يعرض 1 - 20 نتائج من 260 نتيجة بحث عن '"докинг"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المساهمون: The results of the research were obtained using the equipment of the Federal State Budget Educational Institution of Higher Education M. V. Lomonosov Moscow State University (Lomonosov MSU), Federal State Autonomous Educational Institution of Higher Education "Kazan (Volga Region) Federal University" and the Central Public Educational Institution "Arctic" of the Federal State Autonomous Educational Institution of Higher Education "Northern (Arctic) Federal University named M. V. Lomonosov" with the administrative and financial support of LLC "Splat Global" and the Moscow branch of JSC "Skylab"., Результаты работы получены с использованием оборудования ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова», ФГАОУ ВО «Казанский (Приволжский) федеральный университет» и ЦКП НО «Арктика» ФГАОУ ВО «Северный (Арктический) федеральный университет имени М. В. Ломоносова» при административной и финансовой поддержке ООО «Сплат Глобал» и Московского филиала АО «Скайлаб».

    المصدر: Drug development & registration; Том 13, № 2 (2024); 94-105 ; Разработка и регистрация лекарственных средств; Том 13, № 2 (2024); 94-105 ; 2658-5049 ; 2305-2066

    وصف الملف: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1834/1280; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1834/2286; Katiyar C., Gupta A., Kanjilal S., Katiyar S. Drug discovery from plant sources: An integrated approach. AYU (An International Quarterly Journal of Research in Ayurveda). 2012;33(1):10–19. DOI:10.4103/0974-8520.100295.; Earm K., Earm Y. E. Integrative approach in the era of failing drug discovery and development. Integrative Medicine Research. 2014;3(4):211–216. DOI:10.1016/j.imr.2014.09.002.; Pinzi L., Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences. 2019;20(18):4331. DOI:10.3390/ijms20184331.; Choeng W. K., Yeung C. K., Torsekar R. G., Suh D. H., Ungpakorn R., Widaty S., Azizan N. Z., Gabriel M. T., Tran H. K., Chong W. S., Shih I.-H., Dall’Oglio F., Micali G. Treatment of seborrhoeic dermatitis in Asia: a consensus guide. Skin Appendage Disorders. 2016;1(4):187–196. DOI:10.1159/000444682.; Gupta A. K., Madzia S. E., Batra R. Etiology and management of Seborrheic dermatitis. Dermatology. 2004;208(2):89–93. DOI:10.1159/000076478.; Borda L. J., Wikramanayake T. C. Seborrheic Dermatitis and Dandruff: A Comprehensive Review. Journal of Clinical and Investigative Dermatology. 2015;3(2):10. DOI:10.13188/2373-1044.1000019.; Adalsteinsson J. A., Kaushik S., Muzumdar S., Guttman-Yassky E., Ungar J. An update on the microbiology, immunology and genetics of seborrheic dermatitis. Experimental Dermatology. 2020;29(5):481–489. DOI:10.1111/exd.14091.; Polonskaya A. S., Shatokhina E. A., Kruglova L. S. Seborrheic dermatitis: current ideas of the etiology, pathogenesis, and treatment approaches. 2020;19(4):451–458. (In Russ.) DOI:10.17116/klinderma202019041451.; Tao R., Li R., Wang R. Skin microbiome alterations in seborrheic dermatitis and dandruff: A systematic review. Experimental Dermatology. 2021;30(10):1546–1553. DOI:10.1111/exd.14450.; Leong C., Chan J. W. K., Lee S. M., Lam Y. I., Goh J. P. Z., Ianiri G., Dawson T. L. Azole resistance mechanisms in pathogenic Malassezia furfur. Antimicrobial Agents and Chemotherapy. 2021;65(5):1975–2000. DOI:10.1128/AAC.01975-20.; Bukvić Mokos Z., Kralj M., Basta-Juzbašić A., Lakoš Jukić I. Seborrheic dermatitis: an update. Acta Dermatovenerologica Croatica. 2012;20(2):98–104.; Reuter J., Merfort I., Schempp C. M. Botanicals in dermatology: an evidence-based review. American Journal of Clinical Dermatology. 2010;11(4):247–267. DOI:10.2165/11533220-000000000-00000.; Olisova O. Y., Snarskaya E. S., Gladko V. V., Burova E. P. Russian traditional medicine in dermatology. Clinics in Dermatology. 2018;36(3):325–337. DOI:10.1016/j.clindermatol.2018.03.007.; Karimi A., Majlesi M., Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. Journal of Nephropharmacology. 2015;4(1):27–30.; Lynch N., Berry D. Differences in perceived risks and benefits of herbal, over-the-counter conventional, and prescribed conventional, medicines, and the implications of this for the safe and effective use of herbal products. Complementary Therapies in Medicine. 2007;15(2):84–91. DOI:10.1016/j.ctim.2006.06.007.; Enioutina E. Yu., Teng L., Fateeva T. V., Brown J. C. S., Job K. M., Bortnikova V. V., Krepkova L. V., Gubarev M. I., Sherwin C. M. T. Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance. Expert Review of Clinical Pharmacology. 2017;10(11):1203–1214. DOI:10.1080/17512433.2017.1371591.; Abers M., Schroeder S., Goelz L., Sulser A., St Rose T., Puchalski K., Langland J. Antimicrobial activity of the volatile substances from essential oils. BMC Complementary Medicine and Therapies. 2021;21(1):124. DOI:10.1186/s12906-021-03285-3.; Jain S., Arora P., Nainwal L. M. Essential Oils as Potential Source of Anti-dandruff Agents: A Review. Combinatorial Chemistry & High Throughput Screening. 