-
1Academic Journal
المؤلفون: Марина Юрьевна Перфильева, Яна Анатольевна Соцкая
المصدر: University Therapeutic Journal, Vol 6, Iss 3 (2024)
مصطلحات موضوعية: хронические диффузные заболевания печени, циркулирующие иммунные комплексы, лизат бактерий, фосфатидилхолина натрия глицирризинат, Medicine
وصف الملف: electronic resource
-
2Academic Journal
المصدر: University Therapeutic Journal, Vol 6, Iss 2 (2024)
مصطلحات موضوعية: алкогольная болезнь печени, телемедицина, выживаемость, COVID-19, хронические заболевания печени, Medicine
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: A. V. Vlasova, Yu. F. Shubina, I. R. Gaziev, D. A. Sychev, А. В. Власова, Ю. Ф. Шубина, И. Р. Газиев, Д. А. Сычев
المساهمون: The study was performed without external funding, Работа выполнена без спонсорской поддержки
المصدر: Safety and Risk of Pharmacotherapy; Том 12, № 2 (2024); 167-177 ; Безопасность и риск фармакотерапии; Том 12, № 2 (2024); 167-177 ; 2619-1164 ; 2312-7821
مصطلحات موضوعية: SLCO1B1, antibiotics, tigecycline, meropenem, drug-induced liver disease, adverse drug reactions, pharmacogenetics, CYP3A5, антибиотики, тигециклин, меропенем, лекарственно-индуцированные заболевания печени, нежелательные реакции, фармакогенетика
وصف الملف: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/392/1153; https://www.risksafety.ru/jour/article/downloadSuppFile/392/462; https://www.risksafety.ru/jour/article/downloadSuppFile/392/471; https://www.risksafety.ru/jour/article/downloadSuppFile/392/528; Yu Y, Nie X, Song Z, Xie Y, Zhang X, Du Z, et al. Signal detection of potentially drug-induced liver injury in children using electronic health records. Front Pediatr. 2020;8:171. https://doi.org/10.3389/fped.2020.00171; Yu Z, Zhao Y, Jin J, Zhu J, Yu L, Han G. Prevalence and risk factors of tigecycline-induced liver injury: a multicenter retrospective study. Int J Infect Dis. 2022;120:59–64. https://doi.org/10.1016/j.ijid.2022.04.024; Baietto L, Corcione S, Pacini G, Perri GD, D’Avolio A, De Rosa FG. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics? Curr Drug Metab. 2014;15(6):581–98. https://doi.org/10.2174/1389200215666140605130935; Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Semin Liver Dis. 2009;29(4):400–11. https://doi.org/10.1055/s-0029-1240009; Zed PJ, Haughn C, Black KJL, Fitzpatrick EA, Ackroyd-Stolarz S, Murphy NG, et al. Medication-related emergency department visits and hospital admissions in pediatric patients: a qualitative systematic review. J Pediatr. 2013;163(2):477–83. https://doi.org/10.1016/j.jpeds.2013.01.042; Ersulo TA, Yizengaw MA, Tesfaye BT. Incidence of adverse drug events in patients hospitalized in the medical wards of a teaching referral hospital in Ethiopia: a prospective observational study. BMC Pharmacol Toxicol. 2022;23(1):30. https://doi.org/10.1186/s40360-022-00570-w; Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 2011;141(1):338–47. https://doi.org/10.1053/j.gastro.2011.04.001; Alshabeeb M, Alomar FA, Khan A. Impact of SLCO1B1*5 on flucloxacillin and co-amoxiclav-related liver injury. Front Pharmacol. 2022;13:882962. https://doi.org/10.3389/fphar.2022.882962; Власова АВ, Шубина ЮФ, Сычев ДА. Лекарственное поражение печени, ассоциированное с антибиотиками, у детей в критических состояниях: проспективное наблюдательное исследование. Безопасность и риск фармакотерапии. 2024. https://doi.org/10.30895/2312-7821-2023-389; Manolis E, Musuamba FT, Karlsson KE. The European Medicines Agency experience with pediatric dose selection. J Clin Pharmacol. 2021;61:S22–S27. https://doi.org/10.1002/jcph.1863; Иващенко ДВ, Буромская НИ, Савченко ЛМ, Шевченко ЮС, Сычев ДА. Значение метода глобальных триггеров для выявления неблагоприятных событий, связанных с оказанием медицинской помощи в педиатрии. Медицинский совет. 2018;(17):56–65. https://doi.org/10.21518/2079-701X-2018-17-56-65; Власова АВ, Смирнова ЕВ, Горев ВВ, Сычев ДА. Нежелательные реакции детей на антимикробные препараты: ограничения метода спонтанных сообщений и возможности метода глобальных триггеров лекарственно-индуцированных состояний. Фарматека. 2023;30(1/2):18–31. https://doi.org/10.18565/pharmateca.2023.1-2.18-31; Classen DC, Resar R, Griffin F, Federico F, Frankel T, Kimmel N, et al. “Global Trigger Tool” shows that adverse events in hospitals may be ten times greater than previously measured. Health Aff (Millwood). 2011;30(4):581–9. https://doi.org/10.1377/hlthaff.2011.0190; Katarey D, Verma S. Drug-induced liver injury. Clin Med. 2016;16(Suppl 6):S104–S109. https://doi.org/10.7861/clinmedicine.16-6-s104; Yu Y, Mao YM, Chen CW, Chen JJ, Chen J, Cong WM, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int. 2017;11(3):221–41. https://doi.org/10.1007/s12072-017-9793-2; Aleo MD, Luo Y, Swiss R, Bonin PD, Potter DM, Will Y. Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology. 2014;60(3):1015–22. https://doi.org/10.1002/hep.27206; Darwish MH, Farah RA, Farhat GN, Torbey PH, Ghandour FA, Bejjani-Doueihy NA, Dhaini HR. Association of CYP3A4/5 genotypes and expression with the survival of patients with neuroblastoma. Mol Med Rep. 2015;11(2):1462–8. https://doi.org/10.3892/mmr.2014.2835; Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 2005;15(7):513–22. https://doi.org/10.1097/01.fpc.0000170913.73780.5f; Jindal C, Kumar S, Choudhari G, Goel H, Mittal B. Organic anion transporter protein (OATP1B1) encoded by SLCO1B1 gene polymorphism (388A>G) and susceptibility in gallstone disease. Indian J Med Res. 2009;129(2):170–5. PMID: 19293444; https://www.risksafety.ru/jour/article/view/392
-
4Academic Journal
المؤلفون: A. A. Telesh, T. G. Morozova, А. А. Телеш, Т. Г. Морозова
المصدر: Medical Visualization; Принято в печать ; Медицинская визуализация; Принято в печать ; 2408-9516 ; 1607-0763
مصطلحات موضوعية: диагностический алгоритм, non-contrast magnetic resonance perfusion of the liver, diffuse liver diseases, diagnostic algorithm, бесконтрастная ASL перфузия печени, диффузные заболевания печени
وصف الملف: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/1419/878; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2241; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2242; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2243; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2244; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2245; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2246; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2247; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2248; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2249; https://medvis.vidar.ru/jour/article/downloadSuppFile/1419/2250; Дурлештер В.М., Габриэль С.А., Корочанская Н.В., Ковалевская О.В., Серикова С.Н., Марков П.В., Усова О.А., Мурашко Д.С., Дынько В.Ю., Бухтояров А.Ю., Басенко М.А. Мультидисциплинарный подход к ведению пациентов с циррозом печени. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020; 30 (4): 35–43. https://doi.org/10.22416/1382-4376-2020-30-4-35-43; Moreno C., Mueller S., Szabo G. Non-invasive diagnosis and biomarkers in alcohol-related liver disease. J. Hepatology. 2019; 70 (2): 273–283. https://doi.org/10.1016/j.jhep.2018.11.025.; Симакина Е.Н., Морозова Т.Г. Совершенствование алгоритма ведения пациентов с вирусными гепатитами при использовании бесконтрастной ASL-перфузии печени при магнитно-резонансной томографии. Вестник рентгенологии и радиологии. 2021; 102 (5): 276–283. https://doi.org/10.20862/0042-4676-2021-102-5-276-283; Pan X., Qian T., Fernandez-Seara M. et al. Quantification of liver perfusion using multidelay pseudocontinuous arterial spin labeling. JMRI. 2016; 43 (5): 1046–1054. https://doi.org/10.1002/jmri.25070; Taso M., Aramendía-Vidaurreta V., Englund E.K. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn. Reson. Med. 2023; 89: 1754–1776. https://doi.org/10.1002/mrm.29609; Mathew R.P., Venkatesh S.K. Imaging diffuse liver disease. Appl. Radiol. 2019; 48 (5): 13–20.; Li Y., Huang Y.S., Wang Z.Z., Yang Z.R., Sun F., Zhan S.Y. Systematic review with meta-analysis: The diagnostic accuracy of transient elastography for the staging of liver fibrosis in patients with chronic hepatitis B. Aliment. Pharmacol. Ther. 2016; 43: 458–469. https://doi.org/10.1111/apt.13488; Zhang Y., Fowler K.J., Hamilton G. et al. Liver fat imaging. Clinical overview of ultrasound, CT, and MR imaging. Br. J. Radiol. 2018; 91 (1089): 20170959. https://doi.org/10.1259/bjr.20170959; Huber J., Günther M., Channaveerappa M., Hoinkiss, D.C. Towards free breathing 3D ASL imaging of the human liver using prospective motion correction. Magn. Reson. Med. 2022; 88 (2): 711–726. https://doi.org/10.1002/mrm.29234; https://medvis.vidar.ru/jour/article/view/1419
-
5Academic Journal
المؤلفون: S. G. Manasyan, S. Yu. Ermolov, A. G. Apresyan, T. V. Ermolova, С. Г. Манасян, С. Ю. Ермолов, А. Г. Апресян, Т. В. Ермолова
المصدر: The Russian Archives of Internal Medicine; Том 13, № 1 (2023); 65-74 ; Архивъ внутренней медицины; Том 13, № 1 (2023); 65-74 ; 2411-6564 ; 2226-6704
مصطلحات موضوعية: диагностика хронических заболеваний печени, intrahepatic microcirculation, polyhepatography, chronic liver disease, autoimmune liver diseases, steatohepatitis, viral hepatitis, diagnosis of chronic liver diseases, внутрипеченочная микроциркуляция, полигепатография, хронические заболевания печени, аутоиммунные заболевания печени, стеатогепатит, вирусный гепатит
وصف الملف: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/1563/1193; https://www.medarhive.ru/jour/article/view/1563/1201; Маев И.В., Андреев Д.Н., Кучерявый Ю.А. и др. Неалкогольная жировая болезнь печени с позиций современной медицины. М, Прима Принт. 2020; 68 с. Maev I.V., Andreev D.N., Kucheryavyi Yu.A. Non-alcoholic fatty liver disease from the standpoint of modern medicine. M.: Prima Print, 2020; 68 р. [In Russian]; Федосьина Е.А., Маевская М.В., Ивашкин В.Т. Принципы терапии портальной гипертензии у пациентов циррозом печени. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2012; 22(5):46–55.; Степаненко В.В., Гриневич В.Б., Мехтиев С.Н. Современный взгляд на патогенез портальной гипертензии у больных хроническими заболеваниями печени. Военно-медицинский журнал. 2009; 330(7): 63-65.; Ермолов С.Ю., Ермолова Т.В., Апресян А.Г. и др. Полигепатография: пособие для врачей. СПб: СЗГМУ им И.И. Мечникова. 2021; 144 с.; Розен В.Г., Матарадзе Г.Д., Смирнова О.В. и др. Половая дифференцировка функций печени. М.: Медицина. 1991; 336 с. Rozen V.G., Mataradze G.D., Smirnova O.V. Sex differentiation of liver functions. M.: Meditsina. 1991; 336 р. [In Russian]; Ермолова Т.В., Ермолов С.Ю., Сологуб Т.В. и др. Некоторые механизмы нарушений внутрипеченочной микроциркуляции при хронических заболеваниях печени на начальных стадиях фиброза и их коррекция. Экспериментальная и клиническая гастроэнтерология. 2018;(2):183-191.; Апресян А.Г., Добкес А.Л., Ермолов С.Ю. и др. Нарушения внутрипечёночной микроциркуляции крови при заболеваниях сердечно-сосудистой системы и хронических заболеваниях печени. Wschodnioeuropejskie Czasopismo Naukowe. 2017; 3-1 (19): 56-62.; Реброва О.Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ STATISTICA. Москва: МедиаСфера. 2000; 312 с.; Юнкеров В.И., Григорьев С.Г., Резванцев М.В. Математико-статистическая обработка данных медицинских исследований. 3-е издание, дополненное. СПб: Кирова. 2011; 318с.; Добкес А.Л., Ермолов С.Ю., Сердюков С.В. Математическая статистика в доказательной медицине. СПб.: СЗГМУ им И.И. Мечникова. 2021; 280 с.; Плавинский С.Л. Теория принятия решений в клинике — СПб.: СПбМАПО. 2001; 69с.; Bosch J., Abraldes J.G., Garcia-Pagan J.C. The clinical use of HVPG measurements in chronic liver disease. Nature Reviews Gastroenterology & Hepatology.2009; 6:573-582. doi:10.1038/nrgastro.2009.149; Ермолов С.Ю., Добкес А.Л., Шабров А.В. Полигепатография. Гемодинамика. Гепатит. СПб.: ЭЛБИ-СПб, 2007.; https://www.medarhive.ru/jour/article/view/1563
-
6Academic Journal
المؤلفون: Lupaşco, D.F., Lupaşco, I.A., Лупашко, Ю.А., Dumbrava, V.A., Думбрава, В.
