يعرض 1 - 20 نتائج من 54 نتيجة بحث عن '"ингибиторы контрольных точек"', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: this work was not funded., финансирование данной работы не проводилось.

    المصدر: Research and Practical Medicine Journal; Том 11, № 2 (2024); 81-88 ; Research'n Practical Medicine Journal; Том 11, № 2 (2024); 81-88 ; 2410-1893 ; 10.17709/2410-1893-2024-11-2

    وصف الملف: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/997/619; https://www.rpmj.ru/rpmj/article/view/997/630; Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2019 Oct 17;381(16):1535–1546. https://doi.org/10.1056/nejmoa1910836; Ralli M, Botticelli A, Visconti IC, Angeletti D, Fiore M, Marchetti P, Lambiase A, de Vincentiis M, Greco A. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J Immunol Res. 2020 Jun 28;2020:9235638. https://doi.org/10.1155/2020/9235638; Lejeune FJ. Epidemiology and etiology of malignant melanoma. Biomed Pharmacother. 1986;40(3):91–99.; Vosmík F. Maligní melanom kůze. Epidemiologie, rizikové faktory, klinická diagnostika [Malignant melanoma of the skin. Epidemiology, risk factors, clinical diagnosis]. Cas Lek Cesk. 1996 Jul 26;135(13):405-8. Czech.; Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Bröcker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005 Nov 17;353(20):2135–2147. https://doi.org/10.1056/nejmoa050092; Kugel CH 3rd, Douglass SM, Webster MR, Kaur A, Liu Q, Yin X, et al. Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clin Cancer Res. 2018 Nov 1;24(21):5347–5356. https://doi.org/10.1158/1078-0432.ccr-18-1116; Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, et al. Melanoma models for the next generation of therapies. Cancer Cell. 2021 May 10;39(5):610–631. https://doi.org/10.1016/j.ccell.2021.01.011; Bomar L, Senithilnathan A, Ahn C. Systemic Therapies for Advanced Melanoma. Dermatol Clin. 2019 Oct;37(4):409–423. https://doi.org/10.1016/j.det.2019.05.001; O'Neill CH, Scoggins CR. Melanoma. J Surg Oncol. 2019 Oct;120(5):873–881. https://doi.org/10.1002/jso.25604; Onitilo AA, Wittig JA. Principles of Immunotherapy in Melanoma. Surg Clin North Am. 2020 Feb;100(1):161–173. https://doi.org/10.1016/j.suc.2019.09.009; Long GV, Luke JJ, Khattak MA, de la Cruz Merino L, Del Vecchio M, Rutkowski P, et al.; KEYNOTE-716 Investigators. Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma (KEYNOTE-716): distant metastasis-free survival results of a multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol. 2022 Nov;23(11):1378–1388. https://doi.org/10.1016/s1470-2045(22)00559-9; Kennedy OJ, Kicinski M, Valpione S, Gandini S, Suciu S, Blank CU, et al. Prognostic and predictive value of β-blockers in the EORTC 1325/KEYNOTE-054 phase III trial of pembrolizumab versus placebo in resected high-risk stage III melanoma. Eur J Cancer. 2022 Apr;165:97–112. https://doi.org/10.1016/j.ejca.2022.01.017; Ascierto PA, Stroyakovskiy D, Gogas H, Robert C, Lewis K, Protsenko S, et al. Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncol. 2023 Jan;24(1):33–44. https://doi.org/10.1016/s1470-2045(22)00687-8; Ferrucci PF, Di Giacomo AM, Del Vecchio M, Atkinson V, Schmidt H, Schachter J, et al.; KEYNOTE-022 international team. KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J Immunother Cancer. 2020 Dec;8(2):e001806. https://doi.org/10.1136/jitc-2020-001806 Erratum in: J Immunother Cancer. 2021 Nov;9(11).; Kennedy OJ, Kicinski M, Valpione S, Gandini S, Suciu S, Blank CU, et al. Prognostic and predictive value of metformin in the European Organisation for Research and Treatment of Cancer 1325/KEYNOTE-054 phase III trial of pembrolizumab versus placebo in resected high-risk stage III melanoma. Eur J Cancer. 2023 Aug;189:112900. https://doi.org/10.1016/j.ejca.2023.04.016; Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019 Aug;20(8):1083–1097. https://doi.org/10.1016/s1470-2045(19)30274-8; Adams AM, Carpenter EL, Clifton GT, Vreeland TJ, Chick RC, O'Shea AE, et al. Divergent clinical outcomes in a phase 2B trial of the TLPLDC vaccine in preventing melanoma recurrence and the impact of dendritic cell collection methodology: a randomized clinical trial. Cancer Immunol Immunother. 2023 Mar;72(3):697–705. https://doi.org/10.1007/s00262-022-03272-8; Dummer R, Welti M, Ramelyte E. The role of triple therapy and therapy sequence in treatment of BRAF-mutant metastatic melanoma. Response to overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. J Transl Med. 2023 Aug 5;21(1):529. https://doi.org/10.1186/s12967-023-04391-1; Chick RC, Faries MB, Hale DF, Kemp Bohan PM, Hickerson AT, Vreeland TJ, et al. Multi-institutional, prospective, randomized, double-blind, placebo-controlled phase IIb trial of the tumor lysate, particle-loaded, dendritic cell (TLPLDC) vaccine to prevent recurrence in high-risk melanoma patients: A subgroup analysis. Cancer Med. 2021 Jul;10(13):4302–4311. https://doi.org/10.1002/cam4.3969; Ascierto PA, Long GV, Robert C, Brady B, Dutriaux C, Di Giacomo AM, et al. Survival Outcomes in Patients With Previously Untreated BRAF Wild-Type Advanced Melanoma Treated With Nivolumab Therapy: Three-Year Follow-up of a Randomized Phase 3 Trial. JAMA Oncol. 2019 Feb 1;5(2):187–194. https://doi.org/10.1001/jamaoncol.2018.4514 Erratum in: JAMA Oncol. 2019 Feb 1;5(2):271.; Vreeland TJ, Clifton GT, Hale DF, Chick RC, Hickerson AT, Cindass JL, et al. A Phase IIb Randomized Controlled Trial of the TLPLDC Vaccine as Adjuvant Therapy After Surgical Resection of Stage III/IV Melanoma: A Primary Analysis. Ann Surg Oncol. 2021 Oct;28(11):6126-6137. https://doi.org/10.1245/s10434-021-09709-1; Schadendorf D, Di Giacomo AM, Demidov L, Merelli B, Bondarenko I, Ascierto PA, et al.; BRIM8 Investigators. Health-related quality of life in patients with fully resected BRAFV600 mutation-positive melanoma receiving adjuvant vemurafenib. Eur J Cancer. 2019 Dec;123:155–161. https://doi.org/10.1016/j.ejca.2019.09.019; Ascierto PA, Lewis KD, Di Giacomo AM, Demidov L, Mandalà M, Bondarenko I, et al. Prognostic impact of baseline tumour immune infiltrate on disease-free survival in patients with completely resected, BRAFv600 mutation-positive melanoma receiving adjuvant vemurafenib. Ann Oncol. 2020 Jan;31(1):153–159. https://doi.org/10.1016/j.annonc.2019.10.002; Kong X, Kuilman T, Shahrabi A, Boshuizen J, Kemper K, Song JY, et al. Cancer drug addiction is relayed by an ERK2-dependent phenotype switch. Nature. 2017 Oct 12;550(7675):270–274. https://doi.org/10.1038/nature24037; Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 Aug 19;363(8):711–723. https://doi.org/10.1056/nejmoa1003466 Epub 2010 Jun 5. Erratum in: N Engl J Med. 2010 Sep 23;363(13):1290.; Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015 May 21;372(21):2006–2017. https://doi.org/10.1056/nejmoa1414428 Erratum in: N Engl J Med. 2018 Nov 29;379(22):2185.; Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al.; CheckMate 238 Collaborators. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N Engl J Med. 2017 Nov 9;377(19):1824–1835. https://doi.org/10.1056/nejmoa1709030; Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell. 2018 Nov 1;175(4):984–997.e24. https://doi.org/10.1016/j.cell.2018.09.006; Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022 May;23(5):660–670. https://doi.org/10.1038/s41590-022-01141-1; Strub T, Ghiraldini FG, Carcamo S, Li M, Wroblewska A, Singh R, et al. SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling. Nat Commun. 2018 Aug 24;9(1):3440. https://doi.org/10.1038/s41467-018-05966-z; Vredevoogd DW, Kuilman T, Ligtenberg MA, Boshuizen J, Stecker KE, de Bruijn B, et al. Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold. Cell. 2019 Jul 25;178(3):585–599.e15. https://doi.org/10.1016/j.cell.2019.06.014 Erratum in: Cell. 2020 Jan 23;180(2):404–405.; Kumar A, Chamoto K, Chowdhury PS, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. Elife. 2020 Mar 3;9:e52330. https://doi.org/10.7554/elife.52330; Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005 Jan;41(1):45–60. https://doi.org/10.1016/j.ejca.2004.10.016; Luther C, Swami U, Zhang J, Milhem M, Zakharia Y. Advanced stage melanoma therapies: Detailing the present and exploring the future. Crit Rev Oncol Hematol. 2019 Jan;133:99–111. https://doi.org/10.1016/j.critrevonc.2018.11.002; https://www.rpmj.ru/rpmj/article/view/997

  2. 2
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 10 (2024); 132-137 ; Медицинский Совет; № 10 (2024); 132-137 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8404/7395; Novello S, Kowalski DM, Luft A, Gümüş M, Vicente D, Mazières J et al. Pembrolizumab Plus Chemotherapy in Squamous Non-Small-Cell Lung Cancer: 5-Year Update of the Phase III KEYNOTE-407 Study. J Clin Oncol. 2023;41(11):1999–2006. https://doi.org/10.1200/JCO.22.01990.; Garassino MC, Gadgeel S, Speranza G, Felip E, Esteban E, Dómine M et al. Pembrolizumab Plus Pemetrexed and Platinum in Nonsquamous Non-Small-Cell Lung Cancer: 5-Year Outcomes From the Phase 3 KEYNOTE-189 Study. J Clin Oncol. 2023;41(11):1992–1998. https://doi.org/10.1200/JCO.22.01989.; Socinski MA, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D et al. IMpower150 Final Overall Survival Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in First-Line Metastatic Nonsquamous NSCLC. J Thorac Oncol. 2021;16(11):1909–1924. https://doi.org/10.1016/j.jtho.2021.07.009.; Zhao B, Ma W. First-Line Nivolumab Plus Ipilimumab With Chemotherapy for Metastatic NSCLC: The Updated Outcomes From CheckMate 9LA. J Thorac Oncol. 2023;18(9):101–102. https://doi.org/10.1016/j.jtho.2022.11.024.; Johnson ML, Cho BC, Luft A, Alatorre-Alexander J, Geater SL, Laktionov K et al. Durvalumab With or Without Tremelimumab in Combination With Chemotherapy as First-Line Therapy for Metastatic Non-Small-Cell Lung Cancer: The Phase III POSEIDON Study. J Clin Oncol. 2023;41(6):1213–1227. https://doi.org/10.1200/JCO.22.00975.; Gogishvili M, Melkadze T, Makharadze T, Giorgadze D, Dvorkin M, Penkov K et al. Cemiplimab plus chemotherapy versus chemotherapy alone in nonsmall cell lung cancer: a randomized, controlled, double-blind phase 3 trial. Nat Med. 2022;28(11):2374–2380. https://doi.org/10.1038/s41591-022-01977-y.; Wallrabenstein T, Mamot M, Daetwyler E, König D, Rothschild SI. Realworld data of combined immunochemotherapy in patients with nonsquamous advanced NSCLC. A single-center retrospective study. JTO Clin Res Rep. 2023;4(5):100509. https://doi.org/10.1016/j.jtocrr.2023.100509.; Mazieres J, Drilon AE, Mhanna L. Efficacy of immune-checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC) patients harboring activating molecular alterations (ImmunoTarget). J Clin Oncol. 2018;36(15):9010. https://doi.org/10.1093/annonc/mdz167.; Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clin Cancer Res. 2016;22(18):4585–4593. https://doi.org/10.1158/1078-0432.CCR-15-3101.; Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, Yang JC. Checkpoint Inhibitors in Metastatic EGFR-Mutated Non-Small Cell Lung Cancer-A Meta-Analysis. J Thorac Oncol. 2017;12(2):403–407. https://doi.org/10.1016/j.jtho.2016.10.007.; Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T et al. A Phase II Study of Pembrolizumab in EGFR-Mutant, PD-L1+, Tyrosine Kinase Inhibitor Naive Patients With Advanced NSCLC. J Thorac Oncol. 2018;13(8):1138–1145. https://doi.org/10.1016/j.jtho.2018.03.035.; Oshima Y, Tanimoto T, Yuji K, Tojo A. EGFR-TKI-Associated Interstitial Pneumonitis in Nivolumab-Treated Patients With Non-Small Cell Lung Cancer. JAMA Oncol. 2018;4(8):1112–1115. https://doi.org/10.1001/jamaoncol.2017.4526.; Liang H, Liu X, Wang M. Immunotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitors in non-small-cell lung cancer treatment. Onco Targets Ther. 2018;11:6189–6196. https://doi.org/10.2147/OTT.S178497.; Ahn MJ, Yang J, Yu H. 136O: Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: Results from the TATTON phase Ib trial. J Thorac Oncol. 2016;11(4):115. https://doi.org/10.1016/S1556-0864(16)30246-5.; Schoenfeld AJ, Arbour KC, Rizvi H, Iqbal AN, Gadgeel SM, Girshman J et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann Oncol. 2019;30(5):839–844. https://doi.org/10.1093/annonc/mdz077.; Spigel D, Reynolds C, Waterhouse D, Garon EB, Chandler J, Babu S et al. Phase 1/2 Study of the Safety and Tolerability of Nivolumab Plus Crizotinib for the First-Line Treatment of Anaplastic Lymphoma Kinase Translocation – Positive Advanced Non-Small Cell Lung Cancer (CheckMate 370). J Thorac Oncol. 2018;13(5):595–597. https://doi.org/10.1016/j.jtho.2018.02.022.; Felip E, de Braud FG, Maur M, Loong HH, Shaw AT, Vansteenkiste JF et al. Ceritinib plus nivolumab in patients with advanced ALK-rearranged nonsmall cell lung cancer: results of an open-label, multicenter, phase 1B study. J Thorac Oncol. 2020;15(3):392–403. https://doi.org/10.1016/j.jtho.2019.10.006.; Hirsch FR, Zaric B, Rabea A, Thongprasert S, Lertprasertsuke N, Dalurzo ML, Varella-Garcia M. Biomarker Testing for Personalized Therapy in Lung Cancer in Lowand Middle-Income Countries. Am Soc Clin Oncol Educ Book. 2017;37:403–408. https://doi.org/10.1200/EDBK_175243.; Raez LE, Cardona AF, Santos ES, Catoe H, Rolfo C, Lopes G et al. The burden of lung cancer in Latin-America and challenges in the access to genomic profiling, immunotherapy and targeted treatments. Lung Cancer. 2018;119:7–13. https://doi.org/10.1016/j.lungcan.2018.02.014.; Ballén DF, Carvajal-Fierro CA, Beltrán R, Alarcón ML, Vallejo-Yepes C, Brugés-Maya R. Survival Outcomes of Metastatic Non-small Cell Lung Cancer Patients With Limited Access to Immunotherapy and Targeted Therapy in a Cancer Center of a Lowand Middle-Income Country. Cancer Control. 2023;30:10732748231189785. https://doi.org/10.1177/10732748231189785.; Liu SV, Rai P, Wang D, Hu X, Schwarzenberger PO. First-Line Pembrolizumab Plus Chemotherapy for Advanced Squamous NSCLC: Real-World Outcomes at U.S. Oncology Practices. JTO Clin Res Rep. 2023;4(2):100444. https://doi.org/10.1016/j.jtocrr.2022.100444.; Cramer-van der Welle CM, Verschueren MV, Tonn M, Peters BJM, Schramel FMNH, Klungel OH et al. Real-world outcomes versus clinical trial results of immunotherapy in stage IV non-small cell lung cancer (NSCLC) in the Netherlands. Sci Rep. 2021;11(1):6306. https://doi.org/10.1038/s41598-021-85696-3.; https://www.med-sovet.pro/jour/article/view/8404

  3. 3
    Academic Journal

    المساهمون: The research was carried out under the grant of the Russian Science Foundation No 23-25-00392. https://rscf.ru/project/23-25-00392/, Исследование выполнено за счет гранта Российского научного фонда No 23-25-00392. https://rscf.ru/project/23-25-00392/