2022;25(9):1411–1426. DOI:10.2174/1386207324666210712094148.; Mączka W., Duda-Madej A., Górny A., Grabarczyk M., Wińska K. Can eucalyptol replace antibiotics? Molecules. 2021;26(16):4933. DOI:10.3390/molecules26164933.; Mustarichie R., Rostinawati T., Pitaloka D. A. E., Saptarini N. M., Iskandar Y. Herbal Therapy for the Treatment of Seborrhea Dermatitis. Clinical, Cosmetic and Investigational Dermatology. 2022;2022(15):2391–2405. DOI:10.2147/CCID.S376700.; Ayatollahi A., Firooz A., Lotfali E., Mojab F., Fattahi M. Herbal Therapy for the Management of Seborrheic Dermatitis: A Narrative Review. Recent Advances in Anti-Infective Drug Discovery. 2021;16(3):209–226. DOI:10.2174/2772434416666211029113213.; Brophy J. J., Davies N. W., Southwell I. A., Stiff I. A., Williams L. R. Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). Journal of Agricultural and Food Chemistry. 1989;37:1330–1335.; Carson C. F., Hammer K. A., Riley T. V. Melaleuca alternifolia (Tea Tree) Oil: a review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews. 2006;19(1):50–62. DOI:10.1128/CMR.19.1.50-62.2006.; Hammer K. A., Carson C. F., Riley T. V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. Journal of Applied Microbiology. 2003;95(4):853–860. DOI:10.1046/j.1365-2672.2003.02059.x.; Brand C., Ferrante A., Prager R. H., Riley T. V., Carson C. F., Finlay-Jones J. J., Hart P. H. The water-soluble components of the essential oil of Melaleuca alternifolia (tea tree oil) suppress the production of superoxide by human monocytes, but not neutrophils, activated in vitro. Inflammation Research. 2001;50(4):213–219. DOI:10.1007/s000110050746.; Waldroup W., Scheinfeld N. Medicated shampoos for the treatment of seborrheic dermatitis. Journal of Drugs in Dermatology. 2008;7(7):699–703.; Satchell A. C., Saurajen A., Bell C., Barnetson R. S. Treatment of dandruff with 5% tea tree oil shampoo. Journal of the American Academy of Dermatology. 2002;47(6):852–855. DOI:10.1067/mjd.2002.122734.; Dhakad A. K., Pandey V. V., Beg S., Rawat J. M., Singh A. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review. Journal of the Science of Food and Agriculture. 2017;98(3):833–848. DOI:10.1002/jsfa.8600.; Sikkema J., de Bont J. A., Poolman B. Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry. 1994;269(11):8022–8028.; Zengin H., Baysal A. H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules. 2014;19(11):17773–177798. DOI:10.3390/molecules191117773.; Kamatou G. P. P., Viljoen A. M. A review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils. Journal of the American Oil Chemists' Society. 2010;87(1):1–7.; De Lucca A. J., Pauli A., Schilcher H., Sien T., Bhatnagar D., Walsh T. J. Fungicidal and Bactericidal Properties of Bisabolol and Dragosantol. Journal of Essential Oil Research. 2011;23(3):47–54.; Filatov V. A., Kulyak O. Yu., Kalenikova E. I. Chemical Composition and Antimicrobial Potential of a Plant-Based Substance for the Treatment of Seborrheic Dermatitis. Pharmaceuticals. 2023;16(3):328. DOI:10.3390/ph16030328.; Filatov V. A., Kulyak O. Yu., Kalenikova E. I. In vitro and in vivo antimicrobial activity of an active plant-based quadrocomplex for skin hygiene. Journal of Pharmacy & Pharmacognosy Research. 2022;10(5):905–921.; Filatov V. A., Ilin E. A., Kulyak O. Yu., Kalenikova E. I. Development and Validation of a Gas Chromatography–Mass Spectrometry Method for the Analysis of the Novel Plant-Based Substance with Antimicrobial Activity. Antibiotics. 2023;12(10):1558. DOI:10.3390/antibiotics12101558.; Ionov N., Druzhilovskiy D., Filimonov D., Poroikov V. Phyto4Health: Database of Phytocomponents from Russian Pharmacopoeia Plants. Journal of Chemical Information and Modeling. 2023;63(7):1847–1851. DOI:10.1021/acs.jcim.2c01567.; Bellio P., Fagnani L., Nazzicone L., Celenza G. New and simplified method for drug combination studies by checkerboard assay. MethodsX. 2021;8:101543. DOI:10.1016/j.mex.2021.101543.; Odds F. C. Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy. 2003;52(1):1. DOI:10.1093/jac/dkg301.; Piovan A., Caniato R., Brun P., Costa V. D., Filippini R. Rapid and feasible TLC screening of tea tree oil commercial samples. Journal of Pharmacognosy and Phytochemistry. 2021;10(1):175–180. DOI:10.22271/phyto.2021.v10.i1c.13304.; Shaha A., Salunkhe V. R. Development and validation of a high performance thin layer chromatographic method for determination of 1,8-Cineole in Callistemon Citrinus. Pharmacognosy Research. 2014;6(2):143–147.; Hendry E. R., Worthington T., Conway B. R., Lambert P. A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. Journal of Antimicrobial Chemotherapy. 2009;64(6):1219–1225. DOI:10.1093/jac/dkp362.; Filatov V. A., Kulyak O. Yu., Kalenikova E. I. The Development of Medical Shampoo with a Plant-Based Substance for the Treatment of Seborrheic Dermatitis. Medical Sciences Forum. 2023;21(1):51. DOI:10.3390/ECB2023-14084.; https://www.pharmjournal.ru/jour/article/view/1834