المصدر: Sănătate Publică, Economie şi Management în Medicină 97_S (4) 85-89
مصطلحات موضوعية: statut nutrițional, boli cronice hepatice, aspect alimentar, nutritional status, chronic liver diseases, dietary aspect, слова: нутритивный статус, хронические заболевания печени, диетический аспект
وصف الملف: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/194424; urn:issn:17298687
-
7Academic Journal
المؤلفون: E. Yu. Sitnikova, L. Yu. Ilchenko, I. G. Fedorov, I. G. Nikitin, Е. Ю. Ситникова, Л. Ю. Ильченко, И. Г. Федоров, И. Г. Никитин
المصدر: The Russian Archives of Internal Medicine; Том 13, № 1 (2023); 57-64 ; Архивъ внутренней медицины; Том 13, № 1 (2023); 57-64 ; 2411-6564 ; 2226-6704
مصطلحات موضوعية: алкогольная болезнь печени, chronic liver disease, database, mortality, alcoholic liver disease, хронические заболевания печени, база данных, летальность
وصف الملف: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/1562/1192; https://www.medarhive.ru/jour/article/view/1562/1200; Scialo F., Daniele A., Amato F., et al. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung. 2020; 6(198): 867-877. doi:10.1007/s00408-020-00408-4.; Fenizia C., Galbiati S., Vanetti C., et al. SARS-CoV-2 Entry: At the Crossroads of CD147 and ACE2. Cells. 2021; 6(10): 1434. doi:10.3390/cells10061434.; Casey S., Schierwagen R., Mak K.Y., et al. Activation of the Alternate Renin-Angiotensin System Correlates with the Clinical Status in Human Cirrhosis and Corrects Post Liver Transplantation. J Clin Med. 2019; 4(8): 419. doi:10.3390/jcm8040419.; Udugama B., Kadhiresan P., Kozlowski H.N., et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020; 4(14): 3822–3835. doi:10.1021/acsnano.0c02624.; Ильченко Л.Ю., Никитин И.Г., Федоров И.Г. COVID-19 и поражение печени. Архивъ внутренней медицины. 2020; 3(10): 188-197. doi:10.20514/2226-6704-2020-10-3-188-197.; Ge J., Pletcher M., Lai J. N3C Consortium Outcomes of SARSCoV-2 infection in patients with chronic liver disease and cirrhosis: a National COVID cohort collaborative study. Gastroenterology. 2021; 5(161): 1487-1501. doi:10.1053/j.gastro.2021.07.010.; Стопкоронавирус.рф. 2021. [Электронный ресурс]. URL:https://xn--80aesfpebagmfblc0a.xn--p1ai (дата обращения: 29.11.2022).; Kunutsor S., Laukkanen J. Incidence of venous and arterial thromboembolic complications in COVID-19: a systematic review and meta-analysis. Thromb Res. 2020; 196: 27–30. doi:10.1016/j.thromres.2020.08.022.; Northup P., Garcia-Pagan J., Garcia-Tsao G. et al. Vascular Liver Disorders, Portal Vein Thrombosis, and Procedural Bleeding in Patients With Liver Disease: 2020 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2021; 1(73): 366-413. doi:10.1002/hep.31646.; Лазебник Л.Б., Тарасова Л.В., Комарова Е.А. и др. Изменение концентрации аммиака и других биохимических показателей у пациентов с новой коронавирусной инфекцией. Экспериментальная и клиническая гастроэнтерология. 2021; (4): 76-83. doi:10.31146/1682-8658ecg-188-4-76-83.; Marjot T., Moon A., Cook J. et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J Hepatol. 2021; 3(74): 567-577. doi:1 0.1016/j.jhep.2020.09.024.; Szabo G., Saha B. Alcohol’s Effect on Host Defense. Alcohol Res. 2015; 2(37): 159-170.; Butt A.A, Yan P., Chotani R.A. Mortality is not increased in SARSCoV-2 infected persons with hepatitis C virus infection. Liver Int. 2021; 8(41): 1824-1831. doi:10.1111/liv.14804.; Сарыглар А.А., Донгак С.О., Исаева О.В. и др. Материалы XIV Ежегодного Всероссийского Конгресса по инфекционным болезням им. академика В.И. Покровского. 2022: 145-146.; Zhu J.H, Peltekian K.M. HBV coinfection and in-hospital outcomes for COVID-19: a systematic review and meta-analysis. Can Liver J. 2021; 1(4): 16-22. doi:10.3138/canlivj-2020-0029.; Sarialioğlu F., Belen F.B., Hayran K.M. Hepatitis A susceptibility parallels high COVID-19 mortality. Turk J Med Sci. 2021; 1(51): 382-384. doi:10.3906/sag-2007-133.; Ильченко Л.Ю., Федоров И.Г., Тотолян Г.Г. и др. Гиперферментемия после вакцинации против COVID-19: сложное уравнение с простыми переменными. Экспериментальная и клиническая гастроэнтерология. 2021; (10): 159-164. doi.org/10.31146/1682-8658-ecg-194-10-159-164.; Gambato M., Burra P. Clinical implications of COVID-19 in patients with chronic liver disease and liver tumor. Updates Surg. 2020; 72: 237–239. doi:10.1007/s13304-020-00804-8.; Ge J., Digitale J.C., Pletcher M.J. et al. N3C Consortium. Breakthrough SARS-CoV-2 Infection Outcomes in Vaccinated Patients with Chronic Liver Disease and Cirrhosis: A National COVID Cohort Collaborative Study. Preprint. MedRxiv. 2022; 2022.02.25.22271490. doi:10.1101/2022.02.25.22271490.; Moon A.M, Webb G.J, García-Juárez I., et al. SARS-CoV-2 Infections Among Patients With Liver Disease and Liver Transplantation Who Received COVID-19 Vaccination. Hepatol Commun. 2022; 4(6): 889-897. doi:10.1002/hep4.1853.; https://www.medarhive.ru/jour/article/view/1562
-
8Academic Journal
المؤلفون: A. V. Vlasova, Yu. F. Shubina, D. A. Sychev, А. В. Власова, Ю. Ф. Шубина, Д. А. Сычев
المساهمون: The study was performed without external funding, Работа выполнена без спонсорской поддержки
المصدر: Safety and Risk of Pharmacotherapy; Том 12, № 2 (2024); 155-166 ; Безопасность и риск фармакотерапии; Том 12, № 2 (2024); 155-166 ; 2619-1164 ; 2312-7821
مصطلحات موضوعية: клиническое исследование, antibiotics, drug-induced liver diseases, DILI, hepatotoxicity, cholestatic hepatitis, adverse drug reactions, Global Trigger Tool, clinical trial, антибиотики, лекарственно-индуцированные заболевания печени, гепатотоксичность, холестатический гепатит, нежелательные реакции, метод глобальных триггеров
وصف الملف: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/389/1152; https://www.risksafety.ru/jour/article/downloadSuppFile/389/379; Amin MD, Harpavat S, Leung DH. Drug-induced liver injury in children. Curr Opin Pediatr. 2015;27(5):625–33. https://doi.org/10.1097/mop.0000000000000264; Lee HH, Ho RH. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br J Clin Pharmacol. 2017;83(6):1176–84. https://doi.org/10.1111/bcp.13207; Katarey D, Verma S. Drug-induced liver injury. Clin Med (Lond). 2016;16(Suppl. 6):s104–s109. https://doi.org/10.7861/clinmedicine.16-6-s104; Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, et al. Indian national association for the study of the liver consensus statement on acute liver failure (Part 1): epidemiology, pathogenesis, presentation and prognosis. J Clin Exp Hepatol. 2020;10(4):339–76. https://doi.org/10.1016/j.jceh.2020.04.012; Donati M, Motola D. Leone R, Moretti U, Stoppa G, Arzenton E, et al. Liver injury due to amoxicillin vs. amoxicillin/clavulanate: a subgroup analysis of a drug-induced liver injury case-control study in Italy. J Hepatol Gastroint Dis. 2017;3(2):1–5. https://doi.org/10.4172/2475-3181.1000143; Teixeira M, Macedo S, Batista T, Martins S, Correia A, Costa Matos L. Flucloxacillin-induced hepatotoxicity-association with HLA-B*5701. Rev Assoc Med Bras (1992). 2020;66(1):12–7. https://doi.org/10.1590/1806-9282.66.1.12; Yu Y, Mao YM, Chen CW, Chen JJ, Chen J, Cong WM, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int. 2017;11(3):221–41. https://doi.org/10.1007/s12072-017-9793-2; Zhou Y, Yang L, Liao Z, He X, Zhou Y, Guo H. Epidemiology of drug-induced liver injury in China: a systematic analysis of the Chinese literature including 21789 patients. Eur J Gastroenterol Hepatol. 2013;25(7):825–9. https://doi.org/10.1097/meg.0b013e32835f6889; Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology. 2002;36(2):451–5. https://doi.org/10.1053/jhep.2002.34857; Pinna AP, Locci G, Furno M, Fanni D, Faa G, Nurchi AM. DILI (drug-induced liver injury) in a 9-month-old infant: a rare case of phenobarbital-induced hepatotoxicity. J Pediatr Neonatal Individ Med JPNIM. 2013;2:93–5. https://doi.org/10.7363/020114; Sridharan K, Al Daylami A, Ajjawi R, Al Ajooz HA. Drug-induced liver injury in critically ill children taking antiepileptic drugs: a retrospective study. Curr Ther Res Clin Exp. 2020;92:100580. https://doi.org/10.1016/j.curtheres.2020.100580; Andrade RJ, Lucena MI, Fernández MC, Pelaez G, Pachkoria K, García-Ruiz E, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 2005;129(2):512–21. https://doi.org/10.1016/j.gastro.2005.05.006; Chalasani N, Reddy K, Fontana R, Barnhart H, Gu J, Hayashi P, et al. Idiosyncratic drug-induced liver injury in African-Americans is associated with greater morbidity and mortality compared to Caucasians. Am J Gastroenterol. 2017;112(9):1382–8. https://doi.org/10.1038/ajg.2017.215; Björnsson ES. Hepatotoxicity of statins and other lipid-lowering agents. Liver Int. 2017;37(2):173–8. https://doi.org/10.1111/liv.13308; deLemos AS, Ghabril M, Rockey DC, Gu J, Barnhart HX, Fontana RJ, et al. Amoxicillin-clavulanate-induced liver injury. Dig Dis Sci. 2016;61(8):2406–16. https://doi.org/10.1007/s10620-016-4121-6; Iannelli V. 30 most commonly prescribed pediatric medications. 06.06.2023. https://www.verywellhealth.com/the-30-most-prescribed-drugs-in-pediatrics-2633435; Yamaguchi A, Tateishi T, Okano Y, Matuda T, Akimoto Y, Miyoshi T, et al. Higher incidence of elevated body temperature or increased C-reactive protein level in asthmatic children showing transient reduction of theophylline metabolism. J Clin Pharmacol. 2000;40(3):284–9. https://doi.org/10.1177/00912700022008955; Pokrajac M, Simić D, Varagić V. Pharmacokinetics of theophylline in hyperthyroid and hypothyroid patients with chronic obstructive pulmonary disease. Eur J Clin Pharmacol. 1987;33(5):483–6. https://doi.org/10.1007/bf00544240; Stephens M, Self T, Lancaster D, Nash T. Hypothyroidism: effect on warfarin anticoagulation. South Med J. 1989;82(12):1585–6. PMID: 2595433; Ersulo TA, Yizengaw MA, Tesfaye BT. Incidence of adverse drug events in patients hospitalized in the medical wards of a teaching referral hospital in Ethiopia: a prospective observational study. BMC Pharmacol Toxicol. 2022;23(1):30. https://doi.org/10.1186/s40360-022-00570-w; Kiguba R, Karamagi C, Bird SM. Incidence, risk factors and risk prediction of hospital-acquired suspected adverse drug reactions: a prospective cohort of Ugandan inpatients. BMJ Open. 2017;7(1):e010568. https://doi.org/10.1136/bmjopen-2015-010568; Zed PJ, Haughn C, Black KJL, Fitzpatrick EA, Ackroyd-Stolarz S, Murphy NG, et al. Medication-related emergency department visits and hospital admissions in pediatric patients: a qualitative systematic review. J Pediatr. 2013;163(2):477–83. https://doi.org/10.1016/j.jpeds.2013.01.042; Schumaker AL, Okulicz JF. Meropenem-induced vanishing bile duct syndrome. Pharmacotherapy. 2010;30(9):953. https://doi.org/10.1592/phco.30.9.953; Doß S, Blessing C, Haller K, Richter G, Sauer M. Influence of antibiotics on functionality and viability of liver cells in vitro. Curr Issues Mol Biol. 2022;44(10):4639–57. https://doi.org/10.3390/cimb44100317; Li L-M, Chen L, Deng G-H, Tan W-T, Dan Y-J, Wang R-Q, Chen W-S. SLCO1B1*15 haplotype is associated with rifampin-induced liver injury. Mol Med Rep. 2012;6(1):75–82. https://doi.org/10.3892/mmr.2012.900; Ghabril M, Bonkovsky HL, Kum C, Davern T, Hayashi PH, Kleiner DE, et al. Liver injury from tumor necrosis factor-α antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol. 2013;11(5):558–64. https://doi.org/10.1016/j.cgh.2012.12.025; Breitkreutz J, Boos J. Paediatric and geriatric drug delivery. Expert Opin Drug Deliv. 2007;4(1):37–45. https://doi.org/10.1517/17425247.4.1.37; Buch S, Schafmayer C, Voelzke H, Seeger M, Miquel JF, Sookoian SC, et al. Loci from a genome-wide analysis of bilirubin levels are associated with gallstone risk and composition. Gastroenterology. 2010;139(6):1942–51. https://doi.org/10.1053/j.gastro.2010.09.003; Hoofnagle JH, Björnsson ES. Drug-induced liver injury — types and phenotypes. N Engl J Med. 2019;381(3):264–73. https://doi.org/10.1056/nejmra1816149; Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Semin Liver Dis. 2009;29(4):400–11. https://doi.org/10.1055/s-0029-1240009; Manolis E, Musuamba FT, Karlsson KE. The European Medicines Agency experience with pediatric dose selection. J Clin Pharmacol. 2021;61:S22–S27. https://doi.org/10.1002/jcph.1863; Власова АВ, Смирнова ЕВ, Горев ВВ, Сычев ДА. Нежелательные реакции детей на антимикробные препараты: ограничения метода спонтанных сообщений и возможности метода глобальных триггеров лекарственно-индуцированных состояний. Фарматека. 2023;30(1–2):18–31. https://doi.org/10.18565/pharmateca.2023.1-2.18-31; Classen DC, Resar R, Griffin F, Federico F, Frankel T, Kimmel N, et al. ‘Global Trigger Tool’ shows that adverse events in hospitals may be ten times greater than previously measured. Health Aff (Millwood). 2011;30(4):581–9. https://doi.org/10.1377/hlthaff.2011.0190; Иващенко ДВ, Буромская НИ, Савченко ЛМ, Шевченко ЮС, Сычев ДА. Значение метода глобальных триггеров для выявления неблагоприятных событий, связанных с оказанием медицинской помощи в педиатрии. Медицинский совет. 2018;(17):56–65. https://doi.org/10.21518/2079-701X-2018-17-56-65; Johnson AD, Kavousi M, Smith AV, Chen M-H, Dehghan A, Aspelund T, et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum Mol Genet. 2009;18(14):2700–10. https://doi.org/10.1093/hmg/ddp202; Yu Y, Nie X, Song Z, Xie Y, Zhang X, Du Z, et al. Signal detection of potentially drug-induced liver injury in children using electronic health records. Front Pediatr. 2020;8:171. https://doi.org/10.3389/fped.2020.00171; Jiang T, Huang X, Liu Q, Feng H, Huang Y, Lin J, et al. Risk factors for tigecycline-associated hepatotoxicity in patients in the intensive care units of 2 tertiary hospitals: a retrospective study. J Clin Pharmacol. 2022;62(11):1426–34. https://doi.org/10.1002/jcph.2099; Ghanem CI, Gómez PC, Arana MC, Perassolo M, Ruiz ML, Villanueva SS, et al. Effect of acetaminophen on expression and activity of rat liver multidrug resistance-associated protein 2 and P-glycoprotein. Biochem Pharmacol. 2004;68(4):791–8. https://doi.org/10.1016/j.bcp.2004.05.014; Acevedo C, Bengochea L, Tchercansky DM, Ouviña G, Perazzo JC, Lago N, et al. Cholestasis as a liver protective factor in paracetamol acute overdose. Gen Pharmacol. 1995;26(7):1619–24. https://doi.org/10.1016/0306-3623(95)00061-5; https://www.risksafety.ru/jour/article/view/389