    المصدر: Siberian journal of oncology; Том 22, № 4 (2023); 109-117 ; Сибирский онкологический журнал; Том 22, № 4 (2023); 109-117 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2686/1145; Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2022. 252 с.; Тимофеев И.В. Ниволумаб: 5 лет со дня международной регистрации иммунотерапии метастатического рака почки. Злокачественные опухоли. 2020; 10(4): 21–9. doi:10.18027/2224-5057-2020-10-4-21-29.; Кушлинский Н.Е., Фридман М.В., Морозов А.А., Герштейн Е.С., Кадагидзе З.Г., Матвеев В.Б. Cовременные подходы к иммунотерапии рака почки. Онкоурология. 2018; 14(2): 54–67. doi:10.17650/1726-9776-2018-14-2-54-67.; Матвеев В.Б., Волкова М.И., Ольшанская А.С. Изменение позиций иммунотерапии при распространенном раке почки: ниволумаб в комбинации с ипилимумабом в 1-й линии лечения. Онкоурология. 2019; 15(1): 125–30. doi:10.17650/1726-9776-2019-15-1-125-130.; Саяпина М.С., Савёлов Н.А., Любимова Н.В., Тимофеев Ю.С., Носов Д.А. Потенциальные биомаркеры эффективности терапии ниволумабом при метастатическом почечно-клеточном раке. Онкоурология. 2018; 14(1): 16–27. https://doi.org/10.17650/1726-9776-2018-14-1-16-27.; Motzer R.J., Escudier B., McDermott D.F., George S., Hammers H.J., Srinivas S., Tykodi S.S., Sosman J.A., Procopio G., Plimack E.R., Castellano D., Choueiri T.K., Gurney H., Donskov F., Bono P., Wagstaff J., Gauler T.C., Ueda T., Tomita Y., Schutz F.A., Kollmannsberger C., Larkin J., Ravaud A., Simon J.S., Xu L.A., Waxman I.M., Sharma P.; CheckMate 025 Investigators. Nivolumab versus Everolimus in Advanced RenalCell Carcinoma. N Engl J Med. 2015; 373(19): 1803–13. doi:10.1056/NEJMoa1510665.; Motzer R.J., Rini B.I., McDermott D.F., Arén Frontera O., Hammers H.J., Carducci M.A., Salman P., Escudier B., Beuselinck B., Amin A., Porta C., George S., Neiman V., Bracarda S., Tykodi S.S., Barthélémy P., Leibowitz-Amit R., Plimack E.R., Oosting S.F., Redman B., Melichar B., Powles T., Nathan P., Oudard S., Pook D., Choueiri T.K., Donskov F., Grimm M.O., Gurney H., Heng D.Y.C., Kollmannsberger C.K., Harrison M.R., Tomita Y., Duran I., Grünwald V., McHenry M.B., Mekan S., Tannir N.M.; CheckMate 214 investigators. Nivolumab plus ipilimumab versus sunitinib in frst-line treatment for advanced renal cell carcinoma: extended follow-up of efcacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019; 20(10): 1370–85. doi:10.1016/S1470-2045(19)30413-9. Erratum in: Lancet Oncol. 2019; Erratum in: Lancet Oncol. 2020; 21(6). Erratum in: Lancet Oncol. 2020; 21(11).; Rini B.I., Plimack E.R., Stus V., Gafanov R., Hawkins R., Nosov D., Pouliot F., Alekseev B., Soulières D., Melichar B., Vynnychenko I., Kryzhanivska A., Bondarenko I., Azevedo S.J., Borchiellini D., Szczylik C., Markus M., McDermott R.S., Bedke J., Tartas S., Chang Y.H., Tamada S., Shou Q., Perini R.F., Chen M., Atkins M.B., Powles T.; KEYNOTE-426 Investigators. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019; 380(12): 1116–27. doi:10.1056/NEJMoa1816714.; Motzer R.J., Penkov K., Haanen J., Rini B., Albiges L., Campbell M.T., Venugopal B., Kollmannsberger C., Negrier S., Uemura M., Lee J.L., Vasiliev A., Miller W.H., Gurney H., Schmidinger M., Larkin J., Atkins M.B., Bedke J., Alekseev B., Wang J., Mariani M., Robbins P.B., Chudnovsky A., Fowst C., Hariharan S., Huang B., di Pietro A., Choueiri T.K. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019; 380(12): 1103–15. doi:10.1056/NEJMoa1816047.; Khan K.A., Kerbel R.S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018; 15(5): 310–24. doi:10.1038/nrclinonc.2018.9.; Conforti F., Pala L., Bagnardi V., De Pas T., Martinetti M., Viale G., Gelber R.D., Goldhirsch A. Cancer immunotherapy efcacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 2018; 19(6): 737–46. doi:10.1016/S1470-2045(18)30261-4.; Polanczyk M.J., Hopke C., Vandenbark A.A., Offner H. Estrogenmediated immunomodulation involves reduced activation of efector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J Neurosci Res. 2006; 84(2): 370–8. doi:10.1002/jnr.20881.; Polanczyk M.J., Hopke C., Vandenbark A.A., Offner H. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol. 2007; 19(3): 337–43. doi:10.1093/intimm/dxl151.; Chowell D., Krishna C., Pierini F., Makarov V., Rizvi N.A., Kuo F., Morris L.G.T., Riaz N., Lenz T.L., Chan T.A. Evolutionary divergence of HLA class I genotype impacts efcacy of cancer immunotherapy. Nat Med. 2019; 25(11): 1715–20. doi:10.1038/s41591-019-0639-4.; Chowell D., Morris L.G.T., Grigg C.M., Weber J.K., Samstein R.M., Makarov V., Kuo F., Kendall S.M., Requena D., Riaz N., Greenbaum B., Carroll J., Garon E., Hyman D.M., Zehir A., Solit D., Berger M., Zhou R., Rizvi N.A., Chan T.A. Patient HLA class I genotype infuences cancer response to checkpoint blockade immunotherapy. Science. 2018; 359(6375): 582–7. doi:10.1126/science.aao4572.; Jouinot A., Vazeille C., Goldwasser F. Resting energy metabolism and anticancer treatments. Curr Opin Clin Nutr Metab Care. 2018; 21(3): 145–51. doi:10.1097/MCO.0000000000000457.; Soldati L., Di Renzo L., Jirillo E., Ascierto P.A., Marincola F.M., De Lorenzo A. The infuence of diet on anti-cancer immune responsiveness. J Transl Med. 2018; 16(1): 75. doi:10.1186/s12967-018-1448-0.; Schmid D., Leitzmann M.F. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014; 25(7): 1293–311. doi:10.1093/annonc/mdu012.; Cortellini A., Bozzetti F., Palumbo P., Brocco D., Di Marino P., Tinari N., De Tursi M., Agostinelli V., Patruno L., Valdesi C., Mereu M., Verna L., Lanfuti Baldi P., Venditti O., Cannita K., Masciocchi C., Barile A., McQuade J.L., Ficorella C., Porzio G. Weighing the role of skeletal muscle mass and muscle density in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: a multicenter real-life study. Sci Rep. 2020; 10: 1456. doi:10.1038/s41598-020-58498-2.; Routy B., Le Chatelier E., Derosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., Fidelle M., Flament C., Poirier-Colame V., Opolon P., Klein C., Iribarren K., Mondragón L., Jacquelot N., Qu B., Ferrere G., Clémenson C., Mezquita L., Masip J.R., Naltet C., Brosseau S., Kaderbhai C., Richard C., Rizvi H., Levenez F., Galleron N., Quinquis B., Pons N., Ryffel B., Minard-Colin V., Gonin P., Soria J.C., Deutsch E., Loriot Y., Ghiringhelli F., Zalcman G., Goldwasser F., Escudier B., Hellmann M.D., Eggermont A., Raoult D., Albiges L., Kroemer G., Zitvogel L. Gut microbiome infuences efcacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359(6371): 91–7. doi:10.1126/science.aan3706.; Elkrief A., Derosa L., Kroemer G., Zitvogel L., Routy B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann Oncol. 2019; 30(10): 1572–9. doi:10.1093/annonc/mdz206.; Routy B., Gopalakrishnan V., Daillère R., Zitvogel L., Wargo J.A., Kroemer G. The gut microbiota infuences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018; 15(6): 382–96. doi:10.1038/s41571-018-0006-2.; Derosa L., Hellmann M.D., Spaziano M., Halpenny D., Fidelle M., Rizvi H., Long N., Plodkowski A.J., Arbour K.C., Chaft J.E., Rouche J.A., Zitvogel L., Zalcman G., Albiges L., Escudier B., Routy B. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018; 29(6): 1437–44. doi:10.1093/annonc/mdy103.; Sanmamed M.F., Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell. 2018; 175(2): 313–26. doi:10.1016/j.cell.2018.09.035. Erratum in: Cell. 2019; 176(3): 677.; Tinsley N., Zhou C., Tan G., Rack S., Lorigan P., Blackhall F., Krebs M., Carter L., Thistlethwaite F., Graham D., Cook N. Cumulative Antibiotic Use Signifcantly Decreases Efcacy of Checkpoint Inhibitors in Patients with Advanced Cancer. Oncologist. 2020; 25(1): 55–63. doi:10.1634/theoncologist.2019-0160.; Mahata B., Zhang X., Kolodziejczyk A.A., Proserpio V., HaimVilmovsky L., Taylor A.E., Hebenstreit D., Dingler F.A., Moignard V., Göttgens B., Arlt W., McKenzie A.N., Teichmann S.A. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014; 7(4): 1130–42. doi:10.1016/j.celrep.2014.04.011.; Arbour K.C., Mezquita L., Long N., Rizvi H., Auclin E., Ni A., Martínez-Bernal G., Ferrara R., Lai W.V., Hendriks L.E.L., Sabari J.K., Caramella C., Plodkowski A.J., Halpenny D., Chaft J.E., Planchard D., Riely G.J., Besse B., Hellmann M.D. Impact of Baseline Steroids on Effcacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer. J Clin Oncol. 2018; 36(28): 2872–8. doi:10.1200/JCO.2018.79.0006.; Fucà G., Galli G., Poggi M., Lo Russo G., Proto C., Imbimbo M., Ferrara R., Zilembo N., Ganzinelli M., Sica A., Torri V., Colombo M.P., Vernieri C., Balsari A., de Braud F., Garassino M.C., Signorelli D. Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open. 2019; 4(1). doi:10.1136/esmoopen-2018-000457.; Gubin M.M., Zhang X., Schuster H., Caron E., Ward J.P., Noguchi T., Ivanova Y., Hundal J., Arthur C.D., Krebber W.J., Mulder G.E., Toebes M., Vesely M.D., Lam S.S., Korman A.J., Allison J.P., Freeman G.J., Sharpe A.H., Pearce E.L., Schumacher T.N., Aebersold R., Rammensee H.G., Melief C.J., Mardis E.R., Gillanders W.E., Artyomov M.N., Schreiber R.D. Checkpoint blockade cancer immunotherapy targets tumour-specifc mutant antigens. Nature. 2014; 515(7528): 577–81. doi:10.1038/nature13988.; Yarchoan M., Hopkins A., Jaffee E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017; 377(25): 2500–1. doi:10.1056/NEJMc1713444.; Labriola M.K., Zhu J., Gupta R.T., McCall S., Jackson J., Kong E.F., White J.R., Cerqueira G., Gerding K., Simmons J.K., George D., Zhang T. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J Immunother Cancer. 2020; 8(1). doi:10.1136/jitc2019-000319. Erratum in: J Immunother Cancer. 2020; 8(1).; Turajlic S., Litchfeld K., Xu H., Rosenthal R., McGranahan N., Reading J.L., Wong Y.N.S., Rowan A., Kanu N., Al Bakir M., Chambers T., Salgado R., Savas P., Loi S., Birkbak N.J., Sansregret L., Gore M., Larkin J., Quezada S.A., Swanton C. Insertion-and-deletion-derived tumour-specifc neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017; 18(8): 1009–21. doi:10.1016/S1470-2045(17)30516-8.; Voss M.H., Novik J.B., Hellmann M.D., Ball M., Hakimi A.A., Miao D., Margolis C., Horak C., Wind-Rotolo M., De Velasco G., Tannir N.M., Tamboli P., Appleman L.J., Rathmell K., Hsieh J.J., Allaf M., Choueiri T.K., VanAllen E., Snyder A., Motzer R.J. Correlation of degree of tumor immune infltration and insertion-and-deletion (indel) burden with outcome on programmed death 1 (PD1) therapy in advanced renal cell cancer (RCC). J Clin Oncol 2018; 36(15s): 4518. doi:10.1200/JCO.2018.36.15_suppl.4518.; Kalbasi A., Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020; 20(1): 25–39. doi:10.1038/s41577-019-0218-4.; Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005; 5(5): 375–86. doi:10.1038/nri1604.; Zaretsky J.M., Garcia-Diaz A., Shin D.S., Escuin-Ordinas H., Hugo W., Hu-Lieskovan S., Torrejon D.Y., Abril-Rodriguez G., Sandoval S., Barthly L., Saco J., Homet Moreno B., Mezzadra R., Chmielowski B., Ruchalski K., Shintaku I.P., Sanchez P.J., Puig-Saus C., Cherry G., Seja E., Kong X., Pang J., Berent-Maoz B., Comin-Anduix B., Graeber T.G., Tumeh P.C., Schumacher T.N., Lo R.S., Ribas A. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016; 375: 819–29. doi:10.1056/NEJMoa1604958.; Spranger S., Bao R., Gajewski T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015; 523(7559): 231–5. doi:10.1038/nature14404.; Sweis R.F., Spranger S., Bao R., Paner G.P., Stadler W.M., Steinberg G., Gajewski T.F. Molecular Drivers of the Non-T-cell-Infamed Tumor Microenvironment in Urothelial Bladder Cancer. Cancer Immunol Res. 2016; 4(7): 563–8. doi:10.1158/2326-6066.CIR-15-0274.; Seiwert T.Y., Zuo Z., Keck M.K., Khattri A., Pedamallu C.S., Stricker T., Brown C., Pugh T.J., Stojanov P., Cho J., Lawrence M.S., Getz G., Brägelmann J., DeBoer R., Weichselbaum R.R., Langerman A., Portugal L., Blair E., Stenson K., Lingen M.W., Cohen E.E., Vokes E.E., White K.P., Hammerman P.S. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015; 21(3): 632–41. doi:10.1158/1078-0432.CCR-13-3310.; Jiménez-Sánchez A., Memon D., Pourpe S., Veeraraghavan H., Li Y., Vargas H.A., Gill M.B., Park K.J., Zivanovic O., Konner J., Ricca J., Zamarin D., Walther T., Aghajanian C., Wolchok J.D., Sala E., Merghoub T., Snyder A., Miller M.L. Heterogeneous Tumor-Immune Microenvironments among Diferentially Growing Metastases in an Ovarian Cancer Patient. Cell. 2017; 170(5): 927–38. doi:10.1016/j.cell.2017.07.025.; Boni A., Cogdill A.P., Dang P., Udayakumar D., Njauw C.N., Sloss C.M., Ferrone C.R., Flaherty K.T., Lawrence D.P., Fisher D.E., Tsao H., Wargo J.A. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without afecting lymphocyte function. Cancer Res. 2010; 70(13): 5213–9. doi:10.1158/0008-5472.CAN-10-0118.; Goel S., DeCristo M.J., Watt A.C., BrinJones H., Sceneay J., Li B.B., Khan N., Ubellacker J.M., Xie S., Metzger-Filho O., Hoog J., Ellis M.J., Ma C.X., Ramm S., Krop I.E., Winer E.P., Roberts T.M., Kim H.J., McAllister S.S., Zhao J.J. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017; 548(7668): 471–5. doi:10.1038/nature23465.; Jerby-Arnon L., Shah P., Cuoco M.S., Rodman C., Su M.J., Melms J.C., Leeson R., Kanodia A., Mei S., Lin J.R., Wang S., Rabasha B., Liu D., Zhang G., Margolais C., Ashenberg O., Ott P.A., Buchbinder E.I., Haq R., Hodi F.S., Boland G.M., Sullivan R.J., Frederick D.T., Miao B., Moll T., Flaherty K.T., Herlyn M., Jenkins R.W., Thummalapalli R., Kowalczyk M.S., Cañadas I., Schilling B., Cartwright A.N.R., Luoma A.M., Malu S., Hwu P., Bernatchez C., Forget M.A., Barbie D.A., Shalek A.K., Tirosh I., Sorger P.K., Wucherpfennig K., Van Allen E.M., Schadendorf D., Johnson B.E., Rotem A., Rozenblatt-Rosen O., Garraway L.A., Yoon C.H., Izar B., Regev A. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell. 2018; 175(4): 984–97. doi:10.1016/j.cell.2018.09.006.; Wang X., Zhang H., Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019; 2(2): 141–60. doi:10.20517/cdr.2019.10.; Sade-Feldman M., Jiao Y.J., Chen J.H., Rooney M.S., BarzilyRokni M., Eliane J.P., Bjorgaard S.L., Hammond M.R., Vitzthum H., Blackmon S.M., Frederick D.T., Hazar-Rethinam M., Nadres B.A., Van Seventer E.E., Shukla S.A., Yizhak K., Ray J.P., Rosebrock D., Livitz D., Adalsteinsson V., Getz G., Duncan L.M., Li B., Corcoran R.B., Lawrence D.P., Stemmer-Rachamimov A., Boland G.M., Landau D.A., Flaherty K.T., Sullivan R.J., Hacohen N. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017; 8(1): 1136. doi:10.1038/s41467-017-01062-w.; Fridman W.H., Pagès F., Sautès-Fridman C., Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012; 12(4): 298–306. doi:10.1038/nrc3245.; Becht E., Giraldo N.A., Lacroix L., Buttard B., Elarouci N., Petitprez F., Selves J., Laurent-Puig P., Sautès-Fridman C., Fridman W.H., de Reyniès A. Estimating the population abundance of tissue-infltrating immune and stromal cell populations using gene expression. Genome Biol. 2016; 17(1): 218. doi:10.1186/s13059-016-1070-5. Erratum in: Genome Biol. 2016; 17(1): 249.; Giraldo N.A., Becht E., Pagès F., Skliris G., Verkarre V., Vano Y., Mejean A., Saint-Aubert N., Lacroix L., Natario I., Lupo A., Alifano M., Damotte D., Cazes A., Triebel F., Freeman G.J., Dieu-Nosjean M.C., Oudard S., Fridman W.H., Sautès-Fridman C. Orchestration and Prognostic Signifcance of Immune Checkpoints in the Microenvironment of Primary and Metastatic Renal Cell Cancer. Clin Cancer Res. 2015; 21(13): 3031–40. doi:10.1158/1078-0432.CCR-14-2926.; Helmink B.A., Reddy S.M., Gao J., et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020; 577(7791): 549–55. doi:10.1038/s41586-019-1922-8.; Petitprez F., de Reyniès A., Keung E.Z., Chen T.W., Sun C.M., Calderaro J., Jeng Y.M., Hsiao L.P., Lacroix L., Bougoüin A., Moreira M., Lacroix G., Natario I., Adam J., Lucchesi C., Laizet Y.H., Toulmonde M., Burgess M.A., Bolejack V., Reinke D., Wani K.M., Wang W.L., Lazar A.J., Roland C.L., Wargo J.A., Italiano A., Sautès-Fridman C., Tawbi H.A., Fridman W.H. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020; 577(7791): 556–60. doi:10.1038/s41586-019-1906-8.; Stubbs M., McSheehy P.M., Griffths J.R., Bashford C.L. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today. 2000; 6(1): 15–9. doi:10.1016/s1357-4310(99)01615-9.; Sormendi S., Wielockx B. Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment. Front Immunol. 2018; 9: 40. doi:10.3389/fmmu.2018.00040.; Garcia-Lora A., Algarra I., Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol. 2003; 195(3): 346–55. doi:10.1002/jcp.10290.; Tatli Dogan H., Kiran M., Bilgin B., Kiliçarslan A., Sendur M.A.N., Yalçin B., Ardiçoglu A., Atmaca A.F., Gumuskaya B. Prognostic signifcance of the programmed death ligand 1 expression in clear cell renal cell carcinoma and correlation with the tumor microenvironment and hypoxia-inducible factor expression. Diagn Pathol. 2018; 13(1): 60. doi:10.1186/s13000-018-0742-8.; Zhang J., Shi Z., Xu X., Yu Z., Mi J. The infuence of microenvironment on tumor immunotherapy. FEBS J. 2019; 286(21): 4160–75. doi:10.1111/febs.15028.; Pan D., Kobayashi A., Jiang P., Ferrari de Andrade L., Tay R.E., Luoma A.M., Tsoucas D., Qiu X., Lim K., Rao P., Long H.W., Yuan G.C., Doench J., Brown M., Liu X.S., Wucherpfennig K.W. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 2018; 359(6377): 770–5. doi:10.1126/science.aao1710.; Varela I., Tarpey P., Raine K., Huang D., Ong C.K., Stephens P., Davies H., Jones D., Lin M.L., Teague J., Bignell G., Butler A., Cho J., Dalgliesh G.L., Galappaththige D., Greenman C., Hardy C., Jia M., Latimer C., Lau K.W., Marshall J., McLaren S., Menzies A., Mudie L., Stebbings L., Largaespada D.A., Wessels L.F., Richard S., Kahnoski R.J., Anema J., Tuveson D.A., Perez-Mancera P.A., Mustonen V., Fischer A., Adams D.J., Rust A., Chan-on W., Subimerb C., Dykema K., Furge K., Campbell P.J., Teh B.T., Stratton M.R., Futreal P.A. Exome sequencing identifes frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011; 469(7331): 539–42. doi:10.1038/nature09639. Erratum in: Nature. 2012; 484(7392): 130.; Miao D., Margolis C.A., Gao W., Voss M.H., Li W., Martini D.J., Norton C., Bossé D., Wankowicz S.M., Cullen D., Horak C., Wind-Rotolo M., Tracy A., Giannakis M., Hodi F.S., Drake C.G., Ball M.W., Allaf M.E., Snyder A., Hellmann M.D., Ho T., Motzer R.J., Signoretti S., Kaelin W.G., Choueiri T.K., van Allen E.M. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018; 359(6377): 801–6. doi:10.1126/science.aan5951.; Braun D.A., Ishii Y., Walsh A.M., Van Allen E.M., Wu C.J., Shukla S.A., Choueiri T.K. Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma. JAMA Oncol. 2019; 5(11): 1631–3. doi:10.1001/jamaoncol.2019.3158.; https://www.siboncoj.ru/jour/article/view/2686