  5. 5
    Academic Journal

    المساهمون: The work was supported by the State Scientific Research Program “Convergence 2025” (subprogram “Interdisciplinary Research and New Technologies”, project 3.04.1)., Работа выполнена при поддержке Государственной программы научных исследований «Конвергенция 2025» (подпрограмма «Междисциплинарные исследования и новые технологии», задание 3.04.1)

    المصدر: Doklady of the National Academy of Sciences of Belarus; Том 68, № 3 (2024); 196-206 ; Доклады Национальной академии наук Беларуси; Том 68, № 3 (2024); 196-206 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-3

    وصف الملف: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1191/1192; Cortes, J. Third-line therapy for chronic myeloid leukemia: current status and future directions / J. Cortes, F. Lang // J. Hematol. Oncol. – 2021. – Vol. 14. – Art. 44. https://doi.org/10.1186/s13045-021-01055-9; Kumar, V. Developing therapeutic approaches for chronic myeloid leukemia: a review / V. Kumar, Jyotirmayee, M. Verma // Mol. Cell. Biochem. – 2023. – Vol. 478, N 5. – P. 1013–1029. https://doi.org/10.1007/s11010-022-04576-0; Management of chronic myeloid leukemia in 2023 – common ground and common sense / J. Senapati [et al.] // J. Blood Cancer J. – 2023. – Vol. 13. – Art. 58. https://doi.org/10.1038/s41408-023-00823-9; Buchdunger, E. Pharmacology of imatinib (STI571) / E. Buchdunger, T. O’Reilley, J. Wood // Eur. J. Cancer. – 2002. – Vol. 38, N 5. – P. S28–S36. https://doi.org/10.1016/s0959-8049(02)80600-1; Advances and perspectives in applying deep learning for drug design and discovery / C. F. Lipinski [et al.] // Front. Robotics and AI. – 2019. – Vol. 6. – Art. 108. https://doi.org/10.3389/frobt.2019.00108; Deep learning enables rapid identification of potent DDR1 kinase inhibitors / A. Zhavoronkov [et al.] // Nat. Biotechnol. – 2019. – Vol. 37. – P. 1038–1040. https://doi.org/10.1038/s41587-019-0224-x; Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors / A. M. Andrianov [et al.] // J. Biomol. Struct. Dyn. – 2022. – Vol. 40, N 16. – P. 7555–7573. https://doi.org/10.1080/07391102.2021.1905559; Discovery of a structural class of antibiotics with explainable deep learning / F. Wong [et al.] // Nature. – 2024. – Vol. 626. – P. 177–185. https://doi.org/10.1038/s41586-023-06887-8; Генеративная нейронная сеть на основе модели гетероэнкодера для de novo дизайна потенциальных противоопухолевых препаратов: применение к Bcr-Abl тирозинкиназе / А. Д. Карпенко [и др.] // Информатика. – 2023. – Т. 20, № 3. – С. 7–20. https://doi.org/10.37661/1816-0301-2023-20-3-7-20; Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation / J. Liu [et al.] // Chem. Biol. Drug Des. – 2021. – Vol. 97, N 3. – P. 649–664. https://doi.org/10.1111/cbdd.13801; Exponential consensus ranking improves the outcome in docking and receptor ensemble docking / K. PalacioRodriguez [et al.] // Sci. Rep. – 2019. – Vol. 9. – Art. 5142. https://doi.org/10.1038/s41598-019-41594-3; Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings / C. A. Lipinski [et al.] // Adv. Drug Deliv. Rev. – 2001. – Vol. 46, N 1–3. – P. 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0; Molecular properties that influence the oral bioavailability of drug candidates / D. F. Veber [et al.] // J. Med. Chem. – 2002. – Vol. 45, N 12. – P. 2615–2623. https://doi.org/10.1021/jm020017n; Daina, A. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules / A. Daina, O. Michielin, V. Zoete // Sci. Rep. – 2017. – Vol. 7, N 42717. https://doi.org/10.1038/srep42717; https://doklady.belnauka.by/jour/article/view/1191

