يعرض 1 - 20 نتائج من 51 نتيجة بحث عن '"делеция"', وقت الاستعلام: 0.79s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: This research was funded by the Russian Science Foundation (grant No. 22-15-00169), Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 22-15-00169)

    المصدر: Advances in Molecular Oncology; Том 11, № 2 (2024); 116-129 ; Успехи молекулярной онкологии; Том 11, № 2 (2024); 116-129 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/682/354; Turner N.C., Reis-Filho J.S. Basal-like breast cancer and the BRCA1 phenotype. Oncogene 2006;25(43):5846–53. DOI:10.1038/sj.onc.1209876; Jia X., Wang K., Xu L. et al. A systematic review and meta-analysis of BRCA1/2 mutation for predicting the effect of platinum-based chemotherapy in triple-negative breast cancer. The Breast 2022;66:31–9. DOI:10.1016/j.breast.2022.08.012; Sokolenko A.P., Savonevich E.L., Ivantsov A.O. et al. Rapid selection of BRCA1-proficient tumor cells during neoadjuvant therapy for ovarian cancer in BRCA1 mutation carriers. Cancer Lett 2017;397(1):127–32. DOI:10.1016/j.canlet.2017.03.036; Sokolenko A.P., Bizin I.V., Preobrazhenskaya E.V. et al. Molecular profiles of BRCA1-associated ovarian cancer treated by platinum-based therapy: analysis of primary, residual and relapsed tumors. Int J Cancer 2020;146(7):1879–88. DOI:10.1002/ijc.32776; Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001;29(9):45. DOI:10.1093/nar/29.9.e45; Teraoka S., Muguruma M., Takano N. et al. Association of BRCA mutations and BRCAness status with anticancer drug sensitivities in triple-negative breast cancer cell lines. J Surg Res 2020;250:200–8. DOI:10.1016/j.jss.2019.12.040; Min A., Im S.-A., Kim D.K. et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res 2015;17(1):1–13. DOI:10.1186/s13058-015-0534-y; Mio C., Gerratana L., Bolis M. et al. BET proteins regulate homologous recombinationmediated DNA repair: BRCAness and implications for cancer therapy. Int J Cancer 2019;144(4):755–66. DOI:10.1002/ijc.31898; Lord C.J., Ashworth A. BRCAness revisited. Nat Rev Cancer 2016;16(2):110–20. DOI:10.1038/nrc.2015.21; Fleming R.A. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 1997;17(5 Pt. 2):146–54.; Norquist B., Wurz K.A., Pennil C.C. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol 2011;29(22):3008–15. DOI:10.1200/JCO.2010.34.2980; Sakai W., Swisher E.M., Jacquemont C. et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res 2009;69(16):6381–6. DOI:10.1158/0008-5472.CAN-09-1178; Wu Z., Li S., Tang X. et al. Copy number amplification of DNA damage repair pathways potentiates therapeutic resistance in cancer. Theranostics 2020;10(9):3939–51. DOI:10.7150/thno.39341; Zhu Y., Liu Y., Zhang C. et al. Tamoxifen-resistant breast cancer cells are resistant to DNA-damaging chemotherapy because of upregulated BARD1 and BRCA1. Nat Commun 2018;9(1):1–11. DOI:10.1038/s41467-018-03951-0; Afghahi A., Timms K.M., Vinayak S. et al. Tumor BRCA1 reversion mutation arising during neoadjuvant platinum-based chemotherapy in triple-negative breast cancer is associated with therapy resistance. Clin Cancer Res 2017;23(13):3365–70. DOI:10.1158/1078-0432.CCR-16-2174; Weigelt B., Comino-Méndez I., De Bruijn I. et al. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin Cancer Res 2017;23(21):6708–20. DOI:10.1158/1078-0432.CCR-17-0544; Pishvaian M.J., Biankin A.V., Bailey P. et al. BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. Br J Cancer 2017;116(8):1021–6. DOI:10.1038/bjc.2017.40; Goodall J., Mateo J., Yuan W. et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov 2017;7(9):1006–17. DOI:10.1158/2159-8290.CD-17-0261; Feng L., Fong K.-W., Wang J. et al. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J Biol Chem 2013;288(16):11135–43. DOI:10.1074/jbc.M113.457440; https://umo.abvpress.ru/jour/article/view/682