  4. 4
    Academic Journal

    المساهمون: The study was supported by the Russian Science Foundation (grant №21-75-30015), Работа выполнена при поддержке гранта РНФ (№21-75-30015)

    المصدر: Siberian journal of oncology; Том 22, № 1 (2023); 141-150 ; Сибирский онкологический журнал; Том 22, № 1 (2023); 141-150 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2440/1085; Puronen C.E., Ford E.S., Uldrick T.S. Immunotherapy in People With HIV and Cancer. Front Immunol. 2019; 10: 2060. doi:10.3389/fimmu.2019.02060.; Douek D.C., Brenchley J.M., Betts M.R., Ambrozak D.R., Hill B.J., Okamoto Y., Casazza J.P., Kuruppu J., Kunstman K., Wolinsky S., Gross- man Z., Dybul M., Oxenius A., Price D.A., Connors M., Koup R.A. HIV preferentially infects HIV-specific CD4+ T cells. Nature. 2002; 417(6884): 95–8. doi:10.1038/417095a.; Fenwick C., Joo V., Jacquier P., Noto A., Banga R., Perreau M., Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev. 2019; 292(1): 149–63. doi:10.1111/imr.12823.; Jubel J.M., Barbati Z.R., Burger C., Wirtz D.C., Schildberg F.A. The Role of PD-1 in Acute and Chronic Infection. Front Immunol. 2020; 11: 487. doi:10.3389/fimmu.2020.00487.; Cockerham L.R., Jain V., Sinclair E., Glidden D.V., Hartogenesis W., Hatano H., Hunt P.W., Martin J.N., Pilcher C.D., Sekaly R., McCune J.M., Hecht F.M., Deeks S.G. Programmed death-1 expression on CD4⁺ and CD8⁺ T cells in treated and untreated HIV disease. AIDS. 2014; 28(12): 1749–58. doi:10.1097/QAD.0000000000000314.; Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015; 15(8): 486–99. doi:10.1038/nri3862.; van der Sluis R.M., Kumar N.A., Pascoe R.D., Zerbato J.M., Evans V.A., Dantanarayana A.I., Anderson J.L., Sékaly R.P., Fromentin R., Chomont N., Cameron P.U., Lewin S.R. Combination Immune Checkpoint Blockade to Reverse HIV Latency. J Immunol. 2020; 204(5): 1242–54. doi:10.4049/jimmunol.1901191.; Chen H., Moussa M., Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol. 2020; 11: 1223.; Velu V., Titanji K., Zhu B., Husain S., Pladevega A., Lai L., Vanderford T.H., Chennareddi L., Silvestri G., Freeman G.J., Ahmed R., Amara R.R. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009; 458(7235): 206–10. doi:10.1038/nature07662.; Mylvaganam G.H., Chea L.S., Tharp G.K., Hicks S., Velu V., Iyer S.S., Deleage C., Estes J.D., Bosinger S.E., Freeman G.J., Ahmed R., Amara R.R. Combination anti-PD-1 and antiretroviral therapy provides therapeutic benefit against SIV. JCI Insight. 2018; 3(18). doi:10.1172/jci.insight.122940.; Heppt M.V., Schlaak M., Eigentler T.K., Kähler K.C., Kiecker F., Loquai C., Meier F., Tomsitz D., Brenner N., Niesert A.C., Thonke R., Hauschild A., Berking C. Checkpoint blockade for metastatic melanoma and Merkel cell carcinoma in HIV-positive patients. Ann Oncol. 2017; 28(12): 3104–6. doi:10.1093/annonc/mdx538.; Chang E., Sabichi A.L., Kramer J.R., Hartman C., Royse K.E., White D.L., Patel N.R., Richardson P., Yellapragada S.V., Garcia J.M., Chiao E.Y. Nivolumab Treatment for Cancers in the HIV-infected Population. J Immunother. 2018; 41(8): 379–83. doi:10.1097/CJI.0000000000000240.; Galanina N., Goodman A.M., Cohen P.R., Frampton G.M., Kurzrock R. Successful Treatment of HIV-Associated Kaposi Sarcoma with Immune Checkpoint Blockade. Cancer Immunol Res. 2018; 6(10): 1129–35. doi:10.1158/2326-6066.CIR-18-0121.; Ostios-Garcia L., Faig J., Leonardi G.C., Adeni A.E., Subegdjo S.J., Lydon C.A., Rangachari D., Huberman M.S., Sehgal K., Shea M., VanderLaan P.A., Cheng M.P., Marty F.M., Hammond S.P., Costa D.B., Awad M.M. Safety and Efficacy of PD-1 Inhibitors Among HIV-Positive Patients With Non-Small Cell Lung Cancer. J Thorac Oncol. 2018; 13(7): 1037–42. doi:10.1016/j.jtho.2018.03.031.; Cook M.R., Kim C. Safety and Efficacy of Immune Checkpoint Inhibitor Therapy in Patients With HIV Infection and Advanced-Stage Cancer: A Systematic Review. JAMA Oncol. 2019; 5(7): 1049–54. doi:10.1001/jamaoncol.2018.6737.; Spano J.P., Veyri M., Gobert A., Guihot A., Perré P., Kerjouan M., Brosseau S., Cloarec N., Montaudié H., Helissey C., Flament T., Gounant V., Lavolé A., Poizot-Martin I., Katlama C. Immunotherapy for cancer in people living with HIV: safety with an efficacy signal from the series in real life experience. AIDS. 2019; 33(11): 13–9. doi:10.1097/QAD.0000000000002298.; Uldrick T.S., Gonçalves P.H., Abdul-Hay M., Claeys A.J., Emu B., Ernstoff M.S., Fling S.P., Fong L., Kaiser J.C., Lacroix A.M., Lee S.Y., Lundgren L.M., Lurain K., Parsons C.H., Peeramsetti S., Ramaswami R., Sharon E., Sznol M., Wang C.J., Yarchoan R., Cheever M.A.; Cancer Immunotherapy Trials Network (CITN)-12 Study Team. Assessment of the Safety of Pembrolizumab in Patients With HIV and Advanced Cancer-A Phase 1 Study. JAMA Oncol. 2019; 5(9): 1332–9. doi:10.1001/jamaoncol.2019.2244.; Gonzalez-Cao M., Morán T., Dalmau J., Garcia-Corbacho J., Bracht J.W.P., Bernabe R., Juan O., de Castro J., Blanco R., Drozdowskyj A., Argilaguet J., Meyerhans A., Blanco J., Prado J.G., Carrillo J., Clotet B., Massuti B., Provencio M., Molina-Vila M.A., Mayo de Las Casa C., Garzon M., Cao P., Huang C.Y., Martinez-Picado J., Rosell R. Assessment of the Feasibility and Safety of Durvalumab for Treatment of Solid Tumors in Patients With HIV-1 Infection: The Phase 2 DURVAST Study. JAMA Oncol. 2020; 6(7): 1063–7. doi:10.1001/jamaoncol.2020.0465.; Lavole A., Mazieres J., Schneider S., Brosseau S., Kiakouama L., Greillier L., Guihot A., Abbar B., Baron M., Makinson A., Langlais A., Morin F., Spano J.P., Cadranel J.; On behalf the French Cooperative Thoracic Intergroup (IFCT). Assessment of nivolumab in HIV-Infected patients with advanced non-small cell lung cancer after prior chemotherapy. The IFCT-1602 CHIVA2 phase 2 clinical trial. Lung Cancer. 2021; 158: 146–50. doi:10.1016/j.lungcan.2021.05.031.; Uldrick T.S., Adams S.V., Fromentin R., Roche M., Fling S.P., Gonçalves P.H., Lurain K., Ramaswami R., Wang C.J., Gorelick R.J., Welker J.L., O'Donoghue L., Choudhary H., Lifson J.D., Rasmussen T.A., Rhodes A., Tumpach C., Yarchoan R., Maldarelli F., Cheever M.A., Sékaly R., Chomont N., Deeks S.G., Lewin S.R. Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Sci Transl Med. 2022; 14(629). doi:10.1126/scitranslmed.abl3836.; Shah N.J., Al-Shbool G., Blackburn M., Cook M., Belouali A., Liu S.V., Madhavan S., He A.R., Atkins M.B., Gibney G.T., Kim C. Safety and efficacy of immune checkpoint inhibitors (ICIs) in cancer patients with HIV, hepatitis B, or hepatitis C viral infection. J Immunother Cancer. 2019; 7(1): 353. doi:10.1186/s40425-019-0771-1.; Guihot A., Marcelin A.G., Massiani M.A., Samri A., Soulié C., Autran B., Spano J.P. Drastic decrease of the HIV reservoir in a patient treated with nivolumab for lung cancer. Ann Oncol. 2018; 29(2): 517–8. doi:10.1093/annonc/mdx696.; Abbar B., Baron M., Katlama C., Marcelin A.G., Veyri M., Autran B., Guihot A., Spano J.P. Immune checkpoint inhibitors in people living with HIV: what about anti-HIV effects? AIDS. 2020; 34(2): 167–75. doi:10.1097/QAD.0000000000002397.; Le Garff G., Samri A., Lambert-Niclot S., Even S., Lavolé A., Cadranel J., Spano J.P., Autran B., Marcelin A.G., Guihot A. Transient HIV-specific T cells increase and inflammation in an HIV-infected patient treated with nivolumab. AIDS. 2017; 31(7): 1048–51. doi:10.1097/QAD.0000000000001429.; Klein N.C., Go C.H., Cunha B.A. Infections associated with steroid use. Infect Dis Clin North Am. 2001; 15(2): 423–32. doi:10.1016/s0891-5520(05)70154-9.; Del Castillo M., Romero F.A., Argüello E., Kyi C., Postow M.A., Redelman-Sidi G. The Spectrum of Serious Infections Among Patients Receiving Immune Checkpoint Blockade for the Treatment of Melanoma. Clin Infect Dis. 2016; 63(11): 1490–3. doi:10.1093/cid/ciw539.; Fujita K., Kim Y.H., Kanai O., Yoshida H., Mio T., Hirai T. Emerging concerns of infectious diseases in lung cancer patients receiving immune checkpoint inhibitor therapy. Respir Med. 2019; 146: 66–70. doi:10.1016/j.rmed.2018.11.021.; Management of Immunotherapy-Related Toxicities [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. [cited 2022 Apr].; Prevention and Treatment of Cancer-Related Infections [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf. [cited 2022 Apr].; Проценко С.А., Антимоник Н.Ю., Берштейн Л.М., Жукова Н.В., Новик А.В., Носов Д.А., Петенко Н.Н., Семенова А.И., Чубенко В.А., Харкевич Г.Ю., Юдин Д.И. Практические рекомендации по управлению иммуноопосредованными нежелательными явлениями. Злокачественные опухоли: Практические рекомендации RUSSCO. 2020; 10(#3s2). doi:10.18027/22245057-2020-10-3s2-50.; Uchida N., Fujita K., Nakatani K., Mio T. Acute progression of aspergillosis in a patient with lung cancer receiving nivolumab. Respirol Case Rep. 2017; 6(2). doi:10.1002/rcr2.289.; Fujita K., Terashima T., Mio T. Anti-PD1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol. 2016; 11(12): 2238–40. doi:10.1016/j.jtho.2016.07.006.; Chu Y.C., Fang K.C., Chen H.C., Yeh Y.C., Tseng C.E., Chou T.Y., Lai C.L. Pericardial Tamponade Caused by a Hypersensitivity Response to Tuberculosis Reactivation after Anti-PD-1 Treatment in a Patient with Advanced Pulmonary Adenocarcinoma. J Thorac Oncol. 2017; 12(8): 111–4. doi:10.1016/j.jtho.2017.03.012.; Zaemes J., Kim C. Immune checkpoint inhibitor use and tuberculosis: a systematic review of the literature. Eur J Cancer. 2020; 132: 168–75. doi:10.1016/j.ejca.2020.03.015.; Langan E.A., Graetz V., Allerheiligen J., Zillikens D., Rupp J., Terheyden P. Immune checkpoint inhibitors and tuberculosis: an old disease in a new context. Lancet Oncol. 2020; 21(1): 55–65. doi:10.1016/S1470-2045(19)30674-6.; Stroh G.R., Peikert T., Escalante P. Active and latent tuberculosis infections in patients treated with immune checkpoint inhibitors in a nonendemic tuberculosis area. Cancer Immunol Immunother. 2021; 70(11): 3105–11. doi:10.1007/s00262-021-02905-8.; Chang C.C., Sheikh V., Sereti I., French M.A. Immune reconstitution disorders in patients with HIV infection: from pathogenesis to prevention and treatment. Curr HIV/AIDS Rep. 2014; 11(3): 223–32. doi:10.1007/s11904-014-0213-0.; Клинические рекомендации Министерства здравоохранения Российской Федерации «ВИЧ-инфекция у взрослых» [Internet]. 2020. URL: https://cr.minzdrav.gov.ru/schema/79_1. [cited 2022 Apr].; Oseso L.N., Chiao E.Y., Bender Ignacio R.A. Evaluating Antiretroviral Therapy Initiation in HIV-Associated Malignancy: Is There Enough Evidence to Inform Clinical Guidelines? J Natl Compr Canc Netw. 2018; 16(8): 927–32. doi:10.6004/jnccn.2018.7057.; Боева Е.В., Беляков Н.А. Синдром восстановления иммунитета при ВИЧ-инфекции. Инфекция и иммунитет. 2018; 8(2): 139–49. doi:10.15789/2220-7619-2018-2-139-149.; Riechelmann R.P., Del Giglio A. Drug interactions in oncology: how common are they? Ann Oncol. 2009; 20(12): 1907–12. doi:10.1093/annonc/mdp369.; Gazzé G. Combination therapy for metastatic melanoma: a pharmacist’s role, drug interactions & complementary alternative therapies. Melanoma Manag. 2018; 5(2). doi:10.2217/mmt-2017-0026.; Cortellini A., Tucci M., Adamo V., Stucci L.S., Russo A., Tanda E.T., Spagnolo F., Rastelli F., Bisonni R., Santini D., Russano M., Anesi C., Giusti R., Filetti M., Marchetti P., Botticelli A., Gelibter A., Occhipinti M.A., Marconcini R., Vitale M.G., Nicolardi L., Chiari R., Bareggi C., Nigro O., Tuzi A., De Tursi M., Petragnani N., Pala L., Bracarda S., Macrini S., Inno A., Zoratto F., Veltri E., Di Cocco B., Mallardo D., Vitale M.G., Pinato D.J., Porzio G., Ficorella C., Ascierto P.A. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. J Immunother Cancer. 2020; 8(2). doi:10.1136/jitc-2020-001361.; van Leeuwen R.W.F., Jansman F.G.A., van den Bemt P.M.L.A., de Man F., Piran F., Vincenten I., Jager A., Rijneveld A.W., Brugma J.D., Mathijssen R.H.J., van Gelder T. Drug-drug interactions in patients treated for cancer: a prospective study on clinical interventions. Ann Oncol. 2015; 26(5): 992–7. doi:10.1093/annonc/mdv029.; Olin J.L., Klibanov O., Chan A., Spooner L.M. Managing Pharmacotherapy in People Living With HIV and Concomitant Malignancy. Ann Pharmacother. 2019; 53(8): 812–32. doi:10.1177/1060028019833038.; Spano J.P., Poizot-Martin I., Costagliola D., Boué F., Rosmorduc O., Lavolé A., Choquet S., Heudel P.E., Leblond V., Gabarre J., Valantin M.A., Solas C., Guihot A., Carcelain G., Autran B., Katlama C., Quéro L. Non-AIDS-related malignancies: expert consensus review and practical applications from the multidisciplinary CANCERVIH Working Group. Ann Oncol. 2016; 27(3): 397–408. doi:10.1093/annonc/mdv606.; Drug interactions checker [Internet]. URL: https://www.drugs.com/drug_interactions.html. [cited 2022 Apr].; HIV drug interactions. [Internet]. URL: https://www.hiv-druginteractions.org/checker. [cited 2022 Apr].; Bressan S., Pierantoni A., Sharifi S., Facchini S., Quagliarello V., Berretta M., Montopoli M. Chemotherapy-Induced Hepatotoxicity in HIV Patients. Cells. 2021; 10(11): 2871. doi:10.3390/cells10112871.; Centanni M., Moes D.J.A.R., Trocóniz I.F., Ciccolini J., van Hasselt J.G.C. Clinical Pharmacokinetics and Pharmacodynamics of Immune Checkpoint Inhibitors. Clin Pharmacokinet. 2019; 58(7): 835–57. doi:10.1007/s40262-019-00748-2.; Hussain N., Naeem M., Pinato D.J. Concomitant medications and immune checkpoint inhibitor therapy for cancer: causation or association? Hum Vaccin Immunother. 2021; 17(1): 55–61. doi:10.1080/21645515.2020.1769398.; Sahin I.H., Kane S.R., Brutcher E., Guadagno J., Smith K.E., Wu C., Lesinski G.B., Gunthel C.J., El-Rayes B.F. Safety and Efficacy of Immune Checkpoint Inhibitors in Patients With Cancer Living With HIV: A Perspective on Recent Progress and Future Needs. JCO Oncol Pract. 2020; 16(6): 319–25. doi:10.1200/JOP.19.00754.; Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. 2nd ed. Geneva: World Health Organization; 2016.; Cancer in People Living With HIV [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/hiv.pdf. [cited 2022 Apr].; Gonzalez-Cao M., Puertolas T., Riveiro M., Muñoz-Couselo E., Ortiz C., Paredes R., Podzamczer D., Manzano J.L., Molto J., Revollo B., Carrera C., Mateu L., Fancelli S., Espinosa E., Clotet B., MartinezPicado J., Cerezuela P., Soria A., Marquez I., Mandala M., Berrocal A.; Spanish Melanoma Group (GEM). Cancer immunotherapy in special challenging populations: recommendations of the Advisory Committee of Spanish Melanoma Group (GEM). J Immunother Cancer. 2021; 9(3). doi:10.1136/jitc-2020-001664. Erratum in: J Immunother Cancer. 2022; 10(2).; Elkington P.T., Bateman A.C., Thomas G.J., Ottensmeier C.H. Implications of Tuberculosis Reactivation after Immune Checkpoint Inhibition. Am J Respir Crit Care Med. 2018; 198(11): 1451–3. doi:10.1164/rccm.201807-1250LE.; Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization; 2021.; Ghrenassia E., Martis N., Boyer J., Burel-Vandenbos F., Mekinian A., Coppo P. The diffuse infiltrative lymphocytosis syndrome (DILS). A comprehensive review. J Autoimmun. 2015; 59: 19–25. doi:10.1016/j.jaut.2015.01.010.; Пономарева Е.Ю., Шульдяков А.А., Анащенко А.В., Ребров А.П. Клиническая манифестация ВИЧ-инфекции, имитирующая ревматические заболевания. Научно-практическая ревматология. 2018; 56(4): 525–30.; https://www.siboncoj.ru/jour/article/view/2440

