачева О.М., Вишнева Е.А. и др. Атопический дерматит у детей: современные клинические рекомендации по диагностике и терапии. Вопросы современной педиатрии. 2016;15(3):279–294. https://doi.org/10.15690/vsp.v15i3.1566.; Boothe W.D., Tarbox J.A., Tarbox M.B. Atopic Dermatitis: Pathophysiology. Adv Exp Med Biol. 2017;1027:21–37. https://doi.org/10.1007/978-3-319-64804-0_3.; Nutten S. Atopic dermatitis: Global epidemiology and risk factors. Ann Nutr Metab. 2015;66(1):8–16. https://doi.org/10.1159/000370220.; Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):83–1494. https://doi.org/10.1056/NEJMra074081.; Lam J., Friedlander S.F. Atopic dermatitis: a review of recent advances in the field. Pediatric Health. 2008;2(6):733–747. https://doi.org/10.2217/17455111.2.6.733.; Civelek E., Sahiner U., Yüksel H., Boz A., Orhan F., Uner A. et al. Prevalence, burden, and risk factors of atopic eczema in schoolchildren aged 0–11 years: a national multicenter study. J Investig Allergol Clin Immunology. 2011;21(4):270–277. Available at: http://www.jiaci.org/issues/vol21issue4/3.pdf.; Odhiambo J.A., Williams H.C., Clayton T.O., Robertson C.F., Asher M.I. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunology. 2009;124(6):1251–1258. https://doi.org/10.1016/j.jaci.2009.10.009.; Кубанов А.А., Богданова Е.В. Итоги деятельности медицинских организаций, оказывающих медицинскую помощь по профилю дерматовенерология, в 2020 году: работа в условиях пандемии. Вестник дерматологии и венерологии. 2021;97(4):8–32. https://doi.org/10.25208/vdv1261.; Зильберберг Н.В., Кохан М.М., Кениксфест Ю.В. Современные возможности терапии больных атопическим дерматитом ингибиторами янус-киназы. Лечащий врач. 2021;9(24):68–71. https://doi.org/10.51793/OS.2021.24.9.012.; Мурашкин Н.Н., Намазова-Баранова Л.С., Опрятин Л.А., Епишев Р.В., Материкин А.И., Амбарчян Э.Т. и др. Биологическая терапия среднетяжелых и тяжелых форм атопического дерматита в детском возрасте. Вопросы современной педиатрии. 2020;19(6):432–443. https://doi.org/10.15690/vsp.v19i6.2145.; Hershey G.K., Friedrich M.F., Esswein L.A. The association of atopy with a gain-of-function mutation in the alpha subunit of theinterleukin- 4 receptor. N Engl J Med. 1997;337(24):1720–1725. https://doi.org/10.1056/NEJM199712113372403.; Noval Rivas M., Burton O.T., Wise P., Charbonnier L.M., Georgiev P., Oettgen H.C. et al. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity. 2015;42(3):512–523. https://doi.org/10.1016/j.immuni.2015.02.004.; Круглова Л.С., Генслер Е.М. Атопический дерматит: новые горизонты терапии. Медицинский алфавит. 2019;1(7):29–32. https://doi.org/10.33667/2078-5631-2019-1-7(382)-29-32.; Honzke S., Wallmeyer L., Ostrowski A., Radbruch M., Mundhenk L., Schäfer-Korting M. et al. Influence of Th2 Cytokines on the Cornified Envelope, Tight Junction Proteins, and Defensins in Filaggrin-Deficient Skin Equivalents. J Invest Dermatol. 2016;136(3):631–639. https://doi.org/10.1016/j.jid.2015.11.007.; Huang Y.J., Marsland B.J., Bunyavanich S., O’Mahony L., Leung D.Y.M., Muraro A. et al. The microbiome in allergic disease: Current understanding and future opportunities – 2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol. 2017;139(4):1099–1110. https://doi.org/10.1016/j.jaci.2017.02.007.; Мурашкин Н.Н., Материкин А.И., Опрятин Л.А., Епишев Р.В., Амбарчян Э.Т., Иванов Р.А., Федоров Д.В. Особенности микробиома кожи у детей с атопическим дерматитом и новые возможности для патогенетической терапии. Педиатрическая фармакология. 2019.16(5):304–309. https://doi.org/10.15690/pf.v16i5.2060.; Кубанов А.А., Намазова-Баранова Л.С., Хаитов Р.М., Ильина Н.И., Алексеева Е.А., Амбарчян Э.Т. и др. Атопический дерматит: клинические рекомендации. М.; 2021. 81 с. Режим доступа: https://cr.minzdrav.gov.ru/schema/265_2.; Klonowska J., Gleń J., Nowicki R.J., Trzeciak M. New Cytokines in the Pathogenesis of Atopic Dermatitis-New Therapeutic Targets. Int J Mol Sci. 2018;19(10):3086. https://doi.org/10.3390/ijms19103086.; Каратеев Д.Е. Новое направление в патогенетической терапии ревматоидного артрита: первый ингибитор Янус-киназ тофацитиниб. Современная ревматология. 2014;8(1):39–44. https://doi.org/10.14412/1996-7012-2014-1-39-44.; Меликян А.Л., Суборцева И.Н. Биология миелопролиферативных новообразований. Клиническая онкогематология. 2016;9(3):314–325. https://doi.org/10.21320/2500-2139-2016-9-3-314-325.; Каратеев Д.Е., Лучихина Е.Л., Мисиюк А.С. Российский и международный опыт применения ингибитора янус-киназ при ревматоидном артрите. Медицинский совет. 2017;(10):87–92. https://doi.org/10.21518/2079-701X-2017-10-87-92.; Широкова И. Ингибиторы янус-киназ в терапии ревматоидного артрита – новые возможности и перспективы. Ремедиум. 2020;(7–8):42–46. https://doi.org/10.21518/1561-5936-2020-7-8-42-46.; Насонов Е.Л. Новые направления фармакотерапии иммуновоспалительных ревматических заболеваний. Терапевтический архив. 2019;91(8):98–107. https://doi.org/10.26442/00403660.2019.08.000406.; Мазуров В.И., Беляева И.Б. Достижения и перспективы применения малых молекул в терапии ревматоидного артрита. Эффективная фармакотерапия. 2021;17(7):24–31. Режим доступа: https://umedp.ru/articles/dostizheniya_i_perspektivy_primeneniya_malykh_molekul_v_terapii_revmatoidnogo_artrita.html.; Насонов Е.Л., Лила А.М. Барицитиниб: новые возможности фармакотерапии ревматоидного артрита и других иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2020;58(3):304–316. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/2898.; Насонов Е.Л., Авдеева А.С., Лила А.М. Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть II). Научно-практическая ревматология. 2020;58(2):214–224. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/2880.; Новиков П.И., Шевцова Т.П., Щеголева Е.М., Моисеев С.В. Ингибиторы янус-киназ: фармакологические свойства и сравнительные клиническая эффективность и безопасность. Клиническая фармакология и терапия. 2021;30(1):51–60. https://doi.org/10.32756/0869-5490-2021-1-51-60.; Белоглазов В.А., Гончаров Г.С., Шадуро Д.В. Ингибиторы Janus-киназ. Перспективы и опыт применения в мировой клинической практике. Таврический медико-биологический вестник. 2018;21(4):95–104. Режим доступа: https://elibrary.ru/item.asp?id=37279019.; Virtanen A.T., Haikarainen T., Raivola J., Silvennoinen O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs. 2019;33(1):15–32. https://doi.org/10.1007/s40259-019-00333-w.; Damsky W., King B.A. JAK inhibitors in dermatology: The promise of a new drug class. J Am Acad Dermatol. 2017;76(4):736–744. https://doi.org/10.1016/j.jaad.2016.12.005.; Hosking A.M., Juhasz M., Mesinkovska N.A. Topical Janus kinase inhibitors: A review of applications in dermatology. J Am Acad Dermatol. 2018;79(3):535–544. https://doi.org/10.1016/j.jaad.2018.04.018.; Guttman-Yassky E., Teixeira H.D., Simpson E.L., Papp K.A., Pangan A.L., Blauvelt A. et al. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-blind, randomised controlled phase 3 trials. Lancet. 2021;397(10290):2151–2168. https://doi.org/10.1016/S0140-6736(21)00588-2.; Reich K., Teixeira H.D., de Bruin-Weller M., Bieber T., Soong W., Kabashima K. et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2021;397(10290):2169–2181. https://doi.org/10.1016/S0140-6736(21)00589-4.; Silverberg J.I., de Bruin-Weller M., Bieber T., Soong W., Kabashima K., Costanzo A. et al. Upadacitinib plus topical corticosteroids in atopic dermatitis: Week 52 AD Up study results. J Allergy Clin Immunol. 2021;14:S0091- 6749(21)01212-4. https://doi.org/10.1016/j.jaci.2021.07.036.; Thyssen J. Efficacy of Upadacitinib for Moderate-to-Severe Atopic Dermatitis: Stratified Analysis From Three Phase 3 Trials by Key Baseline Characteristics. European Academy of Dermatology and Venerology Congress. 2021. P0183.; Simpson E.L. Efficacy and Safety of Upadacitinib in Patients With Atopic Dermatitis: Results Through Week 52 From Replicate, Phase 3, Randomized, Double-Blind, Placebo-Controlled Studies: Measure Up 1 and Measure Up 2. Poster. Dermatology Education Foundation (DEF) Essential Resource Meeting (DERM2021). 2021.; Blauvelt A., Teixeira H.D., Simpson E.L., Costanzo A., De Bruin-Weller M., Barbarot S. et al. Efficacy and Safety of Upadacitinib vs Dupilumab in Adults With Moderate-to-Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA Dermatol. 2021;157(9):1047–1055. https://doi.org/10.1001/jamadermatol.2021.3023.; Silverberg J.I., Thyssen J.P., Fahrbach K., Mickle K., Cappelleri J.C., Romero W. et al. Comparative efficacy and safety of systemic therapies used in moderate-to-severe atopic dermatitis: a systematic literature review and network meta-analysis. J Eur Acad Dermatol Venereol. 2021;35(9):1797–1810. https://doi.org/10.1111/jdv.17351.; https://www.med-sovet.pro/jour/article/view/6747
-
8Academic Journal
المؤلفون: E. Yu. Loginova, T. V. Korotaeva, Е. Ю. Логинова, Т. В. Коротаева
المساهمون: The investigation has been conducted within scientific topic № АААА-А19-119021190147-6, 0514-2019-0009 «Pathogenetic features and personalized therapy of ankylosing spondylitis and psoriatic arthritis»., Статья подготовлена в рамках научной темы «Патогенетические особенности и персонифицированная терапия анкилозирующего спондилита и псориатического артрита» (АААА-А19-119021190147-6, 0514-2019-0009).
المصدر: Modern Rheumatology Journal; Том 16, № 1 (2022); 7-13 ; Современная ревматология; Том 16, № 1 (2022); 7-13 ; 2310-158X ; 1996-7012
مصطلحات موضوعية: таргетные синтетические базисные противовоспалительные препараты, Janus kinase inhibitors, tofacitinib, upadacitinib, targeted synthetic basic anti-inflammatory drugs, ингибиторы Янус-киназ, тофацитиниб, упадацитиниб
وصف الملف: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1245/1199; https://mrj.ima-press.net/mrj/article/view/1245/1200; Coates LC, Kavanaugh A, Mease PJ, et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis Rheum. 2016 May;68(5):1060-71. doi:10.1002/art.39573. Epub 2016 Mar 23.; FitzGerald O, Haroon M, Giles JT, Winchester R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther. 2015 May 7;17:115. doi:10.1186/s13075-015-0640-3.; Gossec L, Baraliakos X, Kerschbaumer A, et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann Rheum Dis. 2020;79(6):700-12. doi:10.1136/annrheumdis-2020-217159.; Singh JA, Guyatt G, Ogdie A, et al. Special Article: 2018 American College of Rheumatology/ National Psoriasis Foundation Guideline for the treatment of psoriatic arthritis. Arthritis Rheumatol. 2019 Jan;71(1):5-32. doi:10.1002/art.40726. Epub 2018 Nov 30.; Корсакова ЮЛ, Коротаева ТВ. Современная фармакотерапия псориатического артрита. Научно-практическая ревматология. 2019;57(1):75-82.; Логинова EЮ, Коротаева TВ, Глухова СИ, Насонов ЕЛ. Длительность ремиссии и минимальной активности болезни после инициации и отмены генно-инженерных биологических препаратов у больных ранним псориатическим артритом (данные Общероссийского регистра псориатического артрита). Научно-практическая ревматология. 2019;57(5): 523-7.; Gossec L, McGonagle D, Korotaeva T, et al. Minimal Disease Activity as a Treatment Target in Psoriatic Arthritis: A Review of the Literature. J Rheumatol. 2018 Jan;45(1):6-13. doi:10.3899/jrheum.170449. Epub 2017 Nov 15.; Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремисии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3): 263-71.; Perrotta FM, De Socio A, Scriffignano S, Lubrano E. From clinical remission to residual disease activity in spondyloarthritis and its potential treatment implications. Expert Rev Clin Immunol. 2018 Mar;14(3):207-13. doi:10.1080/1744666X.2018.1429918. Epub 2018 Jan 25.; Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017 Dec;16(12):843-62. doi:10.1038/nrd.2017.201. Epub 2017 Nov 6.; Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16.; Villarino AV, Kanno Y, O'Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017 Mar 22;18(4):374-84. doi:10.1038/ni.3691.; Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford). 2019 Jun 1;58(6):953-62. doi:10.1093/rheumatology/key339.; Насонов ЕЛ, Авдеева АС, Лила АМ. Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть I). Научно-практическая ревматология. 2020;58(1):62-79.; Berekmeri A, Mahmood F, Wittmann M, Helliwell P. Tofacitinib for the treatment of psoriasis and psoriatic arthritis. Expert Rev Clin Immunol. 2018 Sep;14(9):719-30. doi:10.1080/1744666X.2018.1512404.; Ly K, Beck KM, Smith MP, et al. Tofacitinib in the management of active psoriatic arthritis: patient selection and perspectives. Psoriasis (Auckl). 2019 Aug 28;9:97-107. doi:10.2147/PTT.S161453.eCollection2019.; Paik J, Deeks ED. Tofacitinib: A review in psoriatic arthritis. Drugs. 2019 Apr;79(6): 655-63. doi:10.1007/s40265-019-01091-3.; Veale DJ, McGonagle D, McInnes IB, et al. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis. Rheumatology (Oxford). 2019 Feb 1;58(2):197-205. doi:10.1093/rheumatology/key070.; Van der Heijde D, Deodhar A, Wei JC, et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis. 2017 Aug;76(8):1340-7. doi:10.1136/annrheumdis-2016-210322. Epub 2017 Jan 27.; Deodhar A, Chakravarty SD, Cameron C, et al. A systematic review and network metaanalysis of current and investigational treatments for active ankylosing spondylitis. Clin Rheumatol. 