-
9Academic Journal
المؤلفون: E. A. Ioppa, V. D. Zavadovskaya, O. S. Tonkih, Е. А. Иоппа, В. Д. Завадовская, О. С. Тонких
المصدر: Diagnostic radiology and radiotherapy; Том 14, № 1 (2023); 49-55 ; Лучевая диагностика и терапия; Том 14, № 1 (2023); 49-55 ; 2079-5343
مصطلحات موضوعية: гепатит, liver fibrosis, diffuse liver diseases, cirrhosis, hepatitis, фиброз печени, диффузные заболевания печени, цирроз
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/832/587; Virkar M., Morani A.C., Taggart M.W. et al. Liver Fibrosis Asessment // Semin Ultrasound, CT, MR. 2021. Vol. 42, No. 4, pp. 381–389. doi: 10.153/j/sult/2021.03.003.; Ципперман Я.С. Фиброз печени: патогенез, методы диагностики, перспективы лечения // Клиническая фармакология и терапия. 2017. Т. 26, № 1. С. 54– 58. [Tsipperman Y.S. Liver fibrosis: pathogenesis, diagnostic methods, treatment prospects. Clinical pharmacology and therapy, 2017, Vol. 26, No. 1, pp. 54–58 (In Russ.)]. doi:10.32756/0869-5490-2022-3.; Полухина А.В., Винницкая Е.В., Сандлер Ю.Г. Фиброгенез печени при HCV-инфекции: современный взгляд на проблему // Высокотехнологическая медицина. 2018. Т. 5, № 4. C. 15–22. [Polukhina A.V., Vinnitskaya E.V., Sandler Yu.G. Fibrogenesis of the liver in HCV infection: a modern view of the problem. Hightech medicine, 2018, Vol. 5, No. 4, pp. 15–22 (In Russ.)].; Винницкая Е.В., Юнусова Ю.М. Фиброз печени: возможности обратного развития // Фарматека. 2012. № 13. С. 74–76. [Vinnitskaya E.V. Yunusova Yu.M. Liver fibrosis: the possibility of reverse development. Pharmateca, 2012, No. 13, pp. 74–76 (In Russ.)].; Лазебник Л.Б., Радченко В.Г., Селиверстов П.В., Ситкин С.И., Джадхав С.Н. Современное представление о фиброзе печени и подходах к его лечению у больных неалкогольным стеатогепатитом // Экспериментальная и клиническая гастроэнтерология. 2017. Т. 148, № 12. С. 98–109. [Lazebnik L.B., Radchenko V.G., Seliverstov P.V., Sitkin S.I., Dzhadkhav S.N. Modern understanding of liver fibrosis and approaches to its indications in patients with non-alcoholic steatohepatitis. Experimental and Clinical Gastroenteroly, 2017, Vol. 148, No. 12, pp. 98–109 (In Russ.)].; Ройтберг Г.Е., Шархун О.О. Возможности эластометрии и биохимических маркеров в диагностике фиброза печени // Медицинский альманах. 2017. Т. 1, № 46. С. 65–68. [Roytberg G.E., Sharkhun O.O. Possibilities of elastometry and biochemical markers in the diagnosis of liver fibrosis. Medical Almanac, 2017, Vol. 1, No. 46, pp. 65–68 (In Russ.)].; Leung V.Y., Shen J., Wong V.W. et al. Quantitative elastography of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: comparison of shear-wave elastography and transient elastography with liver biopsy correlation // Radiology. 2013. Vol. 269, No. 3. Р. 910–918. doi:10.1148/radiol.13130128.; Lee S.M., Lee J.M., Kang H.J. et al. Liver fibrosis staging with a new 2D-shear wave elastography using comb-push technique: Applicability, reproducibility, and diagnostic performance // PLoS One. 2017. Vol. 12, No. 5. Р. 1–16. doi:10.1371/journal.pone.0177264.; Ronot M., Leporq B., Van Beers B.E. et al. CT and MRI perfusion techniques to assess diffuse liver diseases // Abdominal Radiology. 2020. No. 45. Р. 3496–3506. doi: 10.107/s00261-019-02338-z.; Hirano R., Rogalla P., Farrell C. et al. Development of a classification method for mild liver fibrosis using non-contrast CT image // International Journal of computer of assisted Radiology and Surgery. 2022. Vol. 17, No. 11. Р. 2041–2049. doi:10.1007/s11548-022-02724-x.; Esser M., Bitzer M., Kolb M. et al. Correlation between acoustic radiation force impulse (ARFI)-based tissue elasticity measurements and perfusion parameters acquired by perfusion CT in cirrhotic livers: a proof of principle // Journal of Medical Ultrasonics. 2019. Vol. 46, No. 1. Р. 81–88. doi:10.1007/s10396-018-0886-x.; Tsushima Y., Taketomi-Takahashi A. Shear wave velocity might correlate with portal venous perfusion if correct portal venous perfusion techniques are used // Journal of medical ultrasonics. 2019. Vol. 46, No. 4. Р. 515–516. doi:10.1007/s10396-019-00950-6.; Yansong L., Qing P., Hong Z. Investigation of the values of CT perfusion imaging and ultrasound elastography in the diagnosis of liver fibrosis // Experimental and therapeutic medicine. 2018. Vol. 16, No. 2. Р. 896–900. doi:10.3892/etm.2018.6269.; https://radiag.bmoc-spb.ru/jour/article/view/832
-
10Academic Journal
المؤلفون: E. Y. Kudashkina, L. Y. Ilchenko, I. G. Fedorov, Е. Ю. Кудашкина, Л. Ю. Ильченко, И. Г. Федоров
المصدر: The Russian Archives of Internal Medicine; Том 12, № 3 (2022); 234-239 ; Архивъ внутренней медицины; Том 12, № 3 (2022); 234-239 ; 2411-6564 ; 2226-6704
مصطلحات موضوعية: постковидный синдром, chronic liver disease, postcovid syndrome, хронические заболевания печени
وصف الملف: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/1435/1125; https://www.medarhive.ru/jour/article/view/1435/1134; Johns Hopkins University. COVID-19 Data Visualization Center. New Cases of COVID-19 In World Countries. 2021. [Electronic resource]. URL:https://coronavirus.jhu.edu/data/new-cases (date of the application: 29.12.2021).; Amin M. COVID-19 and the liver: overview. J Gastroenterol Hepatol. 2021; 3(33): 309-311. doi:10.1097/MEG.0000000000001808.; Dawood R., Salum G., El-Meguid M. The Impact of COVID-19 on Liver Injury: COVID-19 and Liver Injury. J Med Sci. 2021; S0002-9629(21)00400-6. doi:10.1016/j.amjms.2021.11.001; Ильченко Л.Ю., Никитин И.Г., Федоров И.Г. COVID-19 и поражение печени. Архивъ внутренней медицины. 2020; 3(10): 188-197. doi.org/10.20514/2226-6704-2020-10-3-188-197.; Никитин И.Г., Ильченко Л.Ю., Федоров И.Г. и др. Поражение печени при COVID-19: два клинических наблюдения. Альманах клинической медицины. 2020; 6(48): 412-421. doi.org/10.18786/2072-0505-2020-48-053.; GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020; 3(5): 245-266. doi:10.1016/S2468-1253(19)30349-8.; World Health Organization. 2018 Global status report on alcohol and health. 2018. [Electronic resource]. URL: https://apps.who.int/iris/handle/10665/274603. (date of the application: 29.12.2021).; Ramalho R. Alcohol consumption and alcohol-related problems during the COVID-19 pandemic: a narrative review. Australas Psychiatry. 2020; 28(5): 524-526. doi:10.1177/1039856220943024.; Ge J., Pletcher M., Lai J. N3C Consortium Outcomes of SARS-CoV-2 infection in patients with chronic liver disease and cirrhosis: a National COVID cohort collaborative study. Gastroenterology. 2021; 5(161): 1487-1501. doi:10.1053/j.gastro.2021.07.010.; Marjot T., Moon A., Cook J. et al. Outcomes following SARSCoV-2 infection in patients with chronic liver disease: An international registry study. J Hepatol. 2021; 3(74): 567-577. doi:10.1016/j.jhep.2020.09.024.; Babor, T., Fuente, J., Saunders J., Grant M. The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Health Care. WHO/MNH/DAT 89.4, World Health Organization, Geneva, 1989.; Albillos A., Lario M., Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol. 2014; 6(61): 1385-1396. doi:10.1016/j.jhep.2014.08.010.; Premkumar M., Devurgowda D., Dudha S. et al. A/H1N1/09 Influenza is Associated With High Mortality in Liver Cirrhosis. J Clin Exp Hepatol. 2019; 9(2): 162-170. doi:10.1016/j.jceh.2018.04.006.; Szabo G., Saha B. Alcohol’s Effect on Host Defense. Alcohol Res. 2015; 2(37): 159-170.; Kunutsor S., Laukkanen J. Incidence of venous and arterial thromboembolic complications in COVID-19: a systematic review and meta-analysis. Thromb Res. 2020; 196: 27–30. https://doi.org/10.1016/j.thromres.2020.08.022.; Northup P., Garcia-Pagan J., Garcia-Tsao G. et al. Vascular Liver Disorders, Portal Vein Thrombosis, and Procedural Bleeding in Patients With Liver Disease: 2020 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2021; 1(73): 366-413. doi:10.1002/hep.31646.; Turon F., Driever E., Baiges A. et al. Predicting portal thrombosis in cirrhosis: A prospective study of clinical, ultrasonographic and hemostatic factors, J Hepatology. 2021; 6(75): 1367-1376. doi:10.1016/ j.jhep.2021.07.020.; O’Shea R., Davitkov P., Ko C. et al. AGA Clinical Practice Guideline on the Management of Coagulation Disorders in Patients With Cirrhosis. Gastroenterology. 2021; 5(161): 1615-1627. doi:10.1053/j.gastro.2021.08.015; Rajan S., Khunti K., Alwan N. et al. In the wake of the pandemic: Preparing for Long COVID. Copenhagen (Denmark): European Observatory on Health Systems and Policies. 2021. [Электронный ресурс]. URL:https://www.euro.who.int/en/health-topics/healthemergencies/coronavirus-covid-19/publications-and-technicalguidance/2021/in-the-wake-of-the-pandemic-preparing-for-longcovid-2021 (дата обращения 27.12.2021.).; Zeng Q., Yu Z., Ji F. et al. Dynamic changes in liver function parameters in patients with coronavirus disease 2019: a multicentre, retrospective study. BMC Infect Dis. 2021; 1(21): 818. doi:10.1186/s12879-021-06572-z.; https://www.medarhive.ru/jour/article/view/1435
-
11Academic Journal
المؤلفون: Таирова Гузаль Бабакуловна
مصطلحات موضوعية: Аутоиммунный гепатит, заболевания печени, хроническое течение
Relation: https://doi.org/10.5281/zenodo.7545388; https://doi.org/10.5281/zenodo.7545389; oai:zenodo.org:7545389
-
12Academic Journal
المؤلفون: R. M. Kurabekova, O. M. Tsirulnikova, S. Yu. Oleshkevich, I. E. Pashkova, G. A. Olefirenko, Р. М. Курабекова, О. М. Цирульникова, С. Ю. Олешкевич, И. Е. Пашкова, Г. А. Олефиренко
المصدر: Russian Journal of Transplantology and Artificial Organs; Том 24, № 2 (2022); 65-70 ; Вестник трансплантологии и искусственных органов; Том 24, № 2 (2022); 65-70 ; 2412-6160 ; 1995-1191
مصطلحات موضوعية: фиброз печени, pediatric liver transplantation, liver disease, liver fibrosis, трансплантация печени детям, заболевания печени
وصف الملف: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1501/1311; Wu YL, Ye J, Zhang S, Zhong J, Xi RP. Clinical significance of serum IGF-I, IGF-II and IGFBP-3 in liver cirrhosis. World J Gastroenterol. 2004; 10 (18): 2740–2743.; Меньшиков В. Энциклопедия клинических лабораторных тестов. М., 1997; 960.; Leung KC, Ho KK. Measurement of growth hormone, insulin-like growth factor I and their binding proteins: the clinical aspects. Clin Chim Acta. 2001; 313 (1–2): 119–123.; Takahashi Y. The Role of Growth Hormone and InsulinLike Growth Factor-I in the Liver. Int J Mol Sci. 2017; 18 (7): 1447. doi:10.3390/ijms18071447.; Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease. EMBO Mol Med. 2014; 6 (11): 1423–1435. doi:10.15252/emmm.201303376.; Weigent DA. Lymphocyte GH-axis hormones in immunity. Cell Immunol. 2013; 285 (1–2): 118–132. doi:10.1016/j.cellimm.2013.10.003.; Conover CA, Oxvig C. PAPP-A: a promising therapeutic target for healthy longevity. Aging Cell. 2017; 16 (2): 205–209.; Cignarelli A, Genchi VA, Le Grazie G, Caruso I, Marrano N, Biondi G et al. Mini Review: Effect of GLP-1 Receptor Agonists and SGLT-2 Inhibitors on the Growth Hormone/IGF Axis. Front Endocrinol. 2022; 13 (846903). doi:10.3389/fendo.2022.846903.; De Palo EF, Bassanello M, Lancerin F, Spinella P, Gatti R, D’Amico D et al. GH/IGF system, cirrhosis and liver transplantation. Clin Chim Acta. 2001; 310 (1): 31–37.; Liu Z, Cordoba-Chacon J, Kineman RD, Cronstein BN, Muzumdar R, Gong Z et al. Growth Hormone Control of Hepatic Lipid Metabolism. Diabetes. 2016; 65 (12): 3598–3609. doi:10.2337/db16-0649.; Cao LH, Lu FM, Lu XJ, Zhu LY. Study on the relationship between insulin growth factor 1 and liver fibrosis in patients with chronic hepatitis C with type 2 diabetes mellitus. J Cell Biochem. 2018; 119 (11): 9513–9518. doi:10.1002/jcb.27267.; Gariani K, Toso C, Philippe J, Orci LA. Effects of liver transplantation on endocrine function: A systematic review. Liver Int. 2016; 10 (10): 13158. doi: 1111/liv.; Chishima S, Kogiso T, Matsushita N, Hashimoto E, Tokushige K. The Relationship between the Growth Hormone/Insulin-like Growth Factor System and the Histological Features of Nonalcoholic Fatty Liver Disease. Intern Med. 2017; 56 (5): 473–480. doi:10.2169/internalmedicine.56.7626.; Bonefeld K, Moller S. Insulin-like growth factor-I and the liver. Liver Int. 2011; 31 (7): 911–919. doi:10.1111/j.1478-3231.2010.02428.x.; Castro GR, Coelho JC, Parolin MB, Matias JE, de Freitas AC. Insulin-like growth factor I correlates with MELD and returns to normal level after liver transplantation. Ann Transplant. 2013; 18: 57–62. doi:10.12659/AOT.883819.; Dichtel LE, Cordoba-Chacon J, Kineman RD. Growth hormone and insulin-like growth factor I regulation of nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2022; 16 (10). doi: 1210/clinem/dgac088.; Sobrevals L, Rodriguez C, Romero-Trevejo JL, Gondi G, Monreal I, Paneda A et al. Insulin-like growth factor I gene transfer to cirrhotic liver induces fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology. 2010; 51 (3): 912–921. doi:10.1002/hep.23412.; de la Garza RG, Morales-Garza LA, Martin-Estal I, Castilla-Cortazar I. Insulin-Like Growth Factor-1 Deficiency and Cirrhosis Establishment. J Clin Med Res. 2017; 9 (4): 233–247. doi:10.14740/jocmr2761w.; Kawai M, Harada N, Takeyama H, Okajima K. Neutrophil elastase contributes to the development of ischemia/ reperfusion-induced liver injury by decreasing the production of insulin-like growth factor-I in rats. Transl Res. 2010; 155 (6): 294–304. doi:10.1016/j.trsl.2010.02.003.; Meng F, Zhang Z, Chen C, Liu Y, Yuan D, Hei Z et al. PI3K/AKT activation attenuates acute kidney injury following liver transplantation by inducing FoxO3a nuclear export and deacetylation. Life Sci. 2021; 272 (119119):26. doi:10.1016/j.lfs.2021.119119.; Conchillo M, de Knegt RJ, Payeras M, Quiroga J, Sangro B, Herrero JI et al. Insulin-like growth factor I (IGF-I) replacement therapy increases albumin concentration in liver cirrhosis: results of a pilot randomized controlled clinical trial. J Hepatol. 