-
1Academic Journal
المؤلفون: P. S. Masaeva, П. С. Масаева
المساهمون: this work was not funded., финансирование данной работы не проводилось.
المصدر: Research and Practical Medicine Journal; Том 11, № 2 (2024); 81-88 ; Research'n Practical Medicine Journal; Том 11, № 2 (2024); 81-88 ; 2410-1893 ; 10.17709/2410-1893-2024-11-2
مصطلحات موضوعية: ингибиторы контрольных точек иммунного ответа, melanoma, immune response checkpoint inhibitors, меланома
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/997/619; https://www.rpmj.ru/rpmj/article/view/997/630; Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2019 Oct 17;381(16):1535–1546. https://doi.org/10.1056/nejmoa1910836; Ralli M, Botticelli A, Visconti IC, Angeletti D, Fiore M, Marchetti P, Lambiase A, de Vincentiis M, Greco A. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J Immunol Res. 2020 Jun 28;2020:9235638. https://doi.org/10.1155/2020/9235638; Lejeune FJ. Epidemiology and etiology of malignant melanoma. Biomed Pharmacother. 1986;40(3):91–99.; Vosmík F. Maligní melanom kůze. Epidemiologie, rizikové faktory, klinická diagnostika [Malignant melanoma of the skin. Epidemiology, risk factors, clinical diagnosis]. Cas Lek Cesk. 1996 Jul 26;135(13):405-8. Czech.; Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Bröcker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005 Nov 17;353(20):2135–2147. https://doi.org/10.1056/nejmoa050092; Kugel CH 3rd, Douglass SM, Webster MR, Kaur A, Liu Q, Yin X, et al. Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clin Cancer Res. 2018 Nov 1;24(21):5347–5356. https://doi.org/10.1158/1078-0432.ccr-18-1116; Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, et al. Melanoma models for the next generation of therapies. Cancer Cell. 2021 May 10;39(5):610–631. https://doi.org/10.1016/j.ccell.2021.01.011; Bomar L, Senithilnathan A, Ahn C. Systemic Therapies for Advanced Melanoma. Dermatol Clin. 2019 Oct;37(4):409–423. https://doi.org/10.1016/j.det.2019.05.001; O'Neill CH, Scoggins CR. Melanoma. J Surg Oncol. 2019 Oct;120(5):873–881. https://doi.org/10.1002/jso.25604; Onitilo AA, Wittig JA. Principles of Immunotherapy in Melanoma. Surg Clin North Am. 2020 Feb;100(1):161–173. https://doi.org/10.1016/j.suc.2019.09.009; Long GV, Luke JJ, Khattak MA, de la Cruz Merino L, Del Vecchio M, Rutkowski P, et al.; KEYNOTE-716 Investigators. Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma (KEYNOTE-716): distant metastasis-free survival results of a multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol. 2022 Nov;23(11):1378–1388. https://doi.org/10.1016/s1470-2045(22)00559-9; Kennedy OJ, Kicinski M, Valpione S, Gandini S, Suciu S, Blank CU, et al. Prognostic and predictive value of β-blockers in the EORTC 1325/KEYNOTE-054 phase III trial of pembrolizumab versus placebo in resected high-risk stage III melanoma. Eur J Cancer. 2022 Apr;165:97–112. https://doi.org/10.1016/j.ejca.2022.01.017; Ascierto PA, Stroyakovskiy D, Gogas H, Robert C, Lewis K, Protsenko S, et al. Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncol. 2023 Jan;24(1):33–44. https://doi.org/10.1016/s1470-2045(22)00687-8; Ferrucci PF, Di Giacomo AM, Del Vecchio M, Atkinson V, Schmidt H, Schachter J, et al.; KEYNOTE-022 international team. KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J Immunother Cancer. 2020 Dec;8(2):e001806. https://doi.org/10.1136/jitc-2020-001806 Erratum in: J Immunother Cancer. 2021 Nov;9(11).; Kennedy OJ, Kicinski M, Valpione S, Gandini S, Suciu S, Blank CU, et al. Prognostic and predictive value of metformin in the European Organisation for Research and Treatment of Cancer 1325/KEYNOTE-054 phase III trial of pembrolizumab versus placebo in resected high-risk stage III melanoma. Eur J Cancer. 2023 Aug;189:112900. https://doi.org/10.1016/j.ejca.2023.04.016; Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019 Aug;20(8):1083–1097. https://doi.org/10.1016/s1470-2045(19)30274-8; Adams AM, Carpenter EL, Clifton GT, Vreeland TJ, Chick RC, O'Shea AE, et al. Divergent clinical outcomes in a phase 2B trial of the TLPLDC vaccine in preventing melanoma recurrence and the impact of dendritic cell collection methodology: a randomized clinical trial. Cancer Immunol Immunother. 2023 Mar;72(3):697–705. https://doi.org/10.1007/s00262-022-03272-8; Dummer R, Welti M, Ramelyte E. The role of triple therapy and therapy sequence in treatment of BRAF-mutant metastatic melanoma. Response to overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. J Transl Med. 2023 Aug 5;21(1):529. https://doi.org/10.1186/s12967-023-04391-1; Chick RC, Faries MB, Hale DF, Kemp Bohan PM, Hickerson AT, Vreeland TJ, et al. Multi-institutional, prospective, randomized, double-blind, placebo-controlled phase IIb trial of the tumor lysate, particle-loaded, dendritic cell (TLPLDC) vaccine to prevent recurrence in high-risk melanoma patients: A subgroup analysis. Cancer Med. 2021 Jul;10(13):4302–4311. https://doi.org/10.1002/cam4.3969; Ascierto PA, Long GV, Robert C, Brady B, Dutriaux C, Di Giacomo AM, et al. Survival Outcomes in Patients With Previously Untreated BRAF Wild-Type Advanced Melanoma Treated With Nivolumab Therapy: Three-Year Follow-up of a Randomized Phase 3 Trial. JAMA Oncol. 2019 Feb 1;5(2):187–194. https://doi.org/10.1001/jamaoncol.2018.4514 Erratum in: JAMA Oncol. 2019 Feb 1;5(2):271.; Vreeland TJ, Clifton GT, Hale DF, Chick RC, Hickerson AT, Cindass JL, et al. A Phase IIb Randomized Controlled Trial of the TLPLDC Vaccine as Adjuvant Therapy After Surgical Resection of Stage III/IV Melanoma: A Primary Analysis. Ann Surg Oncol. 2021 Oct;28(11):6126-6137. https://doi.org/10.1245/s10434-021-09709-1; Schadendorf D, Di Giacomo AM, Demidov L, Merelli B, Bondarenko I, Ascierto PA, et al.; BRIM8 Investigators. Health-related quality of life in patients with fully resected BRAFV600 mutation-positive melanoma receiving adjuvant vemurafenib. Eur J Cancer. 2019 Dec;123:155–161. https://doi.org/10.1016/j.ejca.2019.09.019; Ascierto PA, Lewis KD, Di Giacomo AM, Demidov L, Mandalà M, Bondarenko I, et al. Prognostic impact of baseline tumour immune infiltrate on disease-free survival in patients with completely resected, BRAFv600 mutation-positive melanoma receiving adjuvant vemurafenib. Ann Oncol. 2020 Jan;31(1):153–159. https://doi.org/10.1016/j.annonc.2019.10.002; Kong X, Kuilman T, Shahrabi A, Boshuizen J, Kemper K, Song JY, et al. Cancer drug addiction is relayed by an ERK2-dependent phenotype switch. Nature. 2017 Oct 12;550(7675):270–274. https://doi.org/10.1038/nature24037; Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 Aug 19;363(8):711–723. https://doi.org/10.1056/nejmoa1003466 Epub 2010 Jun 5. Erratum in: N Engl J Med. 2010 Sep 23;363(13):1290.; Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015 May 21;372(21):2006–2017. https://doi.org/10.1056/nejmoa1414428 Erratum in: N Engl J Med. 2018 Nov 29;379(22):2185.; Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al.; CheckMate 238 Collaborators. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N Engl J Med. 2017 Nov 9;377(19):1824–1835. https://doi.org/10.1056/nejmoa1709030; Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell. 2018 Nov 1;175(4):984–997.e24. https://doi.org/10.1016/j.cell.2018.09.006; Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022 May;23(5):660–670. https://doi.org/10.1038/s41590-022-01141-1; Strub T, Ghiraldini FG, Carcamo S, Li M, Wroblewska A, Singh R, et al. SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling. Nat Commun. 2018 Aug 24;9(1):3440. https://doi.org/10.1038/s41467-018-05966-z; Vredevoogd DW, Kuilman T, Ligtenberg MA, Boshuizen J, Stecker KE, de Bruijn B, et al. Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold. Cell. 2019 Jul 25;178(3):585–599.e15. https://doi.org/10.1016/j.cell.2019.06.014 Erratum in: Cell. 2020 Jan 23;180(2):404–405.; Kumar A, Chamoto K, Chowdhury PS, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. Elife. 2020 Mar 3;9:e52330. https://doi.org/10.7554/elife.52330; Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005 Jan;41(1):45–60. https://doi.org/10.1016/j.ejca.2004.10.016; Luther C, Swami U, Zhang J, Milhem M, Zakharia Y. Advanced stage melanoma therapies: Detailing the present and exploring the future. Crit Rev Oncol Hematol. 2019 Jan;133:99–111. https://doi.org/10.1016/j.critrevonc.2018.11.002; https://www.rpmj.ru/rpmj/article/view/997