  5. 5
    Academic Journal

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 3 (2023); 422-430 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 3 (2023); 422-430 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/894/498; Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Состояние онкологической помощи населению России в 2022 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022: 239 с.; Злокачественное новообразование бронхов и легкого. Клинические рекомендации. 2022. URL: https://cr.minzdrav.gov.ru/recomend/30_4 (дата обращения 03.09.2023).; Инструкция по медицинскому применению лекарственного препарата Китруда®. URL: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=88450c76-24e5-43ee-bbd3-afd10dc1e7c8&t= (дата обращения 03.09.2023).; Инструкция по медицинскому применению лекарственного препарата Опдиво® URL: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=f6ac1a6a-9f33-4eaa-a603-b2928d720378&t= (дата обращения 03.09.2023).; Инструкция по медицинскому применению лекарственного препарата Тецентрик®. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=c210e8ba-5f80-4dc6-90bc-98e51fb468ed&t= (дата обращения 03.09.2023).; Зырянов С.К., Дьяков И.Н. Фармакоэкономическая эффективность применения препарата атезолизумаб в сравнении с другими ингибиторами PD-1 у пациентов с распространенным немелкоклеточным раком легкого после предшествующей химиотерапии. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (1): 5–12. https://doi.org/10.17749/20704909.2020.13.1.5-12.; Créquit P., Chaimani A., Yavchitz A., et al. Comparative efficacy and safety of second-line treatments for advanced non-small cell lung cancer with wild-type or unknown status for epidermal growth factor receptor: a systematic review and network meta-analysis. BMC Med. 2017; 15 (1): 193. https://doi.org/10.1186/s12916-017-0954-x.; Rittmeyer A., Barlesi F., Waterkamp D., et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017; 389 (10066): 255–65. https://doi.org/10.1016/S01406736(16)32517-X.; НМИЦ oнкологии им. Н.Н. Блохина. Прейскурант. URL: https://www.ronc.ru/platnye-uslugi/prays-list-uslug/ (дата обращения 03.09.2023).; Постановление Правительства РФ от 28.08.2014 № 871 «Об утверждении Правил формирования перечней лекарственных препаратов для медицинского применения и минимального ассортимента лекарственных препаратов, необходимых для оказания медицинской помощи». URL: https://base.garant.ru/70728348/ (дата обращения 03.09.2023).; https://www.pharmacoeconomics.ru/jour/article/view/894

  6. 6
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 13, № 1 (2023); 116-125 ; Опухоли головы и шеи; Том 13, № 1 (2023); 116-125 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-1

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/874/578; Are C., Shaha A.R. Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol 2006;13(4):453–64. DOI:10.1245/ASO.2006.05.042; Smallridge R.C., Ain K.B., Asa S.L. et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012;22(11):1104–39. DOI:10.1089/thy.2012.0302.; Untch B.R., Olson J.A. Jr. Anaplastic thyroid carcinoma, thyroid lymphoma, and metastasis to thyroid. Surg Oncol Clin N Am 2006;15(3):661–79. DOI:10.1016/j.soc.2006.05.006; Sherman S.I. Anaplastic carcinoma: clinical aspects. In: Thyroid cancer: a comprehensive guide to clinical management. Ed. by L. Wartofsky, D. Van Nostrand. 2nd edn. Totowa: Humana Press, 2006. Pp. 629–632.; Venkatesh Y.S., Ordonez N.G., Schultz P.N. et al. Anaplastic carcinoma of the thyroid. A clinicopathologic study of 121 cases. Cancer 1990;66(2):321–30. DOI:10.1002/1097-0142(19900715)66:23.0.co;2-a; Пылев А.Л., Жандарова А.А., Петров К.С. и др. Анапластический рак щитовидной железы. Есть ли свет в конце туннеля? Опухоли головы и шеи 2020;10(1):10–9. DOI:10.17650/2222- 1468-2020-10-1-10-19; Никифорович П.А., Румянцев П.О., Слепцов И.В. и др. Лечение BRAFV600E-позитивного рака щитовидной железы. Клиническое наблюдение. Сибирский онкологический журнал 2020;19(5):131–44. DOI:10.21294/1814-4861-2020-19-5-131-144; Subbiah V., Kreitman R.J., Wainberg Z.A. et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol 2018;36(1):7–13. DOI:10.1200/JCO.2017.73.6785; Marabelle A., Fakih M., Lopez J. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 2020;21(10):1353–65. DOI:10.1016/S1470-2045(20)30445-9; Capdevila J., Wirth L.J., Ernst T. et al. PD-1 blockade in anaplastic thyroid carcinoma. J Clin Oncol 2020;38(23):2620–7. DOI:10.1200/JCO.19.02727; Ma M., Lin B., Wang M. et al. Immunotherapy in anaplastic thyroid cancer. Am J Transl Res 2020;12(3):974–88.; Zwaenepoel K., Jacobs J., De Meulenaere A. et al. CD70 and PD-L1 in anaplastic thyroid cancer-promising targets for immunotherapy. Histopathology 2017;71(3):357–65. DOI:10.1111/his.13230; Cantara S., Bertelli E., Occhini R. et al. Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer. Endocrine 2019;64(1):122–9. DOI:10.1007/s12020-019-01865-5; Tuccilli C., Baldini E., Sorrenti S. et al. CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers. Int J Endocrinol 2018;2018:1742951. DOI:10.1155/2018/1742951; Bible K.C., Kebebew E., Brierley J. et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2021;31(3):337386. DOI:10.1089/thy.2020.0944; Chiu A.C., Delpassand E.S., Sherman S.I. Prognosis and treatment of brain metastases in thyroid carcinoma. J Clin Endocrinol Metab 1997;82(11):3637–42. DOI:10.1210/jcem.82.11.4386; Salvati M., Frati A., Rocchi G. et al. 2001 Single brain metastasis from thyroid cancer: report of twelve cases and review of the literature. J Neurooncol 51(1):33–40. DOI:10.1023/a:1006468527935; D’Andrea M.A., Reddy G.K. Systemic antitumor effects and abscopal responses in melanoma patients receiving radiation therapy. Oncology 2020;98(4):202–15. DOI:10.1159/000505487; https://ogsh.abvpress.ru/jour/article/view/874

  7. 7
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 48-55 ; Медицинский Совет; № 11 (2023); 48-55 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7668/6802; Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.). Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). М.; 2022. 252 с. Режим доступа: https://glavonco.ru/cancer_register/%D0%97%D0%98%D0%A1%202021%20%D1%8D%D0%BB.%20%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%8F.pdf.; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.; Теплов А.А., Грицкевич А.А., Степанова Ю.А., Мирошкина И.В., Пьяникин С.С., Дунаев С.А. и др. Первично-множественный рак переходно-клеточного эпителия: диагностика и особенности течения заболевания. Экспериментальная и клиническая урология. 2018;(4):22–28. Режим доступа: https://ecuro.ru/en/article/primary-multiple-cancer-transitionalepithelium-diagnostics-and-peculiarities-disease.; Гладков О.А., Зуков Р.А., Матвеев В.Б., Митин Т. Носов Д.А., Попов А.М. Практические рекомендации по лекарственному лечению рака мочевого пузыря. Злокачественные опухоли. 2022;12(3s2-1):589–606. https://doi.org/10.18027/2224-5057-2022-12-3s2-589-606; Грицкевич А.А., Попов А.Ю., Русаков И.Г., Возный Э.К., Макаров В.А., Гриднев Д.И. и др. Вторая линия терапии метастатической уротелиальной карциномы. Клинический случай применения препарата винфлунин. Медицинский совет. 2022;16(9):95–103. https://doi.org/10.21518/2079-701X-2022-16-9-95-103.; Kacew A., Sweis R.F. FGFR3 Alterations in the Era of Immunotherapy for Urothelial Bladder Cancer. Front Immunol. 2020;11:575258. https://doi.org/10.3389/fimmu.2020.575258.; von der Maase H., Hansen S.W., Roberts J.T., Dogliotti L., Oliver T., Moore M.J. et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol. 2000;18(17): 3068–3077. https://doi.org/10.1200/JCO.2000.18.17.3068.; Sotelo M., Alonso-Gordoa T., Gajate P., Gallardo E., Morales-Barrera R., Pérez-Gracia J.L. et al. Atezolizumab in locally advanced or metastatic urothelial cancer: a pooled analysis from the Spanish patients of the IMvigor 210 cohort 2 and 211 studies. Clin Transl Oncol. 2021;23(4):882–891. https://doi.org/10.1007/s12094-020-02482-9.; Bamias A., Tzannis K., Harshman L.C., Crabb S.J., Wong Y.-N., Kumar Pal S. et al. Impact of contemporary patterns of chemotherapy utilization on survival in patients with advanced cancer of the urinary tract: a retrospective international study of invasive/advanced cancer of the urothelium (RISC). Ann Oncol. 2018;29(2):361–369. https://doi.org/10.1093/annonc/mdx692.; Galsky M.D., Hahn N.M., Rosenberg J., Sonpavde G., Hutson T., Oh W.K. et al. A consensus definition of patients with metastatic urothelial carcinoma who are unfit for cisplatin-based chemotherapy. Lancet Oncol. 2011;12(3):211–214. https://doi.org/10.1016/S1470-2045(10)70275-8.; De Santis M., Bellmunt J., Mead G., Kerst J.M., Leahy M., Maroto P. et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol. 2012;30(2):191–199. https://doi.org/10.1200/JCO.2011.37.3571.; Loehrer P.J. Sr., Einhorn L.H., Elson P.J., Crawford E.D., Kuebler P., Tannock I. et al. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol. 1992;10(7):1066–1073. https://doi.org/10.1200/JCO.1992.10.7.1066.; Gómez De Liaño A., Duran I. The continuing role of chemotherapy in the management of advanced urothelial cancer. Ther Adv Urol. 2018;10(12):455–480. https://doi.org/10.1177/1756287218814100.; Грицкевич А.А., Байтман Т.П., Мишугин С.В., Попов А.Ю., Оганян В.А., Русаков И.Г., Костин А.А. Опыт применения атезолизумаба в первой линии терапии метастатической уротелиальной карциномы. Медицинский совет. 2022;16(22):58–64. https://doi.org/10.21518/2079-701X-2022-16-22-58-64.; Gartrell B.A., He T., Sharma J., Sonpavde G. Update of systemic immunotherapy for advanced urothelial carcinoma. Urol Oncol. 2017;35(12):678–686. https://doi.org/10.1016/j.urolonc.2017.09.021.; Balar A.V., Galsky M.D., Rosenberg J.E., Powles T., Petrylak D.P., Bellmunt J. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76. https://doi.org/10.1016/S0140-6736(16)32455-2.; Balar A.V., Castellano D., O’Donnell P.H., Grivas P., Vuky J., Powles T. et al. Firstline pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–1492. https://doi.org/10.1016/S1470-2045(17)30616-2.; Powles T., Durán I., van der Heijden M.S., Loriot Y., Vogelzang N.J., De Giorgi U. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–757. https://doi.org/10.1016/S0140-6736(17)33297-X.; Rosenberg J.E., Hoffman-Censits J., Powles T., van der Heijden M.S., Balar A.V., Necchi A. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–1920. https://doi.org/10.1016/S0140-6736(16)00561-4.; Massard C., Gordon M.S., Sharma S., Rafii S., Wainberg Z.A., Luke J. et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34(26):3119–3125. https://doi.org/10.1200/JCO.2016.67.9761.; Sharma P., Retz M., Siefker-Radtke A., Baron A., Necchi A., Bedke J. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, singlearm, phase 2 trial. Lancet Oncol. 2017;18(3):312–322. https://doi.org/10.1016/S1470-2045(17)30065-7.; Apolo A.B., Infante J.R., Balmanoukian A., Patel M.R., Wang D., Kelly K. et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol. 2017;35(19):2117–2124. https://doi.org/10.1200/JCO.2016.71.6795.; Fradet Y., Bellmunt J., Vaughn D.J., Lee J.L., Fong L., Vogelzang N.J. et al. Randomized phase III KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: results of >2 years of follow-up. Ann Oncol. 2019;30(6):970–976. https://doi.org/10.1093/annonc/mdz127.; Powles T., Park S.H., Voog E., Caserta C., Valderrama B.P., Gurney H. et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 2020;383(13):1218–1230. https://doi.org/10.1056/NEJMoa2002788.; Loriot Y., Necchi A., Park S.H., Garcia-Donas J., Huddart R., Burgess E. et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med. 2019;381(4):338–348. https://doi.org/10.1056/NEJMoa1817323.; Padua T.C., Moschini M., Martini A., Pederzoli F., Nocera L., Marandino L. et al. Efficacy and toxicity of antibody-drug conjugates in the treatment of metastatic urothelial cancer: A scoping review. Urol Oncol. 2022;40(10):413–423. https://doi.org/10.1016/j.urolonc.2022.07.006.; Hoffman-Censits J.H., Lombardo K.A., Parimi V., Kamanda S., Choi W., Hahn N.M. et al. Expression of Nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl Immunohistochem Mol Morphol. 2021;29(8):619–625. https://doi.org/10.1097/PAI.0000000000000938.; Tagawa S.T., Balar A.V., Petrylak D.P., Kalebasty A.R., Loriot Y., Flechon A. et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39(22):2474–2485. https://doi.org/10.1200/JCO.20.03489.; Heery C.R., O’Sullivan-Coyne G., Madan R.A., Cordes L., Rajan A., Rauckhorst M. et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol. 2017;18(5):587–598. https://doi.org/10.1016/S1470-2045(17)30239-5.; Grenga I., Donahue R.N., Lepone L.M., Richards J., Schlom J. A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses. Clin Transl Immunol. 2016;5(5):e83. https://doi.org/10.1038/cti.2016.27.; Boyerinas B., Jochems C., Fantini M., Heery C.R., Gulley J.L., Tsang K.Y., Schlom J. Antibody-dependent cellular cytotoxicity activity of a novel anti-pd-l1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res. 2015;3(10):1148–1157. https://doi.org/10.1158/2326-6066.CIR-15-0059.; Patel M.R., Ellerton J., Infante J.R., Agrawal M., Gordon M., Aljumaily R. et al. Avelumab in Metastatic Urothelial Carcinoma after Platinum Failure (JAVELIN Solid Tumor): Pooled Results from Two Expansion Cohorts of an Open-Label, Phase 1 Trial. Lancet Oncol. 2018;19(1):51–64. https://doi.org/10.1016/S1470-2045(17)30900-2.; Apolo A.B., Ellerton J.A., Infante J.R., Agrawal M., Gordon M.S., Aljumaily R. et al. Avelumab as Second-Line Therapy for Metastatic, Platinum-Treated Urothelial Carcinoma in the Phase Ib JAVELIN Solid Tumor Study: 2-Year Updated Efficacy and Safety Analysis. J Immunother Cancer. 2020;8(2):e001246. https://doi.org/10.1136/jitc-2020-001246.; Maiorano B.A., De Giorgi U., Ciardiello D., Schinzari G., Cisternino A., Tortora G., Maiello E. Immune-Checkpoint Inhibitors in Advanced Bladder Cancer: Seize the Day. Biomedicines. 2022;10(2):411. https://doi.org/10.3390/biomedicines10020411.; Powles T., Park S.H., Voog E., Caserta C., Valderrama B.P., Gurney H. et al. Maintenance Avelumab + Best Supportive Care (BSC) versus BSC Alone after Platinum-Based First-Line (1L) Chemotherapy in Advanced Urothelial Carcinoma (UC): JAVELIN Bladder 100 Phase III Interim Analysis. J Clin Oncol. 2020;38:LBA1. https://doi.org/10.1200/JCO.2020.38.18_suppl.LBA1.; https://www.med-sovet.pro/jour/article/view/7668

  8. 8
    Academic Journal

    المصدر: Malignant tumours; Том 13, № 2 (2023); 107-112 ; Злокачественные опухоли; Том 13, № 2 (2023); 107-112 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1103/791; Martins F., Sofiya L., Sykiotis G. P., Lamine F., Maillard M., Fraga M., Shabafrouz K. et al. Adverse effects of immune-checkpoint inhibitors : epidemiology, management and surveillance // Nat. Rev. Clin. Oncol, 2019, том 16 № 9, стр. 563-580.; Wang D.Y., Salem J .- E., Cohen J.V., Chandra S., Menzer C., Ye F. et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors : A Systematic Review and Meta-analysis // JAMA Oncol, 2018, том 4, № 12. стр. 1721-1728. Chopra A., Nautiyal A., Kalkanis A., Judson M. A. Drug-Induced Sarcoidosis-Like Reactions // Chest, 2018, том Sep 154 (3), стр. 664-677.; El Jammal T., Pavic M., Gerfaud-Valentin M., Jamilloux Y., Seve P. Sarcoidosis and Cancer : A Complex Relationship// Front. Med., 2020, том 7, статья 594118.; Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitor-induced sarcoid reaction mimicking bone metastases// Lancet Oncol., 2018, том 19 (6) : e327.; Purohit B. S., Ailianou A., Dulguerov N., Becker C.D., Ratib O., Becker M. FDG-PET / CT pitfalls in oncological head and neck imaging// Insights Imaging, 2014, том 5, стр. 585-602.; Takamochi K., Yoshida J., Murakami K., Niho S., Ishii G., Nishimura M. et al. Pitfalls in lymph node staging with positron emission tomography in non-small cell lung cancer patients // Lung Cancer, 2004, том 47 (2), стр. 235-242. Kruger S., Buck A.K., Mottaghy F.M., Pauls S., Schelzig H., Hombach V. et al. Use of integrated FDG-PET / CT in sarcoidosis// Clin. Imaging, 2008, том 32 (4), стр. 269-273.; Ammar A., Zahia E., Bali, Daniel S. et al. Sarcoidosis-Like Granulomatous Lymphadenopathy Mistaken for Neoplastic Disease on Positron Emission Tomography// J. Investig. Med. High Impact Case Rep., 2019, том 7, стр. 1-3.; https://www.malignanttumors.org/jour/article/view/1103

  9. 9
    Academic Journal

    المساهمون: The article was published as part of scientific research topic № АААА-А19-119021190148-3. The investigation has not been sponsored, Статья подготовлена в рамках научной темы № АААА-А19-119021190148-3. Исследование не имело спонсорской поддержки