  6. 6
    Academic Journal

    المصدر: chemistry of plant raw material; No 2 (2024); 329-339 ; Химия растительного сырья; № 2 (2024); 329-339 ; 1029-5143 ; 1029-5151

    وصف الملف: application/pdf

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المساهمون: The study was carried out with the financial support of the Perm Scientific and Educational Center "Rational Subsoil Use", 2023., Исследование проведено при финансовой поддержке Пермского научно-образовательного центра «Рациональное недропользование», 2023 год.

    المصدر: Drug development & registration; Том 12, № 4 (2023): Приложение 1; 13-18 ; Разработка и регистрация лекарственных средств; Том 12, № 4 (2023): Приложение 1; 13-18 ; 2658-5049 ; 2305-2066

    وصف الملف: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1685/1210; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1685/1995; Shah K., Mujwar S., Gupta J.K., Shrivastava S. K., Мishra P. Molecular Docking and In Silico Cogitation Validate Mefenamic Acid Prodrugs as Human Cyclooxygenase-2 Inhibitor. ASSAY and Drug Development Technol. 2019;17(6):285–291. DOI:10.1089/ADT.2019.943.; Elrayess R., Elgawish M. S., Elewa M., Nafie M. S., Elhady S. S., Yassen A. S. A. Synthesis, 3D-QSAR, and Molecular Modeling Studies of Triazole Bearing Compounds as a Promising Scaffold for Cyclooxygenase-2 Inhibition. Pharmaceuticals. 2020;13(11):370. DOI:10.3390/ph13110370.; Khasimbi S., Ali F., Manda K., Sharma G., Wakode S. Dihydropyrimidinones Scaffold as a Promising Nucleus for Synthetic Profile and Various Therapeutic Targets: A Review. Current Organic Synthesis. 2021;18(3):270–293. DOI:10.2174/1570179417666201207215710.; Zarren G., Shafiq N., Arshad U., Rafiq N., Parveen S., Ahmad Z. Copper-catalyzed one-pot relay synthesis of anthraquinone based pyrimidine derivative as a probe for antioxidant and antidiabetic activity. Journal of Molecular Structure. 2021;1227:129668. DOI:10.1016/j.molstruc.2020.129668.; Taslimi P., Garibova E., Karamanc M., Zangenehd M. M. Sujayev A. Novel cyclic thiourea derivatives of aminoalcohols at the presence of AlCl3 catalyst as potent α-glycosidase and α-amylase inhibitors: Synthesis, characterization, bioactivity investigation and molecular docking studies. Bioorganic Chemistry. 2020;104:104216. DOI:10.1016/j.bioorg.2020.104216.; Dudhe A. C., Duhde R., Porwal O., Katole G. An Overview of Synthesis and Biological Activity of Dihydropyrimidine Derivatives. Mini-Reviews in Medicinal Chemistry. 2022;22(5):701–728. DOI:10.2174/1389557521666210920120457.; Бузмакова Н. А., Рудакова И. П., Замараева Т. М., Дозморова Н. В., Слепова Н. В. Синтез и оценка нестероидной противовоспалительной активности N,6-диарил-4-метил-2-тиоксо-1,2,3,6-тетрагидропиримидин-5-карбоксамидов. Разработка и регистрация лекарственных средств. 2022;11(4):38–42. DOI:10.33380/2305-2066-2022-11-4(1)-38-42.; Бузмакова Н. А., Замараева Т. М., Рудакова И. П., Дмитриев М. В. Изучение структурных особенностей и противовоспалительной активности 13-(N-ариламинокарбонил)-9-метил-11-тиоксо-8-окса-10,12-диазатрицикло[7.3.1.0 2,7 ]тридека-2,4,6-триенов и их 10-N-фенилпроизводных. Химико-фармацевтический журнал. 2022;56(12):44–46. DOI:10.30906/0023-1134-2022-56-12-44-46.; Бузмакова Н. А., Рудакова И. П., Замараева Т. М. Синтез и противовоспалительная активность N,6-диарил-4-метил-2-тиоксо-1,2,3,6-тетрагидропиримидин-5-карбоксамидов. Химико-фармацевтический журнал. 2021;55(8):21–24. DOI:10.30906/0023-1134-2021-55-8-21-24.; Тальдаев А. Х., Никитин И. Д., Терехов Р. П., Селиванова И. А. Молекулярный докинг: методологические подходы к оценке рисков. Разработка и регистрация лекарственных средств. 2023;12(2):206–210. DOI:10.33380/2305-2066-2023-12-2-206-210.; Sidhu R. S., Lee J. Y., Yuan C., Smith, W. L. Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers. Journal Biochemistry. 2010;49:7069–7079. DOI:10.1021/bi1003298.; Rowlinson S. W., Kiefer J. R., Prusakiewicz J. J., Pawlitz J. L., Kozak K. R., Kalgutkar A. S., Stallings W. C., Kurumbail R. G., Marnett L. J. A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. The Journal of Biological Chemistry. 2003;278:45763–45769. DOI:10.1074/jbc.M305481200.; Андрюков К. В., Коркодинова Л. М. Молекулярный докинг в изучении взаимодействия амидов и гидразидов N-ароилзамещенных галоген(H) антраниловых кислот с циклооксигеназой 1, проявляющих противовоспалительную активность. Химико-фармацевтический журнал. 2018;52(5):29–32. DOI:10.30906/0023-1134-2018-52-5-29-32.; https://www.pharmjournal.ru/jour/article/view/1685

  13. 13
    Academic Journal

    المساهمون: Работа выполнена при поддержке Государственной программы научных исследований «Конвергенция 2025» (подпрограмма «Междисциплинарные исследования и новые технологии», задание 3.04.1).