  3. 3
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 80-85 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 80-85 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2008/1498; Cassidy S.B., Schwartz S., Miller J.L., Driscoll D.J. Prader-Willi syndrome. Genet Med 2012: 14(1): 10-26. DOI:10.1038/gim.0b013e31822bead0; Ho-Ming L. Adult Prader-Willi syndrome: an update on management. Case Rep Genet 2016; 2016: 5251912. DOI:10.1155/2016/5251912; Holm V.A., Cassidy S.B., Butler M.G., Hanchett J.M., Greenswag L.R., Whitman B.Y. et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 1993; 91(2): 398-402.; Angulo M.A., Butler M.G., Cataletto M.E. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest 2015; 38: 1249-1263. DOI:10.1007/ s40618-015-0312-9; Butler M.G., Hartin S.N., Hossain W.A., Manzardo A.M., Kimonis V., Dykens E. et al. Molecular genetic classification in Prader-Willi syndrome: a multisite cohort study. J Med Genet 2019; 56: 149-153. DOI:10.1136/jmedgenet-2018-105301; Cheon C.K. Genetics of Prader-Willi syndrome and Prader- Will-like syndrome. Ann Pediatr Endocrinol Metab 2016; 21: 126-135. DOI:10.6065/apem.2016.21.3.126; Kim S.J., Miller J.L., Kuipers P.J., German J.R., Beaudet A.L., Sahoo T., Driscoll D.J. Unique and atypical deletions in Prader-Willi syndrome reveal distinct phenotypes. Eur J Hum Genet 2012; 20: 283-290. DOI:10.1038/ejhg.2011.187; Xefteris A., Sekerli E., Arampatzi A. Charisiou S., Oikonomidou E., Efstathiou G. et al. Expanded Prader-Willi syndrome due to an unbalanced de novo translocation t(14;15). Report and review of the literature. Cytogenet Genome Res 2019; 159(3): 109-118. DOI:10.1159/000504159; Horsthemke B., Buiting K. Imprinting defects on human chromosome 15. Cytogenet Genome Res 2006; 113: 292-299. DOI:10.1159/000090844; Butler M.G., Duis J. Chromosome 15 Imprinting Disorders: Genetic Laboratory Methodology and Approaches. Front Pediatr 2020; 8: 154. DOI:10.3389/fped.2020.00154; Butler M.G. 15q11.2 BP1-BP2 microdeletion. J Intellect Disabil Res 2017; 61(6): 568-579. DOI:10.1111/jir.12382; Ziats M.N., Goin-Kochel R.P., Berry L.N., Ali M., Ge J., Guffey D. et al. The complex behavioral phenotype of 15q13.3 microdeletion syndrome. Genet Med 2016; 11(18): 1111- 1118. DOI:10.1038/gim.2016.9; Alsagob M., Salih M.A., Hamad M., Al-Yaffe Y., Al-Zahrani J., Al-Bakheet A. et al. First report of two successive deletion on chromosome 15q13 cytogenetic bands in a boy and girl: additional data to 15q13.3 syndrome with a report of high IQ patient. Mol Cytogen 2019; 12: 21. DOI:10.1186/s 13039- 019-0432-6; Lowther C., Costain G., Stavropoulos D.J., Melvin R., Silversides C. K., Andrade D. M. et al. Delineating the 15q13.3 microdeletion phenotype: a case series and comprehensive review of the literature. Genet Med 2015; 17: 149-157. DOI:10.1038/gim.2014.83; Pujana M.A., Nadal M., Guitart M., Armengol L., Gratacos M., Estvill X. Human chromosome 15 q11-q14 regions of rearrangements contain clusters of LCR15 duplicons. Eur J Hum Genet 2002; 10(1): 26-35. DOI:10.1038/sj.ejhg.5200760; Vollger M.R., Guitart X., Dishuck P.C., Mercuri L., Harvey W.T, Gershman A. et al. Segmental duplications and their variation in a complete human genome. Science. 2022; 376(6588): eabj6965. DOI:10.1126/science.abj6965; Gardner R.J., Amor D.J. Gardner and Sutherland’s Chromosome Abnormalities and Genetic Counseling (5 ed.) Oxford University Press, 2018; 134-212.; Verdoni A., Hu J., Surti U., Babcock M., Sheehan E., Clemens M. et al. Reproductive outcomes in individuals with chromosomal reciprocal translocations. Genet Med 2021; 23: 1753-1760. DOI:10.1038/s41436-021-01195-w; https://www.ped-perinatology.ru/jour/article/view/2008

  4. 4
    Academic Journal

    المصدر: Russian Journal of Child Neurology; Том 19, № 1 (2024); 48‑53 ; Русский журнал детской неврологии; Том 19, № 1 (2024); 48‑53 ; 2412-9178 ; 2073-8803