    المصدر: Modern Rheumatology Journal; Том 17, № 5 (2023); 112-117 ; Современная ревматология; Том 17, № 5 (2023); 112-117 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1486/1404; Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020 Jul 30;11(1):3801. doi:10.1038/s41467-020-17670-y.; Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22;12(4):252-64. doi:10.1038/nrc3239.; Cappelli LC, Gutierrez AK, Bingham CO. Rheumatic and Musculoskeletal Immune-Related Adverse Events Due to Immune Checkpoint Inhibitors: A Systematic Review of the Literature. 3 rd , Shah AA. Arthritis Care Res (Hoboken). 2017 Nov;69(11):1751-1763. doi:10.1002/acr.23177. Epub 2017 Sep 21.; Zhang S, Zhou Z, Wang L, et al. Rheumatic immune-related adverse events associated with immune checkpoint inhibitors compared with placebo in oncologic patients: a systemic review and meta-analysis. Ther Adv Chronic Dis. 2021 Feb 12;12:2040622320976996. doi:10.1177/2040622320976996. eCollection 2021.; Kostine M, Finckh A, Bingham CO, et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis. 2021 Jan;80(1):36-48. doi:10.1136/annrheumdis-2020-217139. Epub 2020 Apr 23.; Ghosh N, Tiongson MD, Stewart C, et al. Checkpoint Inhibitor-Associated Arthritis: A Systematic Review of Case Reports and Case Series. J Clin Rheumatol. 2021 Dec 1; 27(8):e317-e322. doi:10.1097/RHU.0000000000001370.; Manzo C, Isetta M, Natale M, Castagna A. Identification and Classification of Polymyalgia Rheumatica (PMR) and PMR-Like Syndromes Following Immune Checkpoint Inhibitors (ICIs) Therapy: Discussion Points and Grey Areas Emerging from a Systematic Review of Published Literature. Medicines (Basel). 2020 Nov 3;7(11):68. doi:10.3390/medicines7110068.; Cappelli LC, Brahmer JR, Forde PM, et al. Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. Semin Arthritis Rheum. 2018 Dec;48(3):553-557. doi:10.1016/j.semarthrit.2018.02.011. Epub 2018 Mar 22.; Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995 Nov;3(5):541-7. doi:10.1016/1074-7613(95)90125-6.; Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995 Nov 10;270(5238):985-8. doi:10.1126/science.270.5238.985.; Klocke K, Sakaguchi S, Holmdahl R, Wing K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):E2383-92. doi:10.1073/pnas.1603892113. Epub 2016 Apr 11.; Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999 Aug;11(2):141-51. doi:10.1016/s1074-7613(00)80089-8.; Raptopoulou AP, Bertsias G, Makrygiannakis D, et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 2010 Jul;62(7):1870-80. doi:10.1002/art.27500.; Murray-Brown W, Wilsdon TD, Weedon H, et al. Nivolumab-induced synovitis is characterized by florid T cell infiltration and rapid resolution with synovial biopsy-guided therapy. J Immunother Cancer. 2020 Jun;8(1):e000281. doi:10.1136/jitc-2019-000281.; Kim ST, Chu Y, Misoi M, et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat Commun. 2022 Apr 12;13(1):1970. doi:10.1038/s41467-022-29539-3.; Yan Y, Cao S, Liu X, et al. CX3CR1 identifies PD-1 therapy-responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy. JCI Insight. 2018 Apr 19;3(8):e97828. doi:10.1172/jci.insight.97828.; Johnson DB, Balko JM, Compton ML, et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N Engl J Med. 2016 Nov 3;375(18):1749-1755. doi:10.1056/NEJMoa1609214.; Läubli H, Koelzer VH, Matter MS, et al. The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors. Oncoimmunology. 2017 Oct 26;7(2):e1386362. doi:10.1080/2162402X.2017.1386362. eCollection 2018.; Robert L, Tsoi J, Wang X. et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res. 2014 May 1;20(9):2424-32. doi:10.1158/1078-0432.CCR-13-2648. Epub 2014 Feb 28.; Oh DY, Cham J, Zhang L, et al. Immune toxicities elicted by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res. 2017 Mar 15;77(6):1322-1330. doi:10.1158/0008-5472.CAN-16-2324. Epub 2016 Dec 28.; Calabrese L, Mariette X. Chronic inflammatory arthritis following checkpoint inhibitor therapy for cancer: game changing implications. Ann Rheum Dis. 2020 Mar;79(3):309-311. doi:10.1136/annrheumdis-2019-216510. Epub 2020 Jan 3.; Chan KK, Tirpack A, Vitone G, et al. Higher Checkpoint Inhibitor Arthritis Disease Activity may be Associated With Cancer Progression: Results From an Observational Registry. ACR Open Rheumatol. 2020 Oct;2(10):595-604. doi:10.1002/acr2.11181. Epub 2020 Oct 3.; Braaten TJ, Brahmer JR, Forde PM, et al. Immune checkpoint inhibitor-induced inflammatory arthritis persists after immunotherapy cessation. Ann Rheum Dis. 2020 Mar;79(3):332-338. doi:10.1136/annrheumdis-2019-216109. Epub 2019 Sep 20.; Schneider BJ, Naidoo J, Santomasso BD, et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J Clin Oncol. 2021 Dec 20;39(36):4073-4126. doi:10.1200/JCO.21.01440. Epub 2021 Nov 1.; Draghi A, Borch TH, Radic HD, et al. Differential effects of corticosteroids and anti-TNF on tumor-specific immune responses: implications for the management of irAEs. Int J Cancer. 2019 Sep 1;145(5):1408-1413. doi:10.1002/ijc.32080. Epub 2019 Jan 7.; Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed Death-Ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018 Oct 1;36(28):2872-2878. doi:10.1200/JCO.2018.79.0006. Epub 2018 Aug 20.; Maslov DV, Tawagi K, Kc M, et al. Timing of steroid initiation and response rates to immune checkpoint inhibitors in metastatic cancer. J Immunother Cancer. 2021 Jul;9(7):e002261. doi:10.1136/jitc-2020-002261.; Drakaki A, Dhillon PK, Wakelee H, et al. Association of baseline systemic corticosteroid use with overall survival and time to next treatment in patients receiving immune checkpoint inhibitor therapy in real-world US oncology practice for advanced non-small cell lung cancer, melanoma, or urothelial carcinoma. Oncoimmunology. 2020 Oct 5;9(1):1824645. doi:10.1080/2162402X.2020.1824645.; De Giglio A, Mezquita L, Auclin E, et al. Impact of intercurrent introduction of steroids on clinical outcomes in advanced non-Small-Cell lung cancer (NSCLC) patients under immune-checkpoint inhibitors (ICI). Cancers (Basel). 2020 Sep 30;12(10):2827. doi:10.3390/cancers12102827.; Scott SC, Pennell NA. Early use of systemic corticosteroids in patients with advanced NSCLC treated with nivolumab. J Thorac Oncol. 2018 Nov;13(11):1771-1775. doi:10.1016/j.jtho.2018.06.004. Epub 2018 Jun 20.; Riudavets M, Mosquera J, Garcia-Campelo R, et al. Immune-related adverse events and corticosteroid use for cancer-related symptoms are associated with efficacy in patients with non-small cell lung cancer receiving anti-PD-(L)1 blockade agents. Front Oncol. 2020 Sep 7;10:1677. doi:10.3389/fonc.2020.01677. eCollection 2020.; Bruera S, Suarez-Almazor ME. The effects of glucocorticoids and immunosuppressants on cancer outcomes in checkpoint inhibitor therapy. Front Oncol. 2022 Aug 23;12:928390. doi:10.3389/fonc.2022.928390. eCollection 2022.; Paderi A, Gambale E, Botteri C, et al. Association of Systemic Steroid Treatment and Outcome in Patients Treated with Immune Checkpoint Inhibitors: A Real-World Analysis. Molecules. 2021 Sep 24;26(19):5789. doi:10.3390/molecules26195789.; Petrelli F, Signorelli D, Ghidini M, et al. Association of Steroids use with Survival in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers (Basel). 2020 Feb 27;12(3):546. doi:10.3390/cancers12030546.; Ricciuti B, Dahlberg SE, Adeni A, et al. Immune Checkpoint Inhibitor Outcomes for Patients With Non-Small-Cell Lung Cancer Receiving Baseline Corticosteroids for Palliative Versus Nonpalliative Indications. J Clin Oncol. 2019 Aug 1;37(22):1927-1934. doi:10.1200/JCO.19.00189. Epub 2019 Jun 17.; Faje AT, Lawrence D, Flaherty K, et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer. 2018 Sep 15;124(18):3706-3714. doi:10.1002/cncr.31629. Epub 2018 Jul 5.; Leipe J, Christ LA, Arnoldi AP, et al. Characteristics and treatment of new-onset arthritis after checkpoint inhibitor therapy. RMD Open. 2018 Aug 17;4(2):e000714. doi:10.1136/rmdopen-2018-000714. eCollection 2018.; Brynjarsdottir HB, Bjursten S, Levin M, et al. Successful Management of Checkpoint Inhibitor-Induced Arthritis With Disease-Modifying Antirheumatic Drugs During Active Immune Checkpoint Inhibition Treatment. J Rheumatol. 2023 Sep;50(9):1195-1197. doi:10.3899/jrheum.221182. Epub 2023 Apr 1.; Ford M, Sahbudin I, Filer A, et al. High proportion of drug hypersensitivity reactions to sulfasalazine following its use in anti-PD-1-associated inflammatory arthritis. Rheumatology (Oxford). 2018 Dec 1;57(12):2244-2246. doi:10.1093/rheumatology/key234.; Pennica D, Nedwin GE, Hayflick JS, et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984;312(5996):724-9. doi:10.1038/312724a0.; Carswell EA, Old LJ, Kassel RL, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666-70. doi:10.1073/pnas.72.9.3666.; Micic D, Komaki Y, Alavanja A, et al. Risk of Cancer Recurrence Among Individuals Exposed to Antitumor Necrosis Factor Therapy: A Systematic Review and Meta-Analysis of Observational Studies. J Clin Gastroenterol. 2019 Jan;53(1):e1-e11. doi:10.1097/MCG.0000000000000865.; De Queiroz MJ, de Castro CT, Albuquerque FC, et al. Safety of biological therapy in patients with rheumatoid arthritis in administrative health databases: A systematic review and meta-analysis. Front Pharmacol. 2022 Aug 11;13:928471. doi:10.3389/fphar.2022.928471. eCollection 2022.; Montfort A, Colacios C, Levade T, et al. The TNF Paradox in Cancer Progression and Immunotherapy. Front Immunol. 2019 Jul 31;10:1818. doi:10.3389/fimmu.2019.01818. eCollection 2019.; Bertrand F, Montfort A, Marcheteau E, et al. TNF blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat Commun. 2017 Dec 22;8(1):2256. doi:10.1038/s41467-017-02358-7.; Perez-Ruiz E, Minute L, Otano I, et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature. 2019 May;569(7756):428-432. doi:10.1038/s41586-019-1162-y. Epub 2019 May 1.; Meyer N, Lusque A, Virazels M, et al. Triple combination of ipilimumab + nivolumab + anti-TNF in treatment naive melanoma patients: Final analysis of TICIMEL, a phase Ib prospective clinical trial. Annals of Oncology. 2022;33 (suppl_7): S356-S409. URL: https://www.annalsofoncology.org/article/S0923-7534(22)02823-X/fulltext.; Montfort A, Filleron T, Virazels M, et al. Combining Nivolumab and Ipilimumab with Infliximab or Certolizumab in Patients with Advanced Melanoma: First Results of a Phase Ib Clinical Trial. Clin Cancer Res. 2021 Feb 15;27(4):1037-1047. doi:10.1158/1078-0432.CCR-20-3449. Epub 2020 Dec 3.; Hailemichael Y, Johnson DH, Abdel-Wahab N, et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 2022 May 9;40(5):509-523.e6. doi:10.1016/j.ccell.2022.04.004. Epub 2022 May 9.; Weber JS, Muramatsu T, Hamid O, et al. Phase II trial of ipilimumab, nivolumab and tocilizumab for unresectable metastatic melanoma. Annals of Oncology. 2021;32 (suppl_5):S867-S905. URL: https://www.annalsofoncology.org/article/S0923-7534(21)03654-1/fulltext.; Bass AR, Abdel-Wahab N, Reid PD, et al. Comparative safety and effectiveness of TNF inhibitors, IL6 inhibitors and methotrexate for the treatment of immune checkpoint inhibitor-associated arthritis. Ann Rheum Dis. 2023 Jul;82(7):920-926. doi:10.1136/ard-2023-223885. Epub 2023 Apr 5.; Ma VT, Lao CD, Fecher LA, Schiopu E. Successful use of secukinumab in two melanoma patients with immune checkpoint inhibitor-induced inflammatory arthropathy. Immunotherapy. 2022 Jun;14(8):593-598. doi:10.2217/imt-2021-0274. Epub 2022 Apr 13.; De La Fuente F, Belkhir R, Henry J, et al. Use of a bDMARD or tsDMARD for the management of inflammatory arthritis under checkpoint inhibitors: an observational study. RMD Open. 2022 Oct;8(2):e002612. doi:10.1136/rmdopen-2022-002612.; Murray K, Floudas A, Murray C, et al. First use of tofacitinib to treat an immune checkpoint inhibitor-induced arthritis. BMJ Case Rep. 2021 Feb 4;14(2):e238851. doi:10.1136/bcr-2020-238851.; https://mrj.ima-press.net/mrj/article/view/1486

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 12, № 1 (2022); 107-113 ; Опухоли головы и шеи; Том 12, № 1 (2022); 107-113 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-1

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/742/520; Schouten L., Rutten J., Huveneers H. et al. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 2002;94(10): 2698–705. DOI:10.1002/cncr.10541.; Sun M., Velasco G., Brastianos P., Aizer A. et al. The development of brain metastases in patients with renal cell carcinoma: epidemiologic trends, survival, and clinical risk factors using a population-based cohort. Eur Urol Focus 2019;5(3):474–81. DOI:10.1016/j.euf.2017.12.007.; Голанов А.В., Банов С.М., Ильялов С.Р. и др. Современные подходы к лучевому лечению метастатического поражения головного мозга. Злокачественные опухоли 2014;3:137–40. DOI:10.18027/2224-5057-2014-3-137-140.; Heng D., Choueiri T., Rini B. et al. Outcomes of patients with metastatic renal cell carcinoma that do not meet eligibility criteria for clinical trials. Ann Oncol 2014;25(1):149–54. DOI:10.1093/annonc/mdt492.; Bianchi M., Sun M., Jeldres C. et al. Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann Oncol 2012;23(4):973–80. DOI:10.1093/annonc/mdr362.; Sun M., Velasco D.G., Brastianos P. et al. The development of brain metastases in patients with renal cell carcinoma: epidemiologic trends, survival, and clinical risk factors using a populationbased cohort. Eur Urol Focus 2019;5(3):474–81. DOI:10.1016/j.euf.2017.12.007.; Zhuang W., Li Y., Chen P. et al. Do renal cell carcinoma patients with brain metastases still need nephrectomy? Int Urol Nephrol 2019;51(6):941–9. DOI:10.1007/s11255-019-02139-9.; Ke Z., Chen S., Chen Y. et al. Risk factors for brain metastases in patients with renal cell carcinoma. BioMed Res Int 2020;2020:6836234. DOI:10.1155/2020/6836234.; Tsivian M., Moreira D., Caso Jorge R. et al. Cigarette smoking is associated with advanced renal cell carcinoma. J Clin Oncol 2011;29(15):2027–31. DOI:10.1200/JCO.2010.30.9484.; Ljungberg B., Albiges L., Abu-Ghanem Y. et al. European Association of Urology Guidelines on Renal Cell Carcinoma: the 2019 update. Eur Urol 2019;75(5):799–810. DOI:10.1016/j.eururo.2019.02.011.; Ward R., Tanaka H., Campbell S. et al. 2017 AUA renal mass and localized renal cancer guidelines: imaging implications. Radio Graphics 2018;38(7):2021–33. DOI:10.1148/rg.2018180127.; Sperduto P., Kased N., Roberge D. et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 2012;30(4):419–25. DOI:10.1200/JCO.2011.38.0527.; Gaspar L., Scott C., Rotman M. et al. Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int J Radiation Oncol Biol Phys 1997;37(4):745–51. DOI:10.1016/s0360-3016(96)00619-0.; Алешин В.А., Бекяшев А.Х., Белов Д.М. и др. Индивидуализация лечения пациентов с церебральными метастазами злокачественных опухолей. Прогностическая шкала TuNS. Злокачественные опухоли 2017;7(4):48–52. DOI:10.18027/2224-5057-2017-7-4-48-52.; Ali M., Hirshman B., Wilson B. et al. Improving the prognostic value of diseasespecific graded prognostic assessment model for renal cell carcinoma by incorporation of cumulative intracranial tumor volume. World Neurosurg 2017;108:151–6. DOI:10.1016/j.wneu.2017.07.109.; Ali Z., Rottey S., Barthelemy P. et al. Brain metastasis and renal cell carcinoma: prognostic scores assessment in the era of targeted therapies. Anticancer Res 2019;39(6):2993–3002. DOI:10.21873/anticanres.13431.; Vickers M., Al-Harbi H., Choueiri T. et al. Prognostic factors of survival for patients with metastatic renal cell carcinoma with brain metastases treated with targeted therapy: results from the international metastatic renal cell carcinoma database consortium. Clin Genitourin Cancer 2013;11(3):311–5. DOI:10.1016/j.clgc.2013.04.012.; Банов С.М., Голанов А.В., Ильялов С.Р. и др. Результаты радиохирургического и лекарственного лечения пациентов с метастазами в головной мозг. Опухоли головы и шеи 2017;7(3):19–30. DOI:10.17650/2222-14682017-7-3-19-30.; Noordijk E., Vecht С., Haaxma-rekhe H. et al. The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int J Radiat Oncol Biol Phys 1994;29(4):711–6. DOI:10.1016/0360-3016(94)90558-4.; Ветлова Е.Р., Банов С.М., Голанов А.В. Современная стратегия комбинации хирургического и лучевого лечения у пациентов с метастазами в головном мозге. Журнал «Вопросы нейрохирургии» им. акад. Н.Н. Бурденко 2017;81(6):108–15. DOI:10.17116/neiro2017816108-115.; Hara W., Tran P., Li G. et al. Cyberknife for brain metastases of malignant melanoma and renal cell carcinoma. Neurosurgery 2009;64 (2 Suppl):A26–32. DOI:10.1227/01.NEU.0000339118.55334.EA.; Sheehan J., Sun M., Kondziolka D. et al. Radiosurgery in patients with renal cell carcinoma metastasis to the brain: longterm outcomes and prognostic factors influencing survival and local tumor control. J Neurosurg 2003;98(2):342–9. DOI:10.3171/jns.2003.98.2.0342.; Soltys S., Adler J., Lipani J. et al. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases. Int J Radiat Oncol Biol Phys 2008;70(1):187–93. DOI:10.1016/j.ijrobp.2007.06.068.; Chang E., Selek U., Hassenbusch S. et al. Outcome variation among “radioresistant” brain metastases treated with stereotactic radiosurgery. Neurosurgery 2005;56(5):936–45. DOI:10.1227/01.NEU.0000158324.20757.AC.; Verma J., Jonasch E., Allen P. et al. The impact of tyrosine kinase inhibitors on the multimodality treatment of brain metastases from renal cell carcinoma. Am J Clin Oncol 2013;36(6):620–4. DOI:10.1097/COC.0b013e31825d59db.; Ippen F., Mahadevan A., Wong E. et al. Stereotactic radiosurgery for renal cancer brain metastasis: prognostic factors and the role of whole-brain radiation and surgical resection. J Oncol 2015;2015:636918. DOI:10.1155/2015/636918.; Бекяшев А.Х., Голанов А.В., Древаль О.Н. и др. Рак почки с метастазами в головной мозг. Факторы прогноза и результаты лечения. Опухоли головы и шеи 2016;6(3):53–60. DOI:10.17650/2222-1468-2016-6-353-60.; Molenaar R., Wiggenraad R., Kanter A. et al. Relationship between volume, dose and local control in stereotactic radiosurgery of brain metastasis. Br J Neurosurg 2009;23(2):170–8. DOI:10.1080/02688690902755613.; Vogelbaum M., Angelov L., Lee S. et al. Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J Neurosurg 2006:104(6):907–12. DOI:10.3171/jns.2006.104.6.907.; Yamamoto M., Kawabe T., Sato Y. et al. Stereotactic radiosurgery for patients with multiple brain metastases: a casematched study comparing treatment results for patients with 2–9 versus 10 or more tumors. J Neurosurg 2014;121:16–25. DOI:10.3171/2014.8.GKS141421.; Dirk R., Stefan H., Volker R. Radiosurgery with 20 Gy provides better local contol of 1-3 brain metastases from breast cancer than with lower doses. Anticancer Res 2015;35(1):333–6.; Алешин В.А., Карахан В.Б., Бекяшев А.Х., Белов Д.М. Метастазы рака легкого в головной мозг – роль нейрохирургического этапа лечения. Опухоли головы и шеи 2016;6(2):42–9. DOI:10.17650/2222-14682016-6-2-42-49.; Белов Д.М., Карахан В.Б., Бекяшев А.Х., Алешин В.А. Хирургический этап в комплексном лечении пациенток с церебральными метастазами рака молочной железы. Злокачественные опухоли 2014;3:110–5. DOI:10.18027/2224-5057-2014-3110-115.; Soffietti R., Ahluwalia M., Lin N. et al. Management of brain metastases according to molecular subtypes. Nat Rev Neurol 2020;16(10):557–74. DOI:10.1038/s41582-020-0391-x.; Pardridge W. Drug and gene delivery to the brain. Neuron 2002;36(4):555–8. DOI:10.1016/s0896-6273(02)01054-1.; Hu S., Chen Z., Franke R., Orwick S. et al. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res 2009;15(19):6062–9. DOI:10.1158/1078-0432.CCR09-0048.; Beck J., Procopio G., Bajetta E. et al. Final results of the European Advanced Renal Cell Carcinoma Sorafenib (EU-ARCCS) expanded-access study: a large open-label study in diverse. Ann Oncol 2011;22(8):1812–23. DOI:10.1093/annonc/mdq651.; Henderson C., Bukowski R., Stadler W. et al. The Advanced Renal Cell Carcinoma Sorafenib (ARCCS) expanded access trial: subset analysis of patients (pts) with brain metastases (BM). J Clin Oncol 2007;25(18_suppl.):15506. DOI:10.1200/jco.2007.25.18_suppl.15506.; Jäger D., Ma J., Mardiak J. et al. Sorafenib treatment of advanced renal cell carcinoma patients in daily practice: the large international PREDICT study. Clin Genitourin Cancer 2015;13(2):156– 64.е1. DOI:10.1016/j.clgc.2014.07.007.; Gore M., Hariharan S., Porta C. et al. Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer 2011;117(3):501–9. DOI:10.1002/cncr.25452.; Sternberg C., Calabrò F., Bracarda S. et al. Safety and efficacy of sunitinib in patients from Italy with metastatic renal cell carcinoma: final results from an expandedaccess trial. Oncology 2015;88(5):273–80. DOI:10.1159/000369256.; Jacobs C., Kim D., Straka C. et al. Prolonged survival of a patient with papillary renal cell carcinoma and brain metastases using pazopanib. J Clin Oncol 2013;31(7):e114–7. DOI:10.1200/JCO.2012.46.0501.; Matrana M., Duran C., Shetty A. et al. Outcomes of patients with metastatic clear-cell renal cell carcinoma treated with pazopanib after disease progression with other targeted therapies. Eur J Cancer 2013;49(15):3169–75. DOI:10.1016/j.ejca.2013.06.003.; Матвеев В.Б., Ольшанская А.С., Волкова М.И. Кабозантиниб: от исследований к реальной клинической практике. Онкоурология 2019;15(3):28–41. DOI:10.17650/1726-97762019-15-3-28-41.; Négrier S., Moriceau G., Attignon V. et al. Activity of cabozantinib in radioresistant brain metastases from renal cell carcinoma: two case reports. J Med Case Rep 2018;12(1):351. DOI:10.1186/s13256-018-1875-9.; Hirsch L., Chanza N., Farah S. et al. Clinical activity and safety of cabozantinib for brain metastases in patients with renal cell carcinoma. JAMA Oncol 2021;7(12):1815–23. DOI:10.1001/jamaoncol.2021.4544.; Hirsch L., Chanza N., Farah S. et al. Activity and safety of cabozantinib (cabo) in brain metastases (BM) from metastatic renal cell carcinoma (mRCC): an international multicenter study. J Clin Oncol 2021;39(6_suppl.):310. DOI:10.1200/JCO.2021.39.6_suppl.310.; Kattan J., Rassy E., Assi T. et al. A comprehensive review of the role of immune checkpoint inhibitors in brain metastasis of renal cell carcinoma origin. Crit Rev Oncol Hematol 2018;130:60–9. DOI:10.1016/j.critrevonc.2018.08.001.; Berghoff A., Venur V., Preusser M., Ahluwaliaeng M. Immune checkpoint inhibitors in brain metastases: from biology to treatment. Am Soc Clin Oncol Educ Book 2016;35:e116–22. DOI:10.1200/EDBK_100005.; Flippot R., Dalban C., Laguerre B. et al. Safety and efficacy of nivolumab in brain metastases from renal cell carcinoma: results of the GETUG-AFU 26 NIVOREN multicenter phase II study. J Clin Oncol 2019;37(23);2008–16. DOI:10.1200/JCO.18.02218.; Emamekhoo H., Olsen M., Carthon B. et al. Safety and efficacy of nivolumab plus ipilimumab (NIVO+IPI) in patients with advanced renal cell carcinoma (aRCC) with brain metastases: interim analysis of CheckMate 920. J Clin Oncol 2019;37(15_suppl.):4517. DOI:10.1002/cncr.34016.; https://ogsh.abvpress.ru/jour/article/view/742