2020 Aug;39(8):2307-2315. doi:10.1007/s10067-020-04970-3. Epub 2020 Feb 27.; Deodhar A, Sliwinska-Stanczyk P, Xu H, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2021 Apr 27;80(8):1004-13. doi:10.1136/annrheumdis-2020-219601. Online ahead of print.; Dowty ME, Lin J, Ryder TF, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a Janus Kinase inhibitor, in humans. Drug Metab Dispos. 2014 Apr;42(4):759-73. doi:10.1124/dmd.113.054940. Epub 2014 Jan 24.; Насонов ЕЛ, редактор. Ревматология. Российские клинические рекомендации. Москва: ГЭОТАР-Медиа; 2017. 456 с.; Mease P, Hall S, Fitzgerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017 Oct 19; 377(16):1537-50. doi: 10/1056/NEJMoa1615975.; Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017 Oct 19;377(16): 1525-36. doi:10.1056/NEJMoa1615977.; Nash P, Coates L, Fleischmann R, et al. Efficacy of Tofacitinib for the Treatment of Psoriatic Arthritis: Pooled Analysis of Two Phase 3 Studies. Rheumatol Ther. 2018 Dec; 5(2):567-82. doi:10.1007/s40744-018-0131-5. Epub 2018 Nov 9.; Helliwell P, Coates LC, FitzGerald O, et al. Janus kinase inhibitor treatment that targets multiple domains of disease. Arthritis Res. Ther. 2018 Oct 29;20(1):242. doi:10.1186/s13075-018-1739-0.; Van der Heijde D, Gladman DD, FitzGerald O, et al. Radiographic progression according to baseline C-reactive protein levels and other risk factors in psoriatic arthritis patients treated with tofacitinib or adalimumab. J Rheumatol. 2019 Sep;46(9):1089-96. doi:10.3899/jrheum.180971. Epub 2019 Mar 1.; Nash P, Coates LC, Fleischmann R, et al. Efficacy of Tofacitinib for the treatment of psoriatic arthritis: pooled analysis of two phase 3 studies. Rheumatol Ther. 2018 Dec;5(2):567-82. doi:10.1007/s40744-018-0131-5. Epub 2018 Nov 9.; Губарь ЕЕ, Корсакова ЮЛ, Логинова ЕЮ и др. Влияние терапии тофацитинибом на динамику активного сакроилиита у больных псориатическим артритом. Научно-практическая ревматология. 2021;59(2): 134-40.; Nash P, Coates LC, Kivitz AJ, et al. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, up to 24 months in patients with active psoriatic arthritis: interim data from OPAL BALANCE, an open-label, long-term extension study. Ann Rheum Dis. 2017;76:682. doi:10.1136/annrheumdis-2017-eular.1414.; Nash PCL, Kivitz AJ, Mease PJ, et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, up to 36 months in patients with active psoriatic arthritis: data from the second interim analysis of OPAL balance, an open-label, long-term extension study [abstract]. https://acrabstracts.org/abstract/safety-and-efficacy-of-tofacitinib-an-oraljanus-kinase-inhibitor-up-to-36-months-inpatients-with-active-psoriatic-arthritis-datafrom-the-third-interim-analysis-of-opalbalance-an-open-label-lo/; Nash P, Coates L, Mease P, et al. Tofacitinib as Monotherapy Following Methotrexate Withdrawal in Patients with Psoriatic Arthritis Previously Treated with Open-label Tofacitinib + Methotrexate: A Randomized, Placebocontrolled Sub-study of OPAL Balance [abstract]. https://acrabstracts.org/abstract/tofacitinib-as-monotherapy-following-methotrexate-withdrawal-in-patientswith-psoriatic-arthritis-previously-treated-with-open-label-tofacitinib-methotrexate-a-randomized-placebo-controlled-sub-st/; Логинова ЕЮ, Корсакова ЮЛ, Губарь ЕЕ и др. Эффективность и безопасность тофацитиниба у больных псориатическим артритом в реальной клинической практике. Научно-практическая ревматология. 2020;58(3):268-75.; Gratacos Masmitja J, Gonzalez Fernandez CM, Gomez Castro S, Rebollo Laserna FJ. Efficacy of Tofacitinib in the Treatment of Psoriatic Arthritis: A Systematic Review. Adv Ther. 2021 Feb;38(2):868-84. doi:10.1007/s12325-020-01585-7. Epub 2020 Dec 17.; McInnes IB, Byers NL, Higgs RE, et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther. 2019 Aug 2;21(1):183. doi:10.1186/s13075-019-1964-1.; Dowty ME, Lin TH, Jesson MI, et al. Janus kinase inhibitors for the treatment of rheumatoid arthritis demonstrate similar profiles of in vitro cytokine receptor inhibition. Pharmacol Res Perspect. 2019 Nov 15;7(6): e00537. doi:10.1002/prp2.537.eCollection2019Dec.; Serhal L, Edwards CJ. Upadacitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2019 Jan;15(1):13-25. doi:10.1080/1744666X.2019.1544892. Epub 2018 Nov 19.; Tanaka Y. A review of upadacitinib in rheumatoid arthritis. Mod Rheumatol. 2020 Sep;30(5):779-87. doi:10.1080/14397595.2020.1782049. Epub 2020 Jul 13.; Насонов ЕЛ, Лила АМ. Перспективы применения упадацитиниба при ревматоидном артрите и других иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2020;58(5):532-43.; Mcinnes I, Anderson J, Magrey M, et al. Efficacy and safety of upadacitinib versus placebo and adalimumab in patients with active psoriatic arthritis and inadequate response to nonbiologic disease-modifying anti-rheumatic drugs (SELECT-PsA-1): a double-blind, randomized controlled phase 3 trial. Ann Rheum Dis. 2020;79:16-7. doi:10.1136/annrheumdis-2020-eular.6727.; Mcinnes I, Anderson J, Magrey M, et al. Trial of Upadacitinib and Adalimumab for Psoriatic Arthritis. N Engl J Med. 2021 Apr 1; 384(13):1227-39. doi:10.1056/NEJMoa2022516.; McInnes IB, Kato K, Magrey M, et al. Upadacitinib in patients with psoriatic arthritis and an inadequate response to non-biological therapy: 56-week data from the phase 3 SELECT-PsA 1 study. RMD Open. 2021 Oct; 7(3):e001838. doi:10.1136/rmdopen-2021-001838.; Genovese MC, Lertratanakul A, Anderson J, et al. Efficacy and safety of upadacitinib in patients with active psoriatic arthritis and inadequate response to biologic disease-modifying anti-rheumatic drugs (SELECT-PSA-2): a double-blind, randomized controlled phase 3 trial. Ann Rheum Dis. 2020;79:139. doi:10.1136/annrheumdis-2020-eular.1229.; Mease PJ, Lertratanakul A, Anderson JK, et al. Upadacitinib for psoriatic arthritis refractory to biologics: SELECT-PsA 2. Ann Rheum Dis. 2020 Dec 3;80(3):312-20. doi:10.1136/annrheumdis-2020-218870.Online ahead of print.; Deodhar А, Ranza R, Ganz F, et al. Efficacy and safety of upadacitinib in patients with psoriatic arthritis and axial involvement. Ann Rheum Dis. 2021;80(Suppl 1):143-4. doi:10.1136/annrheumdis-2021-eular.439.; Van der Heijde D, Song IH, Pangan AL, et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): a multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. Lancet. 2019 Dec 7;394(10214): 2108-17. doi:10.1016/S0140-6736(19)32534-6. Epub 2019 Nov 12.; Nash P, Richette P, Gossec L, et al. Upadacitinib as Monotherapy and in Combination with Non-biologic DMARDs for the Treatment of Psoriatic Arthritis: Subgroup Analysis from Two Phase 3 Trials [abstract]. https://acrabstracts.org/abstract/upadacitinib-as-monotherapy-and-in-combinationwith-non-biologic-dmards-for-the-trea; https://mrj.ima-press.net/mrj/article/view/1245
-
9Academic Journal
المؤلفون: E. V. Chetina, A. M. Satybaldyev, G. A. Markova, E. Yu. Samarkina, M. V. Cherkasova, Е. В. Четина, А. М. Сатыбалдыев, Г. А. Маркова, Е. Ю. Самаркина, М. В. Черкасова
المساهمون: Работа выполнена при финансовой поддержке Минобрнауки России (Project № AAAA-A19-11-9021190145-2)
المصدر: Modern Rheumatology Journal; Том 15, № 3 (2021); 20-26 ; Современная ревматология; Том 15, № 3 (2021); 20-26 ; 2310-158X ; 1996-7012
مصطلحات موضوعية: кровь, gene expression, JAK-inhibitors, energy generation pathways, blood, экспрессия генов, ингибиторы Янус-киназ, энергетический метаболизм
وصف الملف: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1143/1100; https://mrj.ima-press.net/mrj/article/view/1143/1101; Harris ED Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med. 1990 May 3;322(18):1277-89. doi:10.1056/NEJM199005033221805.; Vivar N, van Vollenhoven RF. Advances in the treatment of rheumatoid arthritis. F1000Prime Rep. 2014 May 6;6:31. doi:10.12703/P6-31. eCollection 2014.; Tarp S, Furst DE, Boers M, et al. Risk of serious adverse effects of biological and targeted drugs in patients with rheumatoid arthritis: a systematic review meta-analysis. Rheumatology (Oxford). 2017 Mar 1; 56(3):417-25. doi:10.1093/rheumatology/kew442.; Sergeant JC, Hyrich KL, Anderson J, et al. Prediction of primary non-response to methotrexate therapy using demographic, clinical and psychosocial variables: results from the UK Rheumatoid Arthritis Medication Study (RAMS). Arthritis Res Ther. 2018 Jul 13;20(1):147. doi:10.1186/s13075-018-1645-5.; Buch MH. Defining refractory rheumatoid arthritis. Ann Rheum Dis. 2018 Jul;77(7): 966-9. doi:10.1136/annrheumdis-2017-212862. Epub 2018 Mar 27.; Melville AR, Kearsley-Fleet L, Buch MH, Hyrich KL. Understanding Refractory Rheumatoid Arthritis: Implications for a Therapeutic Approach. Drugs. 2020 Jun; 80(9):849-57. doi:10.1007/s40265-020-01309-9.; Polido-Pereira J, Vieira-Sousa E, Fonseca JE. Rheumatoid arthritis: what is refractory disease and how to manage it? Autoimmun Rev. 2011 Sep;10(11):707-13. doi:10.1016/j.autrev.2011.04.023. Epub 2011 May 5.; Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine- immune control in chronic inflammatory diseases. J Intern Med. 2010 Jun; 267(6):543-60. doi:10.1111/j.1365-2796.2010.02218.x. Epub 2010 Jan 28.; McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017 Jun 10;389(10086): 2328-37. doi:10.1016/S0140-6736(17)31472-1.; Speirs C, Williams JJ, Riches K , et al. Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators? Pharmacol Res. 2018 Feb;128:88-100. doi:10.1016/j.phrs.2017.10.001. Epub 2017 Oct 13.; Gao W, McCormick J, Connolly M, et al. Hypoxia and STAT3 signalling interactions regulate proinflammatory pathways in rheumatoid arthritis. Ann Rheum Dis. 2015 Jun;74(6):1275-83. doi:10.1136/annrheumdis-2013-204105. Epub 2014 Feb 13.; Jung JE, Lee HG, Cho IH, et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 2005 Aug;19(10):1296-8. doi:10.1096/fj.04-3099fje. Epub 2005 May 26.; Shirai T, Nazarewicz RR, Wallis BB, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 2016 Mar 7;213(3):337-54. doi:10.1084/jem.20150900. Epub 2016 Feb 29.; Boyle DL, Soma K, Hodge J, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis. 2015 Jun;74(6): 1311-6. doi:10.1136/annrheumdis-2014-206028. Epub 2014 Nov 14.; Strand V, Kremer JM, Gruben D, et al. Tofacitinib in combination with conventional disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: patient-reported outcomes from a phase III randomized controlled trial. Arthritis Care Res (Hoboken). 2017 Apr;69(4):592-8. doi:10.1002/acr.23004.; McGarry T, Orr C, Wade S, et al. JAK/STAT Blockade Alters Synovial Bioenergetics, Mitochondrial Function, and Proinflammatory Mediators in Rheumatoid Arthritis. Arthritis Rheumatol. 2018 Dec; 70(12):1959-70. doi:10.1002/art.40569.Epub 2018 Oct 27.; Weyand CM, Wu B, Goronzy JJ. The metabolic signature of T cells in rheumatoid arthritis. Curr Opin Rheumatol. 2020 Mar;32(2):159-67. doi:10.1097/BOR.0000000000000683.; Tchetina EV, Poole AR, EM Zaitseva, et al. Differences in mTOR (mammalian target of rapamycin) gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and disease activity. Arthritis. 2013;2013:461486. doi:10.1155/2013/461486. Epub 2013 Jun 25.; Schett G, Tanaka Y, Isaacs JD. Why remission is not enough: underlying disease mechanisms in RA that prevent cure. Nat Rev Rheumatol. 2021 Mar;17(3):135-44. doi:10.1038/s41584-020-00543-5.; Rutherford C, Speirs C, Williams JJL, et al. Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase(AMPK) links energy sensing to antiinflammatory signaling. Sci Signal. 2016 Nov 8;9(453):ra109. doi:10.1126/scisignal.aaf8566.; Liu D, Yuan N, Yu G, et al. Can rheumatoid arthritis ever cease to exist: a review of various therapeutic modalities to maintain drug-free remission? Am J Transl Res. 2017 Aug 15;9(8):3758-75. eCollection 2017.; Simon LS, Taylor PC, Choy EH, et al. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. Semin Arthritis Rheum. 2021 Feb;51(1):278-84. doi:10.1016/j.semarthrit.2020.10.008.; https://mrj.ima-press.net/mrj/article/view/1143
-
10Academic Journal
المؤلفون: Belousova E.A., Kozlov I.G., Abdulganieva D.I., Alexeeva O.P., Gubonina I.V., Lishchinskaya A.A., Tarasova L.V., Chashkova E.Y., Shapina M.V., Shifrin O.S., Shchukina O.B.
المصدر: Almanac of Clinical Medicine; Vol 49, No 7 (2021); 485-495 ; Альманах клинической медицины; Vol 49, No 7 (2021); 485-495 ; 2587-9294 ; 2072-0505
مصطلحات موضوعية: inflammatory bowel diseases, Crohn's disease, ulcerative colitis, genetically engineered biological agents, tumor necrosis factor α inhibitors, antiintegrins, interleukin 12/23 inhibitors, janus kinase inhibitors, vedolizumab, воспалительные заболевания кишечника, болезнь Крона, язвенный колит, генно-инженерные биологические препараты, ингибиторы фактора некроза опухоли-α, антиинтегрины, ингибиторы интерлейкина-12/23, ингибиторы янус-киназ, ведолизумаб
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: E. Nasonov L., A. Lila M., Е. Насонов Л., А. Лила М.