2005; 43 (4): 630–636. doi:10.1016/j.jhep.2005.03.025.; Шевченко ОП, Цирульникова ОМ, Цирульникова ИЕ, Курабекова РМ, Олефиренко ГА, Степанова ОИ и др. Динамика инсулиноподобного фактора роста 1 (ИФР-1) при трансплантации печени детям от донора, не совместимого по группе крови. Вестник трансплантологии и искусственных органов. 2014; XVI (2): 46–51.; Stefano JT, Correa-Giannella ML, Ribeiro CM, Alves VA, Massarollo PC, Machado MC et al. Increased hepatic expression of insulin-like growth factor-I receptor in chronic hepatitis C. World J Gastroenterol. 2006; 12 (24): 3821–3828.; Nishizawa H, Iguchi G, Fukuoka H, Takahashi M, Suda K, Bando H et al. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci Rep. 2016; 6 (34605). doi:10.1038/srep34605.; Choi JS, Park YJ, Kim SW. Three-dimensional Differentiated Human Mesenchymal Stem Cells Exhibit Robust Antifibrotic Potential and Ameliorates Mouse Liver Fibrosis. Cell Transplant. 2021; 30 (963689720987525): 0963689720987525.; Lee SJ, Kim KH, Park KK. Mechanisms of fibrogenesis in liver cirrhosis: The molecular aspects of epithelialmesenchymal transition. World J Hepatol. 2014; 6 (4): 207–216. doi:10.4254/wjh.v6.i4.207.; Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008; 134 (4): 657–667. doi:10.1016/j.cell.2008.06.049.; Nicolini D, Mocchegiani F, Palmonella G, Coletta M, Brugia M, Montalti R et al. Postoperative Insulin-Like Growth Factor 1 Levels Reflect the Graft’s Function and Predict Survival after Liver Transplantation. PLoS One. 2015; 10 (7). doi:10.1371/journal.pone.0133153.; Abdel-Wahab R, Hassan MM, George B, Carmagnani Pestana R, Xiao L, Lacin S et al. Impact of Integrating Insulin-Like Growth Factor 1 Levels into Model for End-Stage Liver Disease Score for Survival Prediction in Hepatocellular Carcinoma Patients. Oncology. 2020; 98 (12): 836–846. doi:10.1159/000502482.; Курабекова РМ, Цирульникова ОМ, Пашкова ИЕ, Макарова ЛВ, Можейко НП, Монахов АР, Шевченко ОП. Связь уровней гормона роста и инсулиноподобного фактора роста 1 (ИФР-1) с функцией печени и краткосрочной выживаемостью детей – реципиентов печени. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020; 30 (4): 44–51. doi:10.22416/1382-4376-2020-30-4-44-51.; Kelley KW, Weigent DA, Kooijman R. Protein hormones and immunity. Brain Behav Immun. 2007; 21 (4): 384–392. doi:10.1016/j.bbi.2006.11.010.; Gong FY, Deng JY, Shi YF. Stimulatory effect of interleukin-1beta on growth hormone gene expression and growth hormone release from rat GH3 cells. Neuroendocrinology. 2005; 81 (4): 217–228. doi:10.1159/000087160.; Derfalvi B, Szalai C, Mandi Y, Kiraly A, Falus A. Growth hormone receptor gene expression on human lymphocytic and monocytic cell lines. Cell Biol Int. 1998; 22 (11–12): 849–853. doi:10.1006/cbir.1998.0324.; Dardenne M, Smaniotto S, de Mello-Coelho V, Villa-Verde DM, Savino W. Growth hormone modulates migration of developing T cells. Ann N Y Acad Sci. 2009. doi:10.1111/j.1749-6632.2008.03977.x.; Farmer JT, Weigent DA. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone. Cell Immunol. 2006; 240 (1): 22–30. doi:10.1016/j.cellimm.2006.06.003.; Wang K, Wang M, Gannon M, Holterman A. Growth Hormone Mediates Its Protective Effect in Hepatic Apoptosis through Hnf6. PLoS One. 2016; 11 (12). doi:10.1371/journal.pone.0167085.; Walsh PT, Smith LM, O’Connor R. Insulin-like growth factor-1 activates Akt and Jun N-terminal kinases (JNKs) in promoting the survival of T lymphocytes. Immunology. 2002; 107 (4): 461–471.; Clark R, Strasser J, McCabe S, Robbins K, Jardieu P. Insulin-like growth factor-1 stimulation of lymphopoiesis. J Clin Invest. 1993; 92 (2): 540–548.; Xu J, Wang X, Chen J, Chen S, Li Z, Liu H et al. Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice. Theranostics. 2020; 10(26): 12204–12222. doi:10.7150/thno.47683.; Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar OL et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 2021; 17 (6). doi:10.1371/journal.pgen.1009605.; Dehghani SM, Karamifar H, Hamzavi SS, Haghighat M, Malek-Hosseini SA. Serum insulinlike growth factor-1 and its binding protein-3 levels in children with cirrhosis waiting for a liver transplant. Exp Clin Transplant. 2012; 10 (3): 252–257.; Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007; 28 (1): 20–47.; Qiao C, Huang W, Chen J, Feng W, Zhang T, Wang Y et al. IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastasis through upregulating ACLY and IGF1R. Cell Death Dis. 2021; 12 (6): 021-03833. doi:10.1038/s41419-2.; González-Juanatey JR, Piñeiro R, Iglesias MJ, Gualillo O, Kelly PA, Diéguez C et al. GH prevents apoptosis in cardiomyocytes cultured in vitro through a calcineurin-dependent mechanism. J Endocrinol. 2004; 180 (2): 325–335. doi:10.1677/joe.0.1800325.; Li SY, Fang CX, Aberle NS, 2nd, Ren BH, Ceylan-Isik AF, Ren J. Inhibition of PI-3 kinase/Akt/mTOR, but not calcineurin signaling, reverses insulin-like growth factor I-induced protection against glucose toxicity in cardiomyocyte contractile function. J Endocrinol. 2005; 186 (3): 491–503. doi:10.1677/joe.1.06168.; Kawamura I, Takeshita S, Fushimi M, Mabuchi M, Seki J, Goto T. Induction of choleresis by immunosuppressant FK506 through stimulation of insulin-like growth factor-I production in the liver of rats. Eur J Pharmacol. 2001; 419 (1): 99–105. doi:10.1016/s0014-2999(01)00961-x.; Курабекова РМ, Цирульникова ОМ, Гичкун ОЕ, Олефиренко ГА, Пашкова ИЕ, Бельченков АА и др. Взаимосвязь уровня инсулиноподобного фактора роста 1 с дозой такролимуса у детей – реципиентов печени. Вестник трансплантологии и искусственных органов. 2021; 23 (2): 13–20. doi:10.15825/1995-1191-2021-2-13-20.; https://journal.transpl.ru/vtio/article/view/1501
-
13Academic Journal
المؤلفون: N. A. Onishchenko, Z. Z. Gonikova, A. O. Nikolskaya, L. A. Kirsanova, V. I. Sevastianov, Н. А. Онищенко, З. З. Гоникова, А. О. Никольская, Л. А. Кирсанова, В. И. Севастьянов
المصدر: Russian Journal of Transplantology and Artificial Organs; Том 24, № 1 (2022); 72-88 ; Вестник трансплантологии и искусственных органов; Том 24, № 1 (2022); 72-88 ; 2412-6160 ; 1995-1191
مصطلحات موضوعية: заболевания печени, autophagy, apoptosis, necrosis, liver diseases, аутофагия, апоптоз, некроз
وصف الملف: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1463/1274; https://journal.transpl.ru/vtio/article/view/1463/1355; Ярилин АА. Апоптоз: природа феномена и его роль в норме и при патологии. Актуальные проблемы патофизиологии: избранные лекции под ред. Б.Б. Мороза. М.: Медицина, 2001: 13–56.; Tak H, Matsui Y, Sadoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxidants and Redox Signaling. 2007; 9 (9): 1373–1381.; Губский ЮИ. Смерть клетки: свободные радикалы, некроз, апоптоз: монография. Винница: Нова книга, 2015. 360.; Потапнев МП. Аутофагия, апоптоз, некроз клеток и иммунное распознавание своего и чужого. Иммунология. 2014; 2: 95–102.; Shojaie L, Iorga A, Dara L. Cell Death in Liver Diseases: A Review. Int J Mol Sci. 2020 Dec; 21 (24): 9682. doi:10.3390/ijms21249682.; Aizawa S, Brar G, Tsukamoto H. Cell Death and Liver Disease. Gut Liver. 2020 Jan; 14 (1): 20–29. doi:10.5009/gnl18486.; Xie Z, Klionsky DJ. Autophagosome Formation: Core Machinery and Adaptations. Nat Cell Biol. 2007: 1102– 1109. doi:10.1038/ncb1007-1102.; Kuballa P, Nolte WM, Castoreno AB, Xavier RJ. Autophagy and the immune system. Ann Rev Immunol. 2012; 30: 611–646.; Romao S, Gannage M, Munz C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin Cancer Biol. 2013; 23 (5): 391–396.; Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell. 2011; 146 (5): 682–695.; Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPS: signal Os that spur autophagy and immunity. Immunol Rev. 2012; 249 (1): 158–175.; Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018; 25: 486–541. doi:10.1038/s41418-017-0012-4.; Liu G, Bi Y, Wang R, Wang X. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity. J Leukoc Biol. 2013; 93 (4): 511–519.; Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular Definitions of Cell Death Subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012: 107–120. doi:10.1038/cdd.2011.96.; Yin XM. Autophagy in Liver Diseases: A Matter of What to Remove and Whether to Keep. Liver Res. 2018: 109– 111. doi:10.1016/j.livres.2018.09.001.; Ding W, Li M, Chen X, Ni H, Lin C, Gao W et al. Autophagy Reduces Acute Ethanol-Induced Hepatotoxicity and Steatosis in Mice. Gastroenterology. 2010; 139: 1740–1752. doi:10.1053/j.gastro.2010.07.041.; Lin CW, Zhang H, Li M, Xiong X, Chen X, Chen X et al. Pharmacological Promotion of Autophagy Alleviates Steatosis and Injury in Alcoholic and Non-Alcoholic Fatty Liver Conditions in Mice. J Hepatol. 2013; 58: 993–999. doi:10.1016/j.jhep.2013.01.011.; Ni HM, McGill MR, Chao X, Du K, Williams JA, Xie Y et al. Removal of Acetaminophen Protein Adducts by Autophagy Protects against Acetaminophen-Induced Liver Injury in Mice. J Hepatol. 2016; 65: 354–362. doi:10.1016/j.jhep.2016.04.025.; Ni HM, Williams JA, Jaeschke H, Ding WX. Zonated Induction of Autophagy and Mitochondrial Spheroids Limits Acetaminophen-Induced Necrosis in the Liver. Redox Biol. 2013: 427–432. doi:10.1016/j.redox.2013.08.005.; Ding WX, Yin XM. Sorting, Recognition and Activation of the Misfolded Protein Degradation Pathways through Macroautophagy and the Proteasome. Autophagy. 2008: 141–150. doi:10.4161/auto.5190.; Khambu B, Wang L, Zhang H, Yin X-M. The Activation and Function of Autophagy in Alcoholic Liver Disease. Curr Mol Pharmacol. 2017; 10: 165–171. doi:10.2174 /1874467208666150817112654.; Ni HM, Woolbright BL, Williams J, Copple B, Cui W, Luyendyk JP et al. Nrf2 Promotes the Development of Fibrosis and Tumorigenesis in Mice with Defective Hepatic Autophagy. J Hepatol. 2014; 61: 617–625. doi:10.1016/j.jhep.2014.04.043.; Eid N, Ito Y, Maemura K, Otsuki Y. Elevated Autophagic Sequestration of Mitochondria and Lipid Droplets in Steatotic Hepatocytes of Chronic Ethanol-Treated Rats: An Immunohistochemical and Electron Microscopic Study. J Mol Histol. 2013; 44: 311–326. doi:10.1007/s10735-013-9483-x.; Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of Autophagy Protects against Acetaminophen-Induced Hepatotoxicity. Hepatology. 2012; 55: 222–232. doi:10.1002/hep.24690.; Hu C, Zhao L, Shen M, Wu Z, Li L. Autophagy Regulation Is an Effective Strategy to Improve the Prognosis of Chemically Induced Acute Liver Injury Based on Experimental Studies. J Cell Mol Med. 2020: 8315–8325. doi:10.1111/jcmm.15565.; Lin Z, Wu F, Lin S, Pan X, Jin L, Lu T et al. Adiponectin Protects against Acetaminophen-Induced Mitochondrial Dysfunction and Acute Liver Injury by Promoting Autophagy in Mice. J Hepatol. 2014; 61: 825–831. doi:10.1016/j.jhep.2014.05.033.; Baulies A, Ribas V, Núñez S, Torres S, Alarcón-Vila C, Martínez L et al. Lysosomal Cholesterol Accumulation Sensitizes to Acetaminophen Hepatotoxicity by Impairing Mitophagy. Sci Rep. 2015; 5. doi:10.1038/ srep18017.; Дятлова АС, Дудков АВ, Линькова НС, Хавинсон ВХ. Молекулярные маркеры каспаза-зависимого и митохондриального апоптоза: роль в развитии патологии и в процессах клеточного старения. Успехи современной биологии. 2018; 138 (2): 126–137.; Рыжов СВ, Новиков ВВ. Молекулярные механизмы апоптотических процессов. Российский биотерапевтический журнал. 2002; 1 (3): 17–25.; Janssen WJ, Henson PM. Cellular regulation of the inflammatory response. Toxicol Pathol. 2012; 40 (2): 166–173.; Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010; 140 (6): 798–804.; Peter C, Wesselborg S, Herrman M, Lauber K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis. 2010; 15 (9): 1007–1028.; Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signaling pathways. Tren Immunol. 2014; 35 (12): 631–639.; Льюин Б. Клетки. М.: Бином. Лаборатория знаний, 2011. 951 с.; Riedl SJ, Salvesen GS. The Apoptosome: Signalling Platform of Cell Death. Nat Rev Mol Cell Biol. 2007; 8: 405–413. doi:10.1038/nrm2153. 35.; Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL et al. Linear Ubiquitination Prevents Inflammation and Regulates Immune Signalling. Nature. 2011; 471: 591–596. doi:10.1038/nature09816.36.; O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 Regulates an NF-ΚB-Independent Cell-Death Switch in TNF Signaling. Curr Biol. 2007; 17: 418–424. doi:10.1016/j. cub.2007.01.027. 37.; Ashkenazi A, Salvesen G. Regulated Cell Death: Signaling and Mechanisms. Annu Rev Cell Dev Biol. 2014; 30: 337–356. doi:10.1146/annurev-cellbio-100913-013226. 38.; Brenner D, Blaser H, Mak TW. Regulation of Tumour Necrosis Factor Signalling: Live or Let Die. Nat Rev Immunol. 2015; 15: 362–374. doi:10.1038/nri3834.; Голубев АМ, Москалева ЕЮ, Северин СЕ и др. Апоптоз при критических состояниях. Общая реаниматология. 2006; 2 (6): 184–190.; Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular Mechanisms of Necroptosis: An Ordered Cellular Explosion. Nat Rev Mol Cell Biol. 2010; 11: 700–714. doi:10.1038/nrm2970.; Wang S, Pacher P, De Lisle RC, Huang H, Ding WX. A mechanistic review of cell death in alcohol-induced liver injury. Alcohol Clin Exp Res. 2016; 40: 1215– 1223. doi:10.1111/acer.13078.; Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014; 147: 765–783. doi:10.1053/j.gastro.2014.07.018.; Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol. 2018; 15: 738–752. doi:10.1038/s41575- 018-0065-y.; Cahill A, Cunningham CC, Adachi M, Ishii H, Bailey SM, Fromenty B, Davies A. Effects of Alcohol and Oxidative Stress on Liver Pathology: The Role of the Mitochondrion. Alcohol Clin Exp Res. 2002; 26: 907– 915. doi:10.1111/j.1530-0277.2002.tb02621.x.; Adachi M, Higuchi H, Miura S, Azuma T, Inokuchi S, Saito H et al. Bax Interacts with the Voltage-Dependent Anion Channel and Mediates Ethanol-Induced Apoptosis in Rat Hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2004; 287. doi:10.1152/ajpgi.00415.2003.; Malhi H, Gores GJ. Cellular and Molecular Mechanisms of Liver Injury. Gastroenterology. 