  12. 12
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2022); 186-192 ; Медицинский Совет; № 9 (2022); 186-192 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6932/6229; Miller K.D., Goding Sauer A., Ortiz A.P., Fedewa S.A., Pinheiro P.S., Tortolero-Luna G. et al. Cancer Statistics for Hispanics/Latinos, 2018. CA Cancer J Clin. 2018;68:425-445. https://doi.org/10.3322/caac.21494.; Владимирова Л.Ю., Сторожакова А.Э., Попова И.Л., Кабанов С.Н., Абрамова Н.А., Теплякова М.А. и др. Некоторые аспекты применения ниволумаба в лечении метастатической меланомы (клинические наблюдения). Медицинский совет. 2021;(9):64-74. https://doi.org/10.21518/2079-701X-2021-9-64-74.; Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csoszi T., Brahmer J.R. et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37(7):537-546. https://doi.org/10.1200/JCO.18.00149.; Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E. et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627-1639. https://doi.org/10.1056/NEJMoa1507643.; Brahmer J., Reckamp K.L., Baas P., Crino L., Eberhardt W.E., Poddubskaya E. et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell NonSmall-Cell Lung Cancer. N Engl J Med. 2015;373(2):123-135. https://doi.org/10.1056/NEJMoa1504627.; Herbst R.S., Baas P., Kim D.W., Felip E., Perez-Gracia J.L., Han J.Y. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A Randomised Controlled Trial. Lancet. 2016;387(10027):1540-1550. https://doi.org/10.1016/S0140-6736(15)01281-7.; Rittmeyer A., Barlesi F., Waterkamp D., Park K., Ciardiello F., von Pawel J. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255-265. https://doi.org/10.1016/S0140-6736(16)32517-X.; Antonia S.J., Villegas A., Daniel D., Vicente D., Murakami S., Hui R. et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377(20):1919-1929. https://doi.org/10.1056/NEJMoa1709937.; Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csoszi T., Brahmer J.R. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-smallcell lung cancer. N Engl J Med. 2016;375(19):1823-1833. https://doi.org/10.1056/NEJMoa1606774.; Gandhi L., Rodriguez-Abreu D., Gadgeel S., Esteban E., Felip E., Garassino M.C. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078-2092. https://doi.org/10.1056/NEJMoa1801005.; Pollack M.H., Betof A., Dearden H., Rapazzo K., Valentine I., Shoushtari A.N. et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol. 2018;29(1):250-255. https://doi.org/10.1093/annonc/mdx642.; Lebbe C., Weber J.S., Maio M., Neyns B., Harmankaya K., Wolchok J.D. et al. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann Oncol. 2014;25(11):2277-2284. https://doi.org/10.1093/annonc/mdu441.; Watanabe H., Kubo T., Ninomiya K., Kudo K., Minami D., Murakami E. et al. The effect and safety of immune checkpoint inhibitor rechallenge in non small cell lung cancer. Jpn J Clin Oncol. 2019;49(8):762-765. https://doi.org/10.1093/jjco/hyz066.; Fujita K., Uchida N., Kanai O., Okamura M., Nakatani K., Mio T. Retreatment with pembrolizumab in advanced non-small cell lung cancer patients previously treated with nivolumab: Emerging reports of 12 cases. Cancer Chemother Pharmacol. 2018;81(6):1105-1109. https://doi.org/10.1007/s00280-018-3585-9.; Nayak L, Lee E.Q., Wen P.Y. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48-54. https://doi.org/10.1007/s11912-011-0203-y.; Gaspar L., Scott C., Rotman M., Asbell S., Phillips T., Wasserman T. et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997;37(4):745-751. https://doi.org/10.1016/s0360-3016(96)00619-0.; Sperduto P.W., Kased N., Roberge D., Xu Z., Shanley R., Luo X. et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol. 2012;30(4):419-425. https://doi.org/10.1200/JCO.2011.38.0527.; Lee D.H., Han J.Y., Kim H.T., Yoon S.J., Pyo H.R., Cho K.H. et al. Primary chemotherapy for newly diagnosed nonsmall cell lung cancer patients with synchronous brain metastases compared with whole-brain radiotherapy administered first: result of a randomized pilot study. Cancer. 2008;113(1):143-149. https://doi.org/10.1002/cncr.23526.; Attia А., Page B.P., Lesser G.J., Chan M. Treatment of radiation-induced cognitive decline. Curr Treat Options Oncol. 2014;15(4):539-550. https://doi.org/10.1007/s11864-014-0307-3.; Peters S., Adjei A.A., Gridelli C., Reck M., Kerr K., Felip E. Metastatic nonsmall-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl. 7):vii56-vii64. https://doi.org/10.1093/annonc/mds226.; Robinet G., Thomas P., Breton J.L., Lena H., Gouva S., Dabouis G. et al. Results of a phase III study of early versus delayed whole brain radiotherapy with concurrent cisplatin and vinorelbine combination in inoperable brain metastasis of non-small-cell lung cancer: Groupe Frangais de Pneumo-Cancerologie (GFPC) protocol 95-1. Ann Oncol. 2011;12(1):59-67. https://doi.org/10.1023/a:1008338312647.; Besse В., Le Moulec S., Senellart H., Mazieres J., Barlesi F., Dansin E. et al. Phase II study of bevacizumab in combination with first-line chemotherapy or second-line erlotinib in non-squamous NSCLC patients with asymptomatic untreated brain metastases (ML21823). Ann Oncol. 2012;23:ix426. https://doi.org/10.1016/S0923-7534(20)33897-7.; Goldberg S.B., Gettinger S.N., Mahajan A., Chiang A.C., Herbst R.S., Sznol M. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-ran-domised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976-983. https://doi.org/10.1016/S1470-2045(16)30053-5.; Chargari C., Magne N., Guy J.-B., Rancoule C., Levy A., Goodman K.A., Deutsch E. Optimize and refine therapeutic index in radiation therapy: overview of a century. Cancer Treat Rev. 2016;45:58-67. https://doi.org/10.1016/j.ctrv.2016.03.001.; Formenti S.C., Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256-265. https://doi.org/10.1093/jnci/djs629.; Frey B., Ruckert M., Deloch L., Ruhle P.F., Derer A., Fietkau R., Gaipl U.S. Immunomodulation by ionizing radiation-impact for design of radioimmunotherapies and for treatment of inflammatory diseases. Immunol Rev. 2017;280(1):231-248. https://doi.org/10.1111/imr.12572.; https://www.med-sovet.pro/jour/article/view/6932

  13. 13
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2022); 14-20 ; Медицинский Совет; № 9 (2022); 14-20 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6910/6210; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660.; Bareschino M.A., Schettino C., Rossi A., Maione P., Sacco P.C., Zeppa R., Gridelli C. Treatment of advanced non small cell lung cancer. J Thorac Dis. 2011;3(2):122-133. https://doi.org/10.3978/j.issn.2072-1439.2010.12.08.; Vansteenkiste J., Wauters E., Reymen B., Ackermann C.J., Peters S., De Ruysscher D. Current status of immune checkpoint inhibition in early-stage NSCLC. Ann Oncol. 2019;30(8):1244-1253. https://doi.org/10.1093/annonc/mdz175.; de Groot P.M., Wu C.C., Carter B.W., Munden R.F. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7(3):220-233. https://doi.org/10.21037/tlcr.2018.05.06.; Broderick S.R. Adjuvant and Neoadjuvant Immunotherapy in Non-small Cell Lung Cancer. Thorac Surg Clin. 2020;30(2):215-220. https://doi.org/10.1016/j.thorsurg.2020.01.001.; Chmielewska I., Stencel K., Kalinka E., Ramlau R., Krawczyk P. Neoadjuvant and Adjuvant Immunotherapy in Non-Small Cell Lung Cancer-Clinical Trials Experience. Cancers (Basel). 2021;13(20):5048. https://doi.org/10.3390/cancers13205048.; Bradbury P., Sivajohanathan D., Chan A., Kulkarni S., Ung Y., Ellis P.M. Postoperative Adjuvant Systemic Therapy in Completely Resected Non-Small-Cell Lung Cancer: A Systematic Review. Clin Lung Cancer. 2017;18(3):259-273.e8. https://doi.org/10.1016/j.cllc.2016.07.002.; Arriagada R., Bergman B., Dunant A., Le Chevalier T., Pignon J.-P., Vansteenkiste J., International Adjuvant Lung Cancer Trial Collaborative Group. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med. 2004;350(4):351-360. https://doi.org/10.1056/NEJMoa031644.; Winton T., Livingston R., Johnson D., Rigas J., Johnston M., Butts C. et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med. 2005;352(25):2589-2597. https://doi.org/10.1056/NEJMoa043623.; Pignon J.-P., Tribodet H., Scagliotti G.V., Douillard J.-Y., Shepherd F.A., Stephens R.J. et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26(21):3552-3559. https://doi.org/10.1200/JCO.2007.13.9030.; Detterbeck F. What to do with “Surprise” No. 2?: intraoperative management of patients with non-small cell lung cancer. J Thorac Oncol. 2008;3(3):289-302. https://doi.org/10.1097/JTO.0b013e3181630ebd.; Douillard J.-Y., Rosell R., De Lena M., Carpagnano F., Ramlau R., Gonzales-Larriba J.L. et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol. 2006;7(9):719-727. https://doi.org/10.1016/S1470-2045(06)70804-X.; Usami N., Yokoi K., Hasegawa Y., Taniguchi H., Shindo J., Yamamoto M. et al. Phase II study of carboplatin and gemcitabine as adjuvant chemotherapy in patients with completely resected non-small cell lung cancer: a report from the Central Japan Lung Study Group, CJLSG 0503 trial. Int J Clin Oncol. 2010;15(6):583-587. https://doi.org/10.1007/s10147-010-0118-x.; Zhang L., Ou W., Liu Q., Li N., Liu L., Wang S. Pemetrexed plus carboplatin as adjuvant chemotherapy in patients with curative resected non-squa-mous non-small cell lung cancer. Thorac Cancer. 2014;5(1):50-56. https://doi.org/10.1111/1759-7714.12058.; Lim E., Harris G., Patel A., Adachi I., Edmonds L., Song F. Preoperative versus postoperative chemotherapy in patients with resectable non-small cell lung cancer: systematic review and indirect comparison meta-analysis of randomized trials. J Thorac Oncol. 2009;4(11):1380-1388. https://doi.org/10.1097/JTO.0b013e3181b9ecca.; Wu Y.-L., Tsuboi M., He J., John T., Grohe C., Majem M. et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N Engl J Med. 2020;383(18):1711-1723. https://doi.org/10.1056/NEJMoa2027071.; Vansteenkiste J.F., Cho B.C., Vanakesa T., De Pas T., Zielinski M., Kim M.S. et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17(6):822-835. https://doi.org/10.1016/S1470-2045(16)00099-1.; Vansteenkiste J., Zielinski M., Linder A., Dahabreh J., Gonzalez E.E., Malinowski W. et al. Adjuvant MAGE-A3 immunotherapy in resected nonsmall-cell lung cancer: phase II randomized study results. J Clin Oncol. 2013;31(19):2396-2403. https://doi.org/10.1200/JCO.2012.43.7103.; Shakhar G., Ben-Eliyahu S. Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann Surg Oncol. 2003;10(8):972-992. https://doi.org/10.1245/aso.2003.02.007.; Espí A., Arenas J., Garda-Granero E., Martí E., Lledó S. Relationship of curative surgery on natural killer cell activity in colorectal cancer. Dis Colon Rectum. 1996;39(4):429-434. https://doi.org/10.1007/BF02054059.; Coffey J.C., Wang J.H., Smith M.J., Bouchier-Hayes D., Cotter T.G., Redmond H.P. Excisional surgery for cancer cure: therapy at a cost. Lancet Oncol. 2003;4(12):760-768. https://doi.org/10.1016/s1470-2045(03)01282-8.; Tai L.H., de Souza C.T., Bélanger S., Ly L., Alkayyal A.A., Zhang J. et al. Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res. 2013;73(1):97-107. https://doi.org/10.1158/0008-5472.CAN-12-1993.; Ananth A.A., Tai L.-H., Lansdell C., Alkayyal A.A., Baxter K.E., Angka L. et al. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated AntiTumor Immunity Leading to Postoperative Cancer Recurrence. PLoS ONE. 2016;11(5):e0155947. https://doi.org/10.1371/journal.pone.0155947.; Sun Z., Mao A., Wang Y., Zhao Y., Chen J., Xu P., Miao C. Treatment with anti-programmed cell death 1 (PD-1) antibody restored postoperative CD8+ T cell dysfunction by surgical stress. Biomed Pharmacother. 2017;89:1235-1241. https://doi.org/10.1016/j.biopha.2017.03.014.; Shi T., Zhu S., Guo H., Li X., Zhao S., Wang Y. et al. The Impact of Programmed Death-Ligand 1 Expression on the Prognosis of Early Stage Resected NonSmall Cell Lung Cancer: A Meta-Analysis of Literatures. Front Oncol. 2021;11:567978. https://doi.org/10.3389/fonc.2021.567978.; Catania C., Muthusamy B., Spitaleri G., Del Signore E., Pennell N.A. The new era of immune checkpoint inhibition and target therapy in early-stage non-small cell lung cancer. A review of the literature. Clin Lung Cancer. 2022;23(2):108-115. https://doi.org/10.1016/j.cllc.2021.11.003.; Durm G.A., Furqan M., Feldman L.E., Patel M., Hall R.D., Jalal S.I. et al. A randomized phase II trial of adjuvant pembrolizumab versus observation following curative resection for stage I non-small cell lung cancer (NSCLC) with primary tumors between 1-4 cm: Big Ten Cancer Research Consortium BTCRC-LUN18-153. J Clin Oncol. 2021;39(15_suppl):TPS8583-TPS8583. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS8583.; Ahn M.-J., Park S., Jung H.E., Cho J.H., Sun J.-M., Lee S.-H. et al. Phase II, prospective single-arm study of adjuvant pembrolizumab in N2 positive nonsmall cell lung cancer (NSCLC) treated with neoadjuvant concurrent chemoradiotherapy followed by curative resection: Preliminary results. J Clin Oncol. 2019;37(15_suppl):8520-8520. https://doi.org/10.1200/JCO.2019.37.15_suppl.8520.; Mielgo-Rubio X., Montemuino S., Jiménez U., Luna J., Cardeña A., Mezquita L. et al. Management of Resectable Stage III-N2 Non-Small-Cell Lung Cancer (NSCLC) in the Age of Immunotherapy. Cancers (Basel). 2021;13(19):4811. https://doi.org/10.3390/cancers13194811.; Pellini B., Chaudhuri A.A. Circulating Tumor DNA Minimal Residual Disease Detection of Non-Small-Cell Lung Cancer Treated With Curative Intent. J Clin Oncol. 2022;40(6):567-575. https://doi.org/10.1200/JCO.21.01929.; Soria J.C., Ohe Y., Vansteenkiste J., Reungwetwattana T., Chewaskulyong B., Lee K.H. et al. Osimertinib in Untreated EGFR-Mutated Advanced NonSmall-Cell Lung Cancer. N Engl J Med. 2018;378(2):113-125. https://doi.org/10.1056/NEJMoa1713137.; Shibaki R., Akamatsu H., Kato T., Nishino K., Okada M., Mitsudomi T. et al. A phase II study of cisplatin plus vinorelbine combined with atezolizumab as adjuvant therapy for completely resected non-small-cell lung cancer with EGFR mutation (West Japan Oncology Group 11719L/ADJUST study). Ther Adv Med Oncol. 2021;13:1758835920987647. https://doi.org/10.1177/1758835920987647.; Kris M.G., Faivre-Finn C., Kordbacheh T., Chaft J., Luo J., Tsao A., Swisher S. Making Checkpoint Inhibitors Part of Treatment of Patients With Locally Advanced Lung Cancers: The Time Is Now. Am Soc Clin Oncol Educ Book. 2020;40:e159-e170. https//doi.org/10.1200/EDBK_280807.; O'Brien M.E.R., Hasan B., Dafni U., Menis J., Peters S., De Waele M. et al. EORTC-ETOP randomized, phase 3 trial with anti-PD-1 monoclonal antibody pembrolizumab versus placebo for patients with early stage non-small cell lung cancer (NSCLC) after resection and standard adjuvant chemotherapy: PEARLS (NCT02504372). J Clin Oncol. 2016;34(15_suppl):TPS8571-TPS8571. https://doi.org/10.1200/JCO.2016.34.15_suppl.TPS8571.; Calvo V., Domine M., Sullivan I., Gonzalez-Laribba J.-L., Ortega A.L., Bernabe R. et al. A phase III clinical trial of adjuvant chemotherapy versus chemoimmunotherapy for stage IB-IIIA completely resected non-small cell lung cancer (NSCLC) patients nadim-adjuvant: New adjuvant trial of chemotherapy versus. J Clin Oncol. 2021;39(15_suppl):TPS8581-TPS8581. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS8581.; Chaft J.E., Dahlberg S.E., Khullar O.V., Edelman M.J., Simone C.B., Heymach J. et al. EA5142 adjuvant nivolumab in resected lung cancers (ANVIL). J Clin Oncol. 2018;36(15_suppl):TPS8581-TPS8581. https://doi.org/10.1200/JCO.2018.36.15_suppl.TPS8581.; Leighl N.B., Laurie S.A., Goss G.D., Hughes B.G.M., Stockler M., Tsao M.S. et al. CCTG BR34: A Randomized Phase 2 Trial of Durvalumab and Tremelimumab With or Without Platinum-Based Chemotherapy in Patients With Metastatic NSCLC. J Thorac Oncol. 2022;17(3):434-445. https://doi.org/10.1016/j.jtho.2021.10.023.; Peters S., Spigel D., Ahn M., Tsuboi M., Chaft J., Harpole D. et al. MERMAID-1: A Phase III Study of Adjuvant Durvalumab plus Chemotherapy in Resected NSCLC Patients with MRD+ Post-Surgery. J Thoracic Oncol. 2021;16(3):S258-S259. https://doi.org/10.1016/j.jtho.2021.01.376.; Garon E., Ardizzoni A., Barlesi F., Cho B.C., De Marchi P., Goto Y. et al. CANOPY-A: A Phase 3 Study of Canakinumab as Adjuvant Therapy in Patients with Surgically Resected NSCLC. J Thoracic Oncol. 2019;14(10):S638-S639. https://doi.org/10.1016/j.jtho.2019.08.1346.; Liuzzo G., Ruggio A., Urbinati S. The CANTOS study. G Ital Cardiol (Rome). 2018;19(3):137-141. https://doi.org/10.1714/2883.29070.; Felip E., Altorki N., Zhou C., Csőszi T., Vynnychenko I., Goloborodko O. et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet. 2021;398(10308):1344-1357. https://doi.org/10.1016/S0140-6736(21)02098-5.; Wakelee H.A., Altorki N.K., Zhou C., Csőszi T., Vynnychenko T.O., Goloborodko O. et al. IMpower010: Primary results of a phase III global study of atezolizumab versus best supportive care after adjuvant chemotherapy in resected stage IB-IIIA non-small cell lung cancer (NSCLC). J Clin Oncol. 2021;39(15_suppl): 8500-8500. https://doi.org/10.1200/JCO.2021.39.15_suppl.8500.; https://www.med-sovet.pro/jour/article/view/6910