المصدر: Rheumatology Science and Practice; Vol 58, No 3 (2020); 304-316 ; Научно-практическая ревматология; Vol 58, No 3 (2020); 304-316 ; 1995-4492 ; 1995-4484
مصطلحات موضوعية: rheumatoid arthritis, Janus kinase inhibitors, baricitinib, ревматоидный артрит, ингибиторы Янус-киназ, барицитиниб
وصف الملف: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/2898/1972; Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi:10.1136/annrheumdis-2017-211555; Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-19. doi:10.14412/1995-4484-2017-409-19 [Nasonov EL. Pharmacotherapy for rheumatoid arthritis: New strategy, new targets. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(4):409-19. doi:10.14412/1995-4484-2017-409-419 (In Russ.)].; Burmester GR, Bijlsma JWJ, Cutolo M, McInnes IB. Managing rheumatic and musculoskeletal diseases – past, present and future. Nat Rev Rheumatol. 2017;13(7):443-8. doi:10.1038/nrrheum.2017.95; Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi:10.1038/rd.2017.201; Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. doi:10.14412/1995-4484-2019-8-16 [Nasonov EL, Lila AM. Janus kinase inhibitors in immunoinflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16. doi:10.14412/1995-4484-2019-8-16 (In Russ.)].; Насонов ЕЛ. Новые подходы к фармакотерапии ревматоидного артрита: тофацитиниб. Научно-практическая ревматология. 2014;52(2):209-21. doi:10.14412/1995-4484-2014-209-221 [Nasonov EL. New approaches to pharmacotherapy of rheumatoid arthritis: tofacitinib. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2014;52(2):209-21. doi:10.14412/1995-4484-2014-209-221 (In Russ.)].; Насонов ЕЛ, Авдеева АС, Лила АМ. Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть I). Научно-практическая ревматология. 2020;58(1):62-79. doi:10.14412/1995-4484-2020-62-79 [Nasonov EL, Avdeeva AS, Lila AM. Efficacy and safety of tofacitinib for immune-mediated inflammatory rheumatic diseases (Part I). Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(1):62-79. doi:10.14412/1995-4484-2020-62-79 (In Russ.)].; Markham A. Baricitinib: first global approval. Drugs. 2017;77(6):697-704. doi:10.1007/s40265-017-0723-3; Al-Salama ZT, Scott LJ. Baricitinib: A review in rheumatoid arthritis. Drugs. 2018;78(7):761-72. doi:10.1007/s40265-018-0908-4; Choy EHS, Miceli-Richard C, Gonzalez-Gay MA, et al. The effect of JAK1/JAK2 inhibition in rheumatoid arthritis: efficacy and safety of baricitinib. Clin Exp Rheumatol. 2019;37(4):694-704.; Duggan S, Keam SJ. Upadacitinib: first approval. Drugs. 2019;79(16):1819-28. doi:10.1007/s40265-019-01211-z; Serhal L, Edwards CJ. Upadacitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2019;15(1):13-25. doi:10.1080/1744666X.2019.1544892; Smolen JS, Landewe RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020 Jan 22. doi:10.1136/annrheumdis- 2019-216655; Клинические рекомендации. Ревматоидный артрит. Доступно по ссылке: http://rheumatolog.ru [Klinicheskie rekomendatsii. Revmatoidnyy artrit [Clinical recommendations. Rheumatoid arthritis]. Available at: http://rheumatolog.ru].; Jamilloux Y, El Jammal T, Vuitton L, et al. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18(11):102390. doi:10.1016/j.autrev.2019.102390; Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford). 2019 Feb 1;58(Suppl 1):i43-i54. doi:10.1093/rheumatology/key276; Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: prospects in inflammatory and autoimmune diseases. BioDrugs. 2019;33(1):15-32. doi:10.1007/s40259-019-00333-w; Fridman JS, Scherle PA, Collins R, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184(9):5298-307. doi:10.4049/jimmunol.0902819; Zhang X, Chua L, Ernest C 2nd, et al. Dose/exposure-response modeling to support dosing recommendation for phase III development of Baricitinib in patients with rheumatoid arthritis. CPT Pharmacometrics Syst Pharmacol. 2017;6(12):804-13. doi:10.1002/psp4.12251; Shi JG, Chen X, Lee F, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol. 2014;54(12):1354-61. doi:10.1002/jcph.354; Yaekura A, Morii K, Oketani Y, et al. Chronotherapy using Baricitinib attenuates collagen-induced arthritis in mice [abstract]. Arthritis Rheum. 2019;71 Suppl 10. Available at: https://acrabstracts.org/abstract/chronotherapy-using-baricitinib-attenuatescollagen-induced-arthritis-in-mice/ (accessed 08.04.2020).; Genovese MC, Kremer J, Zamani O, et al. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med. 2016;374(13):1243-52. doi:10.1056/NEJMoa1507247; Genovese MC, Kremer JM, Kartman CE, et al. Response to baricitinib based on prior biologic use in patients with refractory rheumatoid arthritis. Rheumatology. 2018;57(5):900-8. doi:10.1093/rheumatology/kex489; Smolen JS, Kremer JM, Gaich CL, et al. Patient-reported outcomes from a randomised phase III study of baricitinib in patients with rheumatoid arthritis and an inadequate response to biological agents (RA-BEACON). Ann Rheum Dis. 2017;76(4):694-700. doi:10.1136/annrheumdis-2016-209821; Dougados M, van der Heijde D, Chen Y-C, et al. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann Rheum Dis. 2017;76(1):88-95. doi:10.1136/annrheumdis-2016-210094; Emery P, Blanco R, Maldonado Cocco J, et al. Patient-reported outcomes from a phase III study of baricitinib in patients with conventional synthetic DMARD-refractory rheumatoid arthritis. RMD Open. 2017;3(1):e000410. doi:10.1136/rmdopen-2016-000410; Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med. 2017;376(7):652-62. doi:10.1056/NEJMoa1608345; Keystone EC, Taylor PC, Tanaka Y, et al. Patient-reported outcomes from a phase 3 study of baricitinib versus placebo or adalimumab in rheumatoid arthritis: secondary analyses from the RA-BEAM study. Ann Rheum Dis. 2017;76(11):1853-61. doi:10.1136/annrheumdis-2017-211259; Fleischmann R, Schiff M, van der Heijde D, et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheum. 2017;69(3):506-17. doi:10.1002/art.39953; Schiff M, Takeuchi T, Fleischmann R, et al. Patient-reported outcomes of baricitinib in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Res Ther. 2017;19(1):208. doi:10.1186/s13075-017-1410-1; Van der Heijde D, Durez P, Schett G, et al. Structural damage progression in patients with early rheumatoid arthritis treated with methotrexate, baricitinib, or baricitinib plus methotrexate based on clinical response in the phase 3 RA-BEGIN study. Clin Rheumatol. 2018;37(9):2381-90. doi:10.1007/s10067-018-4221-0; Fleischmann R, Takeuchi T, Schiff M, et al. Efficacy and safety of long-term baricitinib with and without methotrexate for the treatment of rheumatoid arthritis: experience with baricitinib monotherapy continuation or after switching from methotrexate monotherapy or baricitinib plus methotrexate. Arthritis Care Res (Hoboken). 2019 Jun 24. doi:10.1002/acr.24007; Fleischmann R, Schiff M, Kvein TK, et al. THU0075 Early versus delayed start of baricitinib in patients with rheumatoid arthritis in a phase 3 trial of patients naХve to methotrexate treatment. Ann Rheum Dis. 2019;78:306-7. doi:10.1136/annrheumdis-2019-eular.975; Tanaka Y, Fautrel B, Keystone EC, et al. Clinical outcomes in patients switched from adalimumab to baricitinib due to nonresponse and/or study design: phase III data in patients with rheumatoid arthritis. Ann Rheum Dis. 2019;78(7):890-8. doi:10.1136/annrheumdis-2018-214529; Weinblatt ME, Taylor PC, Keystone EC, et al. Efficacy and safety of switching from Adalimumab to Baricitinib: Long-term data from phase 3 extension study in patients with rheumatoid arthritis [abstract]. Arthritis Rheum. 2018;70 Suppl. 10. Available at: https://acrabstracts.org/abstract/efficacy-and-safety-of-switching-from-adalimumab-to-baricitinib-long-term-data-fromphase-3-extension-study-in-patients-with-rheumatoid-arthritis/ (accessed 08.04.2020).; Van der Heijde D, Dougados M, Chen YC, et al. Effects of baricitinib on radiographic progression of structural joint damage at 1 year in patients with rheumatoid arthritis and an inadequate response to conventional synthetic disease-modifying antirheumatic drugs. RMD Open. 2018;4(1):e000662. doi:10.1136/rmdopen-2018-000662; Van Vollenhoven R, Helt C, Arora V, et al. Safety and efficacy of baricitinib in patients receiving conventional synthetic diseasemodifying antirheumatic drugs or corticosteroids. Rheumatol Ther. 2018;5(2):525-36. doi:10.1007/s40744-018-0128-0; Genovese M, Weinblatt M, Wu J, et al. Patient disease trajectories in baricitinib-2 mg-treated patients with rheumatoid arthritis and inadequate response to biologic DMARDs [abstract]. Arthritis Rheum. 2019;71 Suppl. 10). Available at: https://acrabstracts.org/abstract/patient-disease-trajectories-inbaricitinib-2-mg-treated-patients-with-rheumatoid-arthritis-andinadequate-response-to-biologic-dmards/ (accessed 08.04.2020).; Takeuchi T, Genovese MC, Haraoui B, et al. Dose reduction of baricitinib in patients with rheumatoid arthritis achieving sustained disease control: results of a prospective study. Ann Rheum Dis. 2019;78(2):171-8. doi:10.1136/annrheumdis-2018-213271; Emery P, Tanaka Y, Cardillo T, et al. Temporary interruption of baricitinib: characterization of interruptions and effect on clinical outcomes in patients with rheumatoid arthritis. Arthritis Res Ther. 2020;22:115. Published online 2020 May 15. doi:10.1186/s13075-020-02199-8; Keystone EC, Taylor PC, Drescher E, et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann Rheum Dis. 2015;74(2):333-40. doi:10.1136/annrheumdis-2014-206478; Tanaka Y, Emoto K, Cai Z, et al. Efficacy and safety of baricitinib in Japanese patients with active rheumatoid arthritis receiving background methotrexate therapy: a 12-week, double-blind, randomized placebo-controlled study. J Rheumatol. 2016;43(3):504- 11. doi:10.3899/jrheum.150613; Keystone EC, Genovese MC, Schlichting DE, et al. Safety and efficacy of baricitinib through 128 weeks in an open-label, longterm extension study in patients with rheumatoid arthritis. J Rheumatol. 2018;45(1):14-21. doi:10.3899/jrheum.161161; Genovese MC, Smolen JS, Takeuchi T, et al. THU0075 Safety profile of baricitinib for the treatment of rheumatoid arthritis up to 7 eears: an update integrated safety analysis. Ann Rheum Dis. 2019;78:308-9. doi:10.1136/annrheumdis-2019-eular.691; Smolen JS, Genovese MC, Takeuchi T, et al. Safety profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J Rheumatol. 2019;46(1):7-18. doi:10.3899/jrheum.171361; Dougados M. Comorbidities in rheumatoid arthritis. Curr Opin Rheumatol. 2016;28(3):282-8. doi:10.1097/BOR.0000000000000267; Dougados M, Soubrier M, Antunez A, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann Rheum Dis. 2014;73(1):62-8. doi:10.1136/annrheumdis-2013-204223; Ferguson LD, Siebert S, McInnes IB, Sattar N. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat Rev Rheumatol. 2019;15(8):461-74. doi:10.1038/s41584-019-0256-0; Scott IC, Hider SL, Scott DL. Thromboembolism with Janus kinase (JAK) inhibitors for rheumatoid arthritis: How real is the risk? Drug Saf. 2018;41(7):645-53. doi:10.1007/s40264-018-0651-5; Taylor PC, Weinblatt ME, Burmester GR, et al. Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheum. 2019;71(7):1042-55. doi:10.1002/art.40841; Xie W, Huang Y, Xiao S, et al. Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: systematic review and meta-analysis of randomised controlled trials. Ann Rheum Dis. 2019;78:1048-54. doi:10.1136/annrheumdis-2018-214846; Robertson J, Peters MJ, McInnes IB, et al. Changes in lipid levels with inflammation and therapy in RA: a maturing paradigm. Nat Rev Rheumatol. 2013;9:513-23. doi:10.1038/nrrheum.2013; O'Neill F, Charakida M, Topham E, et al. Anti-inflammatory treatment improves high-density lipoprotein function in rheumatoid arthritis. Heart. 2017;103:766-73. doi:10.1136/heartjnl-2015-308953; Navarro-Millan I, Charles-Schoeman C, Yang S, et al. Changes in lipoproteins associated with methotrexate or combination therapy in early rheumatoid arthritis: results from the treatment of early rheumatoid arthritis trial. Arthritis Rheum. 2013;65:1430-8. doi:10.1002/art.37916; Genovese MC, McKay JD, Nasonov EL, et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum. 2008;58:2968-80. doi:10.1002/art.23940; Charles-Schoeman C, Fleischmann R, Davignon J, et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheum. 2015;67:616-25. doi:10.1002/art.38974; Myasoedova E, Crowson CS, Kremers HM, et al. Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis. 2011;70:482-7. doi:10.1136/ard.2010.135871; Choy E, Ganeshalingam K, Semb AG, et al. Cardiovascular risk in rheumatoid arthritis: recent advances in the understanding of the pivotal role of inflammation, risk predictors and the impact of treatment. Rheumatology. 2014;53:2143-54. doi:10.1093/rheumatology/keu224; Kremer JM, Genovese MC, Keystone E, et al. Effects of baricitinib on lipid, apolipoprotein, and lipoprotein particle profiles in a phase IIb study of patients with active rheumatoid arthritis. Arthritis Rheum. 2017;69(5):943-52. doi:10.1002/art.40036; Taylor PC, Kremer JM, Emery P, et al. Lipid profile and effect of statin treatment in pooled phase II and phase III baricitinib studies. Ann Rheum Dis. 2018;77(7):988-95. doi:10.1136/annrheumdis-2017-212461; Qiu C, Zhao X, She L, et al. Baricitinib induces LDL-C and HDL-C increases in rheumatoid arthritis: a meta-analysis of randomized controlled trials. Lipids Health Dis. 2019;18(1):54. doi:10.1186/s12944-019-0994-7; Otvos JD, Shalaurova I, Wolak-Dinsmore J, et al. GlycA: a composite nuclear magnetic resonance biomarker of systemic inflammation. Clin Chem. 2015;61:714-23. doi:10.1373/clinchem.2014.232918; Ormseth MJ, Chung CP, Oeser AM, et al. Utility of a novel inflammatory marker, GlycA, for assessment of rheumatoid arthritis disease activity and coronary atherosclerosis. Arthritis Res Ther. 2015;17:117. doi:10.1186/s13075-015-0646-xed; Bartlett DB, Connelly MA, AbouAssi H, et al. A novel inflammatory biomarker, GlycA, associates with disease activity in rheumatoid arthritis and cardio-metabolic risk in BMI-matched controls. Arthritis Res Ther. 2016;18:86. doi:10.1186/s13075-016-0982-5; Connelly MA, Gruppen EG, Otvos JD, et al. Inflammatory glycoproteins in cardiometabolic disorders, autoimmune diseases and cancer. Clin Chim Acta. 2016;459:177-86. doi:10.1016/j.cca.2016.06.012; Tanaka Y, McInnes IB, Taylor PC, et al. Characterization and changes of lymphocyte subsets in baricitinib-treated patients with rheumatoid arthritis: an integrated analysis. Arthritis Rheum. 2018;70(12):1923-32. doi:10.1002/art.406; Waggoner SN, Reighard SD, Gyurova IE, et al. Roles of natural killer cells in antiviral immunity. Curr Opin Virol. 2016;16:15-23. doi:10.1016/j.coviro.2015.10.008; Della Chiesa M, De Maria A, Muccio L, et al. Human NK cells and herpesviruses: mechanisms of recognition, response and adaptation. Front Microbiol. 2019;10:2297. doi:10.3389/fmicb.2019.02297; Anjara P, Jiang M, Mundae M. Symptomatic elevation creatine kinase following treatment of rheumatoid arthritis with baricitinib. Clin Rheumatol. 2020;39(2):613-4. doi:10.1007/s10067-019-04833-6; Serhal L, Lwin MN, Holroyd C, Edwards CJ. Rheumatoid arthritis in the elderly: Characteristics and treatment considerations. Autoimmun Rev. 2020 Mar 29:102528. doi:10.1016/j.autrev.2020.102528; Fleischmann R, Alam J, Arora V, et al. Safety and efficacy of baricitinib in elderly patients with rheumatoid arthritis. RMD Open. 2017;3(2):e000546. doi:10.1136/rmdopen-2017-000546; Kremer JM, Schiff M, Muram D, et al. Response to baricitinib therapy in patients with rheumatoid arthritis with inadequate response to csDMARDs as a function of baseline characteristics. RMD Open. 2018;4(1):e000581. doi:10.1136/rmdopen-2017-000581; Combe B, Balsa A, Sarzi-Puttini P, et al. Efficacy and safety data based on historical or pre-existing conditions at baseline for patients with active rheumatoid arthritis who were treated with baricitinib. Ann Rheum Dis. 2019;78(8):1135-8. doi:10.1136/annrheumdis-2018-214261; Huang F, Luo ZC. Risk of adverse drug events observed with baricitinib 2 mg versus baricitinib 4 mg once daily for the treatment of rheumatoid arthritis: a systematic review and metaanalysis of randomized controlled trials. BioDrugs. 2018;32(5):415-23. doi:10.1007/s40259-018-0304-3; Kunwar S, Collins CE, Constantinescu F. Baricitinib, a Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Clin Rheumatol. 2018;37(10):2611-20. doi:10.1007/s10067-018-4199-7; Lee YH, Bae SC. Comparative efficacy and safety of baricitinib 2 mg and 4 mg in patients with active rheumatoid arthritis: A Bayesian network meta-analysis of randomized controlled trials. Z Rheumatol. 