-
2Academic Journal
المؤلفون: E. A. Degtiareva, S. A. Protsenko, E. N. Imyanitov, Е. А. Дегтярёва, С. А. Проценко, Е. Н. Имянитов
المساهمون: The study was supported by the Russian Science Foundation (grant №21-75-30015), Работа выполнена при поддержке гранта РНФ (№21-75-30015)
المصدر: Siberian journal of oncology; Том 22, № 1 (2023); 141-150 ; Сибирский онкологический журнал; Том 22, № 1 (2023); 141-150 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: иммуноопосредованные нежелательные явления, HIV, T-cell exhaustion, immunotherapy, immune checkpoint inhibitors, immune-related adverse events, ВИЧ, Т-клеточное истощение, иммунотерапия, ингибиторы контрольных точек иммунного ответа
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2440/1085; Puronen C.E., Ford E.S., Uldrick T.S. Immunotherapy in People With HIV and Cancer. Front Immunol. 2019; 10: 2060. doi:10.3389/fimmu.2019.02060.; Douek D.C., Brenchley J.M., Betts M.R., Ambrozak D.R., Hill B.J., Okamoto Y., Casazza J.P., Kuruppu J., Kunstman K., Wolinsky S., Gross- man Z., Dybul M., Oxenius A., Price D.A., Connors M., Koup R.A. HIV preferentially infects HIV-specific CD4+ T cells. Nature. 2002; 417(6884): 95–8. doi:10.1038/417095a.; Fenwick C., Joo V., Jacquier P., Noto A., Banga R., Perreau M., Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev. 2019; 292(1): 149–63. doi:10.1111/imr.12823.; Jubel J.M., Barbati Z.R., Burger C., Wirtz D.C., Schildberg F.A. The Role of PD-1 in Acute and Chronic Infection. Front Immunol. 2020; 11: 487. doi:10.3389/fimmu.2020.00487.; Cockerham L.R., Jain V., Sinclair E., Glidden D.V., Hartogenesis W., Hatano H., Hunt P.W., Martin J.N., Pilcher C.D., Sekaly R., McCune J.M., Hecht F.M., Deeks S.G. Programmed death-1 expression on CD4⁺ and CD8⁺ T cells in treated and untreated HIV disease. AIDS. 2014; 28(12): 1749–58. doi:10.1097/QAD.0000000000000314.; Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015; 15(8): 486–99. doi:10.1038/nri3862.; van der Sluis R.M., Kumar N.A., Pascoe R.D., Zerbato J.M., Evans V.A., Dantanarayana A.I., Anderson J.L., Sékaly R.P., Fromentin R., Chomont N., Cameron P.U., Lewin S.R. Combination Immune Checkpoint Blockade to Reverse HIV Latency. J Immunol. 2020; 204(5): 1242–54. doi:10.4049/jimmunol.1901191.; Chen H., Moussa M., Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol. 2020; 11: 1223.; Velu V., Titanji K., Zhu B., Husain S., Pladevega A., Lai L., Vanderford T.H., Chennareddi L., Silvestri G., Freeman G.J., Ahmed R., Amara R.R. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009; 458(7235): 206–10. doi:10.1038/nature07662.; Mylvaganam G.H., Chea L.S., Tharp G.K., Hicks S., Velu V., Iyer S.S., Deleage C., Estes J.D., Bosinger S.E., Freeman G.J., Ahmed R., Amara R.R. Combination anti-PD-1 and antiretroviral therapy provides therapeutic benefit against SIV. JCI Insight. 2018; 3(18). doi:10.1172/jci.insight.122940.; Heppt M.V., Schlaak M., Eigentler T.K., Kähler K.C., Kiecker F., Loquai C., Meier F., Tomsitz D., Brenner N., Niesert A.C., Thonke R., Hauschild A., Berking C. Checkpoint blockade for metastatic melanoma and Merkel cell carcinoma in HIV-positive patients. Ann Oncol. 2017; 28(12): 3104–6. doi:10.1093/annonc/mdx538.; Chang E., Sabichi A.L., Kramer J.R., Hartman C., Royse K.E., White D.L., Patel N.R., Richardson P., Yellapragada S.V., Garcia J.M., Chiao E.Y. Nivolumab Treatment for Cancers in the HIV-infected Population. J Immunother. 2018; 41(8): 379–83. doi:10.1097/CJI.0000000000000240.; Galanina N., Goodman A.M., Cohen P.R., Frampton G.M., Kurzrock R. Successful Treatment of HIV-Associated Kaposi Sarcoma with Immune Checkpoint Blockade. Cancer Immunol Res. 2018; 6(10): 1129–35. doi:10.1158/2326-6066.CIR-18-0121.; Ostios-Garcia L., Faig J., Leonardi G.C., Adeni A.E., Subegdjo S.J., Lydon C.A., Rangachari D., Huberman M.S., Sehgal K., Shea M., VanderLaan P.A., Cheng M.P., Marty F.M., Hammond S.P., Costa D.B., Awad M.M. Safety and Efficacy of PD-1 Inhibitors Among HIV-Positive Patients With Non-Small Cell Lung Cancer. J Thorac Oncol. 2018; 13(7): 1037–42. doi:10.1016/j.jtho.2018.03.031.; Cook M.R., Kim C. Safety and Efficacy of Immune Checkpoint Inhibitor Therapy in Patients With HIV Infection and Advanced-Stage Cancer: A Systematic Review. JAMA Oncol. 2019; 5(7): 1049–54. doi:10.1001/jamaoncol.2018.6737.; Spano J.P., Veyri M., Gobert A., Guihot A., Perré P., Kerjouan M., Brosseau S., Cloarec N., Montaudié H., Helissey C., Flament T., Gounant V., Lavolé A., Poizot-Martin I., Katlama C. Immunotherapy for cancer in people living with HIV: safety with an efficacy signal from the series in real life experience. AIDS. 2019; 33(11): 13–9. doi:10.1097/QAD.0000000000002298.; Uldrick T.S., Gonçalves P.H., Abdul-Hay M., Claeys A.J., Emu B., Ernstoff M.S., Fling S.P., Fong L., Kaiser J.C., Lacroix A.M., Lee S.Y., Lundgren L.M., Lurain K., Parsons C.H., Peeramsetti S., Ramaswami R., Sharon E., Sznol M., Wang C.J., Yarchoan R., Cheever M.A.; Cancer Immunotherapy Trials Network (CITN)-12 Study Team. Assessment of the Safety of Pembrolizumab in Patients With HIV and Advanced Cancer-A Phase 1 Study. JAMA Oncol. 2019; 5(9): 1332–9. doi:10.1001/jamaoncol.2019.2244.; Gonzalez-Cao M., Morán T., Dalmau J., Garcia-Corbacho J., Bracht J.W.P., Bernabe R., Juan O., de Castro J., Blanco R., Drozdowskyj A., Argilaguet J., Meyerhans A., Blanco J., Prado J.G., Carrillo J., Clotet B., Massuti B., Provencio M., Molina-Vila M.A., Mayo de Las Casa C., Garzon M., Cao P., Huang C.Y., Martinez-Picado J., Rosell R. Assessment of the Feasibility and Safety of Durvalumab for Treatment of Solid Tumors in Patients With HIV-1 Infection: The Phase 2 DURVAST Study. JAMA Oncol. 2020; 6(7): 1063–7. doi:10.1001/jamaoncol.2020.0465.; Lavole A., Mazieres J., Schneider S., Brosseau S., Kiakouama L., Greillier L., Guihot A., Abbar B., Baron M., Makinson A., Langlais A., Morin F., Spano J.P., Cadranel J.; On behalf the French Cooperative Thoracic Intergroup (IFCT). Assessment of nivolumab in HIV-Infected patients with advanced non-small cell lung cancer after prior chemotherapy. The IFCT-1602 CHIVA2 phase 2 clinical trial. Lung Cancer. 2021; 158: 146–50. doi:10.1016/j.lungcan.2021.05.031.; Uldrick T.S., Adams S.V., Fromentin R., Roche M., Fling S.P., Gonçalves P.H., Lurain K., Ramaswami R., Wang C.J., Gorelick R.J., Welker J.L., O'Donoghue L., Choudhary H., Lifson J.D., Rasmussen T.A., Rhodes A., Tumpach C., Yarchoan R., Maldarelli F., Cheever M.A., Sékaly R., Chomont N., Deeks S.G., Lewin S.R. Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Sci Transl Med. 2022; 14(629). doi:10.1126/scitranslmed.abl3836.; Shah N.J., Al-Shbool G., Blackburn M., Cook M., Belouali A., Liu S.V., Madhavan S., He A.R., Atkins M.B., Gibney G.T., Kim C. Safety and efficacy of immune checkpoint inhibitors (ICIs) in cancer patients with HIV, hepatitis B, or hepatitis C viral infection. J Immunother Cancer. 2019; 7(1): 353. doi:10.1186/s40425-019-0771-1.; Guihot A., Marcelin A.G., Massiani M.A., Samri A., Soulié C., Autran B., Spano J.P. Drastic decrease of the HIV reservoir in a patient treated with nivolumab for lung cancer. Ann Oncol. 