2008; 134: 1641–1654. doi:10.1053/j.gastro.2008.03.002.; Hartmann P, Seebauer CT, Schnabl B. Alcoholic Liver Disease: The Gut Microbiome and Liver Cross Talk. Alcohol Clin Exp Res. 2015: 763–775. doi:10.1111/ acer.12704.; Natori S, Rust C, Stadheim LM, Srinivasan A, Burgart LJ, Gores GJ. Hepatocyte Apoptosis Is a Pathologic Feature of Human Alcoholic Hepatitis. J Hepatol. 2001; 34: 248–253. doi:10.1016/S0168-8278(00)00089-1.; Hao F, Cubero FJ, Ramadori P, Liao L, Haas U, Lambertz D et al. Inhibition of Caspase-8 Does Not Protect from Alcohol-Induced Liver Apoptosis but Alleviates Alcoholic Hepatic Steatosis in Mice. Cell Death Dis. 2017; 8: e3152. doi:10.1038/cddis.2017.532.; Wilson CH, Kumar S. Caspases in Metabolic Disease and Their Therapeutic Potential. Cell Death Differ. 2018: 1010–1024. doi:10.1038/s41418-018-0111-x.; Roychowdhury S, Chiang DJ, Mandal P, McMullen MR, Liu X, Cohen JI et al. Inhibition of Apoptosis Protects Mice from Ethanol-Mediated Acceleration of Early Markers of CCl4-Induced Fibrosis but Not Steatosis or Inflammation. Alcohol Clin Exp Res. 2012; 36: 1139–1147. doi:10.1111/j.1530-0277.2011.01720.x.; Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ. Hepatocyte Apoptosis and Fas Expression Are Prominent Features of Human Nonalcoholic Steatohepatitis. Gastroenterology. 2003; 125: 437–443. doi:10.1016/S0016-5085(03)00907-7.; Thapaliya S, Wree A, Povero D, Inzaugarat ME, Berk M, Dixon L et al. Caspase 3 Inactivation Protects against Hepatic Cell Death and Ameliorates Fibrogenesis in a Diet-Induced NASH Model. Dig Dis Sci. 2014; 59: 1197–1206. doi:10.1007/s10620-014-3167-6.; Hatting M, Zhao G, Schumacher F, Sellge G, Al Masaoudi M, Gaßler N et al. Hepatocyte Caspase-8 Is an Essential Modulator of Steatohepatitis in Rodents. Hepatology. 2013; 57: 2189–2201. doi:10.1002/ hep.26271.; Barreyro FJ, Holod S, Finocchietto PV, Camino AM, Aquino JB, Avagnina A et al. The Pan-Caspase Inhibitor Emricasan (IDN-6556) Decreases Liver Injury and Fibrosis in a Murine Model of Non-Alcoholic Steatohepatitis. Liver Int. 2015; 35: 953–966. doi:10.1111/ liv.12570.; Zhao P, Sun X, Chaggan C, Liao Z, Wong K, He F et al. An AMPK–Caspase-6 Axis Controls Liver Damage in Nonalcoholic Steatohepatitis. Science. 2020; 367: 652– 660. doi:10.1126/science.aay0542.; Maiers JL, Malhi H. Endoplasmic Reticulum Stress in Metabolic Liver Diseases and Hepatic Fibrosis. Semin Liver Dis. 2019; 39: 235–248. doi:10.1055/s-0039- 1681032.; Roh YS, Kim JW, Park S, Shon C, Kim S, Eo SK et al. Toll-Like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. Am J Pathol. 2018; 188: 2574–2588. doi:10.1016/j.ajpath.2018.07.011.; Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA et al. Toxic Bile Salts Induce Rodent Hepatocyte Apoptosis via Direct Activation of Fas. J Clin Investig. 1999; 103: 137–145. doi:10.1172/ JCI4765.; Harada K, Ozaki S, Gershwin ME, Nakanuma Y. Enhanced Apoptosis Relates to Bile Duct Loss in Primary Biliary Cirrhosis. Hepatology. 1997; 26: 1399–1405. doi:10.1002/hep.510260604.; Iwata M, Harada K, Hiramatsu K, Tsuneyama K, Kaneko S, Kobayashi K, Nakanuma Y. Fas Ligand Expressing Mononuclear Cells around Intrahepatic Bile Ducts Co-Express CD68 in Primary Biliary Cirrhosis. Liver. 2000; 20: 129–135. doi:10.1034/j.1600- 0676.2000.020002129.x.; Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology. 2002; 123: 1323–1330. doi:10.1053/ gast.2002.35953.; Takeda K, Kojima Y, Ikejima K, Harada K, Yamashina S, Okumura K et al. Death Receptor 5 MediatedApoptosis Contributes to Cholestatic Liver Disease. Proc Natl Acad Sci USA. 2008; 105: 10895–10900. doi:10.1073/pnas.0802702105.; Cubero FJ, Peng J, Liao L, Su H, Zhao G, Eugenio Zoubek M et al. Inactivation of Caspase 8 in Liver Parenchymal Cells Confers Protection against Murine Obstructive Cholestasis. J Hepatol. 2018; 69: 1326–1334. doi:10.1016/j.jhep.2018.08.015.; Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ. The Caspase Inhibitor IDN-6556 Attenuates Hepatic Injury and Fibrosis in the Bile Duct Ligated Mouse. J Pharmacol Exp Ther. 2004; 308: 1191–1196. doi:10.1124/jpet.103.060129.; Eguchi A, Koyama Y, Wree A, Johnson CD, Nakamura R, Povero D et al. Emricasan, a Pan-Caspase Inhibitor, Improves Survival and Portal Hypertension in a Murine Model of Common Bile-Duct Ligation. J Mol Med. 2018; 96: 575–583. doi:10.1007/s00109-018- 1642-9.; Lau JYN, Xie X, Lai MMC, Wu PC. Apoptosis and Viral Hepatitis. Semin Liver Dis. 1998; 18: 169–176. doi:10.1055/s-2007-1007152.; Kountouras J, Zavos C, Chatzopoulos D. Apoptosis in Hepatitis C. J Viral Hepat. 2003: 335–342. doi:10.1046/j.1365-2893.2003.00452.x.; Ehrmann J, Galuszková D, Ehrmann J, Krè I, Jezdinská V, Vojtì Ek B et al. Apoptosis-Related Proteins, BCL-2, BAX, FAS, FAS-L and PCNA in Liver Biopsies of Patients with Chronic Hepatitis B Virus Infec- tion. Pathol Oncol Res. 2000; 6: 130–135. doi:10.1007/ BF03032363.; Luo KX, Zhu YF, Zhang LX, He HT, Wang XS, Zhang L. In situ Investigation of Fas/FasL Expression in Chronic Hepatitis B Infection and Related Liver Diseases. J Viral Hepat. 1997; 4: 303–307. doi:10.1046/j.1365- 2893.1997.00053.x.; Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D et al. Essential versus Accessory Aspects of Cell Death: Recommendations of the NCCD 2015. Cell Death Differ. 2015; 22: 58–73. doi:10.1038/ cdd.2014.137.; Giorgio V, Von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M et al. Dimers of Mitochondrial ATP Synthase Form the Permeability Transition Pore. Proc Natl Acad Sci USA. 2013; 110: 5887–5892. doi:10.1073/ pnas.1217823110.; Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB. Acetaminophen Induced Hepatic Necrosis. IV. Protective Role of Glutathione. J Pharmacol Exp Ther. 1973; 187: 211–217.; Pumford NR, Hinson JA, Wayne Benson R, Roberts DW. Immunoblot Analysis of Protein Containing 3-(CysteinS-Yl) Acetaminophen Adducts in Serum and Subcellular Liver Fractions from Acetaminophen-Treated Mice. Toxicol Appl Pharmacol. 1990; 104: 521–532. doi:10.1016/0041-008X(90)90174-S.; Ramachandran A, Jaeschke H. Acetaminophen Hepatotoxicity. Semin Liver Dis. 2019; 39: 221–234. doi:10.1055/s-0039-1679919.; Moles A, Torres S, Baulies A, Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial-Lysosomal Axis in Acetaminophen Hepatotoxicity. Front Pharmacol. 2018. doi:10.3389/fphar.2018.00453.; Bajt ML, Ramachandran A, Yan HM, Lebofsky M, Farhood A, Lemasters JJ, Jaeschke H. Apoptosis-Inducing Factor Modulates Mitochondrial Oxidant Stress in Acetaminophen Hepatotoxicity. Toxicol Sci. 2011; 122: 598–605. doi:10.1093/toxsci/kfr116.; Chen D, Ni HM, Wang L, Ma X, Yu J, Ding WX, Zhang L. P53 Up-Regulated Modulator of Apoptosis Induction Mediates Acetaminophen-Induced Necrosis and Liver Injury in Mice. Hepatology. 2019; 69: 2164–2179. doi:10.1002/hep.30422.; Wang X, Du H, Shao S et al. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology. 2018; 68: 62–77. doi:10.1002/hep.29788.; Laker RC, Taddeo EP, Akhtar YN, Zhang M, Hoehn KL, Yan Z. The mitochondrial permeability transition pore regulator cyclophilin D exhibits tissue-specific control of metabolic homeostasis. PLoS One. 2016; 11: e0167910. doi:10.1371/journal.pone.0167910.; Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology. 2013; 57: 1773–1783. doi:10.1002/hep.26200.; Murphy JM, Vince JE. Post-Translational Control of RIPK3 and MLKL Mediated Necroptotic Cell Death. F1000Research. 2015. doi:10.12688/f1000research.7046.1.; Sun L, Wang H, Wang Z, He S, Chen S, Liao D et al. Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase. Cell. 2012; 148: 213–227. doi:10.1016/j.cell.2011.11.031.; Newton K, Manning G. Necroptosis and Inflammation. Annu Rev Biochem. 2016; 85: 743–763. doi:10.1146/ annurev-biochem-060815-014830.; Dara L, Liu ZX, Kaplowitz N. Questions and Controversies: The Role of Necroptosis in Liver Disease. Cell Death Discov. 2016. doi:10.1038/cddiscovery.2016.89.; Dara L. The Receptor Interacting Protein Kinases in the Liver. Semin Liver Dis. 2018; 38: 73–86. doi:10.1055/ s-0038-1629924.; Kaplowitz N, Win S, Than TA, Liu ZX, Dara L. Targeting Signal Transduction Pathways which Regulate Necrosis in Acetaminophen Hepatotoxicity. J Hepatol. 2015: 5–7. doi:10.1016/j.jhep.2015.02.050.; Günther C, He GW, Kremer AE, Murphy JM, Petrie EJ, Amann K et al. The Pseudokinase MLKL Mediates Programmed Hepatocellular Necrosis Independently of RIPK3 during Hepatitis. J Clin Investig. 2016; 126: 4346–4360. doi:10.1172/JCI87545.; Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F et al. TRAIL Induces Necroptosis Involving RIPK1/ RIPK3-Dependent PARP-1 Activation. Cell Death Differ. 2012; 19: 2003–2014. doi:10.1038/cdd.2012.90.; Arshad MI, Piquet-Pellorce C, Filliol A, L’Helgoualc’h A, Lucas-Clerc C, Jouan-Lanhouet S et al. The Chemical Inhibitors of Cellular Death, PJ34 and Necrostatin-1, down-Regulate IL-33 Expression in Liver. J Mol Med. 2015; 93: 867–878. doi:10.1007/s00109- 015-1270-6.; Zhou Y, Dai W, Lin C, Wang F, He L, Shen M et al. Protective Effects of Necrostatin-1 against Concanavalin A-Induced Acute Hepatic Injury in Mice. Mediat Inflamm. 2013; doi:10.1155/2013/706156.; Hamon A, Piquet-Pellorce C, Dimanche-Boitrel MT, Samson M, Le Seyec J. Intrahepatocytic Necroptosis Is Dispensable for Hepatocyte Death in Murine ImmuneMediated Hepatitis. J Hepatol. 2020: 699–701. doi:10.1016/j.jhep.2020.05.016.; Chen L, Cao Z, Yan L, Ding Y, Shen X, Liu K et al. Circulating Receptor-Interacting Protein Kinase 3 Are Increased in HBV Patients with Acute-on-Chronic Liver Failure and Are Associated with Clinical Outcome. Front Physiol. 2020; 11. doi:10.3389/fphys.2020.00526.; Han L, Teng Y, Fan Y, Gao S, Li F, Wang K. ReceptorInteracting Protein Kinase 3 (RIPK3) MRNA Levels Are Elevated in Blood Mononuclear Cells of Patients with Poor Prognosis of Acute-on-Chronic Hepatitis B Liver Failure. Tohoku J Exp Med. 2019; 247: 237–245. doi:10.1620/tjem.247.237.; Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B et al. Pathogen Blockade of TAK1 Triggers Caspase-8– Dependent Cleavage of Gasdermin D and Cell Death. Science. 2018; 362: 1064–1069. doi:10.1126/science. aau2818.; Man SM, Kanneganti TD. Regulation of Inflammasome Activation. Immunol Rev. 2015: 6–21. doi:10.1111/ imr.12296.; Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-Mediated Pyroptotic and Apoptotic Cell Death, and Defense against Infection. Curr Opin Microbiol. 2013: 319–326. doi:10.1016/j.mib.2013.04.004.; Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019; 20: 3328. doi:10.3390/ijms20133328.; Wu J, Lin S, Wan B, Velani B, Zhu Y. Pyroptosis in Liver Disease: New Insights into Disease Mechanisms. Aging Dis. 2019; 10: 1094–1108. doi:10.14336/ AD.2019.0116.; Petrasek J, Iracheta-Vellve A, Saha B, Satishchandran A, Kodys K, Fitzgerald KA et al. Metabolic Danger Signals, Uric Acid and ATP, Mediate Inflammatory Cross-Talk between Hepatocytes and Immune Cells in Alcoholic Liver Disease. J Leukoc Biol. 2015; 98: 249– 256. doi:10.1189/jlb.3AB1214-590R.; Heo MJ, Kim TH, You JS, Blaya D, Sancho-Bru P, Kim SG. Alcohol Dysregulates MiR-148a in Hepatocytes through FoxO1, Facilitating Pyroptosis via TXNIP Overexpression. Gut. 2019; 68: 708–720. doi:10.1136/ gutjnl-2017-315123.; Beier JI, Banales JM. Pyroptosis: An Inflammatory Link between NAFLD and NASH with Potential Therapeutic Implications. J Hepatol. 2018: 643–645. doi:10.1016/j.jhep.2018.01.017.; Xu B, Jiang M, Chu Y, Wang W, Chen D, Li X et al. Gasdermin D Plays a Key Role as a Pyroptosis Executor of Non-Alcoholic Steatohepatitis in Humans and Mice. J Hepatol. 2018; 68: 773–782. doi:10.1016/j. jhep.2017.11.040.; Mehal WZ. The Inflammasome in Liver Injury and Non-Alcoholic Fatty Liver Disease. Dig Dis. 2014; 32: 507–515. doi:10.1159/000360495.; Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM et al. NLRP3 Inflammasome Blockade Reduces Liver Inflammation and Fibrosis in Experimental NASH in Mice. J Hepatol. 2017; 66: 1037–1046. doi:10.1016/j.jhep.2017.01.022.; Williams CD, Farhood A, Jaeschke H. Role of Caspase-1 and Interleukin-1β in Acetaminophen-Induced Hepatic Inflammation and Liver Injury. Toxicol Appl Pharmacol. 2010; 247: 169–178. doi:10.1016/j. taap.2010.07.004.; Williams CD, Antoine DJ, Shaw PJ, Benson C, Farhood A, Williams DP et al. Role of the Nalp3 Inflammasome in Acetaminophen-Induced Sterile Inflammation and Liver Injury. Toxicol Appl Pharmacol. 2011; 252: 289–297. doi:10.1016/j.taap.2011.03.001.; Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W et al. Macrophage-Derived IL-1α Promotes Sterile Inflammation in a Mouse Model of Acetaminophen Hepatotoxicity. Cell Mol Immunol. 2018; 15: 973–982. doi:10.1038/cmi.2017.22.; Luan J, Zhang X, Wang S, Li Y, Fan J, Chen W et al. NOD-like Receptor Protein 3 Inflammasome-Dependent IL-1β Accelerated ConA-Induced Hepatitis. Front Immunol. 2018; 9. doi:10.3389/fimmu.2018.00758.; Wang J, Ren H, Yuan X, Ma H, Shi X, Ding Y. Interleukin-10 Secreted by Mesenchymal Stem Cells Attenuates Acute Liver Failure through Inhibiting Pyroptosis. Hepatol Res. 2018; 48: E194–E202. doi:10.1111/ hepr.12969.; Lan P, Fan Y, Zhao Y, Lou X, Monsour HP, Zhang X et al. TNF Superfamily Receptor OX40 Triggers Invariant NKT Cell Pyroptosis and Liver Injury. J Clin Investig. 2017; 127: 2222–2234. doi:10.1172/JCI91075.; Maroni L, Agostinelli L, Saccomanno S, Pinto C, Giordano DM, Rychlicki C et al. Nlrp3 Activation Induces Il-18 Synthesis and Affects the Epithelial Barrier Function in Reactive Cholangiocytes. Am J Pathol. 2017; 187: 366–376. doi:10.1016/j.ajpath.2016.10.010.; Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu C et al. Chenodeoxycholic Acid Activates NLRP3 Inflammasome and Contributes to Cholestatic Liver Fibrosis. Oncotarget. 2016; 7: 83951–83963. doi:10.18632/oncotarget.13796.; Liao L, Schneider KM, Galvez EJC, Frissen M, Marschall HU, Su H et al. Intestinal Dysbiosis Augments Liver Disease Progression via NLRP3 in a Murine Model of Primary Sclerosing Cholangitis. Gut. 2019; 68: 1477–1492. doi:10.1136/gutjnl-2018-316670.; Xu WF, Zhang Q, Ding CJ, Sun HY, Che Y, Huang H et al. Gasdermin E-Derived Caspase-3 Inhibitors Effectively Protect Mice from Acute Hepatic Failure. Acta Pharmacol Sin. 2020. doi:10.1038/s41401-020-0434-2.; Serti E, Werner JM, Chattergoon M, Cox AL, Lohmann V, Rehermann B. Monocytes Activate Natural Killer Cells via Inflammasome-Induced Interleukin 18 in Response to Hepatitis C Virus Replication. Gastroenterology. 