2018;77(4):335-42. doi:10.1007/s00393-016-0254-4; Wu ZP, Zhang P, Bai JZ, et al. Efficacy and safety of baricitinib for active rheumatoid arthritis in patients with an inadequate response to conventional synthetic or biological disease-modifying anti-rheumatic drugs: A meta-analysis of randomized controlled trials. Exp Ther Med. 2018;16(3):2449-59. doi:10.3892/etm.2018.6495; Honda S, Harigai M. The safety of baricitinib in patients with rheumatoid arthritis. Expert Opin Drug Saf. 2020 Mar 21:1-7. doi:10.1080/14740338.2020.1743263; Bae SC, Lee YH. Comparison of the efficacy and safety of tofacitinib and baricitinib in patients with active rheumatoid arthritis: a Bayesian network meta-analysis of randomized controlled trials. Z Rheumatol. 2019;78(6):559-67. doi:10.1007/s00393-018-0531-5; Jegatheeswaran J, Turk M, Pope JE. Comparison of Janus kinase inhibitors in the treatment of rheumatoid arthritis: a systemic literature review. Immunotherapy. 2019;11(8):737-54. doi:10.2217/imt-2018-0178; Lee YH, Song GG. Relative efficacy and safety of tofacitinib, baricitinib, upadacitinib, and filgotinib in comparison to adalimumab in patients with active rheumatoid arthritis. Z Rheumatol. 2020 Feb 13. doi:10.1007/s00393-020-00750-1; Ren S, Bermejo I, Simpson E, et al. Baricitinib for previously treated moderate or severe rheumatoid arthritis: an evidence review group perspective of a NICE Single Technology Appraisal. Pharmacoeconomics. 2018;36(7):769-78. doi:10.1007/s40273-018-0616-7; Sepriano A, Kerschbaumer A, Smolen JS, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2020 Feb 7. doi:10.1136/annrheumdis-2019-216653; Kerschbaumer A, Sepriano A, Smolen JS, et al. Efficacy of pharmacological treatment in rheumatoid arthritis: a systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 2020 Feb 7. doi:10.1136/annrheumdis-2019-216656; Gossec L, Dougados M, Dixon W. Patient-reported outcomes as end points in clinical trials in rheumatoid arthritis. RMD Open. 2015;1(1):e000019. doi:10.1136/rmdopen-2014-000019; Rendas-Baum R, Bayliss M, Kosinski M, et al. Measuring the effect of therapy in rheumatoid arthritis clinical trials from the patient's perspective. Curr Med Res Opin. 2014;30:1391-403. doi:10.1185/03007995.2014.896328; Taylor PC, Manger B, Alvaro-Gracia J, et al. Patient perceptions concerning pain management in the treatment of rheumatoid arthritis. J Int Med Res. 2010;38:1213-24. doi:10.1177/147323001003800402; Boyden SD, Hossain IN, Wohlfahrt A, Lee YC. Non-inflammatory causes of pain in patients with rheumatoid arthritis. Curr Rheumatol Rep. 2016;18:30. doi:10.1007/s11926-016-0581-0; Lampa JB. Pain without inflammation in rheumatic diseases. Best Pract Res Clin Rheumatol. 2019;33(3):101439. doi:10.1016/j.berh.2019.101439; Taylor PC, Moore A, Vasilescu R, et al. A structured literature review of the burden of illness and unmet needs in patients with rheumatoid arthritis: A current perspective. Rheumatol Int. 2016;36:685-95. doi:10.1007/s00296-015-3415-x; Taylor PC, Lee YC, Fleischmann R, et al. Achieving pain control in rheumatoid arthritis with baricitinib or adalimumab plus methotrexate: results from the RA-BEAM trial. J Clin Med. 2019;8(6):831. doi:10.3390/jcm8060831; Fautrel B, Kirkham B, Pope JE, et al. Effect of baricitinib and adalimumab in reducing pain and improving function in patients with rheumatoid arthritis in low disease activity: exploratory analyses from RA-BEAM. J Clin Med. 2019;8(9):1394. doi:10.3390/jcm8091394; Taylor P, Pope J, Ikeda K, et al. Baricitinib provides better pain relief across all disease activity levels compared with placebo and adalimumab in rheumatoid arthritis [abstract]. Arthritis Rheum. 2019;71 Suppl. 10. Available at: https://acrabstracts.org/abstract/baricitinib-provides-better-painrelief-across-all-disease-activity-levels-compared-with-placeboand-adalimumab-in-rheumatoid-arthritis/ (accessed 08.04.2020).; Busch-Dienstfertig M, Gonzalez-Rodriguez S. IL-4, JAK-STAT signaling, and pain. JAK-STAT. 2013;2:e27638. doi:10.4161/jkst.27638; Salaffi F, Giacobazzi G, Di Carlo M. Chronic pain in inflammatory arthritis: mechanisms, metrology, and emerging targets – a focus on the JAK-STAT Pathway. Pain Res Manag. 2018 Feb 7;2018:8564215. doi:10.1155/2018/8564215; Cook AD, Pobjoy J, Steidl S, et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res Ther. 2012;14:R199. doi:10.1186/ar4037; Lee KM, Prasad V, Achuthan A, et al. Targeting GM-CSF for collagenase-induced osteoarthritis pain and disease in mice. Osteoarthritis Cartilage. 2020;28(4):486-91. doi:10.1016/j.joca.2020.01.012; Choy EHS, Calabrese LH. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology (Oxford). 2018;57(11):1885-95. doi:10.1093/rheumatology/kex391; Лисицына ТА, Вельтищев ДЮ, Лила АМ, Насонов ЕЛ. Интерлейкин 6 как патогенетический фактор, опосредующий формирование клинических проявлений, и мишень для терапии ревматических заболеваний и депрессивных расстройств. Научно-практическая ревматология. 2019;57(3):318-27. doi:10.14412/1995-4484-2019-318-327 [Lisitsyna TA, Veltishchev DYu, Lila AM, Nasonov EL. Interleukin 6 as a pathogenic factor mediating clinical manifestations and a therapeutic target for rheumatic diseases and depressive disorders. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(3):318-27. doi:10.14412/1995-4484-2019-318-327 (In Russ.)].; Gadina M, Johnson C, Schwartz D, et al. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol. 2018;104(3):499-514. doi:10.1002/JLB.5RI0218-084R; Choy EH. Clinical significance of Janus kinase inhibitor selectivity. Rheumatology (Oxford). 2018 Dec 1. doi:10.1093/rheumatology/key339; McInnes IB, Byers NL, Higgs RE, et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther. 2019;21(1):183. doi:10.1186/s13075-019-1964-1; Dowty ME, Lin TH, Jesson MI, et al. Janus kinase inhibitors for the treatment of rheumatoid arthritis demonstrate similar profiles of in vitro cytokine receptor inhibition. Pharmacol Res Perspect. 2019;7(6):e00537. doi:10.1002/prp2.537; Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-9. doi:10.14412/1995-4484-2017-590-599 [Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):590-9. doi:10.14412/1995-4484-2017-590-599 (In Russ.)].; Kubo S, Nakayamada S, Sakata K, et al. Janus kinase inhibitor baricitinib modulates human innate and adaptive immune system. Front Immunol. 2018;9:1510. doi:10.3389/fimmu.2018.01510; Nielsen MA, Lomholt S, Mellemkjaer A, et al. Responses to cytokine inhibitors associated with cellular composition in models of immune-mediated inflammatory arthritis. ACR Open Rheumatol. 2020;2(1):3-10. doi:10.1002/acr2.11094; Temmoku J, Fujita Y, Matsuoka N, et al. Uric acid-mediated inflammasome activation in IL-6 primed innate immune cells is regulated by baricitinib. Mod Rheumatol. 2020 Mar 30:1-6. doi:10.1080/14397595.2020.1740410; Murakami K, Kobayashi Y, Uehara S, et al. A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS One. 2017;12(7):e0181126. doi:10.1371/journal.pone.0181126; Adam S, Simon N, Steffen U, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med. 2020;12(530). doi:10.1126/scitranslmed.aay4447; McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3:e297. doi:10.1371/journal.pmed.0030297; Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96-102. doi:10.1016/j.coi.2017.09.003; Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi:10.1172/JCI98814; Meesilpavikkai K, Dik WA, Schrijver B, et al. Efficacy of Baricitinib in the treatment of chilblains associated with AicardiGoutieres syndrome, a type I interferonopathy. Arthritis Rheum. 2019;71(5):829-31. doi:10.1002/art.40805; Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-75. doi:10.1093/rheumatology/kew431; Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-61. doi:10.14412/1995-4484-2019-452-461 [Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: new evidence. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(4):452-61. doi:10.14412/1995-4484-2019-452-461 (In Russ.)].; Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi:10.1016/S0140-6736(18)31363-1; Dö rner T, Tanaka Y, Petri M, et al. Molecular profiling identifies immunologic subgroups and informs mechanism of action of baricitinib in SLE [abstract]. Arthritis Rheum. 2019;71 Suppl. 10. Available at: https://acrabstracts.org/abstract/molecular-profiling-identifies-immunologic-subgroups-and-informs-mechanismof-action-of-baricitinib-in-sle/ (accessed 09.04.2020).; Kim H, Dill S, O'Brien M, et al. Preliminary response to Janus kinase (JAK) inhibition with baricitinib in refractory juvenile dermatomyositis [abstract]. Arthritis Rheum. 2019;71 Suppl. 10. Available at: https://acrabstracts.org/abstract/preliminaryresponse-to-janus-kinase-jak-inhibition-with-baricitinib-inrefractory-juvenile-dermatomyositis/ (accessed 08.04.2020).; Авдеева АС. ИФНγ-индуцируемый белок 10 (IP-10) при ревматоидном артрите: обзор литературы и собственные данные. Научно-практическая ревматология. 2017;55(6):655-61. doi:10.14412/1995-4484-2017-655-661 [Avdeeva AS. IFN-γ-induced protein 10 (IP-10) in rheumatoid arthritis: literature review and the authors' own data. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):655-61. doi:10.14412/1995-4484-2017-655-661 (In Russ.)].; Larosa M, Zen M, Gatto M, et al. IL-12 and IL-23/Th17 axis in systemic lupus erythematosus. Exp Biol Med (Maywood). 2019;244(1):42-51. doi:10.1177/1535370218824547; Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020 Jan 16. doi:10.1002/jmv.25678; Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-32. doi:10.14412/1995-4484-2020-123-132 [Nasonov EL. Coronavirus disease 2019 (COVID-19): a rheumatologist’s thoughts. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(2):123-32. doi:10.14412/1995-4484-2020-123-132 (In Russ.)].; Behrens EM, Koretzky GA. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017;69(6):1135-43. doi:10.1002/art.40071; Gupta KK, Khan MA, Singh SK. Constitutive inflammatory cytokine storm: a major threat to human health. J Interferon Cytokine Res. 2020;40(1):19-23. doi:10.1089/jir.2019.0085; McGonagle D, Sharif K, O'Regan A, Bridgewood C. Interleukin-6 use in COVID-19 pneumonia related macrophage activation syndrome. Autoimmun Rev. 2020 Apr 3:102537. doi:10.1016/j.autrev.2020.102537; Pedersen SF, Ho YC. SARS-CoV-2: A Storm is Raging. J Clin Invest. 2020 Mar 27. doi:10.1172/JCI137647; Mehta P, McAuley DF, Brown M, et al; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-4. doi:10.1016/S0140-6736(20)30628-0; Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Jan 30. doi:10.1016/S0140-6736(20)30251-8; Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30-e31. doi:10.1016/S0140-6736(20)30304-4; Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 Feb 27. doi:10.1016/S1473-3099(20)30132-8; Насонов ЕЛ. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6. Научно-практическая ревматология. 2020;58(3):245-61. doi:10.14412/1995-4484-2020-245-261 [Nasonov EL. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): focus on interleukin 6. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(3):245-61. doi:10.14412/1995-4484-2020-245-261 (In Russ.)].; https://rsp.mediar-press.net/rsp/article/view/2898
-
12Academic Journal
المؤلفون: N. V. Beloborodova, E. V. Zuev, M. N. Zamyatin, V. G. Gusarov, Н. В. Белобородова, Е. В. Зуев, М. Н. Замятин, В. Г. Гусаров
المصدر: General Reanimatology; Том 16, № 6 (2020); 65-90 ; Общая реаниматология; Том 16, № 6 (2020); 65-90 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2020-6
مصطلحات موضوعية: доксициклин, anti-malaria drugs, viral protease inhibitors, anti-parasitic drugs, interleukin inhibitors, Janus kinase inhibitors, interferons, convalescents plasma, corticosteroids, procalcitonin, antibiotics, new target, matrix metalloproteinases, doxycycline, противомалярийные средства, ингибиторы вирусных протеаз, противопаразитарные препараты, ингибиторы интерлейкинов, ингибиторы янус-киназ, интерфероны, плазма реконвалесцентов, кортикостероиды, прокальцитонин, антибиотики, новая мишень, матриксные металлопротеиназы
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/1987/1466; https://www.reanimatology.com/rmt/article/view/1987/1467; Stollenwerk N., Harper R.W., Sandrock Ch.E. Bench-to-bedside review: Rare and common viral infections in the intensive care unit — linking pathophysiology to clinical presentation. Critical Care. 2008; 12 (4): 219. DOI:10.1186/cc6917; Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 7 от 03.06.2020 https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/origi-nal/03062020_MR_COVID-19_v7.pdf; Alexander P.E., Debono V.B., Mammen M.J., Iorio A., Aryal K., Deng D., Brocard E., Alhazzani W. COVID-19 research has overall low methodological quality thus far: case in point for chloroquine/hydroxy-chloroquine. J Clin Epidemiol. 2020; 123: 120-126. PMID: 32330521 PMCID: PMC7194626 DOI:10.1016/j.jclinepi.2020.04.016; U.S. National Library of Medicine. Clinical Trials.com https://clini-caltrials.gov/ct2/results/details?cond=COVID-19; Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial agents and chemotherapy. 2009; 53 (8): 3416-3421. DOI:10.1128/AAC.01509-08; Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek Th.G., Seidah N.G., Nichol St.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal. 2005; 2 (1): 69. DOI:10.1186/1743-422X-2-69; Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W. and Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020; 30 (3): 269-271. DOI:10.1038/s41422-020-0282-0; Delvecchio R., Higa L.M., Pezzuto P, Valadao A.L., Garcez PP, Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J.M., Aliota M.T., Caine E.A., Osorio J.E., Bellio M., O’Connor D.H., Rehen S., de Aguiar R.S., Savarino A., Campanati L., Tanuri A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses. 2016; 8 (12): 322. DOI:10.3390/v8120322. PMID: 27916837; te Velthuis A.J.W., van den Worm S.H.E., Sims A.C., Baric R.S., Snijder E.J., van Hemert M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog. 2010; 6 (11): e1001176. PMID: 32330521 PMCID: PMC7194626 DOI:10.1016/j.jclinepi.2020.04.016; Gao J., Tian Zh., Yang X Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020; 14: 723. DOI:10.5582/bst.2020.01047. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32074550; Gautret P., Lagier J.-Ch., Parola Ph.,Hoang V.Th., Meddeb L., Mailhe M., DoudierB., CourjonJ., Giordanengo V, VieiraV.E.,DupontH.T., Honort S., Colson Ph., ChabriereE., La ScolaB., Rolain J.-M., BrouquiPh., Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020: 105949. DOI:10.1016/j.ijantimicag.2020.105949. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32205204; Chu C.M., Cheng V.C.C., Hung I.F.N., Wong M.M.L., Chan K.H., Chan K.S., Kao R.Y.T., Poon L.L.M., C.L.P., Guan Y., Peiris J.S.M., Yuen K.Y., HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59: 252-256. DOI:10.1136/thorax.2003.012658; Chan K.S., Lai S.T., Chu C.M., Tsui E., Tam C.Y., Wong M.M.L., Tse M.W., Que T.L., Peiris J.S.M., Sung J., Wong V.C.W., Yuen K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003; 9: 399-406. PMID: 14660806; Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., Li X., Xia J., Chen N., Xiang J., Yu T., Bai T., Xie X., Zhang L., Li C., Yuan Y., Chen H., Li H., Huang H., Tu S., Gong F., Liu Y., Wei Y., Dong C., Zhou F., Gu X., Xu J., Liu Z., Zhang Y., Li H., Shang L., Wang K., Li K., Zhou X., Dong X., Qu Z., Lu S., Hu X., Ruan S., Luo S., Wu J., Peng L., Cheng F., Pan L., Zou J., Jia C., Wang J., Liu X., Wang S., Wu X., Ge Q., He J., Zhan H., Qiu F., Guo L., Huang C., Jaki T., Hayden F.G., Horby PW, ZhangD., Wang C. A Trial of Lopinavir-Ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020; 382: 17871799. DOI:10.1056/NEJMoa2001282. PMID: 32187464; Cai Q., Huang D., Ou P., Yu H., Zhu Zh., Xia Zh., Su Y., Ma Zh., Zhang Y., Li Zh., He Q., Liu L., Fu Y., Chen J. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. MedRxiv. 2020; DOI:10.1101/2020.02.17.20024018. PMID: 32239761; HuL., Chen S., Fu Y., GaoZ., LongH., RenH.-W.,Zuo Y., LiH., Wang J., Xu Q.-B., Yu W.-X., Liu J., Shao Ch., Hao J.-J., Wang Ch.-Zh., Ma Y., Wang Zh., Yanagihara R. J.-M. Wang, Deng Y. Risk factors associated with clinical outcomes in 323 COVID-19 patients in Wuhan, China. medRxiv 2020 DOI:10.1101/2020.03.25.20037721. PMID: 32361738; Yan D., Liu X.-Y., Zhu Y.-N, Huang L., Dan B.-T., Zhang G.-J., Gao Y.-H. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2. Eur Respir J. 2020; 56: 2000799. DOI:10.1183/13993003.00799-2020; Cai Q., Yang M,. Liu D,. Chen J,. Shu D., Xia J., Liao X., Gu Y., Cai Q., Yang Y., Shen C., Li X., Peng L., Huang D., Zhang J., Zhang S., Wang F., Liu J., Chen L., Chen S., Wang Z., Zhang Z., Cao R., Zhong W., Liu Y., Liu L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering. 2020; DOI:10.1016/j.eng.2020.03.007; de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remde-sivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Nat Acad Sci USA. 2020; 117 (12): 6771-6776. DOI:10.1073/pnas.1922083117. PMID: 32054787; Beigel John H., Tomashek Kay M., Dodd Lori E., Mehta Aneesh K., Zingman Barry S., Kalil Andre C., Hohmann Elizabeth, Chu Helen Y., Luetkemeyer Annie, Kline Susan, Lopez de Castilla Diego, Finberg Robert W., Dierberg Kerry, Tapson Victor, Hsieh Lanny, Patterson Thomas F., Paredes Roger, Sweeney Daniel A., Short William R., Touloumi Giota, Lye David Chien, Ohmagari Norio, Oh Myoung-don, Ruiz-Palacios Guillermo M., Benfield Thomas, Fatkenheuer Gerd, Kortepeter Mark G., Atmar Robert L., Creech C. Buddy, Lundgren Jens, Babiker Abdel G., Pett Sarah, Neaton James D., Burgess Timothy H., Bonnett Tyler, Green Michelle, Makowski Mat, Osinusi Anu, Nayak Seema, Lane H. Clifford. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020. DOI:10.1056/NEJMoa2015301.; Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.-M., Lim W.Sh., Makki S., Rooney K.D., Nguyen-Van-Tam J.S., Beck Ch.R. Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015; 211 (1): 80-90. DOI:10.1093/infdis/jiu396. PMID: 25030060; Shen Ch., Wang Zh., Zhao F., Yang Y., Li J., Yuan J., Wang F., Li D., Yang M., Xing L., Wei J., Xiao H., Yang Y., Qu J., Qing L., Chen L., Xu Zh., Peng L., Li Y., Zheng H., Chen F., Huang K., Jiang Y., Liu D., Zhang Zh., Liu Y., Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020; 323 (16): 1582-1589. DOI:10.1001/jama.2020.4783. PMID: 32219428; Duan K., Liu B., Li C., Zhang H., Yu T., Qu., Zhou M., Chen L., Meng Sh., Hu Y., Peng Ch., Yuan M., Huang J., Wang Z., Yu J., Gao., Wang D., Yu X., Li L., Zhang J., Wu X., Li B., Xu Y., Chen W., Peng Y., Hu Y., Lin L., Liu X., Huang Sh., Zhou Zh., Zhang L., Wang Y., Zhang Zh., Deng K., Xia Zh., Gong Q., Zhang W., Zheng X., Liu Y., Yang H., Zhou D., Yu D., Hou J., Shi Zh., Chen S., Chen Zh., Zhang X., Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. PNAS. 2020; 117 (17): 9490-9496; first published April 6, 2020. DOI:10.1073/pnas.2004168117. PMID: 32253318; Pandey S., Vyas G.N. Adverse effects of plasma transfusion. Transfusion. 2012; 52 (Suppl. 1): 65S-79S. DOI:10.1111/j.1537-2995.2012.03663.x; Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. June 2020; 178: 104787. DOI:10.1016/j.an-tiviral.2020.104787. PMID: 32251768; Rossignol J.-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health., 2016; 9 (3): 227-230. DOI:10.1016/j.jiph.2016.04.001; Sisk J.M., Frieman M.B., Machamer C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol. 2018; 99 (5): 619-630. DOI:10.1099/jgv.0.001047. PMID: 29557770; Alhazzani W, M0ller M.H., Arabi Y.M., Loeb M., Gong M.Ng, Fan E., Oczkowski S., Levy M.M., Derde L., Dzierba A., Du B., Aboodi M., Wun-sch H., Cecconi M., Koh Y., Chertow D.S., Maitland K., Alshamsi F., Bel-ley-Cote E., Greco M., Laundy M., Morgan J.S., Kesecioglu J., McGeer A., Mermel L., Mammen M.J., Alexander P.E., Arrington A., Centofanti J.E., Citerio G., Baw B., Memish Z.A., Hammond N., Hayden F.G., Evans L., Rhodes A. Surviving Sepsis Campaign. Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Critical Care Medicine.2020; 48 (6): e440-e469 Volume Online First — Issue — DOI:10.1097/CCM.0000000000004363. PMID: 32222812; Isidori, A.M., Arnaldi, G., Boscaro, Falorni M. A., Giordano C., Giordano R., Pivonello R., Pofi R., Hasenmajer V., Venneri M. A., Sbardella E., Sime-oli C., Scaroni C., Lenziet A. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. Journal of Endocrinolog-icalInvestigation. (43): 1141-1147 DOI:10.1007/s40618-020-01266-w; Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., Almotairi A., Al Khatib K., Alraddadi B., Shalhoub S., Abdulmomen A., Qushmaq I., Mady A., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Balkhy H.H., Al Harthy A., Deeb A.M., Al Mutairi H., Al-Dawood A., Merson L., Hayden F.G., Fowler R.A., Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir. Crit Care Med. 2018; 197: 757-767. DOI:10.1164/rccm.201706-1172OC. PMID: 29161116; Lee N., Chan K.C.A., Hui D.S., Ng E.K.O., Wu A., Chiu R.W.K., Wong V.W.S., Chan P.K.S., Wong K.T., Wong E., Cockram C.S., Tam J.S., Sung J.J.Y., Lo Y. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004; 31: 304-309. DOI:10.1016/j.jcv.2004.07.006.; Chen R.-Ch., TangX.-P, Tan Sh.-Y., LiangB.-L., Wan Zh.-Y., Fang J.-Q., Zhong N. Treatment of severe acute respiratory syndrome with glucosteroids. Chest Journal. 2006; 129 (6): 1441-1452. DOI:10.1378/chest.129.6.1441. PMID: 16778260; Zha L., Li Sh., Pan L., Tefsen B., Li Y., French N., Chen L., Yang G., Villanueva E.V. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Medical Journal of Australia. 2020; 212 (9): 416-420 DOI:10.5694/mja2.50577. PMID: 32296987; Keskin O., Farzan N., Birben E., H.Akel, Karaaslan C., Maitland-van der Zee A.H., Wechsler M.E., Vijverberg S.J., Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019; 9: 2. Published online 2019 Jan 9. DOI:10.1186/s13601-018-0239-2. PMID: 30647901; Zhang X., Song K., Tong F., Fei M., Guo H., Lu Zh., Wang J., Zheng Ch. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances. 2020; 4 (7): 1307-1310. DOI:10.1182/bloodadvances.2020001907. PMID: 32243501; Case Study: Treating COVID-19 in a Patient with Multiple Myeloma [news release]. Washington. Published April 3, 2020. hematology.org/newsroom/press-releases/2020/case-study-treat-ing-covid-19. Accessed April 7, 2020.; Jones G., Ding Ch. Tocilizumab: A Review of Its Safety and Efficacy in Rheumatoid Arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2010; 3: 81-89. DOI:10.4137/CMAMD.S4864; Gritti G., Raimondi F., Ripamonti D., Riva I., Landi F., Alborghetti L., Frigeni M., Damiani M., Mico C., Fagiuoli S., Cosentini R., Lorini FL., Fabretti F., . Morgan J.H, Owens B.M.J., Kanhai K., Cowburn J., Rizzi M., Di Marco F., Rambaldi A. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. preprint DOI:10.1101/2020.04.01.20048561; Treatment of COVID-19 Patients With Anti-interleukin Drugs (COV-AID). ClinicalTrials.gov Identifier: NCT04330638. https://clinicaltri-als.gov/ct2/show/record/NCT04330638; Regeneron and sanofi provide update on u.s. phase 2/3 adaptive-designed trial of kevzara® (sarilumab) in hospitalized covid-19 patients. TARRYTOWN, N.Y. and PARIS, April 27, 2020 /PRNewswire/ — https://www.prnewswire.com/news-releases/regeneron-and-sanofi-pro-vide-update-on-us-phase-23-adaptive-designed-trial-of-kevzara-sar-ilumab-in-hospitalized-covid-19-patients-301047326.html; Cavalli G., De Luca G., Campochiaro C., Della-Torre E., Ripa M., Canetti D., Oltolini Ch., Castiglioni B., Din Ch.T., Boffini N., Tomelleri A., Farina N., Ruggeri A., Rovere-Querini P., Di Lucca G., Martinenghi S., Scotti R., Tresoldi M., Ciceri F., Landoni G., Zangrillo A., Scarpellini P., Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2 (6): e325-e331. Published Online May 7. DOI:10.1016/S2665-9913(20)30127-2. PMID: 32501454; O’Shea J.J., Kontzias A., Yamaoka K., Tanaka Y., Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. Author manuscript; 2013; 72 (Suppl 2): ii111-5. DOI:10.1136/annrheumdis-2012-202576. PMID: 23532440; Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020; 81 (2): 318-356. PMID: 32333918 PMCID: PMC7177073 DOI:10.1016/j.jinf.2020.04.017; Safety and Efficacy of Ruxolitinib for COVID-19. ClinicalTrials.gov Identifier: NCT04348071. https://clinicaltrials.gov/ct2/show/NCT04348071; Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care in Subjects Hospitalized With COVID-19. CALAVI (Calquence Against the Virus) (ACE-ID-201). ClinicalTrials.gov Identifier: NCT04346199. https://clinicaltrials.gov/ct2/show/NCT04346199; TOFAcitinib in SARS-CoV2 Pneumonia. ClinicalTrials.gov Identifier: NCT04332042. https://clinicaltrials.gov/ct2/show/NCT04332042; Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc R Soc London Ser B. 1957; 147: 258-267. DOI:10.1098/rspb.1957.0048; Charles E. Samuel. Antiviral Actions of Interferons. Clin Microbiol Rev. 2001; 14 (4): 778-809. DOI:10.1128/CMR.14.4.778-809.2001; Sheahan TP, Sims A.C., Leist S.R., Schafer A., Won J., Brown A.J., Montgomery S.A., Hogg A., Babusis D., Clarke M.O., Spahn J.E., Bauer L., Sellers S., PorterD.,Feng J.Y., Cihlar T, JordanR.,DenisonM.R.,BaricR.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020; 11. 222. DOI:10.1038/s41467-019-13940-6. PMID: 31924756; Omrani A.S., Saad M.M., Baig K., Bahloul A., Abdul-Matin M., Alaida-roos A.Y., Almakhlafi G.A., Albarrak M.M., Memish Z.A., Albarrak A.M. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect. Dis. 2014; 14: 1090-1095. DOI:10.1016/S1473-3099(14)70920-X. PMID: 25278221; Arabi Y.M., Shalhoub S., Mandourah Y., Al-Hameed F., Al-Omari A., Al Qasim E., Jose J., Alraddadi B., Almotairi A., Al Khatib K., Abdulmomen A., Qushmaq I., Sindi A.A., Mady A., Solaiman O., Al-Raddadi R., Maghrabi K., Ragab A., Al Mekhlafi G.A., Balkhy H.H., Al Harthy A., Kharaba A., Gramish J.A., Al-Aithan A.M., Al-Dawood A., Merson L., Hayden F.G., Fowler R. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: A multicenter observational study. Clin Infect Dis. 2020; 70 (9): 1837-1844. DOI:10.1093/cid/ciz544. PMID: 31925415; National institutes of health. immune-based therapy under evaluation for treatment of COVID-19. Last Updated: May 12, 2020. https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy/; Hung I.F.-N., Lung K.-Ch., Tso E.Y.-K., Liu R., Chung T.W.-H., Chu M.-Y., Ng Y.-Y., Lo J., Chan J., Tam A.R., Shum H.-P., Chan V., Wu A.K.-L., Sin K.-M., Leung W.-Sh., Law W.-L., Lung D.Ch., Sin S., YeungP, Yip C.Ch.-Y., Zhang R.R., Fung A.Y.-F., Yan E.Y.-W., Leung K.-H., Ip J.D., Chu A.W.-H., Chan W.-M., Ng A.Ch.-K., Lee R., Fung K., Yeung A., Wu T.-Ch., Chan J.W.-M., Yan W.-W., Chan W.-M., Chan J. F.-W., Lie A.K.-W., Tsang O.T.-Y., Cheng V.Ch.-Ch., Que T.-L., Lau Ch.-S., Chan K.-H., To K.K.-W., Yuen K.-Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020; 395 (10238): 1695-1704. DOI:10.1016/S0140-6736(20)31042-4. PMID: 32401715; Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang Ch. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179: 104811. DOI:10.1016/j.antiviral.2020.104811. PMID: 32360182; de Jong H.J.I., Kingwell E., Shirani A., Tervaert J.W.C., Hupperts R., Zhao Y., Zhu F., Evans Ch., van der Kop M.L., Traboulsee A., Gustafson P., Petkau J., Marrie R. A., Tremlett H., British Columbia Multiple Sclerosis Clinic Neurologists. Evaluating the safety of в-interferons in MS: a series of nested case-control studies. Neurology. 2017; 88 (24): 2310-2320. DOI:10.1212/WNL.0000000000004037. PMID: 28500224; Hu Y., Ye Y., Ye L., Wang X., Yu H. Efficacy and safety of interferon alpha therapy in children with chronic hepatitis B. Medicine (Baltimore). 2019; 98 (32): e16683. DOI:10.1097/MD.0000000000016683. PMID: 31393369; Open-label, Randomized Study of IFX-1 in Patients With Severe COVID-19 Pneumonia (PANAMO). ClinicalTrials.gov Identifier: NCT04333420. https://clinicaltrials.gov/ct2/show/NCT04333420; Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020; Apr 13: 1-7. DOI:10.1007/s12015-020-09973-w. PMID: 32281052; Website of the British society for antimicrobial therapy http://bsac.org.uk/; Website of National Institute for Health and Care Excellence [NICE] https://www.nice.org.uk/guidance; Qing Y., Wenyang J., Raoyao L. COVID-19 Patients with Gastrointestinal Symptoms Are More Likely to Develop into Severe Cases «Science and Technology Daily», 21.04.2020 https://gmcc.alibabadoctor.com/news/detail?content_id=1496ca6b1c270a6e8a38ddf92471d795; Белобородова Н.В. «Сепсис. Метаболомный подход». Монография. М.: Издательство Медицинское информационное агентство «МИА»; 2018. 272. ISBN: 978-5-9986-0350-1; Beloborodova N.V., Sarshor Yu.N., Bedova A.Yu., Chernevskaya E.A., Pautova A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. SHOCK. 2018; 50 (3): 273-279. DOI:10.1097/SHK.0000000000001064; Beloborodova N.V., Olenin A.Yu., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. of Crit. Care. 2018; 43: 246-255. DOI:10.1016/j.jcrc.2017.09.014; Черневская Е.А., Белобородова Н.В. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018. 14 (5): 96-119. DOI:10.15360/1813-9779-2018-5-96-119; Beloborodova N.V., Grechko A.V., Olenin A.Yu. Chapter «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology» in Book «Infection and Sepsis» InTechOpen [online first]. DOI:10.5772/intechopen.87176; Белобородова Н.В. Метаболизм микробиоты при критических состояниях (обзор и постулаты). Общая реаниматология. 2019; 15 (6), 62-79. DOI:10.15360/1813-9779-2019-6-62-79; Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 3 (03.03.2020), раздел 4.5.1. Особенности клинических проявлений. https://www.garant.ru/products/ipo/prime/doc/73647088/; Carsana L., Sonzogni A., Nasr A., Rossi R., Pellegrinelli A., Zerbi P., Rech R., Colombo R., Antinori S., Corbellino M., Galli M., Catena E., Tosoni A., Gianatti A., Nebuloni M. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv. DOI:10.1101/2020.04.19.20054262; Зайратьянц О.В., СамсоноваМ.В., МихалеваЛ.М., Черняев А.Л., Мишнев О.Д., Крупнов Н.М. Патологическая анатомия легких при COVID-19: атлас. Москва; Рязань: Издательство ГУП РО «Рязанская областная типография», 2020. — 52 с., ил. 62; Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Zh., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu Sh., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-1062. DOI:10.1016/S0140-6736(20)30566-3.; Self W.H., Balk R.A., Grijalva C.G., Williams D.J., Zhu Y., Anderson E.J., Waterer G.W., Courtney D.M., Bramley A.M., Trabue Ch., Fakhran Sh., Blaschke A.J., Jain S., Edwards K.M., Wunderink R.G. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia (multicenter study). Clin Infect Dis. 2017; 65 (2): 183-190. DOI:10.1093/cid/cix317. PMID: 28407054; Grondman I., Pirvu A., Riza A., Ioana M., Mihai G., Netea M.G. Biomarkers of inflammation and the etiology of sepsis. Review Article. Biochemical Society Transactions. 2020; 48: 1-14. DOI:10.1042/BST20190029.; Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou Ch.-Q., He J.-X., Liu L., Shan H., Lei Ch.-L., Hui D.S.C., Du B., Li L.-J., Zeng G., Yuen K.-Y., Chen R.-Ch., Tang Ch.-L., Wang T., Chen P.-Y., Xiang J., Li Sh.-Y., Wang J.-L., Liang Z.-J., Peng Y.-X., Wei L., Liu Y., Hu Y.-H., Peng P., Wang J.-M., Liu J.-Y., Chen Zh., Li G., Zheng Zh.-J., Qiu Sh.-Q., Luo J., Ye Ch.-J., Zhu Sh.-Y., Zhong N.-Sh., China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020; 382 (18): 1708-1720. NEJM. org. DOI:10.1056/NEJMoa2002032. PMID: 32109013; Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A Meta-analysis. Clinica Chimica Acta. 2020; 505: 190-191. DOI:10.1016/j.cca.2020.03.004; Jereb M., Kotar T. Usefulness of procalcitonin to differentiate typical from atypical community-acquired pneumonia. Wien Klin Wochen-schr. 2006; Apr; 118 (5-6): 170-174. DOI:10.1007/s00508-006-0563-8; COVID-19 rapid guideline: antibiotics for pneumonia in adults in hospital. National Institute for Health and Care Excellence (NICE). NICE guideline [NG173] Published date: 01 May 2020. https://www.nice.org.uk/guidance/ng173; Sorbera L.A., Graul A.I., Dulsat C. Taking aim at a fast-moving target: targets to watch for SARS-CoV-2 and COVID-19. Drugs of the Future. 2020; 45 (4): 1-6 (Advanced Publication). DOI:10.1358/dof.2020.45.4.3150676; Bhattacharya S., Sen N., Yiming M.T., Patel R., Parthasarathi K., Quadri S., Issekutz A.C., Bhattacharya J. High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium. Am J Respir Cell Mol Biol. 2003; 28: 218-224. DOI:10.1165/rcmb.4763.; Ries C., Petrides P.E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler. 1995; 376 (6): 345-355. PMID: 7576228; Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997; 378: 151-160. PMID: 9165065; Bode W., Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Review. Biol Chem. 2003; 384 (6): 863-872. DOI:10.1515/BC.2003.097.; Castro M.M., Kandasamy A.D., Youssef N., Schulz R. Matrix Metalloproteinase Inhibitor Properties of Tetracyclines: Therapeutic Potential in Cardiovascular Diseases. Pharmacol Res. 2011; 64 (6): 551-560. Epub 2011 May 31. DOI:10.1016/j.phrs.2011.05.005.; Acharya M.R., Venitz J., Figg W.D. Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resistance Updates.2004; 7 (3): 195-208. DOI:10.1016/j.drup.2004.04.002; Steinberg J., Fink G., Picone A., Searles B., Schiller H., Lee H.M., Nieman G. Evidence of increased matrix metalloproteinase-9 concentration in patients following cardiopulmonary bypass. J Extra Corpor Tech-nol. 2001; 33: 218-222. PMID: 11806432; Lin T.C., Li C.Y., Tsai C.S., Ku C.H., Wu C.T., Wong C.S., Ho S.T. Neutrophil-mediated secretion and activation of matrix metalloproteinase-9 during cardiac surgery with cardiopulmonary bypass. Anesth Analg. 2005; 100 (6): 1554-1560. DOI:10.1213/01.ANE.0000154307.92060.84; Joffs C., Gunasinghe H.R., Multani M.M., Dorman B.H., Kratz J.M., Crumbley A.J. 3rd, Crawford F.A. Jr., Spinale F.G. Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases. Ann Thorac Surg. 2001; 71: 1518-1523. DOI:10.1016/s0003-4975(01)02442-0; Zhang C., Gong W., Liu H., Guo Z., Ge S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int J Clin Exp Med. 2014; 7 (12): 4975-82. eCollection 2014. PMID: 25663995. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307442/; Dalvi P.S., Singh A., Trivedi H.R., Ghanchi1 F.D., Parmar D.M., Mistry S.D. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Annals of Thoracic Medicine. 