    المصدر: Informatics; Том 20, № 3 (2023); 7-20 ; Информатика; Том 20, № 3 (2023); 7-20 ; 2617-6963 ; 1816-0301

    وصف الملف: application/pdf

    Relation: https://inf.grid.by/jour/article/view/1259/1057; https://inf.grid.by/jour/article/downloadSuppFile/1259/266; https://inf.grid.by/jour/article/downloadSuppFile/1259/267; https://inf.grid.by/jour/article/downloadSuppFile/1259/268; https://inf.grid.by/jour/article/downloadSuppFile/1259/269; Vamathevan J., Clark D., Czodrowski P., Dunham I., Ferran E., ., Zhao S. Applications of machine learning in drug discovery and development. Nature Reviewers. Drug Discovery, 2019, vol. 18, no. 6, pp. 463-477. https://doi.org/10.1038/s41573-019-0024-5; Lipinski C. F., Maltarollo V. G., Oliveira P. R., da Silva A. B. F., Honorio K. M. Advances and perspectives in applying deep learning for drug design and discovery. Frontiers in Robotics and AI, 2019, vol. 6, art. 108. Available at: https://www.frontiersin.org/artides/10.3389/frobt.2019.00108/full (accessed 07.08.2023). https://doi.org/10.3389/frobt.2019.00108; Cramer P. AlphaFold2 and the future of structural biology. Nature Structural & Molecular Biology, 2021, vol. 28, no. 9, pp. 704-705.; Bryant P., Pozzati G., Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nature Communications, 2022, vol. 13, no. 1, art. 1265. Available at: https://www.nature.com/articles/s41467-022-29480-5 (accessed 07.08.2023). https://doi.org/10.1038/s41467-022-29480-5; David A., Islam S., Tankhilevich E., Sternberg M. J. The AlphaFold database of protein structures: a biologist's guide. Journal of Molecular Biology, 2022, vol. 434, no. 2, p. 167336.; Timmons P. B., Hewage C. M. ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides. Briefings in Bioinformatics, 2021, vol. 22, iss. 6, art. bbab258. Available at: https://academic.oup.com/bib/article/22/6/bbab258/6326528 (accessed 07.08.2023). https://doi.org/10.1093/bib/bbab258; Andrianov A. M., Nikolaev G. I., Shuldov N. A., Bosko I. P., Anischenko A. I., Tuzikov A. V. Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors. Journal if Biomolecular Structure and Dynamics, 2022, vol. 40, no. 16, pp. 7555-7573. https://doi.org/10.1080/07391102.2021.1905559; Zhang Y., Ye T., Xi H., Juhas M., Li J. Deep learning driven drug discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2. Frontiers in Microbiology, 2021, vol. 12. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2021.739684/full (accessed 07.08.2023). https://doi.org/10.3389/fmicb.2021.739684; Stokes J. M., Yang K., Swanson K., Jin W., Cubillos-Ruiz A., ., Collins J. J. A deep learning approach to antibiotic discovery. Cell, 2020, vol. 180, no. 4, art. e13, pp. 688-702. https://doi.org/10.1016/j.cell.2020.01.021; Mercado R., Rastemo T., Lindelof E., Klambauer G., Engkvist O., Bjerrum E. J. Practical notes on building molecular graph generative models. ChemRxiv, 2020. Available at: https://chemrxiv.org/engage/chemrxiv/article-details/60c74f55567dfe705bec5672 (accessed 07.08.2023). https://doi.org/10.26434/chemrxiv.12888383; Arús-Pous J., Blaschke T., Ulander S., Reymond J. L., Chen H., Engkvist O. Exploring the GDB-13 chemical space using deep generative models. Journal of Cheminformatics, 2019, vol. 11, art. 20. Available at: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0341-z (accessed 07.08.2023). https://doi.org/10.1186/s13321-019-0341-z; Prykhodko O., Johansson S. V., Kotsias P. C., Arus-Pous J., Bjerrum E. J., ., Chen H. A de novo molecular generation method using latent vector based generative adversarial network. Journal of Cheminformatics, 2019, vol. 11, no 1, art. 74. Available at: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0397-9 (accessed 07.08.2023). https://doi.org/10.1186/s13321-019-0397-9; Polykovskiy D., Zhebrak A., Vetrov D., Ivanenkov Y., Aladinskiy V., ., Kadurin A. Entangled conditional adversarial autoencoder for de novo drug discovery. Molecular Pharmaceutics, 2018, vol. 15, no. 10, pp. 4398-4405. https://doi.org/10.1021/acs.molpharmaceut.8b00839s; Zhang J., Mercado R., Engkvist O., Chen H. Comparative study of deep generative models on chemical space coverage. Journal of Chemical Information and Modeling, 2021, vol. 61, no. 6, pp. 2572-2581. https://doi.org/10.26434/chemrxiv.13234289.v1; Zhavoronkov A., Ivanenkov Y. A., Aliper A., Veselov M. S., Aladinskiy V. A., ., Aspuru-Guzik A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 2019, vol. 37, no. 9, pp. 1038-1040. https://doi.org/10.1038/s41587-019-0224-x; Kostler W. J., Zielinski C. C. Targeting receptor tyrosine kinases in cancer. Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. New York, Springer, 2015, pp. 225-278.; Kantarjian H. M., Hochhaus A., Saglio G., De Souza C., Flinn I. W., Hughes T. P. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. The Lancet Oncology, 2011, vol. 12, no. 9, pp. 841-851. https://doi.org/10.1016/S1470-2045(11)70201-7; Tan F. H., Putoczki T. L., Stylli S. S., Luwor R. B. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. OncoTargets and Therapy, 2019, vol. 12, pp. 635-645. https://doi.org/10.2147/OTT.S189391; O'Hare T. A decade of nilotinib and dasatinib: From in vitro studies to first-line tyrosine kinase inhibitors. Cancer Research, 2016, vol. 76, no. 20, pp. 5911-5913. https://doi.org/10.1158/0008-5472.CAN-16-2483; Brummendorf T. H., Cortes J. E., de Souza C. A., Guilhot F., Duvillie L., ., Gambacorti-Passerini C. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: Results from the 24-month follow-up of the BELA trial. British Journal of Haematology, 2015, vol. 168, no. 1, pp. 69-81. https://doi.org/10.1111/bjh.13108; Bhullar K. S., Lagaron N. O., McGowan E. M., Parmar I., Jha A., Rupasinghe H. P. V. Kinase-targeted cancer therapies: progress, challenges and future directions. Molecular Cancer, 2018, vol. 17, art. 48. Available at: https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-018-0804-2 (accessed 07.08.2023). https://doi.org/10.1186/s12943-018-0804-2; Koroleva E. V., Ignatovich Zh. I., Sinyutich Yu. V., Gusak K. N. Aminopyrimidine derivatives as protein kinases inhibitors. Molecular design, synthesis, and biologic activity. Russian Journal of Organic Chemistry, 2016, vol. 52, no. 2, pp. 139-177. https://doi.org/10.1134/S1070428016020019; Patel A. B., O'Hare T., Deininger M. W. Mechanisms of resistance to ABL kinase inhibition in CML and the development of next generation ABL kinase inhibitors. Hematoogy/Oncology Clinics of North America, 2017, vol. 31, no. 4, pp. 589-612. https://doi.org/10.1016/j.hoc.2017.04.007; Liu J., Zhang Y., Huang H., Lei X., Tang G., ., Peng J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chemical Biology and Drug Design, 2021, vol. 97, no. 3, pp. 649-664. https://doi.org/10.1111/cbdd.13801; Trott O., Olson A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 2010. vol. 31, no. 2, pp. 455-461. https://doi.org/10.1002/jcc.21334; Durrant J. D., McCammon J. A. NNScore 2.0: A neural-network receptor-ligand scoring function. Journal of Chemical Information and Modeling, 2011, vol. 51, no. 11, pp. 2897-2903. https://doi.org/+-10.1021/ci2003889; Wójcikowski M., Ballester P. J., Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Scientific Reports, 2017, vol. 7, no. 1, pp. 1-10.; Hinton G. E., Salakhutdinov R. R. Reducing the dimensionality of data with neural networks. Science, 2006, vol. 313, no. 5786, pp. 504-507.; Hwang M., Qian Y., Wu C., Jiang W. C., Wang D., ., Hwang K. S. A local region proposals approach to instance segmentation for intestinal polyp detection. International Journal of Machine Learning and Cybernetics, 2023, vol. 14, no. 5, pp. 1591-1603.; Huang A., Ju X., Lyons J., Murnane D., Pettee M., Reed L. Heterogeneous Graph Neural Network for Identifying Hadronically Decayed Tau Leptons at the High Luminosity LHC. Available at: https://arxiv.org/pdf/2301.00501.pdf (accessed 07.08.2023).; Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences, 1988, vol. 28, no. 1, pp. 31-36. https://doi.org/10.1021/ci00057a005; Weininger D., Weininger A., Weininger, J. L. SMILES. 2. Algorithm for generation of unique SMILES notation. Journal of Chemical Information and Computer Sciences, 1989, vol. 29, no. 2, pp. 97-101.; O'Boyle N. M. Towards a Universal SMILES representation-A standard method to generate canonical SMILES based on the InChI. Journal of Cheminformatics, 2012, vol. 4, art. 22, pp. 1-14.; Kim S., Chen J., Cheng T., Gindulyte A., He J., ., Bolton E. E. PubChem 2019 update: improved access to chemical data. Nuclear Acids Research, 2019, vol. 47(D1), pp. D1102-D1109.; Ho Y., Wookey S. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling. IEEE Access, 2019, vol. 8, pp. 4806-4813.; Kingma D. P., Ba J. Adam: A Method for Stochastic Optimization, 2014. Available at: https://arxiv.org/pdf/1412.6980.pdf (accessed 07.08.2023).; Landrum G. RDKit: A Software Suite for Cheminformatics, Computational Chemistry, and Predictive Modeling, 2013. Available at: https://www.rdkit.org/RDKit_Overview.pdf (accessed 07.08.2023).; Palacio-Rodríguez K., Lans I., Cavasotto C. N., Cossio P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Scientific Reports, 2019, vol. 9, no. 1, art. 5142. Available at: https://www.nature.com/articles/s41598-019-41594-3 (accessed 07.08.2023). https://doi.org/10.1038/s41598-019-41594-3; Lipinski C. A. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 2004, vol. 1, no. 4, pp. 337-341.; Verma J., Khedkar V. M., Coutinho E. C. 3D-QSAR in drug design-a review. Current Topics in Medicinal Chemistry, 2010, vol. 10, no. 1, pp. 95-115. https://doi.org/10.2174/156802610790232260; Kuseva C., Schultz T. W., Yordanova D., Tankova K., Kutsarova S., ., Mekenyan O. G. The implementation of RAAF in the OECD QSAR Toolbox. Regulatory Toxicology and Pharmacology, 2019, vol. 105, pp. 51-61. https://doi.org/10.1016Zj.yTtph.2019.03.018; https://inf.grid.by/jour/article/view/1259