2018; 29(2): 517–8. doi:10.1093/annonc/mdx696.; Abbar B., Baron M., Katlama C., Marcelin A.G., Veyri M., Autran B., Guihot A., Spano J.P. Immune checkpoint inhibitors in people living with HIV: what about anti-HIV effects? AIDS. 2020; 34(2): 167–75. doi:10.1097/QAD.0000000000002397.; Le Garff G., Samri A., Lambert-Niclot S., Even S., Lavolé A., Cadranel J., Spano J.P., Autran B., Marcelin A.G., Guihot A. Transient HIV-specific T cells increase and inflammation in an HIV-infected patient treated with nivolumab. AIDS. 2017; 31(7): 1048–51. doi:10.1097/QAD.0000000000001429.; Klein N.C., Go C.H., Cunha B.A. Infections associated with steroid use. Infect Dis Clin North Am. 2001; 15(2): 423–32. doi:10.1016/s0891-5520(05)70154-9.; Del Castillo M., Romero F.A., Argüello E., Kyi C., Postow M.A., Redelman-Sidi G. The Spectrum of Serious Infections Among Patients Receiving Immune Checkpoint Blockade for the Treatment of Melanoma. Clin Infect Dis. 2016; 63(11): 1490–3. doi:10.1093/cid/ciw539.; Fujita K., Kim Y.H., Kanai O., Yoshida H., Mio T., Hirai T. Emerging concerns of infectious diseases in lung cancer patients receiving immune checkpoint inhibitor therapy. Respir Med. 2019; 146: 66–70. doi:10.1016/j.rmed.2018.11.021.; Management of Immunotherapy-Related Toxicities [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. [cited 2022 Apr].; Prevention and Treatment of Cancer-Related Infections [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf. [cited 2022 Apr].; Проценко С.А., Антимоник Н.Ю., Берштейн Л.М., Жукова Н.В., Новик А.В., Носов Д.А., Петенко Н.Н., Семенова А.И., Чубенко В.А., Харкевич Г.Ю., Юдин Д.И. Практические рекомендации по управлению иммуноопосредованными нежелательными явлениями. Злокачественные опухоли: Практические рекомендации RUSSCO. 2020; 10(#3s2). doi:10.18027/22245057-2020-10-3s2-50.; Uchida N., Fujita K., Nakatani K., Mio T. Acute progression of aspergillosis in a patient with lung cancer receiving nivolumab. Respirol Case Rep. 2017; 6(2). doi:10.1002/rcr2.289.; Fujita K., Terashima T., Mio T. Anti-PD1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol. 2016; 11(12): 2238–40. doi:10.1016/j.jtho.2016.07.006.; Chu Y.C., Fang K.C., Chen H.C., Yeh Y.C., Tseng C.E., Chou T.Y., Lai C.L. Pericardial Tamponade Caused by a Hypersensitivity Response to Tuberculosis Reactivation after Anti-PD-1 Treatment in a Patient with Advanced Pulmonary Adenocarcinoma. J Thorac Oncol. 2017; 12(8): 111–4. doi:10.1016/j.jtho.2017.03.012.; Zaemes J., Kim C. Immune checkpoint inhibitor use and tuberculosis: a systematic review of the literature. Eur J Cancer. 2020; 132: 168–75. doi:10.1016/j.ejca.2020.03.015.; Langan E.A., Graetz V., Allerheiligen J., Zillikens D., Rupp J., Terheyden P. Immune checkpoint inhibitors and tuberculosis: an old disease in a new context. Lancet Oncol. 2020; 21(1): 55–65. doi:10.1016/S1470-2045(19)30674-6.; Stroh G.R., Peikert T., Escalante P. Active and latent tuberculosis infections in patients treated with immune checkpoint inhibitors in a nonendemic tuberculosis area. Cancer Immunol Immunother. 2021; 70(11): 3105–11. doi:10.1007/s00262-021-02905-8.; Chang C.C., Sheikh V., Sereti I., French M.A. Immune reconstitution disorders in patients with HIV infection: from pathogenesis to prevention and treatment. Curr HIV/AIDS Rep. 2014; 11(3): 223–32. doi:10.1007/s11904-014-0213-0.; Клинические рекомендации Министерства здравоохранения Российской Федерации «ВИЧ-инфекция у взрослых» [Internet]. 2020. URL: https://cr.minzdrav.gov.ru/schema/79_1. [cited 2022 Apr].; Oseso L.N., Chiao E.Y., Bender Ignacio R.A. Evaluating Antiretroviral Therapy Initiation in HIV-Associated Malignancy: Is There Enough Evidence to Inform Clinical Guidelines? J Natl Compr Canc Netw. 2018; 16(8): 927–32. doi:10.6004/jnccn.2018.7057.; Боева Е.В., Беляков Н.А. Синдром восстановления иммунитета при ВИЧ-инфекции. Инфекция и иммунитет. 2018; 8(2): 139–49. doi:10.15789/2220-7619-2018-2-139-149.; Riechelmann R.P., Del Giglio A. Drug interactions in oncology: how common are they? Ann Oncol. 2009; 20(12): 1907–12. doi:10.1093/annonc/mdp369.; Gazzé G. Combination therapy for metastatic melanoma: a pharmacist’s role, drug interactions & complementary alternative therapies. Melanoma Manag. 2018; 5(2). doi:10.2217/mmt-2017-0026.; Cortellini A., Tucci M., Adamo V., Stucci L.S., Russo A., Tanda E.T., Spagnolo F., Rastelli F., Bisonni R., Santini D., Russano M., Anesi C., Giusti R., Filetti M., Marchetti P., Botticelli A., Gelibter A., Occhipinti M.A., Marconcini R., Vitale M.G., Nicolardi L., Chiari R., Bareggi C., Nigro O., Tuzi A., De Tursi M., Petragnani N., Pala L., Bracarda S., Macrini S., Inno A., Zoratto F., Veltri E., Di Cocco B., Mallardo D., Vitale M.G., Pinato D.J., Porzio G., Ficorella C., Ascierto P.A. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. J Immunother Cancer. 2020; 8(2). doi:10.1136/jitc-2020-001361.; van Leeuwen R.W.F., Jansman F.G.A., van den Bemt P.M.L.A., de Man F., Piran F., Vincenten I., Jager A., Rijneveld A.W., Brugma J.D., Mathijssen R.H.J., van Gelder T. Drug-drug interactions in patients treated for cancer: a prospective study on clinical interventions. Ann Oncol. 2015; 26(5): 992–7. doi:10.1093/annonc/mdv029.; Olin J.L., Klibanov O., Chan A., Spooner L.M. Managing Pharmacotherapy in People Living With HIV and Concomitant Malignancy. Ann Pharmacother. 2019; 53(8): 812–32. doi:10.1177/1060028019833038.; Spano J.P., Poizot-Martin I., Costagliola D., Boué F., Rosmorduc O., Lavolé A., Choquet S., Heudel P.E., Leblond V., Gabarre J., Valantin M.A., Solas C., Guihot A., Carcelain G., Autran B., Katlama C., Quéro L. Non-AIDS-related malignancies: expert consensus review and practical applications from the multidisciplinary CANCERVIH Working Group. Ann Oncol. 2016; 27(3): 397–408. doi:10.1093/annonc/mdv606.; Drug interactions checker [Internet]. URL: https://www.drugs.com/drug_interactions.html. [cited 2022 Apr].; HIV drug interactions. [Internet]. URL: https://www.hiv-druginteractions.org/checker. [cited 2022 Apr].; Bressan S., Pierantoni A., Sharifi S., Facchini S., Quagliarello V., Berretta M., Montopoli M. Chemotherapy-Induced Hepatotoxicity in HIV Patients. Cells. 2021; 10(11): 2871. doi:10.3390/cells10112871.; Centanni M., Moes D.J.A.R., Trocóniz I.F., Ciccolini J., van Hasselt J.G.C. Clinical Pharmacokinetics and Pharmacodynamics of Immune Checkpoint Inhibitors. Clin Pharmacokinet. 2019; 58(7): 835–57. doi:10.1007/s40262-019-00748-2.; Hussain N., Naeem M., Pinato D.J. Concomitant medications and immune checkpoint inhibitor therapy for cancer: causation or association? Hum Vaccin Immunother. 2021; 17(1): 55–61. doi:10.1080/21645515.2020.1769398.; Sahin I.H., Kane S.R., Brutcher E., Guadagno J., Smith K.E., Wu C., Lesinski G.B., Gunthel C.J., El-Rayes B.F. Safety and Efficacy of Immune Checkpoint Inhibitors in Patients With Cancer Living With HIV: A Perspective on Recent Progress and Future Needs. JCO Oncol Pract. 2020; 16(6): 319–25. doi:10.1200/JOP.19.00754.; Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. 2nd ed. Geneva: World Health Organization; 2016.; Cancer in People Living With HIV [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/hiv.pdf. [cited 2022 Apr].; Gonzalez-Cao M., Puertolas T., Riveiro M., Muñoz-Couselo E., Ortiz C., Paredes R., Podzamczer D., Manzano J.L., Molto J., Revollo B., Carrera C., Mateu L., Fancelli S., Espinosa E., Clotet B., MartinezPicado J., Cerezuela P., Soria A., Marquez I., Mandala M., Berrocal A.; Spanish Melanoma Group (GEM). Cancer immunotherapy in special challenging populations: recommendations of the Advisory Committee of Spanish Melanoma Group (GEM). J Immunother Cancer. 2021; 9(3). doi:10.1136/jitc-2020-001664. Erratum in: J Immunother Cancer. 2022; 10(2).; Elkington P.T., Bateman A.C., Thomas G.J., Ottensmeier C.H. Implications of Tuberculosis Reactivation after Immune Checkpoint Inhibition. Am J Respir Crit Care Med. 2018; 198(11): 1451–3. doi:10.1164/rccm.201807-1250LE.; Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization; 2021.; Ghrenassia E., Martis N., Boyer J., Burel-Vandenbos F., Mekinian A., Coppo P. The diffuse infiltrative lymphocytosis syndrome (DILS). A comprehensive review. J Autoimmun. 2015; 59: 19–25. doi:10.1016/j.jaut.2015.01.010.; Пономарева Е.Ю., Шульдяков А.А., Анащенко А.В., Ребров А.П. Клиническая манифестация ВИЧ-инфекции, имитирующая ревматические заболевания. Научно-практическая ревматология. 2018; 56(4): 525–30.; https://www.siboncoj.ru/jour/article/view/2440
-
3Academic Journal
المؤلفون: Glibka A.A., Mazurina N.V., Sarantseva K.A., Kharkevich G.Y., Laktionov K.K., Troshina E.A., Mel`nichenko G.A.