2011; 6 (4): 221-226. http: //www.thoracicmedicine.org. DOI:10.4103/1817-1737.84777; Doroszko A., Hurst Th.S., Polewicz D., Sawicka J., J. Fert-Bober, D.H. Johnson, G. Sawicki. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury. Proteome Sci. 2010; 8: 3. Published online 2010 Jan 29. DOI:10.1186/1477-5956-8-3. PMCID: PMC2824689 PMID: 20205825 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824689/; Sochor M., Richter S., Schmidt A., Hempel S., Hopt U.T., Keck T. Inhibition of Matrix Metalloproteinase-9 with Doxycycline Reduces Pancreatitis-Associated Lung Injury. Digestion. 2009; 80 (2): 65-73. DOI:10.1159/000212080; Зырянов С.К., Голуб А.В., Козлов Р.С. Доксициклин в современной клинической практике. Клиническая микробиология и антимикробная химиотерапия. 2020; 22 (1): 21-28. DOI:10.36488/cmac.2020.1.21-28; Wormser G.P., Dattwyler R.J., Shapiro E.D., Halperin J.J., Steere A.C., Klempner M.S., Krause P.J., Bakken J.S., Strle F., Stanek G., Bockenstedt L., Fish D., Dumler J.S., Nadelman R.B. The clinical assessment, treatment and prevention of Lyme disease, human granulocytic anaplas-mosis and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2006; 43 (9): 1089-1134. DOI:10.1086/508667; van Zuuren E.J., Kramer S., Carter B., Graber M.A., Fedorowicz Z. Interventions for rosacea. Cochrane Database Syst Rev. 2011; 3: CD003262. DOI:10.1002/14651858.CD003262.pub4; MUllegger R.R., Glatz M. Skin manifestations of lime borreliosis: diagnosis and management. Am J Clin Dermatol. 2008; 9 (6): 355-368. DOI:10.2165/0128071-200809060-00002; Torresani C., Pavesi A., Manara G.C. Clarithromycin versus doxycycline in the treatment of rosacea. Int J Dermatol. 1997; 36 (12): 938946. DOI:10.1046/j.1365-4362.1997.00301.x; Heneghan С., Aronson J., Hobbs R., Mahtani K. Rapidly managing pneumonia in older people during a pandemic. The Centre for Evidence-Based Medicine (CEBM). Oxford COVID-19 Evidence Service Team. March 16, 2020 https://www.cebm.net/covid-19/rapidly-managing-pneumonia-in-older-people-during-a-pandemic/; Dalvi P. S, Singh A., Trivedi H. R, Ghanchi F. D, Parmar D.M, Mistry S.D. Effect of Doxycycline in Patients of Moderate to Severe Chronic Obstructive Pulmonary Disease With Stable Symptoms. Ann Thorac Med 2011; 6 (4): 221-226. DOI:10.4103/1817-1737.84777; van der Waaij D. Colonization Resistance of the Digestive Tract — Mechanism and Clinical Consequences. Nahrung 1987; 31 (5-6): 507517 DOI:10.1002/food.19870310551; Vollaard E.J., Clasener H.A.L, Van Griethuysen A.J.A., Janssen A.J.H.M., Sanders-Reimers A.H.J., Muller N.F., Huige P.J. Influence of cefaclor, phenethicillin, co-trimoxazole and doxycycline on colonization resistance in healthy volunteers. J Antimicrob Chemother. 1988; 22 (5): 747-758. DOI:10.1093/jac/22.5.747.; Gorbach S.L., Barza M., Giuliano M., Jacobus N.V. Colonization resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis. 1988; 7 (1): 98-102. DOI:10.1007/BF0196219; Vollaard E.J., Clasener H.A., van Saene H.K., Muller N.F. Effect on colonization resistance: an important criterion in selecting antibiotics. Drug Intel. and Clin. Pharm. 1990; 24 (1): 60-66. DOI:10.1177/106002809002400113; https://www.reanimatology.com/rmt/article/view/1987
-
13Academic Journal
المؤلفون: I. V. Menshikova, V. V. Strogonova, И. В. Меньшикова, В. В. Строгонова
المساهمون: ООО «Пфайзер Инновации»
المصدر: Modern Rheumatology Journal; Том 13, № 2 (2019); 80-83 ; Современная ревматология; Том 13, № 2 (2019); 80-83 ; 2310-158X ; 1996-7012 ; 10.14412/1996-7012-2019-2
مصطلحات موضوعية: тофацитиниб, inefficiency of treatment, Janus kinase inhibitors, tofacitinib, неэффективность терапии, ингибиторы Янус-киназ
وصف الملف: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/914/878; Бабаева АР, Калинина ЕВ, Каратеев ДЕ. Опыт применения тофацитиниба в лечении резистентного ревматоидного артрита. Современная ревматология. 2015;9(2): 28-32. doi:10.14412/1996-7012-2015-2-28-32; Бабаева АР, Калинина ЕВ, Каратеев ДЕ. Тофацитиниб в базисной терапии ревматоидного артрита: собственный клинический опыт. Медицинский совет. 2016;(8): 92-8.; Бабаева АР, Калинина ЕВ, Бакумов ПА. Инновационная терапия ревматоидного артрита: алгоритмы и цели лечения. Вестник ВолГМУ. 2018;(2):3-9.; Caporali R, Zavaglia D. Real-world experience with tofacitinib for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2018 Aug 29. [Epub ahead of print]; Kotyla PJ. Are Janus Kinase Inhibitors Superior over Classic Biologic Agents in RA Patients? Biomed Res Int. 2018 May 10;2018: 7492904. doi:10.1155/2018/7492904. eCollection 2018.; Tanaka Y. Current concepts in the management of rheumatoid arthritis. Korean J Intern Med. 2016 Mar;31(2):210-8. doi:10.3904/ kjim.2015.137. Epub 2016 Feb 26.; Li ZG, Liu Y, Xu HJ, et al. Efficacy and Safety of Tofacitinib in Chinese Patients with Rheumatoid Arthritis. Chin Med J (Engl). 2018 Nov 20;131(22):2683-2692. doi:10.4103/0366-6999.245157.; Мазуров ВИ, Трофимов ЕА, Самигуллина РР, Гайдукова ИЗ. Место тофацитиниба в стратегии лечения ревматоидного артрита. Научно-практическая ревматология. 2018;56(2):152–6. doi:10.14412/1995-4484-2018-152-156; Kucharz EJ, Stajszczyk M, KotulskaKucharz A, et al. Tofacitinib in the treatment of patients with rheumatoid arthritis: position statement of experts of the Polish Society for Rheumatology. Reumatologia. 2018;56(4): 203-211. doi:10.5114/reum.2018.77971. Epub 2018 Aug 31.; Emery P, Pope JE, Kruger K, et al. Efficacy of Monotherapy with Biologics and JAK Inhibitors for the Treatment of Rheumatoid Arthritis: A Systematic Review. Adv Ther. 2018 Oct;35(10):1535-1563. doi:10.1007/s12325-018-0757-2. Epub 2018 Aug 20.; Hazlewood GS, Barnabe C, Tomlinson G, et al. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: abridged Cochrane systematic review and network meta-analysis. BMJ. 2016 Apr 21; 353:i1777. doi:10.1136/bmj.i1777.; Насонов ЕЛ, Чичасова НВ. Степанец ОВ и др. Методы оценки активности ревматоидного артрита. Научно-практическая ревматология. 2002;40(2):49. [Nasonov EL, Chichasova NV. Stepanets OV, et al. Methods for assessing the activity of rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice. 2002;40(2): 49. (In Russ.)].; Smolen JS, Breedveld FC, Schiff MN, et al. A simplified disease activity index for Rheumatoid arthritis for use in clinical practice. Rheumatology (Oxford). 2003 Feb; 42(2):244-57.; Colebatch AN, Edwards CJ, Ostergaard M, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis. 2013 Jun;72(6):804-14. doi:10.1136/ annrheumdis-2012-203158. Epub 2013 Mar 21.; Авдеева АС, Панасюк ЕЮ, Александрова ЕН, Насонов ЕЛ. Оценка клинической эффективности терапии тоцилизумабом с использованием индексов DAS 28, SDAI, CDAI и новых критериев ремиссии EULAR/ACR 2011 г. у больных ревматоидным артритом. Научно-практическая ревматология. 2012;50(2):20-4. doi:10.14412/1995-4484-2012-1268; Aletaha D, Becede M, Smolen J. Information technology concerning SDAI and CDAI. Clin Exp Rheumatol. 2016 JulAug;34(4 Suppl 98):45-8. Epub 2016 Jul 20.; https://mrj.ima-press.net/mrj/article/view/914
-
14Academic Journal
المؤلفون: V. I. Mazurov, I. B. Belyaeva, В. И. Мазуров, И. Б. Беляева
المساهمون: Публикация статьи поддержана ООО «Пфайзер Инновации».
المصدر: Modern Rheumatology Journal; Том 13, № 4 (2019); 116-123 ; Современная ревматология; Том 13, № 4 (2019); 116-123 ; 2310-158X ; 1996-7012 ; 10.14412/1996-7012-2019-4
مصطلحات موضوعية: генно-инженерные биологические препараты, targeted therapy, Janus kinase inhibitors, tofacitinib, baricitinib, biological agents, таргетная терапия, ингибиторы Янус-киназ, тофацитиниб, барицитиниб
وصف الملف: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/969/930; Мазуров ВИ, Лила АМ, Зоткин ЕГ, редакторы. Клиническая ревматология. Москва: ФОЛИАНТ; 2005. 515 c.; Мазуров ВИ, Трофимов ЕА. Ревматология. Фармакотерапия без ошибок: Руководство для врачей. Москва: Е-ното; 2017. 528 с.; Беляева ИБ, Мазуров ВИ, Трофимова ТН, Трофимов ЕА. Ранний ревматоидный артрит: современные возможности диагностики и лечения. Санкт-Петербург: Медфорум; 2017. 138 с.; Насонов ЕЛ, редактор. Российские клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2017. 464 с.; Насонов ЕЛ. Генно-инженерные биологические препараты в лечении ревматоидного артрита. Москва: ИМА-ПРЕСС; 2013. 552 c.; Singh JA, Saag KG, Bridges SL Jr, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2016 Jan;68(1):1-25. doi:10.1002/acr.22783. Epub 2015 Nov 6.; Charles-Schoeman C, Burmester G, Nash P, et al. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological diseasemodifying anti-rheumatic drugs. Ann Rheum Dis. 2016 Jul;75(7):1293-301. doi: 0.1136/annrheumdis-2014-207178. Epub 2015 Aug 1; Giacomelli R, Afeltra A, Alunno A, et al. Guidelines for biomarkersin autoimmune rheumatic diseases – evidence basedanalysis. Autoimmun Rev. 2019 Jan;18(1):93-106. doi:10.1016/j.autrev.2018.08.003. Epub 2018 Nov 5.; Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford). 2019 Jun 1;58(6):953-962. doi:10.1093/rheumatology/key339.; Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as atherapeutic strategy for immune and inflammatory diseases. doi:10.1038/nrd.2017.201; Banerjee S, Biehl A, Gadina M, et al. JAK-STAT Signaling as aTarget for Inflammatory and Autoimmune Diseases: Current andFuture Prospects. Drugs. 2017 Apr;77(5):521-546. doi:10.1007/s40265-017-0701-9.; Gadina M, Johnson C, Schwartz D, et al. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol. 2018 Sep;104(3): 499-514. doi:10.1002/JLB.5RI0218-084R. Epub 2018 Jul 12.; Насонов ЕЛ, Лила АМ. Ингибиторы янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-пректическая ревматология. 2019;57(1):8-16.; Насонов ЕЛ. Новые подходы к фармакотерапии ревматоидного артрита: тофацитиниб. Научно-практическая ревматология. 2014;52(2):209-21.; Charles-Schoeman C, Burmester G, Nash P, et al. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological diseasemodifying antirheumatic drugs. Ann Rheum Dis. 2016 Jul;75(7):1293-301. doi:10.1136/annrheumdis-2014-207178. Epub 2015 Aug 14.; Kunwar S, Collins CE, Constantinescu F. Baricitinib, a Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematicliterature review and meta-analysis of randomized controlled trials. Clin Rheumatol. 2018 Oct;37(10):2611-2620. doi:10.1007/s10067-018-4199-7. Epub 2018 Jul 13.; Shi JG, Chen X, Lee F, et al. The pharmacokinetics, pharmacodynamics,and safety of baricitinib, an oral JAK 1/2 inhibitor, inhealthy volunteers. J Clin Pharmacol. 2014 Dec;54(12):1354-61. doi:10.1002/jcph.354.; Dhillon S. Tofacitinib: A Review in Rheumatoid Arthritis. Drugs. 2017 Dec;77(18): 1987-2001. doi:10.1007/s40265-017-0835-9.; Charles-Schoeman C, Burmester G, Nash P, et al. Efficacy andsafety of tofacitinib following inadequate response to conventionalsynthetic or biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2016 Jul;75(7):1293-301. doi:10.1136/annrheumdis-2014-207178. Epub 2015 Aug 14.; Winthrop KL. The emerging safety profile of JAK inhibitors inrheumatic disease. Nat Rev Rheumatol. 2017 Apr;13(4):234-243. doi:10.1038/nrrheum.2017.23. Epub 2017 Mar 2.; Strand V, Kavanaugh A, Kivitz AJ, et al. Long-Term Radiographic and PatientReported Outcomes in Patients with Rheumatoid Arthritis Treated with Tofacitinib: ORAL Start and ORAL Scan Post-hoc Analyses. Rheumatol Ther. 2018 Dec;5(2):341-353. doi:10.1007/s40744-018-0113-7. Epub 2018 May 14.; Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis. N Engl J Med. 2017 Feb 16;376(7):652-662. doi:10.1056/NEJMoa1608345.; Fleischmann R, Mysler E, Hall S, et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate,and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet. 2017 Jul 29;390(10093):457-468. doi:10.1016/S0140-6736(17)31618-5. Epub 2017 Jun 16.; Genovese MC, Kremer J, Zamani O, et al. Baricitinib inpatients with refractory rheumatoid arthritis. N Engl J Med. 2016 Mar 31;374(13):1243-52. doi:10.1056/NEJMoa1507247.; Taylor PC. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford). 2019 Feb 1; 58(Supplement_1):i17-i26. doi:10.1093/rheumatology/key225.; Roman Muller. Jak ingibitors in 2019, synthetic review in 10 poins. Eur J Intern Med. 2019 Aug;66:9-17. doi:10.1016/j.ejim.2019.05.022. Epub 2019 Jun 6.; Genovese MC, Smolen JS, Weinblatt ME, et al. Efficacyand safety of ABT-494, a selective JAK-1 inhibitor, in aphase IIb study in patients with rheumatoid arthritis and aninadequate response to methotrexate. Arthritis Rheumatol. 2016 Dec;68(12):2857-2866. doi:10.1002/art.39808.; Westhovens R, Taylor PC, Alten R, et al. Filgotinib(GLPG0634/GS-6034), an oral JAK1 selective inhibitor, iseffective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-findingstudy (DARWIN 1). Ann Rheum Dis. 2017 Jun;76(6):998-1008. doi:10.1136/annrheumdis-2016-210104. Epub 2016 Dec 19.; Genovese MC, Greenwald M, Codding C, et al. Peficitinib,a JAK inhibitor, in combination with limited conventionalsynthetic disease-modifying antirheumatic drugs in thetreatment of moderate-to-severe rheumatoid arthritis. Arthritis Rheumatol. 2017 May;69(5):932-942. doi:10.1002/art.40054.; Fleischmann RM, Damjanov NS, Kivitz AJ, et al. A randomized, double-blind, placebo-controlled, twelve-week,dose-ranging study of decernotinib, an oral selective JAK-3 inhibitor, as monotherapy in patients with activerheumatoid arthritis. Arthritis Rheumatol. 2015 Feb;67(2):334-43. doi:10.1002/art.38949.; Burmester GR, Kremer JM, Van den Bosch F, et al. Safetyand efficacy of upadacitinib in patients with rheumatoidarthritis and inadequate response to conventional synthetic disease-modifying antirheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018 Jun 23;391(10139): 2503-2512. doi:10.1016/S0140-6736(18)31115-2. Epub 2018 Jun 18.; Genovese MC, Fleischmann R, Combe B, et al. Safety andefficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying antirheumatic drugs (SELECT-BEYOND): a double-blind,randomised controlled phase 3 trial. Lancet. 2018 Jun 23;391(10139):25132524. doi:10.1016/S0140-6736(18)31116-4. Epub 2018 Jun 18.; Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научнопрактическая ревматология. 2017;55(6): 590-9. doi:10.14412/1995-4484-2017-590-599; Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety oftofacitinib for the treatment of rheumatoid arthritis up to8.5 years: integrated analysis of data from the globalclinical trials. Ann Rheum Dis. 2017 Jul; 76(7):1253-1262. doi:10.1136/annrheumdis-2016-210457. Epub 2017 Jan 31.; Genovese MC, Smolen JS, Takeuchi T, et al. Safety profileof baricitinib for the treatment of rheumatoid arthritis up to 5.5 years: an updated integrated safety analysis. ACR/ARHP Annual Meeting. San Diego: 38 November 2017. Abstr. 511.; Winthrop KL, Curtis JR, Lindsey S, et al. Herpes zoster andtofacitinib. Clinical outcomes and the risk of concomitant therapy. Arthritis Rheumatol. 2017 Oct;69(10):1960-1968. doi:10.1002/art.40189. Epub 2017 Sep 6.; Winthrop KL, Wouters AG, Choy EH, et al. The safety andimmunogenicity of live zoster vaccination in patients withrheumatoid arthritis before starting tofacitinib: a randomized phase II trial. Arthritis Rheumatol. 2017 Oct;69(10):1969-1977. doi:10.1002/art.40187. Epub 2017 Sep 6.; Weinblatt M, Taylor PC, Burmester G, et al. Cardiovascularsafety during treatment with baricitinib in patients withrheumatoid arthritis. ACR/ARHP Annual Meeting. San Diego: 38 November 2017. Abstr. 499; Xie F, Yun H, Bernatsky S, Curtis JR. Brief report: risk of gastrointestinal perforation among rheumatoid arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis Rheumatol. 2016 Nov;68(11):2612-2617. doi:10.1002/art.39761.; Smolen JS, Genovese MC, Takeuchi T. Safety profile ofbaricitinib in patients with active rheumatoid arthritis: anintegrated analysis. European League Against Rheumatism (EULAR). London; 8–11 June 2016. Poster THU0166.; Schulze-Koops H, Strand V, Nduaka C, et al. Analysis ofhaematological changes in tofacitinib-treated patients with rheumatoid arthritis across phase 3 and long-termextension studies. Rheumatology (Oxford). 2017 Jan;56(1):46-57. doi:10.1093/rheumatology/kew329. Epub 2016 Oct 22.; Kremer JM, Checn L, Saifan CG, et al. Analysis of neutrophils, lymphocytes, and platelets in pooled phase 2 andphase 3 studies of baricitinib for rheumatoid arthritis. European League Against Rheumatism (EULAR). Madrid; 14–17 June 2017. Poster 1325.; Charles-Schoeman C, Gonzalez-Gay MA, Kaplan I, et al. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist. Semin Arthritis Rheum. 2016 Aug;46(1): 71-80. doi:10.1016/j.semarthrit.2016.03.004. Epub 2016 Mar 9.; Isaacs JD, Zuckerman A, Krishnaswami S, et al. Changesin serum creatinine in patients with active rheumatoid arthritis treated with tofacitinib: results from clinical trials. Arthritis Res Ther. 2014 Jul 25;16(4):R158. doi:10.1186/ar4673.; McInnes IB, Kremer J, Emery P, et al. Lipid profile andeffect of statin treatment in pooled phase 2 and phase 3baricitinib studies. 2016 ACR/ARHP Annual Meeting. Abstract No. 3023.; https://mrj.ima-press.net/mrj/article/view/969
-
15Academic Journal
المؤلفون: Тумаш, О. Л., Карамышев, А. М., Говор, В. А.