  14. 14
    Academic Journal

    المصدر: Food systems; Vol 6, No 3 (2023); 365-389 ; Пищевые системы; Vol 6, No 3 (2023); 365-389 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-3

    وصف الملف: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/306/250; Araki, Y., Hanaki, Y., Kita, M., Hayakawa, K., Irie, K., Nokura, Y. et al. (2021). Total synthesis and biological evaluation of oscillatoxins D, E, and F. Bioscience, Biotechnology and Biochemistry, 85(6), 1371–1382. https://doi.org/10.1093/bbb/zbab042; Leveridge, M., Chung, C. -W., Gross, J. W., Phelps, C. B., Green, D. (2018). Integration of lead discovery tactics and the evolution of the lead discovery toolbox. SLAS Discovery, 23(9), 881–897. https://doi.org/10.1177/2472555218778503; Rasul, A., Riaz, A., Sarfraz, I., Khan, S. G., Hussain, G., Zara, R. et al. (2022). Chapter in a book: Target identification approaches in drug discovery. Springer, Cham, 2022. https://doi.org/10.1007/978–3–030–95895–4_3; Open chemistry database at the National Institutes of Health (NIH). Retrieved from https://pubchem.ncbi.nlm.nih.gov/ Accessed January 15, 2023; Swiss Institute of Bioinformatics. Retrieved from http://www.swissadme.ch/index.php Accessed January 15, 2023; Royal Society of Chemistry. Retrieved from http://www.chemspider.com/Accessed January 15, 2023; The Swiss Target Prediction database. Retrieved from http://swisstargetprediction.ch/ Accessed January 25, 2023; The Anatomical Therapeutic Chemical (ATC) classification system. Retrieved from https://prediction.charite.de/ Accessed January 25, 2023; Protein-Protein Interaction Networks Functional Enrichment Analysis. Retrieved from http://string-db.org Accessed January 25, 2023; Network Data Integration, Analysis, and Visualization in a Box. Retrieved from https://cytoscape.org/ Accessed January 25, 2023; A Gene Annotation and Analysis Resource. Retrieved from https://metascape.org Accessed January 25, 2023; Database of medicinal substances with chemical, pharmacological and pharmaceutical information. Retrieved from https://go.drugbank.com/drugs Accessed January 25, 2023; Zhang, M., Jang, H., Nussinov, R. (2020). Structural features that distinguish inactive and active PI3K lipid kinases. Journal of Molecular Biology, 432(22), 5849–5859. https://doi.org/10.1016/j.jmb.2020.09.002; O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, Article 33. https://doi.org/10.1186/1758–2946–3–33; Kumar, A., Zhang, K. Y. J. (2013). Investigation on the effect of key water molecules on docking performance in CSARdock exercise. Journal of Chemical Information and Modeling, 53(8), 1880–1892. https://doi.org/10.1021/ci400052w; Huang, N., Shoichet, B. K. (2008). Exploiting ordered waters in molecular docking. Journal of Medicinal Chemistry, 51(16), 4862–4865. https://doi.org/10.1021/jm8006239; Laskowski, R. A., Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u; Budama-Kilinc, Y., Gok, B., Kecel-Gunduz, S., Altuntas, E. (2022). Development of nanoformulation for hyperpigmentation disorders: Experimental evaluations, in vitro efficacy and in silico molecular docking studies. Arabian Journal of Chemistry, 15(12), Article 104362. https://doi.org/10.1016/j.arabjc.2022.104362; Wood, D. J., Korolchuk, S., Tatum, N. J., Wang, L. -Z., Endicott, J. A., Noble, M. E. M. et al. (2019). Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chemical Biology, 26(1), 121–130. https://doi.org/10.1016/j.chembiol.2018.10.015; Pantsar, T., Poso, A. (2018). Binding affinity via docking: Fact and fiction. Molecules, 23(8), Article 1899. https://doi.org/10.3390/molecules23081899; Zhang, M., Jang, H., Nussinov, R. (2020). PI3K inhibitors: Review and new strategies. Chemical Science, 11(23), 5855–5865. https://doi.org/10.1039/d0sc01676d; El-Khouly, O. A., Henen, M. A., El-Sayed, M. A.-A., El-Messery, S. M. (2022). Design, synthesis and computational study of new benzofuran hybrids as dual PI3K/VEGFR2 inhibitors targeting cancer. Scientific Reports, 12(1), Article 17104. https://doi.org/10.1038/s41598–022–21277–2; Deivanayagam, C. C. S., Carson, M., Thotakura, A., Narayana, S. V., Chodavarapu, R. S. (2000). Structure of FKBP12.6 in complex with rapamycin. Acta Crystallographica Section D: Biological Crystallography, 56(Part 3), 266–271. https://doi.org/10.1107/s0907444999016571; Zou, Z., Tao, T., Li, H., Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell and Bioscience, 10(1), Article 31. https://doi.org/10.1186/s13578–020–00396–1; Yunitasari, N., Raharjo, T. J., Swasono, R. T., Pranowo, H. D. (2022). Identification α-amylase inhibitors of Vernonia amygdalina leaves extract using metabolite profiling combined with molecular docking. Indonesian Journal of Chemistry, 22(2), 526–538. https://doi.org/10.22146/ijc.71499; Arcoleo, J. P., Weinstein, I. B. (1985). Activation of protein kinase C by tumor promoting phorbol esters, teleocidin and aplysiatoxin in the absence of added calcium. Cardnogenesis, 6(2), 213–217. https://doi.org/10.1093/carcin/6.2.213; Lin, A., Giuliano, C. J., Palladino, A., John, K. M., Abramowicz, C., Yuan, M. L. et al. (2019). Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 11(509), Article eaaw8412. https://doi.org/10.1126/scitranslmed.aaw8412; Yap, B. H. J., Crawford, S. A., Dagastine, R. R., Scales, P. J., Martin, G. J. O. (2016). Nitrogen deprivation of microalgae: Effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. Journal of Industrial Microbiology and Biotechnology, 43(12), 1671–1680. https://doi.org/10.1007/s10295–016–1848–1; Du, Z., Lovly, C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer, 17(1), Article 58. https://doi.org/10.1186/s12943–018–0782–4; Novikov, N. M., Zolotaryova, S. Y., Gautreau, A. M., Denisov, E. V. (2020). Mutational drivers of cancer cell migration and invasion. British Journal of Cancer, 124(1), 102–114. https://doi.org/10.1038/s41416–020–01149–0; Katayama, A., Miligy, I. M., Shiino, S., Toss, M. S., Eldib, K., Kurozumi, S. et al. (2021). Predictors of pathological complete response to neoadjuvant treatment and changes to post-neoadjuvant HER2 status in HER2-positive invasive breast cancer. Modern Pathology, 34(7), 1271–1281. https://doi.org/10.1038/s41379–021–00738–5; Klaunig, J. E. (2018). Oxidative stress and cancer. Current Pharmaceutical Design, 24(40), 4771–4778. https://doi.org/10.2174/1381612825666190215121712; Li, J., Zhong, L., Wang, F., Zhu, H. (2017). Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharmaceutica Sinica B, 7(3), 249–259. https://doi.org/10.1016/j.apsb.2016.12.003; https://www.fsjour.com/jour/article/view/306

  15. 15
    Academic Journal

    المصدر: Doklady of the National Academy of Sciences of Belarus; Том 67, № 3 (2023); 197-206 ; Доклады Национальной академии наук Беларуси; Том 67, № 3 (2023); 197-206 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-3