المساهمون: 0
المصدر: Almanac of Clinical Medicine; Vol 50, No 3 (2022); 187-195 ; Альманах клинической медицины; Vol 50, No 3 (2022); 187-195 ; 2587-9294 ; 2072-0505
مصطلحات موضوعية: hypothyroidism, thyrotoxicosis, immune checkpoint inhibitors, ipilimumab, pembrolizumab, nivolumab, prolgolimab, atezolizumab, durvalumab, avelumab, гипотиреоз, тиреотоксикоз, ингибиторы контрольных точек иммунного ответа, ипилимумаб, пембролизумаб, ниволумаб, пролголимаб, атезолизумаб, дурвалумаб, авелумаб
وصف الملف: application/pdf
-
4Academic Journal
المؤلفون: G. A. Janus, A. G. Ievleva, E. N. Suspitsyn, V. I. Tyurin, I. V. Bizin, O. A. Gorustovich, V. I. Ni, M. M. Kholmatov, T. A. Laidus, S. A. Chuynyshena, S. N. Aleksakhina, E. N. Imyanitov, Г. А. Янус, А. Г. Иевлева, Е. Н. Суспицын, В. И. Тюрин, И. В. Бизин, О. А. Горустович, В. И. Ни, М. М. Холматов, Т. А. Лайдус, С. А. Чуйнышена, С. Н. Алексахина, Е. Н. Имянитов
المساهمون: This study was supported by a grant from the Russian Science Foundation 17-75-30027. IN AND. V. Tyurin contributed to the study with the support of the RFBR grant No. 18-315-00437., Данная работа поддержана грантом РНФ 17-75-30027. В.И. Тюрин внес вклад в работу при поддержке грантом РФФИ № 18-315-00437.
المصدر: Siberian journal of oncology; Том 19, № 4 (2020); 123-131 ; Сибирский онкологический журнал; Том 19, № 4 (2020); 123-131 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-4
مصطلحات موضوعية: CTLA4, predictive markers, immune response checkpoint inhibitors, PD-L1, PD1, предиктивные маркеры, ингибиторы контрольных точек иммунного ответа
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1538/776; Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., Powderly J.D., Carvajal R.D., Sosman J.A., Atkins M.B., Leming P.D., Spigel D.R., Antonia S.J., Horn L., Drake C.G., Pardoll D.M., Chen L., Sharfman W.H., Anders R.A., Taube J.M., McMiller T.L., Xu H., Korman A.J., Jure-Kunkel M., Agrawal S., McDonald D., Kollia G.D., Gupta A., Wigginton J.M., Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012; 366(26): 2443–54. doi:10.1056/NEJMoa1200690.; Garon E.B., Rizvi N.A., Hui R., Leighl N., Balmanoukian A.S., Eder J.P., Patnaik A., Aggarwal C., Gubens M., Horn L., Carcereny E., Ahn M.J., Felip E., Lee J.S., Hellmann M.D., Hamid O., Goldman J.W., Soria J.C., Dolled-Filhart M., Rutledge R.Z., Zhang J., Lunceford J.K., Rangwala R., Lubiniecki G.M., Roach C., Emancipator K., Gandhi L.; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of nonsmall-cell lung cancer. N Engl J Med. 2015 May 21; 372(21): 2018–28. doi:10.1056/NEJMoa1501824.; Fournel L., Wu Z., Stadler N., Damotte D., Lococo F., Boulle G., Ségal-Bendirdjian E., Bobbio A., Icard P., Trédaniel J., Alifano M., Forgez P. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett. 2019 Nov 1; 464: 5–14. doi:10.1016/j.canlet.2019.08.005.; Lantuejoul S., Sound-Tsao M., Cooper W.A., Girard N., Hirsch F.R., Roden A.C., Lopez-Rios F., Jain D., Chou T.Y., Motoi N., Kerr K.M., Yatabe Y., Brambilla E., Longshore J., Papotti M., Sholl L.M., Thunnissen E., Rekhtman N., Borczuk A., Bubendorf L., Minami Y., Beasley M.B., Botling J., Chen G., Chung J.H., Dacic S., Hwang D., Lin D., Moreira A., Nicholson A.G., Noguchi M., Pelosi G., Poleri C., Travis W., Yoshida A., Daigneault J.B., Wistuba I.I., Mino-Kenudson M. PD-L1 Testing for Lung Cancer in 2019: Perspective From the IASLC Pathology Committee. J Thorac Oncol. 2020 Apr; 15(4): 499–519. doi:10.1016/j.jtho.2019.12.107.; Conroy J.M., Pabla S., Nesline M.K., Glenn S.T., Papanicolau-Sengos A., Burgher B., Andreas J., Giamo V., Wang Y., Lenzo F.L., Bshara W., Khalil M., Dy G.K., Madden K.G., Shirai K., Dragnev K., Tafe L.J., Zhu J., Labriola M., Marin D., McCall S.J., Clarke J., George D.J., Hang T., Zibelman M., Ghatalia P., Araujo-Fernandez I., de la Cruz-Merino L., Singavi A., George B., MacKinnon A.C., Thompson J., Singh R., Jacob R., Kasuganti D., Shah N., Day R., Galluzzi L., Gardner M., Morrison C. Next generation sequencing of PD-L1 for predicting response to immune checkpoint inhibitors. J Immunother Cancer. 2019 Jan 24; 7(1): 18. doi:10.1186/s40425-018-0489-5.; Le Goux C., Damotte D., Vacher S., Sibony M., Delongchamps N.B., Schnitzler A., Terris B., Zerbib M., Bieche I., Pignot G. Correlation between messenger RNA expression and protein expression of immune checkpoint-associated molecules in bladder urothelial carcinoma: A retrospective study. Urol Oncol. 2017 May; 35(5): 257–263. doi:10.1016/j.urolonc.2017.01.014.; Paré L., Pascual T., Seguí E., Teixidó C., Gonzalez-Cao M., Galván P., Rodríguez A., González B., Cuatrecasas M., Pineda E., Torné A., Crespo G., Martin-Algarra S., Pérez-Ruiz E., Reig Ò., Viladot M., Font C., Adamo B., Vidal M., Gaba L., Muñoz M., Victoria I., Ruiz G., Viñolas N., Mellado B., Maurel J., Garcia-Corbacho J., Molina-Vila M.Á., Juan M., Llovet J.M., Reguart N., Arance A., Prat A. Association between PD1 mRNA and response to anti-PD1 monotherapy across multiple cancer types. Ann Oncol. 2018 Oct 1; 29(10): 2121–2128. doi:10.1093/annonc/mdy335.; Yearley J.H., Gibson C., Yu N., Moon C., Murphy E., Juco J., Lunceford J., Cheng J., Chow L.Q.M., Seiwert T.Y., Handa M., Tomassini J.E., McClanahan T. PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. Clin Cancer Res. 2017; 23(12): 3158–67. doi:10.1158/1078-0432.CCR-16-1761.; Buchbinder E.I., Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol. 2016 Feb; 39(1): 98–106. doi:10.1097/COC.0000000000000239.; Yarchoan M., Johnson B.A.3rd, Lutz E.R., Laheru D.A., Jaffee E.M. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017 Apr; 17(4): 209–222. doi:10.1038/nrc.2016.154.; Wang F., Zhao Q., Wang Y.N., Jin Y., He M.M., Liu Z.X., Xu R.H. Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types. JAMA Oncol. 2019. doi:10.1001/jamaoncol.2019.2963.; Snyder A., Makarov V., Merghoub T., Yuan J., Zaretsky J.M., Desrichard A., Walsh L.A., Postow M.A., Wong P., Ho T.S., Hollmann T.J., Bruggeman C., Kannan K., Li Y., Elipenahli C., Liu C., Harbison C.T., Wang L., Ribas A, Wolchok J.D., Chan T.A. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014 Dec 4; 371(23): 2189–2199. doi:10.1056/NEJMoa1406498.; Van Allen E.M., Miao D., Schilling B., Shukla S.A., Blank C., Zimmer L., Sucker A., Hillen U., Foppen M.H.G., Goldinger S.M., Utikal J., Hassel J.C., Weide B., Kaehler K.C., Loquai C., Mohr P., Gutzmer R., Dummer R., Gabriel S., Wu C.J., Schadendorf D., Garraway L.A. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015 Oct 9; 350(6257): 207–211. doi:10.1126/science.aad0095.; Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., Miller M.L., Rekhtman N., Moreira A.L., Ibrahim F., Bruggeman C., Gasmi B., Zappasodi R., Maeda Y., Sander C., Garon E.B., Merghoub T., Wolchok J.D., Schumacher T.N., Chan T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015 Apr 3; 348(6230): 124–8. doi:10.1126/science.aaa1348.; McGranahan N., Furness A.J., Rosenthal R., Ramskov S., Lyngaa R., Saini S.K., Jamal-Hanjani M., Wilson G.A., Birkbak N.J, Hiley C.T., Watkins T.B., Shafi S., Murugaesu N., Mitter R., Akarca A.U., Linares J., Marafioti T., Henry J.Y., Van Allen E.M., Miao D., Schilling B., Schadendorf D., Garraway L.A., Makarov V., Rizvi N.A., Snyder A., Hellmann M.D., Merghoub T., Wolchok J.D., Shukla S.A., Wu C.J., Peggs K.S., Chan T.A., Hadrup S.R., Quezada S.A., Swanton C. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016 Mar 25; 351(6280): 1463–9. doi:10.1126/science.aaf1490.; Buchhalter I., Rempel E., Endris V., Allgäuer M., Neumann O., Volckmar A.L., Kirchner M., Leichsenring J., Lier A., von Winterfeld M., Penzel R., Christopoulos P., Thomas M., Fröhling S., Schirmacher P., Budczies J., Stenzinger A. Size matters: Dissecting key parameters for panel-based tumor mutational burden analysis. Int J Cancer. 2019; 144(4): 848–58. doi:10.1002/ijc.31878.; Zhang J., Caruso F.P., Sa J.K., Justesen S., Nam D.H., Sims P., Ceccarelli M., Lasorella A., Iavarone A. The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival. Commun Biol. 2019 Apr 23; 2: 135. doi:10.1038/s42003-019-0369-7.; Chowell D., Krishna C., Pierini F., Makarov V., Rizvi N.A., Kuo F., Morris L.G.T., Riaz N., Lenz T.L., Chan T.A. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat Med. 2019 Nov; 25(11): 1715–1720. doi:10.1038/s41591-019-0639-4.; Riaz N., Havel J.J., Kendall S.M., Makarov V., Walsh L.A., Desrichard A., Weinhold N., Chan T.A. Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy. Nat Genet. 2016 Nov; 48(11): 1327–1329. doi:10.1038/ng.3677.; Wu H.X., Chen Y.X., Wang Z.X., Zhao Q., He M.M., Wang Y.N., Wang F., Xu R.H. Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers. J Immunother Cancer. 2019 Oct 17; 7(1): 264. doi:10.1186/s40425-019-0737-3.; Gao J., Shi L.Z., Zhao H., Chen J., Xiong L., He Q., Chen T., Roszik J., Bernatchez C., Woodman S.E., Chen P.L., Hwu P., Allison J.P., Futreal A., Wargo J.A., Sharma P. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016 Oct 6; 167(2): 397–404.e9. doi:10.1016/j.cell.2016.08.069.; Peng W., Chen J.Q., Liu C., Malu S., Creasy C., Tetzlaff M.T., Xu C., McKenzie J.A., Zhang C., Liang X., Williams L.J., Deng W., Chen G., Mbofung R., Lazar A.J., Torres-Cabala C.A., Cooper Z.A., Chen P.L., Tieu T.N., Spranger S., Yu X., Bernatchez C., Forget M.A., Haymaker C., Amaria R., McQuade J.L., Glitza I.C., Cascone T., Li H.S., Kwong L.N., Heffernan T.P., Hu J., Bassett R.L.Jr., Bosenberg M.W., Woodman S.E., Overwijk W.W., Lizée G., Roszik J., Gajewski T.F., Wargo J.A., Gershenwald J.E., Radvanyi L., Davies M.A., Hwu P. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016 Feb; 6(2): 202–16. doi:10.1158/2159-8290.CD-15-0283.; Skoulidis F., Goldberg M.E., Greenawalt D.M., Hellmann M.D., Awad M.M., Gainor J.F., Schrock A.B., Hartmaier R.J., Trabucco S.E., Gay L., Ali S.M., Elvin J.A., Singal G., Ross J.S., Fabrizio D., Szabo P.M., Chang H., Sasson A., Srinivasan S., Kirov S., Szustakowski J., Vitazka P., Edwards R., Bufill J.A., Sharma N., Ou S.I., Peled N., Spigel D.R., Rizvi H., Aguilar E.J., Carter B.W., Erasmus J., Halpenny D.F., Plodkowski A.J., Long N.M., Nishino M., Denning W.L., Galan-Cobo A., Hamdi H., Hirz T., Tong P., Wang J., Rodriguez-Canales J., Villalobos P.A., Parra E.R., Kalhor N., Sholl L.M., Sauter J.L., Jungbluth A.A., Mino-Kenudson M., Azimi R., Elamin Y.Y., Zhang J., Leonardi G.C., Jiang F., Wong K.K., Lee J.J., Papadimitrakopoulou V.A., Wistuba I.I., Miller V.A., Frampton G.M., Wolchok J.D., Shaw A.T., Jänne P.A., Stephens P.J., Rudin C.M., Geese W.J., Albacker L.A., Heymach J.V. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018 Jul; 8(7): 822–835. doi:10.1158/2159-8290.CD-18-0099.; Patel S.J., Sanjana N.E., Kishton R.J., Eidizadeh A., Vodnala S.K., Cam M., Gartner J.J., Jia L., Steinberg S.M., Yamamoto T.N., Merchant A.S., Mehta G.U., Chichura A., Shalem O., Tran E., Eil R., Sukumar M., Guijarro E.P., Day C.P., Robbins P., Feldman S., Merlino G., Zhang F., Restifo N.P. Identification of essential genes for cancer immunotherapy. Nature. 2017 Aug 31; 548(7669): 537–542. doi:10.1038/nature23477.; McGranahan N., Rosenthal R., Hiley C.T., Rowan A.J., Watkins T.B.K., Wilson G.A., Birkbak N.J., Veeriah S., Van Loo P., Herrero J., Swanton C.; TRACERx Consortium. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell. 2017; 171(6): 1259–1271.e11. doi:10.1016/j.cell.2017.10.001.; Martens A., Wistuba-Hamprecht K., Geukes Foppen M., Yuan J., Postow M.A., Wong P., Romano E., Khammari A., Dreno B., Capone M., Ascierto P.A., Di Giacomo A.M., Maio M., Schilling B., Sucker A., Schadendorf D., Hassel J.C., Eigentler T.K., Martus P., Wolchok J.D., Blank C., Pawelec G., Garbe C., Weide B. Baseline Peripheral Blood Biomarkers Associated with Clinical Outcome of Advanced Melanoma Patients Treated with Ipilimumab. Clin Cancer Res. 2016; 22(12): 2908–18. doi:10.1158/1078-0432.CCR-15-2412.; Meyers D.E., Stukalin I., Vallerand I.A., Lewinson R.T., Suo A., Dean M., North S., Pabani A., Cheng T., Heng D.Y.C., Bebb D.G., Morris D.G. The Lung Immune Prognostic Index Discriminates Survival Outcomes in Patients with Solid Tumors Treated with Immune Checkpoint Inhibitors. Cancers (Basel). 2019 Nov 2; 11(11): 1713. doi:10.3390/cancers11111713.; Ameratunga M., Chénard-Poirier M., Moreno Candilejo I., Pedregal M., Lui A., Dolling D., Aversa C., Ingles Garces A., Ang J.E., Banerji U., Kaye S., Gan H., Doger B., Moreno V., de Bono J., Lopez J. Neutrophil-lymphocyte ratio kinetics in patients with advanced solid tumours on phase I trials of PD-1/PD-L1 inhibitors. Eur J Cancer. 2018; 89: 56–63. doi:10.1016/j.ejca.2017.11.012.; Yuan J., Page D.B., Ku G.Y., Li Y., Mu Z., Ariyan C., Gallardo H.F., Roman R.A., Heine A.I., Terzulli S.L., Ritter E., Gnjatic S., Ritter G., Jungbluth A.A., Allison J.P., Old L.J., Wolchok J.D. Correlation of clinical and immunological data in a metastatic melanoma patient with heterogeneous tumor responses to ipilimumab therapy. Cancer Immun. 2010 Jan 7; 10: 1.; Sade-Feldman M., Kanterman J., Klieger Y., Ish-Shalom E., Olga M., Saragovi A., Shtainberg H., Lotem M., Baniyash M. Clinical Significance of Circulating CD33+CD11b+HLA-DR-Myeloid Cells in Patients with Stage IV Melanoma Treated with Ipilimumab. Clin Cancer Res. 2016 Dec 1; 22(23): 5661–5672. doi:10.1158/1078-0432.CCR-15-3104.; Tietze J.K., Angelova D., Heppt M.V., Reinholz M., Murphy W.J., Spannagl M., Ruzicka T., Berking C. The proportion of circulating CD45RO+CD8+ memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. Eur J Cancer. 2017; 75: 268–279. doi:10.1016/j.ejca.2016.12.031.; Leung A.M., Lee A.F., Ozao-Choy J., Ramos R.I., Hamid O., O'Day S.J., Shin-Sim M., Morton D.L., Faries M.B., Sieling P.A., Lee D.J. Clinical Benefit from Ipilimumab Therapy in Melanoma Patients may be Associated with Serum CTLA4 Levels. Front Oncol. 