مصطلحات موضوعية: ингибиторы янус-киназ, COVID-19
Relation: Тумаш, О. Л. Применение ингибиторов янус-киназ в лечении COVID-19 / О. Л. Тумаш, А. М. Карамышев, В. А. Говор // Современные аспекты инфекционных болезней и микробиологии : материалы междунар. науч.-практ. конф., Гомель 14-15 сент. 2022 г. – [Опубл. в журн.] Журнал инфектологии. – 2022. – Т. 14, № 4, прил. 1. – С. 104.; http://elib.gsmu.by/handle/GomSMU/12724
-
16Academic Journal
المؤلفون: Тамразова О.Б., Стадникова А.С., Глухова Е.А., Дубовец Н.Ф., Воробьева А.С., Радченко Е.Р.
المصدر: Meditsinskiy Sovet
-
17Academic Journal
المؤلفون: Потекаев Н.Н., Петунина В.В., Жукова О.В., Аванесова В.И., Ткаченко С.Б.
المصدر: Клиническая дерматология и венерология
مصطلحات موضوعية: vitiligo, janus kinase inhibitors, Jak-Stat, (pSTAT), pro-inflammatory proteins, cytokines, Jak1, Jak3, Jak2, vitiligo therapy, vitiligo pathogenesis, T-cells, melanogenesis, depigmentation, repigmentation, melanocyte, ritlecitinib, Cxcl9, Cxcl10, витилиго, ингибиторы янус-киназ, провоспалительные белки, цитокины, терапия витилиго, патогенез витилиго, Т-клетки, меланогенез, депигментация, репигментация, меланоцит
-
18Electronic Resource
Additional Titles: Этиотропная терапия COVID-19: критический анализ и перспективы
المؤلفون: N. Beloborodova V.; V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, E. Zuev V.; V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; National Medical and Surgical Center named after N.I. Pirogov, M. Zamyatin N.; National Medical and Surgical Center named after N.I. Pirogov, V. Gusarov G.; National Medical and Surgical Center named after N.I. Pirogov, Н. Белобородова В.; НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР, Е. Зуев В.; НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР; Национальный медико-хирургический центр им. Н.И. Пирогов, М. Замятин Н.; Национальный медико-хирургический центр им. Н.И. Пирогов, В. Гусаров Г.; Национальный медико-хирургический центр им. Н.И. Пирогов
المصدر: General Reanimatology; Том 16, № 6 (2020); 65-90; Общая реаниматология; Том 16, № 6 (2020); 65-90; 2411-7110; 1813-9779; 10.15360/1813-9779-2020-6
مصطلحات الفهرس: COVID-19; anti-malaria drugs; viral protease inhibitors; anti-parasitic drugs; interleukin inhibitors; Janus kinase inhibitors; interferons; convalescents plasma; corticosteroids; procalcitonin; antibiotics; new target; matrix metalloproteinases; doxycycline, COVID-19; противомалярийные средства; ингибиторы вирусных протеаз; противопаразитарные препараты; ингибиторы интерлейкинов; ингибиторы янус-киназ; интерфероны; плазма реконвалесцентов; кортикостероиды; прокальцитонин; антибиотики; новая мишень; матриксные металлопротеиназы; доксициклин, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
https://www.reanimatology.com/rmt/article/view/1987/1466 https://www.reanimatology.com/rmt/article/view/1987/1467 https://www.reanimatology.com/rmt/article/view/1987/1466 https://www.reanimatology.com/rmt/article/view/1987/1467
Stollenwerk N., Harper R.W., Sandrock Ch.E. Bench-to-bedside review: Rare and common viral infections in the intensive care unit — linking pathophysiology to clinical presentation. Critical Care. 2008; 12 (4): 219. DOI: 10.1186/cc6917
Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 7 от 03.06.2020 https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/origi-nal/03062020_MR_COVID-19_v7.pdf
Alexander P.E., Debono V.B., Mammen M.J., Iorio A., Aryal K., Deng D., Brocard E., Alhazzani W. COVID-19 research has overall low methodological quality thus far: case in point for chloroquine/hydroxy-chloroquine. J Clin Epidemiol. 2020; 123: 120-126. PMID: 32330521 PMCID: PMC7194626 DOI: 10.1016/j.jclinepi.2020.04.016
U.S. National Library of Medicine. Clinical Trials.com https://clini-caltrials.gov/ct2/results/details?cond=COVID-19
Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial agents and chemotherapy. 2009; 53 (8): 3416-3421. DOI: 10.1128/AAC.01509-08
Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek Th.G., Seidah N.G., Nichol St.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal. 2005; 2 (1): 69. DOI: 10.1186/1743-422X-2-69
Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W. and Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020; 30 (3): 269-271. DOI: 10.1038/s41422-020-0282-0
Delvecchio R., Higa L.M., Pezzuto P, Valadao A.L., Garcez PP, Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J.M., Aliota M.T., Caine E.A., Osorio J.E., Bellio M., O’Connor D.H., Rehen S., de Aguiar R.S., Savarino A., Campanati L., Tanuri A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses. 2016; 8 (12): 322. DOI: 10.3390/v8120322. PMID: 27916837
te Velthuis A.J.W., van den Worm S.H.E., Sims A.C., Baric R.S., Snijder E.J., van Hemert M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog. 2010; 6 (11): e1001176. PMID: 32330521 PMCID: PMC7194626 DOI: 10.1016/j.jclinepi.2020.04.016
Gao J., Tian Zh., Yang X Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020; 14: 723. DOI: 10.5582/bst.2020.01047. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32074550
Gautret P., Lagier J.-Ch., Parola Ph.,Hoang V.Th., Meddeb L., Mailhe M., DoudierB., CourjonJ., Giordanengo V, VieiraV.E.,DupontH.T., Honort S., Colson Ph., ChabriereE., La ScolaB., Rolain J.-M., BrouquiPh., Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020: 105949. DOI: 10.1016/j.ijantimicag.2020.105949. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32205204
Chu C.M., Cheng V.C.C., Hung I.F.N., Wong M.M.L., Chan K.H., Chan K.S., Kao R.Y.T., Poon L.L.M., C.L.P., Guan Y., Peiris J.S.M., Yuen K.Y., HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59: 252-256. DOI: 10.1136/thorax.2003.012658
Chan K.S., Lai S.T., Chu C.M., Tsui E., Tam C.Y., Wong M.M.L., Tse M.W., Que T.L., Peiris J.S.M., Sung J., Wong V.C.W., Yuen K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003; 9: 399-406. PMID: 14660806
Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., Li X., Xia J., Chen N., Xiang J., Yu T., Bai T., Xie X., Zhang L., Li C., Yuan Y., Chen H., Li H., Huang H., Tu S., Gong F., Liu Y., Wei Y., Dong C., Zhou F., Gu X., Xu J., Liu Z., Zhang Y., Li H., Shang L., Wang K., Li K., Zhou X., Dong X., Qu Z., Lu S., Hu X., Ruan S., Luo S., Wu J., Peng L., Cheng F., Pan L., Zou J., Jia C., Wang J., Liu X., Wang S., Wu X., Ge Q., He J., Zhan H., Qiu F., Guo L., Huang C., Jaki T., Hayden F.G., Horby PW, ZhangD., Wang C. A Trial of Lopinavir-Ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020; 382: 17871799. DOI: 10.1056/NEJMoa2001282. PMID: 32187464
Cai Q., Huang D., Ou P., Yu H., Zhu Zh., Xia Zh., Su Y., Ma Zh., Zhang Y., Li Zh., He Q., Liu L., Fu Y., Chen J. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. MedRxiv. 2020; DOI: 10.1101/2020.02.17.20024018. PMID: 32239761
HuL., Chen S., Fu Y., GaoZ., LongH., RenH.-W.,Zuo Y., LiH., Wang J., Xu Q.-B., Yu W.-X., Liu J., Shao Ch., Hao J.-J., Wang Ch.-Zh., Ma Y., Wang Zh., Yanagihara R. J.-M. Wang, Deng Y. Risk factors associated with clinical outcomes in 323 COVID-19 patients in Wuhan, China. medRxiv 2020 DOI: 10.1101/2020.03.25.20037721. PMID: 32361738
Yan D., Liu X.-Y., Zhu Y.-N, Huang L., Dan B.-T., Zhang G.-J., Gao Y.-H. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2. Eur Respir J. 2020; 56: 2000799. DOI: 10.1183/13993003.00799-2020
Cai Q., Yang M,. Liu D,. Chen J,. Shu D., Xia J., Liao X., Gu Y., Cai Q., Yang Y., Shen C., Li X., Peng L., Huang D., Zhang J., Zhang S., Wang F., Liu J., Chen L., Chen S., Wang Z., Zhang Z., Cao R., Zhong W., Liu Y., Liu L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering. 2020; DOI: 10.1016/j.eng.2020.03.007
de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remde-sivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Nat Acad Sci USA. 2020; 117 (12): 6771-6776. DOI: 10.1073/pnas.1922083117. PMID: 32054787
Beigel John H., Tomashek Kay M., Dodd Lori E., Mehta Aneesh K., Zingman Barry S., Kalil Andre C., Hohmann Elizabeth, Chu Helen Y., Luetkemeyer Annie, Kline Susan, Lopez de Castilla Diego, Finberg Robert W., Dierberg Kerry, Tapson Victor, Hsieh Lanny, Patterson Thomas F., Paredes Roger, Sweeney Daniel A., Short William R., Touloumi Giota, Lye David Chien, Ohmagari Norio, Oh Myoung-don, Ruiz-Palacios Guillermo M., Benfield Thomas, Fatkenheuer Gerd, Kortepeter Mark G., Atmar Robert L., Creech C. Buddy, Lundgren Jens, Babiker Abdel G., Pett Sarah, Neaton James D., Burgess Timothy H., Bonnett Tyler, Green Michelle, Makowski Mat, Osinusi Anu, Nayak Seema, Lane H. Clifford. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2015301.
Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.-M., Lim W.Sh., Makki S., Rooney K.D., Nguyen-Van-Tam J.S., Beck Ch.R. Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015; 211 (1): 80-90. DOI: 10.1093/infdis/jiu396. PMID: 25030060
Shen Ch., Wang Zh., Zhao F., Yang Y., Li J., Yuan J., Wang F., Li D., Yang M., Xing L., Wei J., Xiao H., Yang Y., Qu J., Qing L., Chen L., Xu Zh., Peng L., Li Y., Zheng H., Chen F., Huang K., Jiang Y., Liu D., Zhang Zh., Liu Y., Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020; 323 (16): 1582-1589. DOI: 10.1001/jama.2020.4783. PMID: 32219428
Duan K., Liu B., Li C., Zhang H., Yu T., Qu., Zhou M., Chen L., Meng Sh., Hu Y., Peng Ch., Yuan M., Huang J., Wang Z., Yu J., Gao., Wang D., Yu X., Li L., Zhang J., Wu X., Li B., Xu Y., Chen W., Peng Y., Hu Y., Lin L., Liu X., Huang Sh., Zhou Zh., Zhang L., Wang Y., Zhang Zh., Deng K., Xia Zh., Gong Q., Zhang W., Zheng X., Liu Y., Yang H., Zhou D., Yu D., Hou J., Shi Zh., Chen S., Chen Zh., Zhang X., Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. PNAS. 2020; 117 (17): 9490-9496; first published April 6, 2020. DOI: 10.1073/pnas.2004168117. PMID: 32253318
Pandey S., Vyas G.N. Adverse effects of plasma transfusion. Transfusion. 2012; 52 (Suppl. 1): 65S-79S. DOI: 10.1111/j.1537-2995.2012.03663.x
Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. June 2020; 178: 104787. DOI: 10.1016/j.an-tiviral.2020.104787. PMID: 32251768
Rossignol J.-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health., 2016; 9 (3): 227-230. DOI: 10.1016/j.jiph.2016.04.001
Sisk J.M., Frieman M.B., Machamer C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol. 2018; 99 (5): 619-630. DOI: 10.1099/jgv.0.001047. PMID: 29557770
Alhazzani W, M0ller M.H., Arabi Y.M., Loeb M., Gong M.Ng, Fan E., Oczkowski S., Levy M.M., Derde L., Dzierba A., Du B., Aboodi M., Wun-sch H., Cecconi M., Koh Y., Chertow D.S., Maitland K., Alshamsi F., Bel-ley-Cote E., Greco M., Laundy M., Morgan J.S., Kesecioglu J., McGeer A., Mermel L., Mammen M.J., Alexander P.E., Arrington A., Centofanti J.E., Citerio G., Baw B., Memish Z.A., Hammond N., Hayden F.G., Evans L., Rhodes A. Surviving Sepsis Campaign. Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Critical Care Medicine.2020; 48 (6): e440-e469 Volume Online First — Issue — DOI: 10.1097/CCM.0000000000004363. PMID: 32222812
Isidori, A.M., Arnaldi, G., Boscaro, Falorni M. A., Giordano C., Giordano R., Pivonello R., Pofi R., Hasenmajer V., Venneri M. A., Sbardella E., Sime-oli C., Scaroni C., Lenziet A. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. Journal of Endocrinolog-icalInvestigation. (43): 1141-1147 DOI: 10.1007/s40618-020-01266-w
Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., Almotairi A., Al Khatib K., Alraddadi B., Shalhoub S., Abdulmomen A., Qushmaq I., Mady A., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Balkhy H.H., Al Harthy A., Deeb A.M., Al Mutairi H., Al-Dawood A., Merson L., Hayden F.G., Fowler R.A., Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir. Crit Care Med. 2018; 197: 757-767. DOI: 10.1164/rccm.201706-1172OC. PMID: 29161116
Lee N., Chan K.C.A., Hui D.S., Ng E.K.O., Wu A., Chiu R.W.K., Wong V.W.S., Chan P.K.S., Wong K.T., Wong E., Cockram C.S., Tam J.S., Sung J.J.Y., Lo Y.. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004; 31: 304-309. DOI: 10.1016/j.jcv.2004.07.006.
Chen R.-Ch., TangX.-P, Tan Sh.-Y., LiangB.-L., Wan Zh.-Y., Fang J.-Q., Zhong N. Treatment of severe acute respiratory syndrome with glucosteroids. Chest Journal. 2006; 129 (6): 1441-1452. DOI: 10.1378/chest.129.6.1441. PMID: 16778260
Zha L., Li Sh., Pan L., Tefsen B., Li Y., French N., Chen L., Yang G., Villanueva E.V. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Medical Journal of Australia. 2020; 212 (9): 416-420 DOI: 10.5694/mja2.50577. PMID: 32296987
Keskin O., Farzan N., Birben E., H.Akel, Karaaslan C., Maitland-van der Zee A.H., Wechsler M.E., Vijverberg S.J., Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019; 9: 2. Published online 2019 Jan 9. DOI: 10.1186/s13601-018-0239-2. PMID: 30647901
Zhang X., Song K., Tong F., Fei M., Guo H., Lu Zh., Wang J., Zheng Ch. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances. 2020; 4 (7): 1307-1310. DOI:10.1182/bloodadvances.2020001907. PMID: 32243501
Case Study: Treating COVID-19 in a Patient with Multiple Myeloma [news release]. Washington. Published April 3, 2020. hematology.org/newsroom/press-releases/2020/case-study-treat-ing-covid-19. Accessed April 7, 2020.