  14. 14
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2022); 31-39 ; Медицинский Совет; № 9 (2022); 31-39 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6912/6212; Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492.; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30. https://doi.org/10.3322/caac.21332.; El-Serag H.B., Mason A.C. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999;340(10):745-750. https://doi.org/-10.1056/NEJM199903113401001.; Massarweh N.N., El-Serag H.B. Epidemiology of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control. 2017;24(3):1073274817729245. https://doi.org/10.1177/1073274817729245.; Adams L.A., Lindor K.D. Nonalcoholic fatty liver disease. Ann Epidemiol. 2007;17(11):863-869. https://doi.org/10.1016/j.annepidem.2007.05.013.; Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.). Состояние онкологической помощи населению России в 2019 году. М.: МНИОИ; 2020. 239 с. Режим доступа: https://glavonco.ru/cancer_register/Помощь%202019.pdf.; Ахметгареева К.Т., Липатов О.Н., Меньшиков К.В., Султанбаев А.В. Заболеваемость первичным раком печени в Республике Башкортостан. В: Белые ночи 2020: тезисы VI Петербургского международного онкологического форума, Санкт-Петербург, 25-28 июня 2020 года: Вопросы онкологии; 2020. С. 22. Режим доступа: https://elibrary.ru/item.asp?id=43263402.; Cheng A.L., Kang Y.K., Chen Z., Tsao C.J., Qin S., Kim J.S. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, doubleblind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25-34. https://doi.org/10.1016/S1470-2045(08)70285-7.; Llovet J.M., Ricci S., Mazzaferro V., Hilgard P., Gane E., Blanc J.F. et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378-390. https://doi.org/10.1056/NEJMoa0708857.; Шахнович Е.Б., Кербиков О.Б., Кулага Е.А. Роль таргетной терапии в лечении распространенного гепатоцеллюлярного рака. Современная онкология. 2015;17(1):50-54. Режим доступа: https://modernonco.orscience.ru/1815-1434/article/view/26999.; Kudo M., Finn R.S., Qin S., Han K.H., Ikeda K., Piscaglia F. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 noninferiority trial. Lancet. 2018;391(10126):1163-1173. https://doi.org/10.1016/S0140-6736(18)30207-1.; Bruix J., Qin S., Merle P., Granito A., Huang Y.H., Bodoky G. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56-66. https://doi.org/10.1016/S0140-6736(16)32453-9.; Меньшиков К.В., Султанбаев А.В., Ахметгареева К.Т., Липатов Д.О. Лечение метастатического гепатоцеллюлярного рака ленватинибом. Клинический случай и обзор литературы. Современная онкология. 2021;23(1):156-161. https://doi.org/10.26442/18151434.2021.1.200785.; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182-236. https://doi.org/10.1016/j.jhep.2018.03.019.; Heimbach J.K., Kulik L.M., Finn R.S., Sirlin C.B., Abecassis M.M., Roberts L.R. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358-380. https://doi.org/10.1002/hep.29086.; Matsui J., Yamamoto Y., Funahashi Y., Tsuruoka A., Watanabe T., Wakabayashi T. et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122(3):664-671. https://doi.org/10.1002/ijc.23131.; Tamai T., Hayato S., Hojo S., Suzuki T., Okusaka T., Ikeda K., Kumada H. Dose Finding of Lenvatinib in Subjects With Advanced Hepatocellular Carcinoma Based on Population Pharmacokinetic and ExposureResponse Analyses. J Clin Pharmacol. 2017;57(9):1138-1147. https://doi.org/10.1002/jcph.917.; Меньшиков К.В., Султанбаев А.В., Мусин Ш.И., Измайлов А.А., Меньшикова И.А., Насретдинов А.Ф., Шайхутдинов И.Р. Лечение метастатического гепатоцеллюлярного рака. Клинический случай и обзор литературы. Поволжский онкологический вестник. 2020;11(4):75-81. Режим доступа: https://oncort.ru/wp-content/uploads/2021/02/pov4-20.pdf.; Bussolino F., Di Renzo M.F., Ziche M., Bocchietto E., Olivero M., Naldini L. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992;119(3):629-641. https://doi.org/10.1083/jcb.119.3.629.; Finn R.S., Ryoo B.Y., Merle P., Kudo M., Bouattour M., Lim H.Y. et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, DoubleBlind, Phase III Trial. J Clin Oncol. 2020;38(3):193-202. https://doi.org/10.1200/JCO.19.01307.; Yau T., Park J.W., Finn R.S., Cheng A.L., Mathurin P., Edeline J. et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022;23(1):77-90. https://doi.org/10.1016/S1470-2045(21)00604-5.; Datta M., Coussens L.M., Nishikawa H., Hodi F.S., Jain R.K. Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies. Am Soc Clin Oncol Educ Book. 2019;39:165-174. https://doi.org/10.1200/EDBK_237987.; Fukumura D., Kloepper J., Amoozgar Z., Duda D.G., Jain R.K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325-340. https://doi.org/10.1038/nrclinonc.2018.29.; Pinter M., Scheiner B., Peck-Radosavljevic M. Immunotherapy for advanced hepatocellular carcinoma: a focus on special subgroups. Gut. 2021;70(1):204-214. https://doi.org/10.1136/gutjnl-2020-321702.; Morse M.A., Sun W., Kim R., He A.R., Abada P.B., Mynderse M., Finn R.S. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin Cancer Res. 2019;25(3):912-920. https://doi.org/10.1158/1078-0432.CCR-18-1254.; Motz G.T., Santoro S.P., Wang L.P., Garrabrant T., Lastra R.R., Hagemann I.S. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607-615. https://doi.org/10.1038/nm.3541.; Voron T., Colussi O., Marcheteau E., Pernot S., Nizard M., Pointet A.L. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212(2):1397-148. https://doi.org/10.1084/jem.20140559.; El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T.S., Kudo M., Hsu C. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492-2502. https://doi.org/10.1016/S0140-6736(17)31046-2.; Finn R.S., Ikeda M., Zhu A.X., Sung M.W., Baron A.D., Kudo M. et al. Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients With Unresectable Hepatocellular Carcinoma. J Clin Oncol. 2020;38(26):2960-2970. https://doi.org/10.1200/JCO.20.00808.; Pishvaian M., Lee M.S., Ryoo B., Stein S., Lee K., Verret W. et al. Updated safety and clinical activity results from a phase Ib study of atezolizumab + bevaci-zumab in hepatocellular carcinoma (HCG). Ann Oncol. 22018;29(Suppl. 8):VIII718-VIII719. https://doi.org/10.1093/annonc/mdy424.028.; Finn R.S., Qin S., Ikeda M., Galle P.R., Ducreux M., Kim T.Y. et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894-1905. https://doi.org/10.1056/NEJMoa1915745.; Pinter M., Ulbrich G., Sieghart W., Kolblinger C., Reiberger T., Li S. et al. Hepatocellular Carcinoma: A Phase II Randomized Controlled DoubleBlind Trial of Transarterial Chemoembolization in Combination with Biweekly Intravenous Administration of Bevacizumab or a Placebo. Radiology. 2015;277(3):903-912. https://doi.org/10.1148/radiol.2015142140.; Siegel A.B., Cohen E.I., Ocean A., Lehrer D., Goldenberg A., Knox J.J. et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol. 2008;26(18):2992-2998. https://doi.org/10.1200/JCO.2007.15.9947.; Zhu A.X., Duda D.G., Sahani D.V., Jain R.K. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8(5):292-301. https://doi.org/10.1038/nrclinonc.2011.30.; Джанян И.А., Натрусова М.В., Бредер В.В. Первые результаты применения комбинированной терапии «атезолизумаб + бевацизумаб» у пациентов с распространенным гепатоцеллюлярным раком. Медицинский совет. 2021;(4S):8-15. Режим доступа: https://www.med-sovet.pro/jour/article/view/6206.; Ikeda M., Zhu A.X., Qin S., Kim T.-Y., Lim H.Y., Kudo M. et al. 1008P IMbrave150: management of adverse events of special interest (AESIs) for atezolizumab (atezo) and bevacizumab (bev) in unresectable HCC. European Society for Medical Oncology (ESMO). Ann Oncol. 2020;31(Suppl. 4):698-699. https://doi.org/10.1016/j.annonc.2020.08.1124.; Vogel A., Cervantes A., Chau I., Daniele B., Llovet J.M., Meyer T. et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl. 4):iv238-iv255. https://doi.org/10.1093/annonc/mdy308.; Li Q., Wang J., Sun Y., Cui Y.L., Juzi J.T., Li H.X. et al. Efficacy of postoperative transarterial chemoembolization and portal vein chemotherapy for patients with hepatocellular carcinoma complicated by portal vein tumor thrombosis - a randomized study. World J Surg. 2006;30(11):2004-2011. https://doi.org/10.1007/s00268-006-0271-6.; Владимирова Л.Ю., Миташок И.С., Калабанова Е.А., Мещеряков П.Н., Снежко Т.А., Кабанов С.Н. и др. Клиническое наблюдение применения сорафениба при лечении гепатоцеллюлярной карциномы. Онкология. Журнал им. П.А. Герцена. 2017;6(5):70-73. https://doi.org/10.17116/onkolog20176570-73.; https://www.med-sovet.pro/jour/article/view/6912

  15. 15
    Academic Journal

    المصدر: Malignant tumours; Том 12, № 2 (2022); 45-51 ; Злокачественные опухоли; Том 12, № 2 (2022); 45-51 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/962/682; Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68 (6):394–424. doi:10.3322/caac.21492. Epub 2018 Sep 12.; Измайлов А. А., Аюпов Р. Т., Сулатнбаев А. В., Мусин Ш. И., Меньшиков К. В., Забелин М. В. Организация работы онкологической службы в Республике Башкортостан в условиях пандемии COVID-19. Современные проблемы здравоохранения и медицинской статистики 2020 г., № 3. C. 195-208. DOI:10.24411/2312-2935-2020-00067.; Состояние онкологической помощи населению России в 2021 году. Под редакцией Каприна А. Д., Старинского В. В., Шахазадовой А. О.: МНИОИ им. П. А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 239 с. ISBN 978-5-85502-262-9.; Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med 2017;376:354-66.; McKay RR, Bosse D, Choueiri TK. Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. J Clin Oncol 2018 October 29 (Epub ahead of print).; Heidegger I, Pircher A, Pichler R. Targeting the tumor microenvironment in renal cell cancer biology and therapy. Front Oncol 2019;9:490.; Apolo AB, Nadal R, Girardi DM, et al. Phase I study of cabozantinib and nivolumab alone or with ipilimumab for advanced or metastatic urothelial carcinoma and other genitourinary tumors. J Clin Oncol 2020;38:3672-84.; Amin A, Plimack ER, Ernstoff MS, et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunother Cancer 2018;6:109.; Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380:1116-27.; Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380:1103-15.; Agarwal N, Vaishampayan U, Green M, et al. Phase Ib study (COSMIC-021) of cabozantinib in combination with atezolizumab: results of the dose escalation stage in patients (pts) with treatmentnaive advanced renal cell carcinoma (RCC). J Clin Oncol 2020;29: Suppl 8:872P. abstract.; Pal S, Tsao C-K, Suarez C, et al. Cabozantinib (C) in combination with atezolizumab (A) as first-line therapy for advanced clear cell renal cell carcinoma (ccRCC): Results from the COSMIC-021 study. Ann Oncol 2020;31: Suppl 4: S554. abstract.; Меньшиков К. В., Султанбаев А. В., Мусин Ш. И., Измайлов А. А., Меньшикова И. А., Хамматова Л. А., Попова Е. В., Султанбаева Н. И., Липатов Д. О. Вторая линия терапии метастатического почечноклеточного рака. Обзор литературы. Поволжский онкологический вестник. Том 12, № 4. 2021 С. 39-52.; Меньшиков К. В., Измайлов А. А., Султанбаев А. В., Мусин Ш. И., Чалов В. С., Меньшикова И. А., Султанбаева Н. И., Липатов Д. О. Метастатический почечно-клеточный рак, возможности таргетной терапии. Медицинский Совет. 2021; (20):138-144. https://doi.org/10.21518/2079-701X-2021-20-138-144.; Меньшиков К. В., Султанбаев А. В., Мусин Ш. И., Рахматуллина И. Р., Меньшикова И. А., Хамматова Л. А., Попова Е. В., Султанбаева Н. И., Липатов Д. О. Возможности комбинированной иммунотаргетной терапии метастатического почечно-клеточного рака. Обзор литературы. Поволжский онкологический вестник. Том 13, № 1. 2022. С. 46-61.; Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015;373:1803-13.; Schmidt E, Lister J, Neumann M, et al. Cabozantinib versus standard-of-care comparators in the treatment of advanced/ metastatic renal cell carcinoma in treatment-naive patients: a systematic review and network meta-analysis. Target Oncol 2018;13:205-16.; Choueiri TK, Halabi S, Sanford BL, et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the Alliance A031203 CABOSUN trial. J Clin Oncol 2017;35:591-7.; Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, openlabel, phase 3 trial. Lancet Oncol 2016;17: 917-27.; Меньшиков К. В., Султанбаев А. В., Мусин Ш. И., Измай лов А. A., Мугинов Р. Р., Меньшикова И. А., Шарифгалеев И. А., Липатов Д. О., Султанбаева Н. И. Почечно-клеточный рак с метастазами в наружных половых органах. Обзор литературы и клинический случай. Онкоурология. 2021;17 (2):174-181. https://doi.org/10.17650/1726-9776-2021-17-2-174-181.; Saeed A, Phadnis M, Park R, et al. Cabozantinib (cabo) combined with durvalumab (durva) in gastroesophageal (GE) cancer and other gastrointestinal (GI) malignancies: Preliminary phase Ib CAMILLA study results. J Clin Oncol 2020; 38: Suppl:4563. abstract.; Bergerot P, Lamb P, Wang E, Pal SK. Cabozantinib in combination with immunotherapy for advanced renal cell carcinoma and urothelial carcinoma: rationale and clinical evidence. Mol Cancer Ther 2019;18:2185-93.; Lu X, Horner JW, Paul E, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 2017;543:728-32.; Apolo AB, Nadal R, Tomita Y, et al. Cabozantinib in patients with platinumrefractory metastatic urothelial carcinoma: an open-label, single-centre, phase 2 trial. Lancet Oncol 2020;21:1099-109.; Heng DY, Xie W, Regan MM, et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol 2009;27:5794-9.; Heng DYC, Xie W, Regan MM, et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a populationbased study. Lancet Oncol 2013;14:141-8.; Choueiri TK, Powles T, Burotto M, Escudier B, Bourlon MT, Zurawski B, Oyervides Juarez VM, Hsieh JJ, Basso U, Shah AY, Suarez C, Hamzaj A, Goh JC, Barrios C, Richardet M, Porta C, Kowalyszyn R, Feregrino JP, Zolnierek J, Pook D, Kessler ER, Tomita Y, Mizuno R, Bedke J, Zhang J, Maurer MA, Simsek B, Ejzykowicz F, Schwab GM, Apolo AB, Motzer RJ; CheckMate 9ER Investigators. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2021 Mar 4;384 (9):829-841. doi:10.1056/NEJMoa2026982. PMID: 33657295; PMCID: PMC8436591.; Носов Д. А., Б. Я. Алексеев, Гладков О. А., Волкова М. И., Попов А. М., Харкевич Г. Ю. Практические рекомендации по лекарственному лечению почечноклеточного рака. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2, 2021 (том 11). 31. 10.18027/2224-5057-2021-11-3s2-31.; Aeppli S, Schmaus M, Eisen T, Escudier B, Grunwald V, Larkin J, McDermott D, Oldenburg J, Porta C, Rini BI, Schmidinger M, Sternberg CN, Rothermundt C, Putora PM. First-line treatment of metastatic clear cell renal cell carcinoma: a decision-making analysis among experts. ESMO Open. 2021 Feb;6 (1):100030. doi:10.1016/j.esmoop.2020.100030. Epub 2021 Jan 15. PMID: 33460963; PMCID: PMC7815472.; McKay RR, Lin X, Perkins JJ, Heng DY, Simantov R, Choueiri TK. Prognostic significance of bone metastases and bisphosphonate therapy in patients with renal cell carcinoma. Eur Urol 2014;66 (3):502e9.; Hanna N, Sun M, Meyer CP, Nguyen PL, Pal SK, Chang SL, et al. Survival analyses of patients with metastatic renal cancer treated with targeted therapy with or without cytoreductive nephrectomy: a national cancer data base study. J Clin Oncol 2016; 34 (27):3267e75; https://www.malignanttumors.org/jour/article/view/962