2014; 4: 110. doi:10.3389/fonc.2014.00110.; Hannani D., Vétizou M., Enot D., Rusakiewicz S., Chaput N., Klatzmann D., Desbois M., Jacquelot N., Vimond N., Chouaib S., Mateus C., Allison J.P., Ribas A., Wolchok J.D., Yuan J., Wong P., Postow M., Mackiewicz A., Mackiewicz J., Schadendorff D., Jaeger D., Zörnig I., Hassel J., Korman A.J., Bahjat K., Maio M., Calabro L., Teng M.W., Smyth M.J., Eggermont A., Robert C., Kroemer G., Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015 Feb; 25(2): 208–24. doi:10.1038/cr.2015.3.; Thorsson V., Gibbs D.L., Brown S.D., Wolf D., Bortone D.S., Ou Yang T.H., Porta-Pardo E., Gao G.F., Plaisier C.L., Eddy J.A., Ziv E., Culhane A.C., Paull E.O., Sivakumar I.K.A., Gentles A.J., Malhotra R., Farshidfar F., Colaprico A., Parker J.S., Mose L.E., Vo N.S., Liu J., Liu Y., Rader J., Dhankani V., Reynolds S.M., Bowlby R., Califano A., Cherniack A.D., Anastassiou D., Bedognetti D., Mokrab Y., Newman A.M., Rao A., Chen K., Krasnitz A., Hu H., Malta T.M., Noushmehr H., Pedamallu C.S., Bullman S., Ojesina A.I., Lamb A., Zhou W., Shen H., Choueiri T.K., Weinstein J.N., Guinney J., Saltz J., Holt R.A., Rabkin C.S.; Cancer Genome Atlas Research Network, Lazar A.J., Serody J.S., Demicco E.G., Disis M.L., Vincent B.G., Shmulevich I. The Immune Landscape of Cancer. Immunity. 2018; 48(4): 812–30. doi:10.1016/j.immuni.2018.03.023.; Teng M.W., Ngiow S.F., Ribas A., Smyth M.J. Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Res. 2015 Jun 1; 75(11): 2139–45. doi:10.1158/0008-5472.CAN-15-0255.; Barnes T.A., Amir E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer. 2017 Aug 8; 117(4): 451–460. doi:10.1038/bjc.2017.220.; Hamid O., Schmidt H., Nissan A., Ridolfi L., Aamdal S., Hansson J., Guida M., Hyams D.M., Gómez H., Bastholt L., Chasalow S.D., Berman D. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med. 2011 Nov 28; 9: 204. doi:10.1186/1479-5876-9-204.; Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J., Robert L., Chmielowski B., Spasic M., Henry G., Ciobanu V., West A.N., Carmona M., Kivork C., Seja E., Cherry G., Gutierrez A.J., Grogan T.R., Mateus C., Tomasic G., Glaspy J.A., Emerson R.O., Robins H., Pierce R.H., Elashoff D.A., Robert C., Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014 Nov; 515(7528): 568–71. doi:10.1038/nature13954.; Gettinger S.N., Choi J., Mani N., Sanmamed M.F., Datar I., Sowell R., Du V.Y., Kaftan E., Goldberg S., Dong W., Zelterman D., Politi K., Kavathas P., Kaech S., Yu X., Zhao H., Schlessinger J., Lifton R., Rimm D.L., Chen L., Herbst RS., Schalper K.A. A dormant TIL phenotype defines nonsmall cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun. 2018 Aug 10; 9(1): 3196. doi:10.1038/s41467-018-05032-8.; Sade-Feldman M., Yizhak K., Bjorgaard S.L., Ray J.P., de Boer C.G., Jenkins R.W., Lieb D.J., Chen J.H., Frederick D.T., Barzily-Rokni M., Freeman S.S., Reuben A., Hoover P.J., Villani A.C., Ivanova E., Portell A., Lizotte P.H., Aref A.R., Eliane J.P., Hammond M.R., Vitzthum H., Blackmon S.M., Li B., Gopalakrishnan V., Reddy S.M., Cooper Z.A., Paweletz C.P., Barbie D.A., Stemmer-Rachamimov A., Flaherty K.T., Wargo J.A., Boland G.M., Sullivan R.J., Getz G., Hacohen N. Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell. 2018 Nov 1; 175(4): 998–1013.e20. doi:10.1016/j.cell.2018.10.038.; Ayers M., Lunceford J., Nebozhyn M., Murphy E., Loboda A., Kaufman D.R., Albright A., Cheng J.D., Kang S.P., Shankaran V., Piha-Paul S.A., Yearley J., Seiwert T.Y., Ribas A., McClanahan T.K. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017 Aug; 127(8): 2930–40. doi:10.1172/JCI91190.; Jerby-Arnon L., Shah P., Cuoco M.S., Rodman C., Su M.J., Melms J.C., Leeson R., Kanodia A., Mei S., Lin J.R., Wang S., Rabasha B., Liu D., Zhang G., Margolais C., Ashenberg O., Ott P.A., Buchbinder E.I., Haq R., Hodi F.S., Boland G.M., Sullivan R.J., Frederick D.T., Miao B., Moll T., Flaherty K.T., Herlyn M., Jenkins R.W., Thummalapalli R., Kowalczyk M.S., Cañadas I., Schilling B., Cartwright A.N.R., Luoma AM., Malu S., Hwu P., Bernatchez C., Forget M.A., Barbie D.A., Shalek A.K., Tirosh I., Sorger P.K., Wucherpfennig K., Van Allen E.M., Schadendorf D., Johnson B.E., Rotem A., Rozenblatt-Rosen O., Garraway L.A., Yoon C.H., Izar B., Regev A. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell. 2018 Nov 1; 175(4): 984–997.e24. doi:10.1016/j.cell.2018.09.006.; Kalaora S., Lee J.S., Barnea E., Levy R., Greenberg P., Alon M., Yagel G., Bar Eli G., Oren R., Peri A., Patkar S., Bitton L., Rosenberg S.A., Lotem M., Levin Y., Admon A, Ruppin E., Samuels Y. Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat Commun. 2020; 11(1): 896. doi:10.1038/s41467-020-14639-9.; Spassova I., Ugurel S., Terheyden P., Sucker A., Hassel J.C., Ritter C., Kubat L., Habermann D., Farahpour F., Saeedghalati M., Peiffer L., Kumar R., Schrama D., Hoffmann D., Schadendorf D., Becker J.C. Predominance of Central Memory T Cells with High T-Cell Receptor Repertoire Diversity is Associated with Response to PD-1/PD-L1 Inhibition in Merkel Cell Carcinoma. Clin Cancer Res. 2020; 26(9): 2257–67. doi:10.1158/1078-0432.CCR-19-2244.; Wind T.T., Gacesa R., Vich Vila A., de Haan J.J., Jalving M., Weersma R.K., Hospers G.A.P. Gut microbial species and metabolic pathways associated with response to treatment with immune checkpoint inhibitors in metastatic melanoma. Melanoma Res. 2020 Jun; 30(3): 235–246. doi:10.1097/CMR.0000000000000656.; Tinsley N., Zhou C., Tan G., Rack S., Lorigan P., Blackhall F., Krebs M., Carter L., Thistlethwaite F., Graham D., Cook N. Cumulative Antibiotic Use Significantly Decreases Efficacy of Checkpoint Inhibitors in Patients with Advanced Cancer. Oncologist. 2020 Jan; 25(1): 55–63. doi:10.1634/theoncologist.2019-0160.; Bersanelli M., Buti S., Banna G.L., De Giorgi U., Cortellini A., Rebuzzi S.E., Tiseo M., Fornarini G., Mazzoni F., Panni S., Tursi M., Marino P.D., Rossetti S., Rossi E., Tomao S., Luca E., Sorarù M., Mucciarini C., Atzori F., Torre L., Vitale M.G., Martelli V., Sepe P., Mollica V., Vaccaro V., Schinzari G., Ficorella C., Massari F., Maestri A., Sabbatini R., Sava T., Maio M.D., Verzoni E., Procopio G., Giannarelli D. Impact of influenza syndrome and flu vaccine on survival of cancer patients during immunotherapy in the INVIDIa study. Immunotherapy. 2020 Feb; 12(2): 151–159. doi:10.2217/imt-2019-0180.; Newman J.H., Chesson C.B., Herzog N.L., Bommareddy P.K., Aspromonte S.M., Pepe R., Estupinian R., Aboelatta M.M., Buddhadev S., Tarabichi S., Lee M., Li S., Medina D.J., Giurini E.F., Gupta K.H., Guevara-Aleman G., Rossi M., Nowicki C., Abed A., Goldufsky J.W., Broucek J.R., Redondo R.E., Rotter D., Jhawar S.R., Wang S.J., Kohlhapp F.J., Kaufman H.L., Thomas P.G., Gupta V., Kuzel T.M., Reiser J., Paras J., Kane M.P., Singer E.A., Malhotra J., Denzin L.K., Sant'Angelo D.B., Rabson A.B., Lee L.Y., Lasfar A., Langenfeld J., Schenkel J.M., Fidler M.J., Ruiz E.S., Marzo A.L., Rudra J.S., Silk A.W., Zloza A. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc Natl Acad Sci USA. 2020; 117(2): 1119–1128. doi:10.1073/pnas.1904022116.; https://www.siboncoj.ru/jour/article/view/1538
-
5Academic Journal
المؤلفون: A. Korotaeva A., N. Apanovich V., E. Braga A., V. Matveev B., A. Karpukhin V., А. Коротаева А., Н. Апанович В., Э. Брага А., В. Матвеев Б., А. Карпухин В.