Jones G., Ding Ch. Tocilizumab: A Review of Its Safety and Efficacy in Rheumatoid Arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2010; 3: 81-89. DOI: 10.4137/CMAMD.S4864
Gritti G., Raimondi F., Ripamonti D., Riva I., Landi F., Alborghetti L., Frigeni M., Damiani M., Mico C., Fagiuoli S., Cosentini R., Lorini FL., Fabretti F., . Morgan J.H, Owens B.M.J., Kanhai K., Cowburn J., Rizzi M., Di Marco F., Rambaldi A. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. preprint DOI: 10.1101/2020.04.01.20048561
Treatment of COVID-19 Patients With Anti-interleukin Drugs (COV-AID). ClinicalTrials.gov Identifier: NCT04330638. https://clinicaltri-als.gov/ct2/show/record/NCT04330638
Regeneron and sanofi provide update on u.s. phase 2/3 adaptive-designed trial of kevzara® (sarilumab) in hospitalized covid-19 patients. TARRYTOWN, N.Y. and PARIS, April 27, 2020 /PRNewswire/ — https://www.prnewswire.com/news-releases/regeneron-and-sanofi-pro-vide-update-on-us-phase-23-adaptive-designed-trial-of-kevzara-sar-ilumab-in-hospitalized-covid-19-patients-301047326.html
Cavalli G., De Luca G., Campochiaro C., Della-Torre E., Ripa M., Canetti D., Oltolini Ch., Castiglioni B., Din Ch.T., Boffini N., Tomelleri A., Farina N., Ruggeri A., Rovere-Querini P., Di Lucca G., Martinenghi S., Scotti R., Tresoldi M., Ciceri F., Landoni G., Zangrillo A., Scarpellini P., Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2 (6): e325-e331. Published Online May 7. DOI: 10.1016/S2665-9913(20)30127-2. PMID: 32501454
O’Shea J.J., Kontzias A., Yamaoka K., Tanaka Y., Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. Author manuscript; 2013; 72 (Suppl 2): ii111-5. DOI: 10.1136/annrheumdis-2012-202576. PMID: 23532440
Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020; 81 (2): 318-356. PMID: 32333918 PMCID: PMC7177073 DOI: 10.1016/j.jinf.2020.04.017
Safety and Efficacy of Ruxolitinib for COVID-19. ClinicalTrials.gov Identifier: NCT04348071. https://clinicaltrials.gov/ct2/show/NCT04348071
Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care in Subjects Hospitalized With COVID-19. CALAVI (Calquence Against the Virus) (ACE-ID-201). ClinicalTrials.gov Identifier: NCT04346199. https://clinicaltrials.gov/ct2/show/NCT04346199
TOFAcitinib in SARS-CoV2 Pneumonia. ClinicalTrials.gov Identifier: NCT04332042. https://clinicaltrials.gov/ct2/show/NCT04332042
Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc R Soc London Ser B. 1957; 147: 258-267. DOI: 10.1098/rspb.1957.0048
Charles E. Samuel. Antiviral Actions of Interferons. Clin Microbiol Rev. 2001; 14 (4): 778-809. DOI: 10.1128/CMR.14.4.778-809.2001
Sheahan TP, Sims A.C., Leist S.R., Schafer A., Won J., Brown A.J., Montgomery S.A., Hogg A., Babusis D., Clarke M.O., Spahn J.E., Bauer L., Sellers S., PorterD.,Feng J.Y., Cihlar T, JordanR.,DenisonM.R.,BaricR.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020; 11. 222. DOI: 10.1038/s41467-019-13940-6. PMID: 31924756
Omrani A.S., Saad M.M., Baig K., Bahloul A., Abdul-Matin M., Alaida-roos A.Y., Almakhlafi G.A., Albarrak M.M., Memish Z.A., Albarrak A.M. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect. Dis. 2014; 14: 1090-1095. DOI: 10.1016/S1473-3099(14)70920-X. PMID: 25278221
Arabi Y.M., Shalhoub S., Mandourah Y., Al-Hameed F., Al-Omari A., Al Qasim E., Jose J., Alraddadi B., Almotairi A., Al Khatib K., Abdulmomen A., Qushmaq I., Sindi A.A., Mady A., Solaiman O., Al-Raddadi R., Maghrabi K., Ragab A., Al Mekhlafi G.A., Balkhy H.H., Al Harthy A., Kharaba A., Gramish J.A., Al-Aithan A.M., Al-Dawood A., Merson L., Hayden F.G., Fowler R. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: A multicenter observational study. Clin Infect Dis. 2020; 70 (9): 1837-1844. DOI: 10.1093/cid/ciz544. PMID: 31925415
National institutes of health. immune-based therapy under evaluation for treatment of COVID-19. Last Updated: May 12, 2020. https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy
Hung I.F.-N., Lung K.-Ch., Tso E.Y.-K., Liu R., Chung T.W.-H., Chu M.-Y., Ng Y.-Y., Lo J., Chan J., Tam A.R., Shum H.-P., Chan V., Wu A.K.-L., Sin K.-M., Leung W.-Sh., Law W.-L., Lung D.Ch., Sin S., YeungP, Yip C.Ch.-Y., Zhang R.R., Fung A.Y.-F., Yan E.Y.-W., Leung K.-H., Ip J.D., Chu A.W.-H., Chan W.-M., Ng A.Ch.-K., Lee R., Fung K., Yeung A., Wu T.-Ch., Chan J.W.-M., Yan W.-W., Chan W.-M., Chan J. F.-W., Lie A.K.-W., Tsang O.T.-Y., Cheng V.Ch.-Ch., Que T.-L., Lau Ch.-S., Chan K.-H., To K.K.-W., Yuen K.-Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020; 395 (10238): 1695-1704. DOI: 10.1016/S0140-6736(20)31042-4. PMID: 32401715
Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang Ch. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179: 104811. DOI: 10.1016/j.antiviral.2020.104811. PMID: 32360182
de Jong H.J.I., Kingwell E., Shirani A., Tervaert J.W.C., Hupperts R., Zhao Y., Zhu F., Evans Ch., van der Kop M.L., Traboulsee A., Gustafson P., Petkau J., Marrie R. A., Tremlett H., British Columbia Multiple Sclerosis Clinic Neurologists. Evaluating the safety of в-interferons in MS: a series of nested case-control studies. Neurology. 2017; 88 (24): 2310-2320. DOI: 10.1212/WNL.0000000000004037. PMID: 28500224
Hu Y., Ye Y., Ye L., Wang X., Yu H. Efficacy and safety of interferon alpha therapy in children with chronic hepatitis B. Medicine (Baltimore). 2019; 98 (32): e16683. DOI: 10.1097/MD.0000000000016683. PMID: 31393369
Open-label, Randomized Study of IFX-1 in Patients With Severe COVID-19 Pneumonia (PANAMO). ClinicalTrials.gov Identifier: NCT04333420. https://clinicaltrials.gov/ct2/show/NCT04333420
Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020; Apr 13: 1-7. DOI: 10.1007/s12015-020-09973-w. PMID: 32281052
Website of the British society for antimicrobial therapy http://bsac.org.uk
Website of National Institute for Health and Care Excellence [NICE] https://www.nice.org.uk/guidance
Qing Y., Wenyang J., Raoyao L. COVID-19 Patients with Gastrointestinal Symptoms Are More Likely to Develop into Severe Cases «Science and Technology Daily», 21.04.2020 https://gmcc.alibabadoctor.com/news/detail?content_id=1496ca6b1c270a6e8a38ddf92471d795
Белобородова Н.В. «Сепсис. Метаболомный подход». Монография. М.: Издательство Медицинское информационное агентство «МИА»; 2018. 272. ISBN: 978-5-9986-0350-1
Beloborodova N.V., Sarshor Yu.N., Bedova A.Yu., Chernevskaya E.A., Pautova A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. SHOCK. 2018; 50 (3): 273-279. DOI: 10.1097/SHK.0000000000001064
Beloborodova N.V., Olenin A.Yu., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. of Crit. Care. 2018; 43: 246-255. DOI: 10.1016/j.jcrc.2017.09.014
Черневская Е.А., Белобородова Н.В. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018. 14 (5): 96-119. DOI: 10.15360/1813-9779-2018-5-96-119
Beloborodova N.V., Grechko A.V., Olenin A.Yu. Chapter «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology» in Book «Infection and Sepsis» InTechOpen [online first]. DOI: 10.5772/intechopen.87176
Белобородова Н.В. Метаболизм микробиоты при критических состояниях (обзор и постулаты). Общая реаниматология. 2019; 15 (6), 62-79. DOI: 10.15360/1813-9779-2019-6-62-79
Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 3 (03.03.2020), раздел 4.5.1. Особенности клинических проявлений. https://www.garant.ru/products/ipo/prime/doc/73647088
Carsana L., Sonzogni A., Nasr A., Rossi R., Pellegrinelli A., Zerbi P., Rech R., Colombo R., Antinori S., Corbellino M., Galli M., Catena E., Tosoni A., Gianatti A., Nebuloni M. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv. DOI: 10.1101/2020.04.19.20054262
Зайратьянц О.В., СамсоноваМ.В., МихалеваЛ.М., Черняев А.Л., Мишнев О.Д., Крупнов Н.М. Патологическая анатомия легких при COVID-19: атлас. Москва; Рязань: Издательство ГУП РО «Рязанская областная типография», 2020. — 52 с., ил. 62
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Zh., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu Sh., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-1062. DOI: 10.1016/S0140-6736(20)30566-3.
Self W.H., Balk R.A., Grijalva C.G., Williams D.J., Zhu Y., Anderson E.J., Waterer G.W., Courtney D.M., Bramley A.M., Trabue Ch., Fakhran Sh., Blaschke A.J., Jain S., Edwards K.M., Wunderink R.G. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia (multicenter study). Clin Infect Dis. 2017; 65 (2): 183-190. DOI: 10.1093/cid/cix317. PMID: 28407054
Grondman I., Pirvu A., Riza A., Ioana M., Mihai G., Netea M.G. Biomarkers of inflammation and the etiology of sepsis. Review Article. Biochemical Society Transactions. 2020; 48: 1-14. DOI: 10.1042/BST20190029.
Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou Ch.-Q., He J.-X., Liu L., Shan H., Lei Ch.-L., Hui D.S.C., Du B., Li L.-J., Zeng G., Yuen K.-Y., Chen R.-Ch., Tang Ch.-L., Wang T., Chen P.-Y., Xiang J., Li Sh.-Y., Wang J.-L., Liang Z.-J., Peng Y.-X., Wei L., Liu Y., Hu Y.-H., Peng P., Wang J.-M., Liu J.-Y., Chen Zh., Li G., Zheng Zh.-J., Qiu Sh.-Q., Luo J., Ye Ch.-J., Zhu Sh.-Y., Zhong N.-Sh., China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020; 382 (18): 1708-1720. NEJM. org. DOI: 10.1056/NEJMoa2002032. PMID: 32109013
Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A Meta-analysis. Clinica Chimica Acta. 2020; 505: 190-191. DOI: 10.1016/j.cca.2020.03.004
Jereb M., Kotar T. Usefulness of procalcitonin to differentiate typical from atypical community-acquired pneumonia. Wien Klin Wochen-schr. 2006; Apr; 118 (5-6): 170-174. DOI: 10.1007/s00508-006-0563-8
COVID-19 rapid guideline: antibiotics for pneumonia in adults in hospital. National Institute for Health and Care Excellence (NICE). NICE guideline [NG173] Published date: 01 May 2020. https://www.nice.org.uk/guidance/ng173
Sorbera L.A., Graul A.I., Dulsat C. Taking aim at a fast-moving target: targets to watch for SARS-CoV-2 and COVID-19. Drugs of the Future. 2020; 45 (4): 1-6 (Advanced Publication). DOI: 10.1358/dof.2020.45.4.3150676
Bhattacharya S., Sen N., Yiming M.T., Patel R., Parthasarathi K., Quadri S., Issekutz A.C., Bhattacharya J. High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium. Am J Respir Cell Mol Biol. 2003; 28: 218-224. DOI: 10.1165/rcmb.4763.
Ries C., Petrides P.E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler. 1995; 376 (6): 345-355. PMID: 7576228
Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997; 378: 151-160. PMID: 9165065
Bode W., Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Review. Biol Chem. 2003; 384 (6): 863-872. DOI: 10.1515/BC.2003.097.
Castro M.M., Kandasamy A.D., Youssef N., Schulz R. Matrix Metalloproteinase Inhibitor Properties of Tetracyclines: Therapeutic Potential in Cardiovascular Diseases. Pharmacol Res. 2011; 64 (6): 551-560. Epub 2011 May 31. DOI: 10.1016/j.phrs.2011.05.005.
Acharya M.R., Venitz J., Figg W.D. Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resistance Updates.2004; 7 (3): 195-208. DOI: 10.1016/j.drup.2004.04.002
Steinberg J., Fink G., Picone A., Searles B., Schiller H., Lee H.M., Nieman G. Evidence of increased matrix metalloproteinase-9 concentration in patients following cardiopulmonary bypass. J Extra Corpor Tech-nol. 2001; 33: 218-222. PMID: 11806432
Lin T.C., Li C.Y., Tsai C.S., Ku C.H., Wu C.T., Wong C.S., Ho S.T. Neutrophil-mediated secretion and activation of matrix metalloproteinase-9 during cardiac surgery with cardiopulmonary bypass. Anesth Analg. 2005; 100 (6): 1554-1560. DOI: 10.1213/01.ANE.0000154307.92060.84
Joffs C., Gunasinghe H.R., Multani M.M., Dorman B.H., Kratz J.M., Crumbley A.J. 3rd, Crawford F.A. Jr., Spinale F.G. Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases. Ann Thorac Surg. 2001; 71: 1518-1523. DOI: 10.1016/s0003-4975(01)02442-0
Zhang C., Gong W., Liu H., Guo Z., Ge S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int J Clin Exp Med. 2014; 7 (12): 4975-82. eCollection 2014. PMID: 25663995. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307442
Dalvi P.S., Singh A., Trivedi H.R., Ghanchi1 F.D., Parmar D.M., Mistry S.D. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Annals of Thoracic Medicine. 2011; 6 (4): 221-226. http: //www.thoracicmedicine.org. DOI: 10.4103/1817-1737.84777
Doroszko A., Hurst Th.S., Polewicz D., Sawicka J., J. Fert-Bober, D.H. Johnson, G. Sawicki. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury. Proteome Sci. 2010; 8: 3. Published online 2010 Jan 29. DOI: 10.1186/1477-5956-8-3. PMCID: PMC2824689 PMID: 20205825 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824689
Sochor M., Richter S., Schmidt A., Hempel S., Hopt U.T., Keck T. Inhibition of Matrix Metalloproteinase-9 with Doxycycline Reduces Pancreatitis-Associated Lung Injury. Digestion. 2009; 80 (2): 65-73. DOI: 10.1159/000212080
Зырянов С.К., Голуб А.В., Козлов Р.С. Доксициклин в современной клинической практике. Клиническая микробиология и антимикробная химиотерапия. 2020; 22 (1): 21-28. DOI: 10.36488/cmac.2020.1.21-28
Wormser G.P., Dattwyler R.J., Shapiro E.D., Halperin J.J., Steere A.C., Klempner M.S., Krause P.J., Bakken J.S., Strle F., Stanek G., Bockenstedt L., Fish D., Dumler J.S., Nadelman R.B. The clinical assessment, treatment and prevention of Lyme disease, human granulocytic anaplas-mosis and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2006; 43 (9): 1089-1134. DOI: 10.1086/508667
van Zuuren E.J., Kramer S., Carter B., Graber M.A., Fedorowicz Z. Interventions for rosacea. Cochrane Database Syst Rev. 2011; 3: CD003262. DOI: 10.1002/14651858.CD003262.pub4
MUllegger R.R., Glatz M. Skin manifestations of lime borreliosis: diagnosis and management. Am J Clin Dermatol. 2008; 9 (6): 355-368. DOI: 10.2165/0128071-200809060-00002
Torresani C., Pavesi A., Manara G.C. Clarithromycin versus doxycycline in the treatment of rosacea. Int J Dermatol. 1997; 36 (12): 938946. DOI: 10.1046/j.1365-4362.1997.00301.x
Heneghan С., Aronson J., Hobbs R., Mahtani K. Rapidly managing pneumonia in older people during a pandemic. The Centre for Evidence-Based Medicine (CEBM). Oxford COVID-19 Evidence Service Team. March 16, 2020 https://www.cebm.net/covid-19/rapidly-managing-pneumonia-in-older-people-during-a-pandemic
Dalvi P. S, Singh A., Trivedi H. R, Ghanchi F. D, Parmar D.M, Mistry S.D. Effect of Doxycycline in Patients of Moderate to Severe Chronic Obstructive Pulmonary Disease With Stable Symptoms. Ann Thorac Med 2011; 6 (4): 221-226. DOI: 10.4103/1817-1737.84777
van der Waaij D. Colonization Resistance of the Digestive Tract — Mechanism and Clinical Consequences. Nahrung 1987; 31 (5-6): 507517 DOI: 10.1002/food.19870310551
Vollaard E.J., Clasener H.A..L, Van Griethuysen A.J.A., Janssen A.J.H.M., Sanders-Reimers A.H.J., Muller N.F., Huige P.J. Influence of cefaclor, phenethicillin, co-trimoxazole and doxycycline on colonization resistance in healthy volunteers. J Antimicrob Chemother. 1988; 22 (5): 747-758. DOI: 10.1093/jac/22.5.747.
Gorbach S.L., Barza M., Giuliano M., Jacobus N.V. Colonization resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis. 1988; 7 (1): 98-102. DOI: 10.1007/BF0196219
Vollaard E.J., Clasener H.A., van Saene H.K., Muller N.F. Effect on colonization resistance: an important criterion in selecting antibiotics. Drug Intel. and Clin. Pharm. 1990; 24 (1): 60-66. DOI: 10.1177/106002809002400113