    وصف الملف: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1129/1129; Advances and perspectives in applying deep learning for drug design and discovery / C. F. Lipinski [et al.] // Front. Robotics and AI. - 2019. - Vol. 6, N 108. https://doi.org/10.3389/frobt.2019.00108; Deep learning enables rapid identification of potent DDR1 kinase inhibitors / A. Zhavoronkov [et al.] // Nat. Biotechnol. - 2019. - Vol. 37, N 9. - P. 1038-1040. https://doi.org/10.1038/s41587-019-0224-x; Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors / A. M. Andrianov [et al.] // J. Biomol. Struct. Dyn. - 2022. - Vol. 40, N 16. - P. 7555–7573. https://doi.org/10.1080/07391102.2021.1905559; Review on the use of Molecular Docking as the First Line Tool in Drug Discovery and Development / R. N. Sahoo [et al.] // Indian J. Pharm. Sci. - 2022. - Vol. 84, N 5. - P. 1334-1337. https://doi.org/10.36468/pharmaceutical-sciences.1031; Hollingsworth, S. A. Molecular dynamics simulation for all / S. A. Hollingsworth, R. O. Dror // Neuron. - 2018. - Vol. 99, N 6. - P. 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011; Разработка генеративной нейронной сети глубокого обучения для компьютерного дизайна потенциальных ингибиторов коронавируса SARS-CoV-2 / Н. А. Шульдов [и др.] // Математическая биология и биоинформатика. - 2022. - Т. 17, № 2. - С. 188–207. https://doi.org/10.17537/2022.17.188; Ullrich, S. The SARS-CoV-2 main protease as drug target / S. Ullrich, C. Nitsche // Bioorg. Med. Chem. Lett. - 2020. - Vol. 30, N 17. – Art. 127377. https://doi.org/10.1016/j.bmcl.2020.127377; Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro) / S. G. Katre [et al.] // Futur. J. Pharm. Sci. - 2022. - Vol. 8, N 1. – Art. 36. https://doi.org/10.1186/s43094-022-00423-7; Exponential consensus ranking improves the outcome in docking and receptor ensemble docking / K. Palacio-Rodriguez [et al.] // Sci. Rep. – 2019. – Vol. 9, N 1. – Art. 5142. https://doi.org/10.1038/s41598-019-41594-3; Genheden, S. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities / S. Genheden, U. Ryde // Expert Opin. Drug Discov. - 2015. - Vol. 10, N 5. - P. 449-461. https://doi.org/10.1517/17460441.2015.1032936; Potent noncovalent inhibitors of the main Protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations / C. H. Zhang [et al.] // ACS Cent. Sci. - 2021. - Vol. 7, N 3. - P. 467–475. https://doi.org/10.1021/acscentsci.1c00039; Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings / C. A. Lipinski [et al.] // Adv. Drug Deliv. Rev. - 1997. - Vol. 23, N 1–3. - P. 3–25. https://doi.org/10.1016/s0169-409x(96)00423-1; Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants / M. T. Qamar [et al.] // J. Pharm. Anal. - 2020. - Vol. 10, N 4. - P. 313-319. https://doi.org/10.1016/j.jpha.2020.03.009; Sharma, G. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase / G. Sharma, E. A. First // J. Biol. Chem. - 2009. - Vol. 284, N 7. - P. 4179–4190. https://doi.org/10.1074/jbc.m808500200; Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions / C. Shen [et al.] // Brief. Bioinf. - 2021. - Vol. 22, N 1. - P. 497–514. https://doi.org/10.1093/bib/bbz173; https://doklady.belnauka.by/jour/article/view/1129

  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 58, № 1 (2022); 62-67 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 58, № 1 (2022); 62-67 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2022-58-1

    وصف الملف: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/705/652; Ishiguro, K. Novel application of 4-nitro-7-(1-piperazinyl)-2,1,3-benzoxadiazole to visualize lysosomes in live cells / K. Ishiguro, T. Ando, H. Goto // Biotechniques. – 2008. – Vol. 45. – P. 467–468. https://doi.org/10.2144/000112912; Fan, J. A Two-Photon Fluorescent Probe for Lysosomal Thiols in Live Cells and Tissues / J. Fan, Z. Han, Y. Kang, X. Peng // Sci. Rep. – 2016. – Vol. 6. – P. 19562. https://doi.org/10.1038/srep19562; Piperazine-tuned NBD-based colorimetric and fluorescent turn-off probes for hydrogen sulfide / Z. Xu [et al.] // Anal. Methods. – 2018. – Vol. 10. – P. 3375–3379. https://doi.org/10.1039/C8AY00797G; Взаимодействие нитробензоксадиазольных производных пиперазина и анилина с бычьим сывороточным альбумином in silico и in vitro / Я. В. Фалетров [и др.] // Журн. Бел. гос. ун-та. Химия. – 2021. – № 2. – С. 25–35. https://doi.org/10.33581/2520-257X-2021-2-25-35; In silico моделирование взаимодействия конъюгатов изониазид-стероид с цитохромами Р450 микобактерий и их превращение in vitro в клетках данных микроорганизмов / Я. В. Фалетров [и др.] // Биомед. хим. – 2020. – Т. 66, N 5. – С. 378–385. https://doi.org/10.18097/PBMC20206605378; Lomize, A. L. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes / A. L. Lomize, I. D. Pogozheva, H. I. Mosberg // J. Chem. Inf. Mod. – 2011. – Vol. 51. – P. 930– 946. https://doi.org/10.1021/ci200020k; https://vestichem.belnauka.by/jour/article/view/705

  18. 18
  19. 19
    Academic Journal

    المساهمون: The work was supported by BRFFR grant X19COVID-030, Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант Х19КОВИД-030)

    المصدر: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 58, № 3 (2022); 280-285 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 58, № 3 (2022); 280-285 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2022-58-3