المصدر: Cancer Urology; Том 15, № 4 (2019); 30-38 ; Онкоурология; Том 15, № 4 (2019); 30-38 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2019-15-4
مصطلحات موضوعية: immunotherapy, kidney cancer, anti-PD-1, anti-PD-L1, anti-CTLA-4, immune response checkpoint inhibitors, microRNA, targeted therapy, иммунотерапия, рак почки, анти-PD-1, анти-PD-L1, анти-CTLA4, ингибиторы контрольных точек иммунного ответа, микроРНК, таргетная терапия
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/993/892; Ahmed Y., Osman N., Sheikh R. et al. A new era and advances in renal cell carcinoma. Cancer Ther Oncol Int J 2017;6(4):555692. DOI:10.19080/CTOIJ.2017.06.555692.; Moch H., Cubilla A.L., Humphrey P.A. et al. The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol 2016;70(1):93–105. DOI:10.1016/j.eururo.2016.02.029.; Пушкарь Д.Ю., Раснер П.И., Куприянов Ю.А. и др. Опухоли почек. Русский медицинский журнал 2014;(17):2.; Матвеев В.Б., Волкова М.И. Последовательная таргетная терапия при диссеминированном раке почки. Онкоурология 2013;9(1):28–33.; Кушлинский Н.Е., Фридман М.В., Морозов А.А. и др. Современные подходы к иммунотерапии рака почки. Онкоурология 2018;14(2):54–67. DOI:10.17650/1726-9776-2018-14-2-54-67.; Santoni M., Massari F., Di Nunno V. et al. Immunotherapy in renal cell carcinoma: latest evidence and clinical implications. Drugs in Context 2018;7:212528. DOI:10.7573/dic.212528.; Seidel J.A., Otsuka A., Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 2018;8:86. DOI:10.3389/fonc.2018.00086.; Xiao X., Lao X.M., Chen M.M. et al. PD-1hi identifies a novel regulatory b-cell population in human hepatoma that promotes disease progression. Cancer Discov 2016;6(5):546–59. DOI:10.1158/2159- 8290.CD-15-1408.; Larkin J., Chiarion-Sileni V., Gonzalez R. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373(1):23–34. DOI:10.1056/NEJMoa1504030.; Zaretsky J.M., Garcia-Diaz A., Shin D.S. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016;375(9):819–29. DOI:10.1056/NEJMoa1604958.; Gao J., Ward J.F., Pettaway C.A. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 2017;23(5):551–5. DOI:10.1038/nm.4308.; Koyama S., Akbay E.A., Li Y.Y. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016;7:10501. DOI:10.1038/ncomms10501.; Arlauckas S.P., Garris C.S., Kohler R.H. et al. In vivo imaging reveals a tumorassociated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 2017;9(389). DOI:10.1126/scitranslmed.aal3604.; Lai Y., Zeng T., Liang X. et al. Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int 2019;19:221. DOI:10.1186/s12935-019-0939-2.; Motzer R.J., Tannir N.M., McDermott D.F. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018;378:1277–90. DOI:10.1056/NEJMoa1712126.; Cella D., Grünwald V., Escudier B. et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol 2019;20(2):297–310. DOI:10.1016/S1470-2045(18)30778-2.; Rini B.I., Plimack E.R., Stus V. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1116–27. DOI:10.1056/NEJMoa1816714.; Motzer R.J., Penkov K., Haanen J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1103–15. DOI:10.1056/NEJMoa1816047.; Rini B.I., Powles T., Atkins M.B. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion 151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019;393(10189):2404–15. DOI:10.1016/S0140-6736(19)30723-8.; Park S.S., Dong H., Liu X. et al. PD-1 restrains radiotherapy-induced Abscopal effect. Cancer Immunol Res 2015;3(6):610–9. DOI:10.1158/2326-6066.CIR-14-0138.; Kruger S., Ilmer M., Kobold S. et al. Advances in cancer immunotherapy 2019. J Exp Clin Cancer Res 2019;38(1):268. DOI:10.1186/s13046-019-1266-0.; Phase II Trial of Stereotactic Body Radiation Therapy in Combination With Nivolumab Plus Ipilimumab in Patients With Metastatic Renal Cell Cancer. ClinicalTrials.gov Identifier: NCT03065179. Available at: https://clinicaltrials.gov/ct2/show/NCT03065179.; Chevrier S., Levine J., Zanotelli V.R.T. et al. An immune atlas of clear cell renal cell carcinoma. Cell 2017;169(4):736–49. e18. DOI:10.1016/j.cell.2017.04.016.; Chen L., Zhu D., Feng J. et al. Overexpression of HHLA2 in human clear cell renal cell carcinoma is significantly associated with poor survival of the patients. Cancer Cell Int 2019;19:101. DOI:10.1186/s12935-019-0813-2.; MEHTA, Vimal D., RASTELLI, Luca, SAPRA, Aparna Katoch. A novel approach for treatment of cancer using immunomodulation. Patent WO 2017/011831 Al.; Goldsberry W.N., Londoño A., Randall T.D. et al. Review of the role of Wnt in cancer immunomodulation. Cancers 2019;11(6):771. DOI:10.3390/cancers11060771.; Shrimali R.K., Ahmad S., Verma V. et al. Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 2017;5(9):755–66. DOI:10.1158/2326-6066.; Tauriello D.V.F., Palomo-Ponce S., Stork D. et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018;554(7693):538–43. DOI:10.1038/nature25492.; Grenda A., Nicoś M., Szczyrek M. et al. MicroRNAs aid the assessment of programmed death ligand 1 expression in patients with non-small cell lung cancer. Oncol Lett 2019;17(6):5193–200. DOI:10.3892/ol.2019.10207.; Zhang Q., Di W., Dong Y. et al. High serum miR-183 level is associated with poor responsiveness of renal cancer to natural killer cells. Tumour Biol 2015;36(12):9245–9. DOI:10.1007/s13277-015-3604-y.; Wang Q., Lin W., Tang X. et al. The roles of microRNAs in regulating the expression of PD-1/PD-L1 immune checkpoint. Int J Mol Sci 2017;18(12). DOI:10.3390/ijms18122540.; Fabrizio D.A., George T.J. Jr, Dunne R.F. et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol 2018;9(4):610–7. DOI:10.21037/jgo.2018.05.06.; Endris V., Buchhalter I., Allgauer M. et al. Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: in silico and real-life analysis of three larger gene panels. Int J Cancer 2019;144(9):2303–12. DOI:10.1002/ijc.32002.; Chan T.A., Yarchoan M., Jaffee E. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 2018;30(1):44–56. DOI:10.1093/annonc/mdy495.; Salem M.E., Puccini A., Grothey A. et al. 1835PDComparative molecular analysis between microsatellite instability-high (MSI-H) tumors with high tumor mutational burden (TMB-H) versus MSI-H tumors with TMB-intermediate/low. Ann Oncol 2018;29. DOI:10.1093/annonc/mdy303.005.; Fabrizio D.A., George T., Dunne R. et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol 2018;9(4):610–7. DOI:10.21037/jgo.2018.05.06.; McDermott D.F., Huseni M.A., Atkins M.B. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 2018;24(6):749–57. DOI:10.1038/s41591-018-0053-3.; Rini B.I. Molecular correlates differentiate response to atezolizumab + bevacizumab vs sunitinib. ESMO 2018 Congress. Abstract LBA31.; Kruger S., Legenstein M.L., Rosgen V. et al. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology 2017;6(5):e1310358. DOI:10.1080/2162402X.2017.1310358.; Costantini A., Julie C., Dumenil C. et al. Predictive role of plasmatic biomarkers in advanced non-small cell lung cancer treated by nivolumab. Oncoimmunology 2018;7(8):e1452581. DOI 10.1080/2162402X.2018.1452581.; Gandara D.R., Paul S.M., Kowanetz M. et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med 2018;24(9):1441–8. DOI:10.1038/s41591-018-0134-3.; Kim E.S., Velcheti V., Mekhail T. et al. LBA55Primary efficacy results from BF1RST, a prospective phase II trial evaluating blood-based tumour mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC). Ann Oncol 2018;29(suppl_8):mdy424.067.; Lee J.H., Long G.V., Boyd S. et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol 2017;28(5):1130–6. DOI:10.1093/annonc/mdx026.; Goldberg S.B., Narayan A., Kole A.J. et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin Cancer Res 2018;24(8):1872–80. DOI:10.1158/1078-0432.CCR-17-1341.; Xing T., He H. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology. Clin J Cancer Res 2016;28(1):80–91. DOI:10.3978/j.issn.1000-9604.2016.02.09.; Blake S.J., Dougall W.C., Miles J.J. et al. Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin Cancer Res 2016;22(21):5183–8. DOI:10.1158/1078-0432.CCR-16-0933.; Glen M.C., Tsuyoshi F., Gabriela M.W. et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog 2016;12(1). DOI:10.1371/journal.ppat.1005349.; Sharma P., Hu-Lieskovan S., Wargo J.A. et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168(4). DOI:10.1016/j.cell.2017.01.017.; Arlauckas S.P., Garris C.S., Kohler R.H. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 2017;9(389). DOI:10.1126/scitranslmed.aal3604.; Antonios J.P., Soto H., Everson R.G. et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol 2017;19(6):796–807. DOI:10.1093/neuonc/now287.; Chamoto K., Chowdhury P.S., Kumar A. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA 2017;114(5):E761–70. DOI:10.1073/pnas.1620433114.; Sorensen M.R., Holst P.J., Steffensen M.A. et al. Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model. Vaccine 2010;28(41):6757–64. DOI:10.1016/j.vaccine.2010.07.066.; Ribas A., Dummer R., Puzanov I. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017;170(6):1109–19.e10. DOI:10.1016/j.cell.2017.08.027.; Sivan A., Corrales L., Hubert N. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PDL1 efficacy. Science 2015;350(6264): 1084–9. DOI:10.1126/science.aac4255.; Vétizou M., Pitt J.M., Daillère R. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015;350(6264):1079–84. DOI:10.1126/science.aad1329.; Gopalakrishnan V., Spencer C.N., Nezi L. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018;359(6371): 97–103. DOI:10.1126/science.aan4236.; Routy B., Le Chatelier E., Derosa L. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91–7. DOI:10.1126/science.aan3706.; Derosa L., Iebba V., Albiges L. et al. Gut microbiome composition to predict resistance in renal cell carcinoma (RCC) patients on nivolumab. J Clin Oncol 2018;36(15_suppl):4519. DOI:10.1200/JCO.2018.36.15_suppl.4519.; https://oncourology.abvpress.ru/oncur/article/view/993