  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المساهمون: 0

    المصدر: Almanac of Clinical Medicine; Vol 50, No 3 (2022); 187-195 ; Альманах клинической медицины; Vol 50, No 3 (2022); 187-195 ; 2587-9294 ; 2072-0505

    وصف الملف: application/pdf

  18. 18
  19. 19
  20. 20
    Academic Journal

    المصدر: Advances in Molecular Oncology; Том 8, № 4 (2021); 8-20 ; Успехи молекулярной онкологии; Том 8, № 4 (2021); 8-20 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2021-8-4

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/385/239; Oiseth S.J., Aziz M.S. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 2017;3(10):250–61. DOI:10.20517/23944722.2017.41.; Busch W. Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr 1868;5:137.; Fehleisen F. Ueber die Züchtung der Erysipelkokken auf künstlichem Nährboden und ihre Übertragbarkeit auf den Menschen. Dtsch Med Wochenschr. 1882;8(31):553–4.; Coley W.B. II. Contribution to the knowledge of sarcoma. Annals of surgery 1891;14(3):199.; Пронько Д. Прицел на раковые мишени. Наука и инновации 2017;3(169):29–31.; Old L.J., Clarke D.A.,Benacerraf B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 1959;184(4682):291–2. DOI:10.1038/184291a0.; Morales A., Eidinger D., Bruce A. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 1976;116(2):180–2. DOI:10.1016/S0022-5347(17)58737-6.; Dock G. The influence of complicating diseases upon leukaemia. The American J Med Sci (1827–1924) 1904;127(4):563.; Kelly E., Russell S.J. History of oncolytic viruses: genesis to genetic engineering. Mol Ther 2007;15(4):651–9. DOI:10.1038/sj.mt.6300108.; Ring C.J. Cytolytic viruses as potential anticancer agents. J Gen Virol 2002;83(3):491–502. DOI: https://doi.org/10.1099/00221317-83-3-491.; Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015;125(9):3335–7. DOI:10.1172/JCI83871.; Korneev K.V., Atretkhany K.-S.N., Drutskaya M.S. et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 2017;89(1):127–35. DOI:10.1016/j.cyto.2016.01.021.; Kranz L.M., Diken M., Haas H., et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016;534(7607):396–401. DOI:10.1038/nature18300.; Riddell S.R. Progress in cancer vaccines by enhanced self-presentation. Procof Natl Acad Sci USA 2001;98(16):8933–5. DOI:10.1073/pnas.171326398.; Kroemer G., Galluzzi L., Kepp O., Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013;31(1):51–72. DOI:10.1146/annurev-immunol-032712-100008.; Apetoh L., Ghiringhelli F., Tesniere A. et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev2007;220(1):47–59. DOI:10.1111/j.1600-065X.2007.00573.x.; Tabi Z., Spary L.K., Coleman S. et al. Resistance of CD45RA− T cells to apoptosis and functional impairment, and activation of tumor-antigen specific T Cells during radiation therapy of prostate cancer. J Immunol 2010;185(2):1330–9. DOI:10.4049/jimmunol.1000488.; Hirayama M., Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. International immunology 2016;28(7):319–28. DOI:10.1093/intimm/dxw027.; Dastmalchi F., Karachi A., Mitchell D., Rahman M. Dendritic Cell therapy eLS 2018;1(1):1–27. DOI:10.1002/9780470015902.a0024243.; Jensen T.I., Axelgaard E., Bak R.O. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. British J Haematol 2019;185(5):821–35. DOI:10.1111/bjh.15851.; Киселевский М.В., Чикилева И.О., Ситдикова С.М. и др. Перспективы применения генетически модифицированных лимфоцитов с химерным Т-клеточным рецептором (CAR-T-клеток) для терапии солидных опухолей. Иммунология 2019;40(4):48–55. DOI:10.24411/0206-4952-2019-14006.; Schultz L., Mackall C. Driving CAR T cell translation forward. Sci Transl Med 2019;11(481):eaaw2127. DOI:10.1126/scitranslmed.aaw2127.; Maus M.V., Haas A.R., Beatty G.L. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 2013;1(1):26–31. DOI:10.1158/2326-6066.CIR-13-0006.; Ryman J.T., Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol 2017;6(9):576–88. DOI:10.1002/psp4.12224.; Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer. Nat Rev Cancer 2012;12(4):278–87. DOI:10.1038/nrc3236.; Weiner L.M., Surana R., Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010;10(5):317–27. DOI:10.1038/nri2744.; Seidel U.J.E., Schlegel P., Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Frontiers in immunology 2013;4(76):1–8. DOI:10.3389/fimmu.2013.00076.; Lee S., Margolin K., Cytokines in cancer immunotherapy. Cancers 2011;3(4):3856–93. DOI:10.3390/cancers3043856.; Goldstein D., Laszlo J. The role of interferon in cancer therapy: a current perspective. CA Cancer J Clin 1988;38(5):258–77. DOI:10.3322/canjclin.38.5.258.; Nicholas C., Lesinski G.B. Immunomodulatory cytokines as therapeutic agents for melanoma. Immunotherapy 2011;3(5):673–90. DOI:10.2217/imt.11.45.; Ardolino M., Hsu J., Raulet D.H. Cytokine treatment in cancer immunotherapy. Oncotarget 2015;6(23):19346–7. DOI:10.18632/oncotarget.5095.; Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004;4(1):11–22. DOI:10.1038/nrc1252.; Dunn G.P., Koebel C.M., Schreiber R.D. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006;6(11):836–48. DOI:10.1038/nri1961.; Coventry B.J., Ashdown M.L. The 20th anniversary of interleukin-2 therapy: bimodal role explaining longstanding random induction of complete clinical responses. Cancer Manag Res 2012;4(1):215–21. DOI:10.2147/CMAR.S33979.; Constantinescu S.N., Croze E., Wang C. et al. Role of interferon alpha/beta receptor chain 1 in the structure and transmembrane signaling of the interferon alpha/beta receptor complex. Proceedings of the Nat Acad Sci 1994;91(20):9602–6. DOI:10.1073/pnas.91.20.9602.; Katze M., He Y., Gale M. Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2002;2(1):675–87. DOI:10.1038/nri888.; Müller L., Aigner P., Stoiber D. Type I interferons and natural killer cell regulation in cancer. Front Immunol 2017;8(304):1– 11. DOI:10.3389/fimmu.2017.00304. eCollection 2017.; Trepiakas R., Pedersen A.E., Met Ö., Svane I.M. Addition of interferon-alpha to a standard maturation cocktail induces CD38 up-regulation and increases dendritic cell function. Vaccine 2009;27(16):2213–9. DOI:10.1016/j.vaccine.2009.02.015.; Siegal F.P., Kadowaki N., Shodell M. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999;284(5421):1835–7. DOI:10.1126/science.284.5421.1835.; Tarhini A.A., Cherian J., Moschos S.J. et al. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J Clin Oncol 2012;30(3):322–8. DOI:10.1200/JCO.2011.37.5394.; Zeestraten E.C., Speetjens F.M., Welters M.J. et al. Addition of interferon α to the p53 SLP vaccine results in increased production of interferon γ in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int J Cancer 2013;132(7):1581–91. DOI:10.1002/ijc.27819.; Wang X., Rickert M., Garcia K.C. Structure of the quaternary complex of Interleukin-2 with Its α, β, and γ receptors. Science 2005;310(5751):1159–63. DOI:10.1126/science.1117893.; Boyman O., Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012;12(3):180–90. DOI:10.1038/nri3156.; Waldmann T.A. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 2018;10(12):a028472. DOI:10.1101/cshperspect.a028472.; Lazer D., Pentland A.S., Adamic L. et al. Life in the network: the coming age of computational social science. Science 2009;323(5915):721–3. DOI:10.1126/science.1167742.; Chen D.S., Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39(1):1–10. DOI:10.1016/j.immuni.2013.07.012.; Ott P.A., Hodi F.S., Kaufman H.L. et al. Combination immunotherapy: a road map. J Immunother Cancer 2017;5(1):1–15. DOI:10.1186/s40425-017-0218-5.; Krummel M.F., Allison J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995;182(2):459–65. DOI:10.1084/jem.182.2.459.; Wilky B.A., Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunol Rev 2019;290(1):6–23. DOI:10.1111/imr.12766.; Schneider H., Smith X., Liu H. et al. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur J Immunol 2008;38(1):40–7. DOI:10.1002/eji.200737423.; Kubsch S., Graulich E., Knop J., Steinbrink K. Suppressor activity of anergic T cells induced by IL-10-treated human dendritic cells: association with IL-2and CTLA-4-dependent G1 arrest of the cell cycle regulated by p27Kip1. Eur J Immunol 2003;33(7):198897. DOI:10.1002/eji.200323600.; Olsson C., Riebeck K., Dohlsten M., Michaëlsson E. CTLA-4 ligation suppresses CD28-induced NF-κB and AP-1 activity in mouse T cell blasts. J Biol Chem 1999;274(20):14400–5. DOI:10.1074/jbc.274.20.14400.; Ishida Y., Agata Y., Shibahara K., Honjo T., Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11(11):3887–95. DOI:10.1002/j.1460-2075.1992.tb05481.x.; Okazaki T., Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007;19(7):813–24. DOI:10.1093/intimm/dxm057.; Riella L.V., Paterson A.M., Sharpe A.H., Chandraker A. Role of the PD-1 Pathway in the Immune Response. Am J Transplant 2012;12(10):2575–87. DOI:10.1111/j.1600-6143.2012.04224.x.; Park J.J., Omiya R., Matsumura Y. et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 2010;116(8):1291–8. DOI:10.1182/blood-2010-01-265975.; Topalian S.L., Hodi F.S., Brahmer J.R. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl J Med 2012;366(26):2443–54. DOI:10.1056/NEJMoa1200690.; Sharma P., Retz M., Siefker-Radtke A. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, singlearm, phase 2 trial. Lancet Oncol 2017;18(3):312–22. DOI:10.1016/S14702045(17)30065-7.; Motzer R.J., Tannir N.M., McDermott D.F. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med2018;378(14):1277–90. DOI:10.1056/NEJMoa1712126.; Patnaik A., Kang S.P., Rasco D. et al. Phase I study of pembrolizumab (MK3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res 2015;21(19):4286–93. DOI:10.1158/1078-0432.CCR-14-2607.; Motzer R.J., Penkov K., Haanen J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1103–15. DOI:10.1056/NEJMoa1816047.; Brahmer J.R., Tykodi S.S., Chow L.Q. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012;366(26):2455–65. DOI:10.1056/NEJMoa1200694.; Powles T., O’Donnell P.H., Massard C. et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol 2017;3(9):1–10. DOI:10.1001/jamaoncol.2017.2411.; Schmid P., Cruz C., Braiteh F.S. et al. Atezolizumab in metastatic TNBC (mTNBC): long-term clinical outcomes and biomarker analyses. AACR 2017;77(13):1. DOI:10.1158/1538-7445.AM2017-2986.; Postow M.A., Chesney J., Pavlick A.C. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015;372(21):2006–17. DOI:10.1056/NEJMoa1414428.; Pfirschke C., Engblom C., Rickelt S., Cortez-Retamozo V. et al., Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016;44(2):343–54. DOI:10.1016/j.immuni.2015.11.024.; Fyfe G., Fisher R.I., Rosenberg S.A. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 1995;13(3):688–96. DOI:10.1200/JCO.1995.13.3.688.; Rosenberg S.A., Yang J.C., White D.E., Steinberg S.M. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg 1998;228(3):307–19. DOI:10.1097/00000658-199809000-00004.; Merchant R.E., Grant A.J., Merchant L.H., Young H.F. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 1988;62(4):665–71. DOI:10.1002/1097-0142(19880815)62:43.0.CO;2-O.; Atkins M.B., Lotze M.T., Dutcher J.P. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999;17(7):2105. DOI:10.1200/JCO.1999.17.7.2105.; Toh U., Yamana H., Sueyoshi S. et al. Locoregional cellular immunotherapy for patients with advanced esophageal cancer. Clin Cancer Res 2000;6(12):4663–73.; Nishiyama T., Tachibana M., Horiguchi Y. et al. Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24specific MAGE-3 peptide. Clin Cancer Res 2001;7(1):23–31.; Kabbinavar F., Hurwitz H.I., Fehrenbacher L. et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003;21(1):60–5. DOI:10.1200/JCO.2003.10.066.; Hurwitz H., Fehrenbacher L., Novotny W. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350(23):2335–42. DOI:10.1056/NEJMoa032691.; Davis I.D., Skrumsager B.K., Cebon J. et al. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin Cancer Res 2007;13(12):3630–6. DOI:10.1158/1078-0432.CCR-07-0410.; Giantonio B.J., Catalano P.J., Meropol N.J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007;25(12):1539–44. DOI:10.1200/JCO.2006.09.6305.; Iqbal S., Goldman B., Lenz H. et al. S0413: a phase II SWOG study of GW572016 (lapatinib) as first line therapy in patients (pts) with advanced or metastatic gastric cancer. J Clin Oncol 2007;25(18_suppl):4621. DOI:10.1200/jco.2007.25.18_suppl.4621.; Hecht J.R., Mitchell E., Chidiac T. et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009;27(5):672–80. DOI:10.1200/JCO.2008.19.8135.; Petrella T.M., Tozer R., Belanger K. et al. Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J Clin Oncol 2012;30(27):3396–401. DOI:10.1200/JCO.2011.40.0655.; Gettinger S., Rizvi N.A., Chow L.Q. et al. Nivolumab monotherapy for first-line treatment of advanced non small-cell lung cancer. J Clin Oncol 2016;34(25):2980–7. DOI:10.1200/JCO.2016.66.9929.; Eggermont A.M., Chiarion-Sileni V., Grob J.J. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med 2016;375(19):1845–55. DOI:10.1056/NEJMoa1611299.; Davar D., Ding F., Saul M. et al. Highdose interleukin-2 (HD IL-2) for advanced melanoma: a single center experience from the University of Pittsburgh Cancer Institute. J Immunother Cancer 2017;5(74):1–10. DOI:10.1186/s40425017-0279-5.; Kok M., Horlings H., van de Vijver K. et al. LBA14Adaptive phase II randomized non-comparative trial of nivolumab after induction treatment in triple negative breast cancer: TONIC-trial. Ann Oncol 2017;28(suppl_5):1.; Hammers H.J., Plimack E.R., Infante J.R. et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol 2017;35(34):3851–8. DOI:10.1200/JCO.2016.72.1985.; Абакушина Е.В., Пасова И.А., Почуев Т.П. и др. Адоптивная иммунотерапия активированными лимфоцитами в комплексной терапии пациентов с раком желудочно-кишечного тракта. Российский биотерапевтический журнал 2017;16(S1):3.; Escudier B., Motzer R.J., Sharma P. et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol 2017;72(3):368–76. DOI:10.1016/j.eururo.2017.03.037.; Weber J., Mandala M., Del Vecchio M. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 2017;77(19):1824–35. DOI:10.1056/NEJMoa1709030.; Adams S., Loi S., Toppmeyer D.L. et al. KEYNOTE-086 cohort B: Pembrolizumab monotherapy for PD-L1–positive, previously untreated, metastatic triplenegative breast cancer (mTNBC). AACR 2018;78(4):1. DOI:10.1158/1538-7445.SABCS17-PD6-10.; Buchbinder E.I., Dutcher J.P., Daniels G.A. et al. Therapy with high-dose Interleukin-2 (HD IL-2) in metastatic melanoma and renal cell carcinoma following PD1 or PDL1 inhibition. J Immunother Cancer 2019;7(1):1–7. DOI:10.1186/s40425-019-0522-3.; Koster B.D., Santegoets S.J., Harting J. et al. Correction to: Autologous tumor cell vaccination combined with systemic CpG-B and IFN-α promotes immune activation and induces clinical responses in patients with metastatic renal cell carcinoma: a phase II trial. Cancer Immunol Immunotherap 2019;68(6):1037. DOI:10.1007/s00262-019-02328-6.; Topalian S.L., Hodi F.S., Brahmer J.R. et al. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol 2019;5(10):1411–20. DOI:10.1001/jamaoncol.2019.2187.; Боробова Е.А., Жеравин А.А. Натуральные киллеры в иммунотерапии онкологических заболеваний. Сибирский онкологический журнал 2018;17(6):97–103. DOI:10.21294/1814-48612018-17-6-97-104.; Davila M.L., Riviere I., Wang X. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Medi 2014;6(224):224–5. DOI:10.1126/scitranslmed.3008226.; Xu Y., Zhang M., Ramos C.A. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR. CD19-T cells and are preserved by IL-7 and IL-15. Blood 2014;123(24):3750–9. DOI:10.1182/blood-2014-01-552174.; https://umo.abvpress.ru/jour/article/view/385