    وصف الملف: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/738/674; Do Sputnik V Vaccine-Induced Antibodies Protect Against Seasonal Coronaviruses? Case Study / M. Koryukov [et al.] // Viral. Immunol. – 2022. – Vol. 35, N 2. – P. 138–141. https://doi.org/10.1089/vim.2021.0157; Rubin, E. J. The Potential of Intentional Drug Development / E. J. Rubin, L. R. Baden // New Eng. J. Med. – 2022. – Vol. 386, N 15. – P. 1463–1464. https://doi.org/10.1056/nejme2202160; Davids, M. S. Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase / M. S. David, J. R. Brown // Future Oncol. – 2014. – Vol. 10, N. 6. – P. 957–967. https://doi.org/10.2217/fon.14.51; Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage / T.-H. Shi [et al.] // Biochem. Biophys. Res. Commun. – 2020. – Vol. 533, N 3. – P. 467–473. https://doi.org/10.1016/j.bbrc.2020.08.086; Binding Studies of the Prodrug HAO472 to SARS-Cov-2 Nsp9 and Variants / M. Liu [et al.] // ACS Omega. – 2022. – Vol. 7, N 8. – P. 7327–7332. https://doi.org/10.1021/acsomega.1c07186; Reaction of the Butter Flavorant Diacetyl (2,3-Butanedione) with N-α-Acetylarginine: A Model for Epitope Formation with Pulmonary Proteins in the Etiology of Obliterative Bronchiolitis / J. M. Mathews [et al.] // J. Agric. Food Chem. – 2010. – Vol. 58, N 24. – P. 12761–12768. https://doi.org/10.1021/jf103251w; Arginine-Selective Chemical Labeling Approach for Identification and Enrichment of Reactive Arginine Residues in Proteins / S. K. Maheshika [et al.] // ACS Omega. – 2018. – Vol. 3, N 10. – P. 14229–14235. https://doi.org/10.1021/acsomega.8b01729; 1,3-Diketone-Modified Nucleotides and DNA for Cross-Linking with Arginine-Containing Peptides and Proteins / D.-L. Leone [et al.] // Angewandte. – 2021. – Vol. 60, N 32. – P. 17383–17387. https://doi.org/10.1002/anie.202105126; Osawa, T. A Novel Type of Antioxidant Isolated from Leaf Wax of Eucalyptus leaves / T. Osawa, M. Namiki // Agric. Biol. Chem. – 1981. – Vol. 45, N 3. – P. 735–739. https://doi.org/10.1080/00021369.1981.10864583; Solid and liquid state characterization of tetrahydrocurcumin using XRPD, FT-IR, DSC, TGA, LC-MS, GC-MS, and NMR and its biological activities // J. Pharm. Anal. – 2020. – Vol. 10, N 4. – P. 334–345. https://doi.org/10.1016/j.jpha.2020.02.005; Gingerdione from the rhizomes of Curcuma longa / A. El Demerdash [et al.] // Chem. Nat. Compd. – 2012. – Vol. 48, N 4. – P. 646–648. https://doi.org/10.1007/s10600-012-0333-y; Evaluation of the fluorescent probes Nile Red and 25-NBD-cholesterol as substrates for steroid-converting oxidoreductases using pure enzymes and microorganisms / Y. V. Faletrov [et al.] // FEBS J. – 2013. – Vol. 280, N 13. – P. 3109–3119. https://doi.org/10.1111/febs.12265; Trott, O. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading / O. Trott, A. J. Olson // J. Comput. Chem. – 2010. – Vol. 31. – P. 455–461. https://doi.org/10.1002/jcc.21334; α-Glucosidase Inhibitory and Cytotoxic Taxane Diterpenoids from the Stem Bark of Taxus wallichiana / P.-H. Dang [et al.] // J. Nat. Prot. – 2017. – Vol. 80, N 4. – P. 1087–1095. https://doi.org/10.1021/acs.jnatprod.7b00006; Curcumin’s Metabolites, Tetrahydrocurcumin and Octahydrocurcumin, Possess Superior Anti-inflammatory Effects in vivo Through Suppression of TAK1-NF-κB Pathway / Z.-B. Zhang [et al.] // Front. Pharmacol. – 2018. – Vol. 9. https://doi.org/10.3389/fphar.2018.01181; Tetrahydrocurcumin mitigates acute hypobaric hypoxia-induced cerebral oedema and inflammation through the NF-κB/VEGF/MMP-9 pathway / Y. Pan [et al.] // Phytother. Res. – 2020. – Vol. 34, N 11. – P. 2963–2977. https://doi.org/10.1002/ptr.6724; Curcumin, an Inhibitor of PAK1, Potential Treatment for COVID-19 / M. Nemati [et al.] // J. Infectiol. – 2020. – Vol. 3, N 2. – P. 1–3. https://doi.org/10.29245/2689-9981/2020/2.1160; Potential Phytochemical Inhibitors of the Coronavirus RNA Dependent RNA Polymerase: A Molecular Docking Study / P. Ardra [et al.] // Research Square preprint. – 2020. https://doi.org/10.21203/rs.3.rs-35334/v1; Potential of Zingiber officinale bioactive compounds as inhibitory agent against the IKK-B / W. E. Putra [et al.] // AIP Conference Proceedings. – 2020. https://doi.org/10.1063/5.0002478; COVID-19 in silico Drug with Zingiber officinale Natural Product Compound Library Targeting the Mpro Protein / R. M. Wijaya [et al.] // Makara J. Sci. – 2021. – Vol. 25, N 3. https://doi.org/10.7454/mss.v25i3.1244; Jafarzadeh, A. Therapeutic potential of ginger against COVID-19: Is there enough evidence? / A. Jafarzadeh, S. Jafarzadeh, M. Nematide // J. Tradit. Chinese Med. Sci. – 2021. – Vol. 8, N 4. – P. 267–279. https://doi.org/10.1016/j.jtcms.2021.10.001; https://vestichem.belnauka.by/jour/article/view/738

  20. 20
    Academic Journal

    المساهمون: The work was supported by SPSR (grant № 20210560)., Работа выполнена при поддержке задания Государственной программы научных исследований (№ г.р. 20210560).

    المصدر: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 58, № 2 (2022); 186-190 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 58, № 2 (2022); 186-190 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2022-58-2

    وصف الملف: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/721/664; Raunio, H. Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities in vitro / H. Raunio, O. Pentikainen, R. O. Juvonen // Int. J. Mol. Sci. - 2020. - Vol. 21, N 13. - P 4708. https://doi.org/10.3390/ijms21134708; Interaction of coumarin-hydroxylating cytochrome P-450coh from liver microsomes of mice induced by pyrazole with cytochrome B5] / S. A. Usanov [et al.] // Biokhimia. - 1990. - Vol. 55. - P. 995-1007.; Juvonen, R. O. Purification and characterization of a liver microsomal cytochrome P-450 isoenzyme with a high affinity and metabolic capacity for coumarin from pyrazole-treated D2 mice / R. O. Juvonen, V. M. Shkumatov, M. A. Lang // Eur. J. Biochem. - 1988. - Vol. 171, N 1-2. - P. 205-211. https://doi.org/10.1111/j.1432-1033.1988.tb13777.x; Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes / R. O. Juvonen [et al.] // Xenobiotica. - 2019. - Vol. 49, N 9. - P. 1015-1024. https://doi.org/10.1080/00498254.2018.1530399; Substrate Selectivity of Coumarin Derivatives by Human CYP1 Enzymes: In Vitro Enzyme Kinetics and In Silico Modeling / R. O. Juvonen [et al.] // ACS Omega. - 2021. - Vol. 6, N 17. - P. 11286-11296. https://doi.org/10.1021/acsome-ga.1c00123; Coumarin Derivatives Solvent-Free Synthesis under Microwave Irradiation over Heterogeneous Solid Catalysts / S. Bouasla [et al.] // Molecules. - 2017. - Vol. 22, N 12. - P. 2072. https://doi.org/10.3390/molecules22122072; Xu, X. Docking-based inverse virtual screening: methods, applications, and challenges / X. Xu, M. Huang, X. Zou // Biophys. Res. - 2018. - Vol. 4, N 1. - P. 1-16. https://doi.org/10.1007/s41048-017-0045-8; Синтез новых тиазоло [3,2-а]пиримидинов и in silico анализ их биоактивности / И. В. Минеева [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. - 2021. - Т. 57, № 4. - С. 456-462. https://doi.org/10.29235/1561-8331-2021-57-4-456-462; Stone, K. L. X-ray absorption spectroscopy of chloroperoxidase compound I: Insight into the reactive intermediate of P450 chemistry / K. L. Stone, R. K. Behan, M. T. Green // PNAS. - 2005. - Vol. 102, N 46. - P. 16563-16565. https://doi.org/10.1073/pnas.0507069102; A high-throughput screen to identify inhibitors of aromatase (CYP19) / D. M. Stresser [et al.] // Anal. Biochem. -2000. - Vol. 284, N 2. - P. 427-430. https://doi.org/10.1006/abio.2000.4729; Characterisation of Candida parapsilosis CYP51 as a drug target using Saccharomyces cerevisiae as host / Y. N. Ruma [et al.] // J. Fungi - 2022. - Vol. 8, N 1. - P. 69. https://doi.org/10.3390/jof8010069; Investigation of the Substrate Range of CYP199A4: Modification of the Partition between Hydroxylation and Desaturation Activities by Substrate and Protein Engineering / S. G. Bell [et al.] // Chem. Eur. J. - 2012. - Vol. 18, N 52. -P. 16677-16688. https://doi.org/10.1002/chem.201202776; https://vestichem.belnauka.by/jour/article/view/721