2014; 147. doi:10.1053/j.gastro.2014.03.046.; Yu X, Lan P, Hou X, Han Q, Lu N, Li T et al. HBV Inhibits LPS-Induced NLRP3 Inflammasome Activation and IL-1β Production via Suppressing the NF-ΚB Pathway and ROS Production. J Hepatol. 2017; 66: 693–702. doi:10.1016/j.jhep.2016.12.018.; Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016: 165–176. doi:10.1016/j.tcb.2015.10.014.; Mao L, Zhao T, Song Y, Lin L, Fan X, Cui B et al. The Emerging Role of Ferroptosis in Non-Cancer Liver Diseases: Hype or Increasing Hope? Cell Death Dis. 2020. doi:10.1038/s41419-020-2732-5.; Doll S, Conrad M. Iron and Ferroptosis: A Still IllDefined Liaison. IUBMB Life. 2017; 69: 423–434. doi:10.1002/iub.1616.; Capelletti MM, Manceau H, Puy H, Peoc’h K. Ferroptosis in Liver Diseases: An Overview. Int J Mol Sci. 2020; 21: 4908. doi:10.3390/ijms21144908.; Yang WS, Sriramaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al. Regulation of Ferro- ptotic Cancer Cell Death by GPX4. Cell. 2014; 156: 317–331. doi:10.1016/j.cell.2013.12.010.; Xie Y, Hou W, Song X et al. Ferroptosis: process and function. Cell Death Differ. 2016; 23: 369–379. doi:10.1038/cdd.2015.158.; Zhou Z, Ye TJ, Bonavita G, Daniels M, Kainrad N, Jogasuria A, You M. Adipose-Specific Lipin-1 Overexpression Renders Hepatic Ferroptosis and Exacerbates Alcoholic Steatohepatitis in Mice. Hepatol Commun. 2019; 3: 656–669. doi:10.1002/hep4.1333.; Zhou Z, Ye TJ, DeCaro E, Buehler B, Stahl Z, Bonavita G et al. Intestinal SIRT1 Deficiency Protects Mice from Ethanol-Induced Liver Injury by Mitigating Ferroptosis. Am J Pathol. 2020; 190: 82–92. doi:10.1016/j. ajpath.2019.09.012.; Macías-Rodríguez RU, Inzaugarat ME, Ruiz-Margáin A, Nelson LJ, Trautwein C, Cubero FJ. Reclassifying Hepatic Cell Death during Liver Damage: Ferroptosis-A Novel Form of Non-Apoptotic Cell Death? Int J Mol Sci. 2020 Feb 28; 21 (5): 1651. doi:10.3390/ ijms21051651.; Qi J, Kim JW, Zhou Z, Lim CW, Kim B. Ferroptosis Affects the Progression of Nonalcoholic Steatohepatitis via the Modulation of Lipid Peroxidation–Mediated Cell Death in Mice. Am J Pathol. 2020; 190: 68–81. doi:10.1016/j.ajpath.2019.09.011.; Wang M, Liu CY, Wang T, Yu HM, Ouyang SH, Wu YP et al. (+)-Clausenamide Protects against Drug-Induced Liver Injury by Inhibiting Hepatocyte Ferroptosis. Cell Death Dis. 2020; 11. doi:10.1038/s41419-020-02961-5. 131. Yamada N, Karasawa T, Kimura H, Watanabe S, Komada T, Kamata R et al. Ferroptosis Driven by Radical Oxidation of N-6 Polyunsaturated Fatty Acids Mediates Acetaminophen-Induced Acute Liver Failure. Cell Death Dis. 2020; 11. doi:10.1038/s41419-020-2334-2. 132. Yamada N, Karasawa T, Takahashi M. Role of Ferroptosis in Acetaminophen-Induced Hepatotoxicity. Arch Toxicol. 2020: 1769–1770. doi:10.1007/s00204-020- 02714-5.; Zeng T, Deng G, Zhong W, Gao Z, Ma S, Mo C et al. Indoleamine 2,3-Dioxygenase 1 enhanceshepatocytes Ferroptosis in Acute Immune Hepatitis Associated with Excess Nitrative Stress. FreeRadicBiol Med. 2020; 152: 668–679. doi:10.1016/j.freeradbiomed.2020.01.009.; Deng G, Li Y, Ma S, Gao Z, Zeng T, Chen L et al. Caveolin-1 Dictates Ferroptosis in the Execution of Acute Immune-Mediated Hepatic Damage by Attenuating Nitrogen Stress. Free Radic Biol Med. 2020; 148: 151– 161. doi:10.1016/j.freeradbiomed.2019.12.026.; Wang Y, An R, Umanah GK et al. A nuclease that mediates cell death induced by DNA damage and poly (ADPribose) polymerase-1. Science. 2016; 354. doi:10.1126/ science.aad6872. aad6872.; Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK. β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis. 2014; 5: e1230. doi:10.1038/cddis.2014.202.; Sun Q, Luo T, Ren Y et al. Competition between human cells by entosis. Cell Res. 2014; 24: 1299–1310. doi:10.1038/cr.2014.138.; Hamann JC, Surcel A, Chen R et al. Entosis is induced by glucose starvation. Cell Rep. 2017; 20: 201–210. doi:10.1016/j.celrep.2017.06.037.; Sierro F, Tay SS, Warren A et al. Suicidal emperipolesis: a process leading to cell-in-cell structures, T cell clearance and immune homeostasis. Curr Mol Med. 2015; 15: 819–827. doi:10.2174/1566524015666151026102 143.; Shi J, Zhao J, Zhang X et al. Activated hepatic stellate cells impair NK cell anti-fibrosis capacity through a TGF-beta-dependent emperipolesis in HBV cirrhotic patients. Sci Rep. 2017; 7: 44544. doi:10.1038/ srep44544.; Hitomi J, Christofferson DE, Ng A et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 2008; 135: 1311– 1323. doi:10.1016/j.cell.2008.10.044.; Conos SA, Chen KW, De Nardo D et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA. 2017; 114: E961– E969. doi:10.1073/pnas.1613305114.; Chung H, Vilaysane A, Lau A et al. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ. 2016; 23: 1331–1346. doi:10.1038/cdd.2016.14.; Маслов ЛН, Нарыжная НВ, Семенцов АС, Мухомедзян АВ, Горбунов АС. Влияние посткондиционирования сердца на некроз, апоптоз, онкоз и аутофагию кардиомиоцитов. Патофизиология и экспериментальная терапия. 2016; 60 (2): 94–100.; Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother. 2019 Jan; 109: 2043–2053. doi:10.1016/j.biopha.2018.11.030.; El-Kashef DH, Abdelrahman RS. Montelukast ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway. Toxicol Appl Pharmacol. 2020 Apr 15; 393: 114931. doi:10.1016/j.taap.2020.114931.; Zhang M, Wu P, Li M, Guo Y, Tian T, Liao X, Tan S. Inhibition of Notch1 signaling reduces hepatocyte injury in nonalcoholic fatty liver disease via autophagy. Biochem Biophys Res Commun. 2021 Apr 2; 547: 131–138. doi:10.1016/j.bbrc.2021.02.039.; Peng Z, Liao Y, Wang X, Chen L, Wang L, Qin C et al. Heme oxygenase-1 regulates autophagy through carbon-oxygen to alleviate deoxynivalenol-induced hepatic damage. Arch Toxicol. 2020 Feb; 94 (2): 573–588. doi:10.1007/s00204-019-02649-6.; Yu X, Hao M, Liu Y, Ma X, Lin W, Xu Q et al. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activati- on via mitophagy. Eur J Pharmacol. 2019 Dec 1; 864: 172715. doi:10.1016/j.ejphar.2019.172715.; Hongming Lv, Liu Y, Zhang B, Zheng Y, Ji H, Li S. The improvement effect of gastrodin on LPS/GalNinduced fulminant hepatitis via inhibiting inflammation and apoptosis and restoring autophagy. Int Immunopharmacol. 2020 Aug; 85: 106627. doi:10.1016/j.intimp.2020.106627.; Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Devel Ther. 2019 Aug 19; 13: 2887–2897. doi:10.2147/DDDT.S220190.; Pervaiz S, Bellot G L, Lemoine A, Brenner C. Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. Int Rev Cell Mol Biol. 2020; 352: 189–214. doi:10.1016/bs.ircmb.2020.03.002.; Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K et al. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiencyinduced fatty liver disease. Eur J Pharmacol. 2019 Apr 5; 848: 39–48. doi:10.1016/j.ejphar.2019.01.043.; Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G et al. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE(–/–) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int J Mol Sci. 2021 Jan 15; 22 (2): 818. doi:10.3390/ijms22020818.; Beer L, Mildner M, Gyöngyösi M, Ankersmit HJ. Peripheral blood mononuclear cell secretome for tissue repair. Apoptosis. 2016, 21: 1336–1353. doi:10.1007/ s10495-016-1292-8.; He YT, Qi YN, Zhang BQ, Li JB, Bao J. Bioartificial liver support systems for acute liver failure: A systematic review and meta-analysis of the clinical and preclinical literature. World J Gastroenterol. 2019 Jul 21; 25 (27): 3634–3648. doi:10.3748/wjg.v25.i27.3634.; Weng J, Han X, Zeng F, Zhang Y, Feng L, Cai L et al. Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs. Theranostics. 2021; 11 (16): 7620–7639. doi:10.7150/ thno.58515.; Шагидулин МЮ, Онищенко НА, Басок ЮБ, Григорьев АМ, Кириллова АД, Немец ЕА и др. Функциональная эффективность клеточно-инженерной конструкции печени на основе тканеспецифического матрикса (экспериментальная модель хронической печеночной недостаточности). Вестник трансплантологии и искусственных органов. 2020; 22 (4): 89–97.; Онищенко НА, Фоменко ЕВ, Никольская АО, Гоникова ЗЗ, Шагидулин МЮ, Балясин МВ и др. К механизму активации восстановительных процессов в печени при использовании общей РНК клеток костного мозга. Вестник трансплантологии и искусственных органов. 2020; 22 (3): 134–142.; https://journal.transpl.ru/vtio/article/view/1463
-
14Academic Journal
المؤلفون: M. V. Maevskaya, M. S. Zharkova, V. T. Ivashkin, E. N. Bessonova, N. I. Geyvandova, E. A. Kitsenko, N. V. Korochanskaya, I. A. Kurkina, A. L. Melikyan, V. G. Morozov, Yu. V. Khoronko, М. В. Маевская, М. С. Жаркова, В. Т. Ивашкин, Е. Н. Бессонова, Н. И. Гейвандова, Е. А. Киценко, Н. В. Корочанская, И. А. Куркина, А. Л. Меликян, В. Г. Морозов, Ю. В. Хоронько
المصدر: Meditsinskiy sovet = Medical Council; № 15 (2022); 70-82 ; Медицинский Совет; № 15 (2022); 70-82 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: агонисты рецептора тромбопоэтина, severe liver disease, hemostasis, hemorrhagic complications, prevention, thrombocytopenia, thrombopoietin receptor agonists, заболевания печени тяжелого течения, гемостаз, геморрагические осложнения, профилактика, тромбоцитопения
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7074/6348; Blasi A. Coagulopathy in liver disease: Lack of an assessment tool. World J Gastroenterol. 2015;21(35):10062–10071. https://doi.org/10.3748/wjg.v21.i35.10062.; Ивашкин В.Т., Маевская М.В., Жаркова М.С., Жигалова С.Б., Киценко Е.А., Манукьян Г.В., Тихонов И.Н. Цирроз и фиброз печени: клинические рекомендации. М.; 2021. 99 с. Режим доступа: https://cr.minzdrav.gov.ru/schema/715_1. Ivashkin V.T., Maevskaya M.V., Zharkova M.S., Zhigalova S.B., Kitsenko E.A., Manukyan G.V., Tikhonov I.N. Cirrhosis and fibrosis of the liver: clinical guidelines. Moscow; 2021. 99 p. (In Russ.) Available at: https://cr.minzdrav.gov.ru/schema/715_1.; Moore A.H. Thrombocytopenia in Cirrhosis: A Review of Pathophysiology and Management Options. Clin Liver Dis (Hoboken). 2019;14(5):183–186. https://doi.org/10.1002/cld.860.; Peck-Radosavljevic M. Thrombocytopenia in liver disease. Can J Gastroenterol. 2000;14(Suppl. D):60D–66D. https://doi.org/10.1155/2000/617428.; Reverter J.C. Abnormal hemostasis tests and bleeding in chronic liver disease: are they related? Yes. J Thromb Haemost. 2006;4(4):717–720. https://doi.org/10.1111/j.1538-7836.2006.01887.x.; Tripodi A., Primignani M., Chantarangkul V., Clerici M., Dell’Era A., Fabris F. et al. Thrombin generation in patients with cirrhosis: the role of platelets. Hepatology. 2006;44(2):440–445. https://doi.org/10.1002/hep.21266.; Budnick I.M., Davis J.P.E., Sundararaghavan A., Konkol S.B., Lau C.E., Alsobrooks J.P. et al. Transfusion with Cryoprecipitate for Very Low Fibrinogen Levels Does Not Affect Bleeding or Survival in Critically Ill Cirrhosis Patients. Thromb Haemost. 2021;121(10):1317–1325. https://doi.org/10.1055/a-1355-3716.; European Association for the Study of the Liver. EASL Clinical Practice Guidelines on prevention and management of bleeding and thrombosis in patients with cirrhosis. J Hepatol. 2022;76(5):1151–1184. https://doi.org/10.1016/j.jhep.2021.09.003.; Меликян А.Л., Пустовая Е.И., Цветаева Н.В., Егорова Е.К. Идиопатическая тромбоцитопеническая пурпура (ИТП) у взрослых: клинические рекомендации. М.; 2021. 55 с. Режим доступа: https://cr.minzdrav.gov.ru/schema/150_2. Melikyan A.L., Pustovaya E.I., Tsvetaeva N.V., Egorova E.K. Idiopathic thrombocytopenic purpura (ITP) in adults: clinical guidelines. Moscow; 2021. 55 p. (In Russ.) Available at: https://cr.minzdrav.gov.ru/schema/150_2.; Kaufman R.M., Djulbegovic B., Gernsheimer T., Kleinman S., Tinmouth A.T., Capocelli K.E. et al. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2015;162(3):205–213. https://doi.org/10.7326/M14-1589.; Northup P.G., Garcia-Pagan J.C., Garcia-Tsao G., Intagliata N.M., Superina R.A., Roberts L.N. et al. Vascular Liver Disorders, Portal Vein Thrombosis, and Procedural Bleeding in Patients With Liver Disease: 2020 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2021;73(1):366–413. https://doi.org/10.1002/hep.31646.; Alvaro D., Caporaso N., Giannini E.G., Iacobellis A., Morelli M., Toniutto P., Violi F. Procedure-related bleeding risk in patients with cirrhosis and severe thrombocytopenia. Eur J Clin Invest. 2021;51(6):e13508. https://doi.org/10.1111/eci.13508.; Park J.G., Park S.Y., Tak W.Y., Kweon Y.O., Jang S.Y., Lee Y.R. et al. Early complications after percutaneous radiofrequency ablation for hepatocellular carcinoma: an analysis of 1,843 ablations in 1,211 patients in a single centre: experience over 10 years. Clin Radiol. 2017;72(8):692.e9–692.e15. https://doi.org/10.1016/j.crad.2017.03.001.; Soh H., Chun J., Hong S.W., Park S., Lee Y.B., Lee H.J. et al. Child-Pugh B or C Cirrhosis Increases the Risk for Bleeding Following Colonoscopic Polypectomy. Gut Liver. 2020;14(6):755–764. https://doi.org/10.5009/gnl19131.; Hughes M., Prescott C., Ekeledo J. Avatrombopag for treating thrombocytopenia in people with chronic liver disease needing a planned invasive procedure. Technology appraisal guidance. NICE; 2020. Available at: https://www.nice.org.uk/guidance/ta626/.; Flisiak R., Antonov K., Drastich P., Jarcuska P., Maevskaya M., Makara M. et al. Practice Guidelines of the Central European Hepatologic Collaboration (CEHC) on the Use of Thrombopoietin Receptor Agonists in Patients with Chronic Liver Disease Undergoing Invasive Procedures. J Clin Med. 2021;10(22):5419. https://doi.org/10.3390/jcm10225419.; Under the auspices of the Italian Association for the Study of Liver Diseases (AISF) and the Italian Society of Internal Medicine (SIMI). Hemostatic balance in patients with liver cirrhosis: Report of a consensus conference. Dig Liver Dis. 2016;48(5):455–467. https://doi.org/10.1016/j.dld.2016.02.008.; Kovalic A.J., Majeed C.N., Samji N.S., Thuluvath P.J., Satapathy S.K. Systematic review with meta-analysis: abnormalities in the international normalised ratio do not correlate with periprocedural bleeding events among patients with cirrhosis. Aliment Pharmacol Ther. 2020;52(8):1298–1310. https://doi.org/10.1111/apt.16078.; Giannini E.G., Giambruno E., Brunacci M., Plaz Torres M.C., Furnari M., Bodini G. et al. Low Fibrinogen Levels Are Associated with Bleeding After Varices Ligation in Thrombocytopenic Cirrhotic Patients. Ann Hepatol. 