-
6Academic Journal
المؤلفون: S. V. Topolyanskaya, С. В. Тополянская
المصدر: The Russian Archives of Internal Medicine; Том 10, № 5 (2020); 390-397 ; Архивъ внутренней медицины; Том 10, № 5 (2020); 390-397 ; 2411-6564 ; 2226-6704
مصطلحات موضوعية: ингибиторы контрольных точек иммунного ответа, squamous cell carcinoma, skin, ulcers, cytokine release syndrome, immune checkpoint inhibitors, плоскоклеточный рак, кожа, язвы, синдром высвобождения цитокинов
وصف الملف: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/1092/945; https://www.medarhive.ru/jour/article/view/1092/953; Song L., Wang Y., Zhang J., et al. The risks of cancer development in systemic lupus erythematosus (SLE) patients: a systematic review and metanalysis. Arthritis Research & Therapy. 2018;20(1):270. doi:10.1186/s13075-018-1760-3.; Squamous cell carcinoma of the skin. Clinical guidelines. 2020. [Electronic resource]. URL: https://oncology-association.ru/files/newclinical-guidelines/ploskokletochnyj_rak_kozhi.pdf. (date of the application: 22.07.2020). [In Russian].; Zaalberg A., Tuchayi S.M., Ameri A.H., et al. Chronic inflammation promotes skin carcinogenesis in cancer-prone discoid lupus erythematosus. J Invest Dermatol. 2019;139(1):62-70. doi:10.1016/j.jid.2018.06.185.; Bhat M.R., Hulmani M., Dandakeri S., et al. Disseminated discoid lupus erythematosus leading to squamous cell carcinoma. Indian J Dermatol. 2012;57(2):158-161. doi:10.4103/0019-5154.94298; Combemale P., Bousquet M., Kanitakis J., et al. Malignant transformation of leg ulcers: a retrospective study of 85 cases. J Eur Acad Dermatol Venereol. 2007;21(7):935-941. doi:10.1111/j.1468-3083.2006.02118.x.; Ceschi A., Noseda R., Palin K., et al. Immune Checkpoint Inhibitor- Related Cytokine Release Syndrome: Analysis of WHO Global Pharmacovigilance Database. Front. Pharmacol. 2020;11:557. doi:10.3389/fphar.2020.00557.; Shimabukuro-Vornhagen A., Gödel P., Subklewe M., et al. Cytokine release syndrome. J Immunother Cancer. 2018;6:56. doi:10.1186/s40425-018-0343-9.; Tisoncik J.R., Korth M.J., Simmons C.P., et al. Into the Eye of the Cytokine Storm. Microbiol Mol Biol Rev. 2012;76(1):16-32. doi:10.1128/MMBR.05015-11.; Wang J., Jiang M., Chen X., Montaner L.J. Cytokine storm and leukocyte changes in mild versus severe SARSCoV-2 infection. Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020: 10.1002/GLB.3COVR0520-272R. doi:10.1002/JLB.3COVR0520272R; https://www.medarhive.ru/jour/article/view/1092
-
7Academic Journal
المؤلفون: S. V. Topolyanskaya
المصدر: Архивъ внутренней медицины, Vol 10, Iss 5, Pp 390-397 (2020)
مصطلحات موضوعية: системная красная волчанка, плоскоклеточный рак, кожа, язвы, синдром высвобождения цитокинов, ингибиторы контрольных точек иммунного ответа, Internal medicine, RC31-1245
Relation: https://www.medarhive.ru/jour/article/view/1092; https://doaj.org/toc/2226-6704; https://doaj.org/toc/2411-6564; https://doaj.org/article/dbfac1d60f164f4aadc3398cc99414a1
-
8Academic Journal
المؤلفون: M. Kazantseva A., V. Breder V., K. Laktionov K., М. Казанцева А., В. Бредер В., К. Лактионов К.
المصدر: Meditsinskiy sovet = Medical Council; № 10 (2019); 15-21 ; Медицинский Совет; № 10 (2019); 15-21 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2019-10
مصطلحات موضوعية: hepatocellular cancer (НСС), immunotherapy, сheckpoint inhibitors, nivolumab, pembrolizumab, гепатоцеллюлярный рак, иммунотерапия, ингибиторы контрольных точек иммунного ответа, ниволумаб, пембролизумаб
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/3048/2972; Parkin D.M., Bray F., Ferlay J., Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74-108.; Altekruse S.F., McGlynn K.A., Reichman M.E. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J ClinOncol. 2009;27:1485-91.; Cheng A.-L. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebocontrolled trial. Lancet. Oncol. Elsevier. 2009;10(1):25–34.; Llovet J.J.M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008;359(4):378–390.; Parkin D.M., Bray F., Ferlay J., Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.; Li F.J., Zhang Y., Jin G.X., Yao L., Wu E.Q. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett. 2013;150:116-22.; Huz J.I., Melis M., Sarpel U. Spontaneous regression of hepatocellular carcinoma is most often associated with tumor hypoxia or a systemic inflammatory response. HPB (Oxford). 2012;14:500-5.; Gao Q., Qiu S.J., Fan J., Zhou J., Wang X.Y., Xiao Y.S. et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J ClinOncol. 2007;25:2586-93.; Han Y., Yang Y., Chen Z., Jiang Z., Gu Y., Liu Y. et al. Human hepatocellular carcinoma-infiltrating CD4+CD69+Foxp3- regulatory T cell suppresses T cell response via membrane-bound TGF-β1. J Mol Med (Berl). 2014;92:539-50.; Ormandy L.A., Hillemann T., Wedemeyer H., Manns M.P., Greten T.F., Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457-64.; Barathan M., Gopal K., Mohamed R., Ellegard R., Saeidi A., Vadivelu J. et al. Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes. Apoptosis. 2015;20:466-80.; Pfizer Announces Discontinuation of Phase III Clinical Trial for Patients with Advanced Melanoma. Pfizer.com. 1 April 2008. Retrieved 5 December 2015.; Sangro B., Gomez-Martin C., de la Mata M., Inarrairaegui M., Garralda E., Barrera P. et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81-8.; El-Koueiry A.B., Sangro B., Yau T., Crocenzi T.S., Welling III T.H., Yeo W. et al. I. Phase 1/2 safety and antitumor activity of Nivolumab in patients with advanced hepatocellular carcinoma: interim analysis of the Checkmate-040 dose escalation study. In: Proceedings of the 52th Annual Meeting of the American Society of Clinical Oncology; 2016 June 4-8; Chicago. ASCO 2016. Abstract nr 4012.; Zhu A.X., Finn R.S., Edeline J., Cattan S., Ogasawara S., Palmer D. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, openlabel phase 2 trial. Lancet Oncol. 2018;19:940–52.; https://clinicaltrials.gov.; https://www.clinicaltrialsregister.eu/ctr-search/trial.; Wainberg Z.A., Segal N.H., Jaeger D., et al. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). J ClinOncol. 2017;35(suppl; abstr 4071).; Kelley R.K., Abou-Alfa Gh.K., Bendell J.C., Kim T.-Y. et al. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): Phase I safety and efficacy analyses. ClinOncol. 2017;35(suppl;abstr 4071-4073).; Boige V., Malka D., Bourredjem A. et al. Efficacy, safety, and biomarkers of single-agent bevacizumab therapy in patients with advanced hepatocellular carcinoma. Oncologist. 2012;17:1063-72.; Frenette C. Current status of bevacizumab for advanced hepatocellular carcinoma. Chin ClinOncol. 2012;1:13.; Motz G.T., Santoro S.P., Wang L.P. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20:607-17.; Oelkrug C., Ramage J.M. Enhancement of T cell recruitment and infiltration into tumors. Clin Exp Immunol. 2014;178:1-8.; Wainberg Z.A., Segal N.H., Jaeger D. et al. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). J Clin Oncol. 2017;35 (suppl; abstr 4071).; Roland C.L., Lynn K.D., Toombs J.E. et al. Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS ONE. 2009;4:e7669.; Voron T., Colussi O., Marcheteau E. et al. VEGFA modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J ExpMed. 2015;212:139-48.; Wallin J.J., Bendell J.C., Funke R. et al. Atezolizumab in combination with bevacizumab enhances antigenspecificTcell migration in metastatic renal cell carcinoma. Nat Comm. 2016;7:1-8.; Ikeda M., Sung M.W., Kudo M., Kobayashi M., Baron A.D., Finn R.S. et al. A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients (pts) with unresectable hepatocellular carcinoma (uHCC). J Clin Oncol. 2018;36(suppl; abstr 4076).; De Martin E., Michot J.-M., Papouin B., Champiat S., Mateus C., Lambotte O. et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J Hepatol. 2018;68:1181–1190.; Bruix J., Qin S., Merle P., Granito A., Huang Y.H., Bodoky G. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56-66.; Finn R.S., Merle P., Granito A., Huang Y.-H., Bodoky G., Pracht M. et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: additional analyses from the phase 3 RESORCE trial. Journal of Hepatology. 2018. doi: https://doi.org/10.1016/j.jhep.2018.04.010.; https://www.med-sovet.pro/jour/article/view/3048
-
9Academic Journal
المؤلفون: Khammad V.A., Zaitsev A.M., Kirsanova O.N., Kharchenko N.V., Zapirov G.M., Kisaryev S.A., Kobyletskaya T.M.
المصدر: Онкология. Журнал им. П.А. Герцена