2018;17(5):830–835. https://doi.org/10.5604/01.3001.0012.0775.; Заболотских И.Б., Синьков С.В., Лебединский К.М., Буланов А.Ю., Ройтман Е.В. Периоперационное ведение пациентов с нарушениями системы гемостаза. Анестезиология и реаниматология. 2018;(1):58–81. https://doi.org/10.17116/anaesthesiology201801-02158. Zabolotskikh I.B., Sinkov S.V., Lebedinskiy K.M., Bulanov A.Yu., Roitman E.V. Perioperative management of patients with hemostasis system disorders. Russian Journal of Anеsthesiology and Reanimatology. 2018;(1):58–81. (In Russ.) https://doi.org/10.17116/anaesthesiology201801-02158.; Галстян Г.М. Применение концентратов протромбинового комплекса по утвержденным и неутвержденным показаниям: новые перспективы старых препаратов. Гематология и трансфузиология. 2018;63(1):78–91. https://doi.org/10.25837/HAT.2018.30.1.008. Galstyan G.M. Label and off-label applications of prothrombin complex concentrates. New perspectives of old drugs. Gematologiya i Transfuziologiya. 2018;63(1):78–91. (In Russ.) https://doi.org/10.25837/HAT.2018.30.1.008.; Terrault N., Chen Y.C., Izumi N., Kayali Z., Mitrut P., Tak W.Y. et al. Avatrombopag Before Procedures Reduces Need for Platelet Transfusion in Patients With Chronic Liver Disease and Thrombocytopenia. Gastroenterology. 2018;155(3):705–718. https://doi.org/10.1053/j.gastro.2018.05.025.; Poordad F., Terrault N.A., Alkhouri N., Tian W., Allen L.F., Rabinovitz M. Avatrombopag, an Alternate Treatment Option to Reduce Platelet Transfusions in Patients with Thrombocytopenia and Chronic Liver Disease-Integrated Analyses of 2 Phase 3 Studies. Int J Hepatol. 2020:5421632. https://doi.org/10.1155/2020/5421632.; Hidaka H., Kurosaki M., Tanaka H., Kudo M., Abiru S., Igura T. et al. Lusutrombopag Reduces Need for Platelet Transfusion in Patients With Thrombocytopenia Undergoing Invasive Procedures. Clin Gastroenterol Hepatol. 2019;17(6):1192–1200. https://doi.org/10.1016/j.cgh.2018.11.047.; Peck-Radosavljevic M., Simon K., Iacobellis A., Hassanein T., Kayali Z., Tran A. et al. Lusutrombopag for the Treatment of Thrombocytopenia in Patients With Chronic Liver Disease Undergoing Invasive Procedures (L-PLUS 2). Hepatology. 2019;70(4):1336–1348. https://doi.org/10.1002/hep.30561.; Afdhal N.H., Giannini E.G., Tayyab G., Mohsin A., Lee J.W., Andriulli A. et al. Eltrombopag before procedures in patients with cirrhosis and thrombocytopenia. N Engl J Med. 2012;367(8):716–724. https://doi.org/10.1056/NEJMoa1110709.; Анисимов А.Ю., Верткин А.Л., Девятов А.В., Дзидзава И.И., Жигалова С.Б., Затевахин И.И. и др. Клинические рекомендации по лечению кровотечений из варикозно расширенных вен пищевода и желудка. Воронеж; 2014. 45 с. Режим доступа: https://www.mrckb.ru/files/krovotecheniya_iz_varikoznorasshirennyx_ven_pishhevoda_i_zheludka.PDF. Anisimov A.Yu., Vertkin A.L., Devyatov A.V., Dzidzava I.I., Zhigalova S.B., Zatevakhin I.I. et al. Clinical recommendations for the treatment of bleeding from varicose veins of the esophagus and stomach. Voronezh; 2014. 45 p. (In Russ.) Available at: https://www.mrckb.ru/files/krovotecheniya_iz_varikoznorassirennyx_ven_pishhevoda_i_zheludka.PDF.; Tischendorf M., Fuchs A., Zeuzem S., Lange C.M. Use of prothrombin complex concentrates in patients with decompensated liver cirrhosis is associated with thromboembolic events. J Hepatol. 2019;70(4):800–801. https://doi.org/10.1016/j.jhep.2018.11.019.; Harwood M., Robinson C., Wood P. Too much of a good thing: two cases of disseminated intravascular coagulation-like coagulopathy in patients with decompensated cirrhosis after administration of Prothrombinex-VF. Intern Med J. 2019;49(5):679–680. https://doi.org/10.1111/imj.14272.; Franchini M., Lippi G. Fibrinogen replacement therapy: a critical review of the literature. Blood Transfus. 2012;10(1):23–27. https://doi.org/10.2450/2011.0015-11.; Pereira A., Beltran J., Blasi A. Who advocates for cryoprecipitate? Transfusion. 2014;54(5):1442–1443. https://doi.org/10.1111/trf.12563.; Lisman T., Porte R.J. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood. 2010;116(6):878–885. https://doi.org/10.1182/blood-2010-02-261891.; https://www.med-sovet.pro/jour/article/view/7074
-
15Academic Journal
المؤلفون: E. Plotnikova Yu., M. Sinkova N., L. Isakov K., Е. Плотникова Ю., М. Синькова Н., Л. Исаков К.
المصدر: Meditsinskiy sovet = Medical Council; № 21-1 (2021); 95-104 ; Медицинский Совет; № 21-1 (2021); 95-104 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: asthenia, fatigue, ammonia, hyperammonemia, chronic liver diseases, L-ornithine-L-aspartate, астения, утомляемость, аммиак, гипераммониемия, хронические заболевания печени, L-орнитин-L-аспартат
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/6617/5994; Дюкова Г.М. Астенический синдром: проблемы диагностики и терапии. Эффективная фармакотерапия. Неврология и психиатрия. 2012;(1):40–45. Режим доступа: https://umedp.ru/articles/astenicheskiy_sindrom_problemy_ diagnostiki_i_terapii.html.; Bates D.W., Schmitt W., Buchwald D., Ware N.C., Lee J., Thoyer E. et al. Prevalence of fatigue and chronic fatigue syndrome in a primary care practice. Arch Intern Med. 1993;153(24):2759–2765. https://doi. org/10.1001/archinte.1993.00410240067007.; Swain M.G. Fatigue in chronic disease. Clin Sci (Lond). 2000;99(1):1–8. Available at: https://pubmed.ncbi.nlm.nih.gov/10887052/.; Swain M.G. Fatigue in liver disease: pathophysiology and clinical management. Can J Gastroenterol. 2006;20(3):181–188. https://doi. org/10.1155/2006/624832.; Gerber L.H., Weinstein A.A., Mehta R., Younossi Z.M. Importance of fatigue and its measurement in chronic liver disease. World J Gastroenterol. 2019;25(28):3669–3683. https://doi.org/10.3748/wjg.v25.i28.3669.; Newton J.L. Systemic symptoms in non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):214–219. https://doi.org/10.1159/000282089.; Swain M.G., Jones D.E.J. Fatigue in chronic liver disease: New insights and therapeutic approaches. Liver Int. 2019;39(1):6–19. https://doi. org/10.1111/liv.13919.; Chiang D.J., McCullough A.J. The impact of obesity and metabolic syndrome on alcoholic liver disease. Clin Liver Dis. 2014;18(1):157–163. https://doi.org/10.1016/j.cld.2013.09.006.; Patidar K.R., Bajaj J.S. Tired of Hepatitis B? Dig Dis Sci. 2016;61(4):953–954. https://doi.org/10.1007/s10620-016-4067-8.; Austin P.W., Gerber L., Karrar A.K. Fatigue in chronic liver disease: exploring the role of the autonomic nervous system. Liver Int. 2015;35(5):1489–1491. https://doi.org/10.1111/liv.12784.; Stinton L., Swain M.G. Fatigue in cirrhosis: is transplant the answer? Clin Gastroenterol Hepatol. 2012;10(2):103–105. https://doi.org/10.1016/j. cgh.2011.10.036.; D’Mello C., Swain M.G. Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun. 2014;35:9–20. https://doi.org/10.1016/j.bbi.2013.10.009.; D’Mello C., Swain M.G. Liver-brain inflammation axis. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G749–G761. https://doi.org/10.1152/ ajpgi.00184.2011.; Upadhyay R., Bleck T.P., Busl K.M. Hyperammonemia: What Urea-lly Need to Know: Case Report of Severe Noncirrhotic Hyperammonemic Encephalopathy and Review of the Literature. Case Rep Med. 2016;8512721. https://doi.org/10.1155/2016/8512721.; Olde Damink S.W., Jalan R., Dejong C.H. Interorgan ammonia trafficking in liver disease. Metab Brain Dis. 2009;24(1):169–181. https://doi. org/10.1007/s11011-008-9122-5.; D’Amico G., Morabito A., Pagliaro L., Marubini E. Survival and prognostic indicators in compensated and decompensated cirrhosis. Dig Dis Sci. 1986;31(5):468–475. https://doi.org/10.1007/BF01320309. 17. Bajaj J.S., Reddy K.R., Tandon P., Wong F., Kamath P.S., Garcia-Tsao G. et al. The 3-month readmission rate remains unacceptably high in a large North American cohort of patients with cirrhosis. Hepatology. 2016;64(1):200–208. https://doi.org/10.1002/hep.28414.; Cordoba J., Ventura-Cots M., Simón-Talero M., Amorós À., Pavesi M., Vilstrup H. et al. Characteristics, risk factors, and mortality of cirrhotic patients hospitalized for hepatic encephalopathy with and without acuteon-chronic liver failure (ACLF). J Hepatol. 2014;60(2):275–281. https://doi. org/10.1016/j.jhep.2013.10.004.; Romero-Gómez M., Montagnese S., Jalan R. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. J Hepatol. 2015;62(2):437–447. https://doi.org/10.1016/j. jhep.2014.09.005.; Matthews S.A. Ammonia, a causative factor in meat poisoning in Eck fistula dogs. Am J Physiol. 1922;59:459–460.; Sherlock S., Summerskill W.H., White L.P., Phear E.A. Portal-systemic encephalopathy; neurological complications of liver disease. Lancet. 1954;267(6836):454–457. https://doi.org/10.1016/S0140-6736(54)91874-7.; Bosoi C.R., Rose C.F. Identifying the direct effects of ammonia on the brain. Metab Brain Dis. 2009;24(1):95–102. https://doi.org/10.1007/ s11011-008-9112-7.; Martinez-Hernandez A., Bell K.P., Norenberg M.D. Glutamine synthetase: glial localization in brain. Science. 1977;195(4284):1356–1358. https://doi. org/10.1126/science.14400.; Norenberg M.D., Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 1979;161(2):303–310. https://doi.org/10.1016/0006-8993(79)90071-4.; Cooper A.J., Mora S.N., Cruz N.F., Gelbard A.S. Cerebral ammonia metabolism in hyperammonemic rats. J Neurochem. 1985;44(6):1716–1723. https://doi.org/10.1111/j.1471-4159.1985.tb07159.x.; Lavoie J., Giguère J.F., Layrargues G.P., Butterworth R.F. Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J Neurochem. 1987;49(3):692–697. https://doi.org/10.1111/j.1471-4159.1987. tb00949.x.; Cooper A.J., Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev. 1987;67(2):440–519. https://doi.org/10.1152/physrev.1987.67.2.440.; Matheson D.F., van den Berg C.J. Ammonia and brain glutamine: inhibition of glutamine degradation by ammonia. Biochem Soc Trans. 1975;3(4):525–528. https://doi.org/10.1042/bst0030525.; Norenberg M.D. The Astrocyte in Liver Disease. Adv Cell Neurobiol. 1981;2:303–352. https://doi.org/10.1016/B978-0-12-008302-2.50013-4.; Bélanger M., Desjardins P., Chatauret N., Butterworth R.F. Loss of expression of glial fibrillary acidic protein in acute hyperammonemia. Neurochem Int. 2002;41(2–3):155–160. https://doi.org/10.1016/s0197-0186(02)00037-2.; Neary J.T., Whittemore S.R., Zhu Q., Norenberg M.D. Destabilization of glial fibrillary acidic protein mRNA in astrocytes by ammonia and protection by extracellular ATP. J Neurochem. 1994;63(6):2021–2027. https://doi. org/10.1046/j.1471-4159.1994.63062021.x.; Desjardins P., Bandeira P., Raghavendra Rao V.L., Ledoux S., Butterworth R.F. Increased expression of the peripheral-type benzodiazepine receptorisoquinoline carboxamide binding protein mRNA in brain following portacaval anastomosis. Brain Res. 1997;758(1–2):255–258. https://doi. org/10.1016/s0006-8993(97)00339-9.; Giguère J.F., Hamel E., Butterworth R.F. Increased densities of binding sites for the ‘peripheral-type’ benzodiazepine receptor ligand [3H]PK 11195 in rat brain following portacaval anastomosis. Brain Res. 1992;585(1–2):295–8. https://doi.org/10.1016/0006-8993(92)91222-z.; Hermenegildo C., Montoliu C., Llansola M., Muñoz M.D., Gaztelu J.M., Miñana M.D., Felipo V. Chronic hyperammonemia impairs the glutamatenitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo. Eur J Neurosci. 1998;10(10):3201–3209. https://doi. org/10.1046/j.1460-9568.1998.00329.x.; James I.M., Garassini M. Effect of lactulose on cerebral metabolism in patients with chronic portosystemic encephalopathy. Gut. 1971;12(9):702–704. https://doi.org/10.1136/gut.12.9.702.; Iversen P., Sørensen M., Bak L.K., Waagepetersen H.S., Vafaee M.S., Borghammer P. et al. Low cerebral oxygen consumption and blood flow in patients with cirrhosis and an acute episode of hepatic encephalopathy. Gastroenterology. 2009;136(3):863–871. https://doi.org/10.1053/j.gastro.2008.10.057.; Dam G., Keiding S., Munk O.L., Ott P., Vilstrup H., Bak L.K. et al. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake. Hepatology. 2013;57(1):258–265. https://doi.org/10.1002/hep.25995.; McCandless D.W., Schenker S. Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system. Exp Brain Res. 1981;44(3):325–330. https://doi.org/10.1007/BF00236570.; Lockwood A.H., Murphy B.W., Donnelly K.Z., Mahl T.C., Perini S. Positronemission tomographic localization of abnormalities of brain metabolism in patients with minimal hepatic encephalopathy. Hepatology. 1993;18(5):1061–1068. https://doi.org/10.1002/hep.1840180508.; Felipo V., Butterworth R.F. Neurobiology of ammonia. Prog Neurobiol. 2002;67(4):259–279. https://doi.org/10.1016/s0301-0082(02)00019-9.; Bessman S.P., Bessman A.N. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J Clin Invest. 1955;34(4):622–628. https://doi.org/10.1172/JCI103111.; Lai J.C., Cooper A.J. Neurotoxicity of ammonia and fatty acids: differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme A derivatives. Neurochem Res. 1991;16(7):795–803. https://doi. org/10.1007/BF00965689.; Kosenko E., Felipo V., Montoliu C., Grisolía S., Kaminsky Y. Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria. Metab Brain Dis. 1997;12(1):69–82. https://doi. org/10.1007/BF02676355.; Görg B., Karababa A., Shafigullina A., Bidmon H.J., Häussinger D. Ammoniainduced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy. Glia. 2015;63(1):37–50. https://doi. org/10.1002/glia.22731.; Görg B., Karababa A., Schütz E., Paluschinski M., Schrimpf A., Shafigullina A. et al. O-GlcNAcylation-dependent upregulation of HO1 triggers ammoniainduced oxidative stress and senescence in hepatic encephalopathy. J Hepatol. 2019;71(5):930–941. https://doi.org/10.1016/j.jhep.2019.06.020.; Wright G., Davies N.A., Shawcross D.L., Hodges S.J., Zwingmann C., Brooks H.F. et al. Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology. 2007;45(6):1517–1526. https://doi.org/10.1002/hep.21599.; Pedersen H.R., Ring-Larsen H., Olsen N.V., Larsen F.S. Hyperammonemia acts synergistically with lipopolysaccharide in inducing changes in cerebral hemodynamics in rats anaesthetised with pentobarbital. J Hepatol. 2007;47(2):245–252. https://doi.org/10.1016/j.jhep.2007.03.026.; Marini J.C., Broussard S.R. Hyperammonemia increases sensitivity to LPS. Mol Genet Metab. 2006;88(2):131–137. https://doi.org/10.1016/j. ymgme.2005.12.013.; Rodrigo R., Cauli O., Gomez-Pinedo U., Agusti A., Hernandez-Rabaza V., Garcia-Verdugo J.M., Felipo V. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology. 2010;139(2):675–684. https://doi.org/10.1053/j. gastro.2010.03.040.; Shawcross D.L., Wright G.A., Stadlbauer V., Hodges S.J., Davies N.A., WheelerJones C. et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology. 2008;48(4):1202–1212. https://doi.org/10.1002/hep.22474.; Kerbert A.J.C., Jalan R. Recent advances in understanding and managing hepatic encephalopathy in chronic liver disease. F1000Res. 2020;9:312. https://doi.org/10.12688/f1000research.22183.1.; Lockwood A.H. Blood ammonia levels and hepatic encephalopathy. Metab Brain Dis. 2004;19(3–4):345–349. https://doi. org/10.1023/b:mebr.0000043980.74574.eb.; Potnis A., VanMeter S., Stange J. Prevalence of Hepatic Encephalopathy from a Commercial Medical Claims Database in the United States. Int J Hepatol. 2021;8542179. https://doi.org/10.1155/2021/8542179.; Плотникова Е.Ю., Сухих А.С. Различные варианты гипераммониемии в клинической практике. Медицинский совет. 2018;(14):34–42. https://doi.org/10.21518/2079-701X-2018-14-34-42.; Summar M.L., Barr F., Dawling S., Smith W., Lee B., Singh R.H. et al. Unmasked adult-onset urea cycle disorders in the critical care setting. Crit Care Clin. 2005;21(4 Suppl.):S1–S8. https://doi.org/10.1016/j.ccc.2005.05.002.; Panlaqui O.M., Tran K., Johns A., McGill J., White H. Acute hyperammonemic encephalopathy in adult onset ornithine transcarbamylase deficiency. Intensive Care Med. 2008;34(10):1922–1924. https://doi.org/10.1007/ s00134-008-1217-2.; Yoshino M., Nishiyori J., Yamashita F., Kumashiro R., Abe H., Tanikawa K. et al. Ornithine transcarbamylase deficiency in male adolescence and adulthood. Enzyme. 1990;43(3):160–168. https://doi.org/10.1159/000468724.; Ghatak T., Azim A., Mahindra S., Ahmed A. Can Klebsiella sepsis lead to hyperammonemic encephalopathy with normal liver function? J Anaesthesiol Clin Pharmacol. 2013;29(3):415–416. https://doi. org/10.4103/0970-9185.117079.; Nott L., Price T.J., Pittman K., Patterson K., Fletcher J. Hyperammonemia encephalopathy: an important cause of neurological deterioration following chemotherapy. Leuk Lymphoma. 2007;48(9):1702–1711. https://doi. org/10.1080/10428190701509822.; Jiang S.M., Jia L., Zhang M.H. Probiotic and lactulose: influence on gastrointestinal flora and pH value in minimal hepatic encephalopathy rats. Int J Clin Exp Med. 2015;8(6):9996–10000. Available at: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC4537956/.; Bajaj J.S., Saeian K., Christensen K.M., Hafeezullah M., Varma R.R., Franco J. et al. Probiotic yogurt for the treatment of minimal hepatic encephalopathy. Am J Gastroenterol. 2008;103(7):1707–1715. https://doi. org/10.1111/j.1572-0241.2008.01861.x.; Shen T.C., Albenberg L., Bittinger K., Chehoud C., Chen Y.Y., Judge C.A. et al. Engineering the gut microbiota to treat hyperammonemia. J Clin Invest. 2015;125(7):2841–2850. https://doi.org/10.1172/JCI79214.; Wang W.W., Zhang Y., Huang X.B., You N., Zheng L., Li J. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction. World J Gastroenterol. 2017;23(38):6983–6994. https://doi.org/10.3748/wjg.v23.i38.6983.; Butterworth R.F., Kircheis G., Hilger N., McPhail M.J.W. Efficacy of l-Ornithine l-Aspartate for the Treatment of Hepatic Encephalopathy and Hyperammonemia in Cirrhosis: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Exp Hepatol. 2018;8(3):301–313. https://doi.org/10.1016/j.jceh.2018.05.004.; Häussinger D., Steeb R., Kaiser S., Wettstein M., Stoll B., Gerok W. Nitrogen metabolism in normal and cirrhotic liver. Adv Exp Med Biol. 1990;272:47–64. https://doi.org/10.1007/978-1-4684-5826-8_3.; Hadjihambi A., Khetan V., Jalan R. Pharmacotherapy for hyperammonemia. Expert Opin Pharmacother. 2014;15(12):1685–1695. https://doi.org/10.1517/ 14656566.2014.931372.; Kircheis G., Lüth S. Pharmacokinetic and Pharmacodynamic Properties of L-Ornithine L-Aspartate (LOLA) in Hepatic Encephalopathy. Drugs. 2019;79(1 Suppl.):23–29. https://doi.org/10.1007/s40265-018-1023-2.; Girard G., Butterworth R.F. Effect of portacaval anastomosis on glutamine synthetase activities in liver, brain, and skeletal muscle. Dig Dis Sci. 1992;37(7):1121–1126. https://doi.org/10.1007/BF01300297.; Desjardins P., Rao K.V., Michalak A., Rose C., Butterworth R.F. Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle. Metab Brain Dis. 1999;14(4):273–280. https://doi.org/10.1023/a:1020741226752.; Kumar A., Davuluri G., Silva R.N.E., Engelen M.P.K.J., Ten Have G.A.M., Prayson R. et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65(6):2045–2058. https://doi.org/10.1002/hep.29107.; Butterworth R.F. L-Ornithine L-Aspartate (LOLA) for the Treatment of Hepatic Encephalopathy in Cirrhosis: Novel Insights and Translation to the Clinic. Drugs. 2019;79(1 Suppl.):1–3. https://doi.org/10.1007/s40265-018-1021-4.; Najmi A.K., Pillai K.K., Pal S.N., Akhtar M., Aqil M., Sharma M. Effect of l-ornithine l-aspartate against thioacetamide-induced hepatic damage in rats. Indian J Pharmacol. 2010;42(6):384–387. https://doi. org/10.4103/0253-7613.71926.; Staedt U., Leweling H., Gladisch R., Kortsik C., Hagmüller E., Holm E. Effects of ornithine aspartate on plasma ammonia and plasma amino acids in patients with cirrhosis. A double-blind, randomized study using a four-fold crossover design. J Hepatol. 1993;19(3):424–430. https://doi. org/10.1016/s0168-8278(05)80553-7.; Rose C., Michalak A., Rao K.V., Quack G., Kircheis G., Butterworth R.F. L-ornithine-L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology. 1999;30(3):636–640. https://doi.org/10.1002/hep.510300311.; Ijaz S., Yang W., Winslet M.C., Seifalian A.M. The role of nitric oxide in the modulation of hepatic microcirculation and tissue oxygenation in an experimental model of hepatic steatosis. Microvasc Res. 2005;70(3):129–136. https://doi.org/10.1016/j.mvr.2005.08.001.; Goh E.T., Stokes C.S., Sidhu S.S., Vilstrup H., Gluud L.L., Morgan M.Y. L-ornithine L-aspartate for prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev. 2018;5(5):CD012410. https://doi.org/10.1002/14651858.CD012410.pub2.; Лазебник Л.Б., Голованова Е.В., Алексеенко С.А., Буеверов А.О., Плотникова Е.Ю., Долгушина А.И. и др. Российский консенсус «Гипераммониемии у взрослых». Экспериментальная и клиническая гастроэнтерология. 2019;(12):4–23. https://doi.org/10.31146/1682-8658- ecg-172-12-4-23.; Nanchahal K., Ashton W.D., Wood D.A. Alcohol consumption, metabolic cardiovascular risk factors and hypertension in women. Int J Epidemiol. 2000;29(1):57–64. https://doi.org/10.1093/ije/29.1.57.; Mennen L.I., de Courcy G.P., Guilland J.C., Ducros V., Zarebska M., Bertrais S. et al. Relation between homocysteine concentrations and the consumption of different types of alcoholic beverages: the French Supplementation with Antioxidant Vitamins and Minerals Study. Am J Clin Nutr. 2003;78(2):334–338. https://doi.org/10.1093/ajcn/78.2.334.; Halsted C.H., Villanueva J.A., Devlin A.M., Chandler C.J. Metabolic interactions of alcohol and folate. J Nutr. 2002;132(8 Suppl.):2367S–2372S. https://doi.org/10.1093/jn/132.8.2367S.; Cravo M.L., Glória L.M., Selhub J., Nadeau M.R., Camilo M.E., Resende M.P. et al. Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B-12, and vitamin B-6 status. Am J Clin Nutr. 1996;63(2):220–224. https://doi.org/10.1093/ajcn/63.2.220.; Gibson A., Woodside J.V., Young I.S., Sharpe P.C., Mercer C., Patterson C.C. et al. Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers – a randomized, crossover intervention study. QJM. 2008;101(11):881–887. https://doi. org/10.1093/qjmed/hcn112.; Kamat P.K., Mallonee C.J., George A.K., Tyagi S.C., Tyagi N. Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism. Alcohol Clin Exp Res. 2016;40(12):2474–2481. https://doi.org/10.1111/acer.13234.; https://www.med-sovet.pro/jour/article/view/6617
-
16Academic Journal
المؤلفون: Сhaykivska, E. F.
المصدر: Actual Problems of Pediatrics, Obstetrics and Gynecology; No. 2 (2020); 14-20 ; Актуальные вопросы педиатрии, акушерства и гинекологии; № 2 (2020); 14-20 ; Актуальні питання педіатрії, акушерства та гінекології; № 2 (2020); 14-20 ; 2415-301X ; 2411-4944 ; 10.11603/24116-4944.2020.2
مصطلحات موضوعية: girls, puberty, diffuse liver diseases, sex hormone-binding globulin, дівчата, пубертатний період, дифузні захворювання печінки, глобулін, який зв’язує статеві гормони, девочки, пубертатный период, диффузные заболевания печени, глобулин, связывающий половые гормоны
وصف الملف: application/pdf
Relation: https://ojs.tdmu.edu.ua/index.php/act-pit-pediatr/article/view/11831/11187; https://ojs.tdmu.edu.ua/index.php/act-pit-pediatr/article/view/11831
-
17Academic Journal
المؤلفون: Чимпой, К.
المصدر: Bukovinian Medical Herald; Vol. 14 No. 1 (53) (2010); 95-97 ; Буковинский медицинский вестник; Том 14 № 1 (53) (2010); 95-97 ; Буковинський медичний вісник; Том 14 № 1 (53) (2010); 95-97 ; 2413-0737 ; 1684-7903
مصطلحات موضوعية: хронічні дифузні захворювання печінки, тиреоїдний гомеостаз, про- та антиоксидантна система, хронические диффузные заболевания печени, тиреоидный гомеостаз, про- и антиоксидантная система, chronic diffuse liver diseases, thyroid homeostasis, pro- and antioxidant system
وصف الملف: application/pdf
-
18Academic Journal
المؤلفون: N. V. Rogova, V. I. Statcenko
المصدر: Качественная клиническая практика, Vol 0, Iss 2, Pp 66-69 (2018)
مصطلحات موضوعية: хронические диффузные заболевания печени, активность, изофермент cyp3a4, изофермент cyp2c9, индивидуализация фармакотерапии, Medical technology, R855-855.5, Pharmacy and materia medica, RS1-441
وصف الملف: electronic resource
-
19Academic Journal
المصدر: Качественная клиническая практика, Vol 0, Iss 2, Pp 32-36 (2018)
مصطلحات موضوعية: лизиноприл, заболевания печени, артериальная гипертония, Medical technology, R855-855.5, Pharmacy and materia medica, RS1-441
وصف الملف: electronic resource
-
20Academic Journal
المؤلفون: N. A. Khokhlacheva, T. S. Kosareva, A. P. Lukashevich, Н. А. Хохлачева, Т. С. Косарева, А. П. Лукашевич
المصدر: The Russian Archives of Internal Medicine; Том 10, № 4 (2020); 281-287 ; Архивъ внутренней медицины; Том 10, № 4 (2020); 281-287 ; 2411-6564 ; 2226-6704
مصطلحات موضوعية: трендовое моделирование, chronic liver disease, prognosis, trend modeling, хронические заболевания печени, прогнозирование
وصف الملف: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/1073/925; https://www.medarhive.ru/jour/article/view/1073/934; Вахрушев Я.М. Желчнокаменная болезнь. Ижевск, Экспертиза. 2004; 75 с.; Вахрушев Я.М., Хохлачёв а Н.А., Сучкова Е.В. и др. Значение исследования физико-химических свойств желчи в ранней диагностике желчнокаменной болезни. Архивъ внутренней медицины. 2014; 6: 48-51. doi:10.20514/2226-6704-2014-06-48-51.; Ивашкин В.Т., Маев И.В., Баранская Е.К. и др. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. Рекомендации российской гастроэнтерологической ассоциации по диагностике и лечению желчнокаменной болезни. 2016; 26(3): 64-80. doi:10.22416/1382-4376-2016-26-3-64-80.; Ильченко А.А. 10 лет классификации желчнокаменной болезни (ЦНИИГ): основные итоги научно-практического применения. Экспериментальная и клиническая гастроэнтерология. 2012; 4: 3-10.; Минушкин О.Н., Бурдина Е.Г., Новоженова Е.В. Билиарный сладж. Эпидемиология, факторы риска формирования, диагностика, лечебные подходы. Медицинский алфавит. Медицинский алфавит. 2017; 2(19): 5-8.; Ильченко А.А., Делюкина О.В. Клиническое значение билиарного сладжа. Гастроэнтерология. Приложение к журналу Consilium medicum. 2005; 2: 28-32.; Мехтиев С.Н., Гриневич В.Б., Кравчук Ю.А. и др. Билиарный сладж: нерешенные вопросы. Лечащий врач. 2007; 6: 24–28.; Хохлачева Н.А., Сучкова Е.В., Вахрушев Я.М. Пути повышения эффективности диспансеризации больных ранней стадией желчнокаменной болезни. Экспериментальная и клиническая гастроэнтерология. 2013; 6: 15-20.; Acalovshi M. Cholesterol gallstones: from epidermiology to preventive. Postgrad. Med. J. 2007; 77: 221-9.; Мирошниченко В.П., Громашевская Л.Л., Касаткина М.Г. и др. Определение содержания желчных кислот и холестерина в желчи. Лабораторное дело. 1978; 3: 149-153.; Основные показатели здоровья населения Улмуртской Республ ики. Ижевск. 2019; 155 с.; Вахрушев Я.М., Михайлова О.Д., Грирус Я.И. Характеристика особенностей питания больных хроническим панкреатитом в городской и сельской местности. Вятский медицинский вестник. 2018;1(57):51-6.; Samudrala N. Autosomal genome-wide linkage analysis to identify loci for gallbladder wall thickness in Mexican Americans. Hum. Biol. 2008; 80(1): 11-28. doi:10.3378/1534-6617(2008)80[11:AGLATI]2.0.CO;2.; Лоранская И.Д., Панина Н.А., Кукушкин М.Л. Дисфункции желчного пузыря по гипомоторному типу: взаимосвязь клинической симптоматики и психовегетативного статуса. Экспериментальная и клиническая гастроэнтерология. 2011; 4: 16-20.; Иванченкова Р.А., Атькова Е.Р. Желчнокаменная болезнь и холестероз желчного пузыря: разные заболевания или различные проявления единого процесса? Экспериментальная и клиническая гастроэнтерология. 2011; 4: 92-97.; Ильченко А.А. Достижения, спорные и нерешенные вопросы билиарной патологии. Экспериментальная и клиническая гастроэнтерология. 2008; 5: 4-10.; https://www.medarhive.ru/jour/article/view/1073