    وصف الملف: application/pdf

    Relation: https://rjdn.abvpress.ru/jour/article/view/460/315; Бобылова М.Ю., Мухин К.Ю., Кузьмич Г.В. и др. Эпилепсия при синдроме Ангельмана. Журнал неврологии и психиатрии им. С.С. Корсакова 2022;122(7):100–5. DOI:10.17116/jnevro2022122071100; Косинова Е.И., Зубцова Т.И., Полшведкина О.Б., Колесникова Ю.Г. Синдром Вольфа–Хиршхорна: обзор трех клинических случаев. Медицинская генетика 2023;22(1):36–42. DOI:10.25557/2073-7998.2023.01.36-42; Миронов М.Б., Чебаненко Н.В., Айвазян С.О. и др. Эпилепсия при синдроме Вольфа–Хиршхорна: обзор литературы и описание клинических случаев. Эпилепсия и пароксизмальные состояния 2018;10(4):39–52. DOI:10.17749/2077-8333.2018.10.4.039-052; Соколов П.Л., Чебаненко Н.В., Притыко А.Г., Романов П.А. Генетическая гетерогенность врожденных церебральных параличей и концепция нейротропного генома. Русский журнал детской неврологии 2022;17(4):8–23. DOI:10.17650/2073-8803-2022-17-4-8-23; Сыркина А.В., Чебаненко Н.В., Зыков В.П., Михайлова Н.С. Синдром Якобсена: обзор литературы и клиническое наблюдение. Русский журнал детской неврологии 2022;17(2):55–60.; Чебаненко Н.В., Соколов П.Л., Притыко А.Г. Врожденные церебральные параличи, сопровождающиеся эпилепсией: клинико-генетические сопоставления. Русский журнал детской неврологии 2022;17(3):43–54.; Юрченко Д.А., Миньженкова М.Е., Маркова Ж.Г. и др. Гетерогенность механизмов формирования хромосомного дисбаланса при синдроме Вольфа–Хиршхорна. Медицинская генетика 2022;21(11):59–61.; Balabhadra A., Parekh M., Patil A., Jayalakshmi S. A case of drugresistant epilepsy associated with ring chromosome 20. Ann Indian Acad Neurol 2021;24(5):805–7. DOI:10.4103/aian.AIAN_1292_20; Briand-Suleau A., Martinovic J., Tosca L. et al. SALL4 and NFATC2: Two major actors of interstitial 20q13.2 duplication. Eur J Med Genet 2014;57(4):174–80. DOI:10.1016/j.ejmg.2013.12.013; Corrêa T., Mayndra M., Santos-Rebouças C.B. Distinct epileptogenic mechanisms associated with seizures in Wolf–Hirschhorn syndrome. Mol Neurobiol 2022;59(5):3159–69. DOI:10.1007/s12035-022-02792-9; Duval R., Nicolas G., Willemetz A. et al. Inherited glycosylphosphatidylinositol defects cause the rare Emmnegative blood phenotype and developmental disorders. Blood 2021;137(26):3660–9. DOI:10.1182/blood.2020009810; Gavril E.C., Luca A.C., Curpan A.S. et al. Wolf–Hirschhorn syndrome: Clinical and genetic study of 7 new cases, and mini review. Children (Basel) 2021;8(9):751. DOI:10.3390/children8090751; Giardino D., Vignoli A., Ballarati L. et al. Genetic investigations on 8 patients affected by ring 20 chromosome syndrome. BMC Med Genet 2010;11:146. DOI:10.1186/1471-2350-11-146; Goetzinger L., Starks R.D., Dillahunt K. et al. Interstitial duplication of 20q11.22q13.11: A case report and review of literature. Mol Genet Genomic Med 2021;9(8):e1755. DOI:10.1002/mgg3.1755; Gomes Mda M., Lucca I., Bezerra S.A. et al. Epilepsy and ring chromosome 20: Case report. Arq Neuropsiquiatr 2002;60(3–A):631–5. DOI:10.1590/s0004-282x2002000400022; Ho K.S., South S.T., Lortz A. et al. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome. J Med Genet 2016;53(4):256–63. DOI:10.1136/jmedgenet-2015-103626; Jiang D., Zhao L., Clish C.B., Clapham D.E. Letm1, the mitochondrial Ca2+/H+ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf–Hirschhorn syndrome. Proc Natl Acad Sci USA 2013;110(24):E2249–E2254. DOI:10.1073/pnas.1308558110; Kumar V., Carlson J.E., Ohgi K.A. et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002;10(4):857–69. DOI:10.1016/s1097-2765(02)00650-0; Li Y., Tran Q., Shrestha R. et al. LETM1 is required for mitochondrial homeostasis and cellular viability (Review). Mol Med Rep 2019;19(5):3367–75. DOI:10.3892/mmr.2019.10041; Park S., Jeon B.R., Lee Y.K. et al. The first Korean case of de novo proximal 4p deletion syndrome in a child with developmental delay. Ann Lab Med 2020;40(5):435–7. DOI:10.3343/alm.2020.40.5.435; Patil A.A., Vinayan K.P., Roy A.G. Epilepsy in ring chromosome 20 syndrome might have variable clinical features. Ann Indian Acad Neurol 2020;23(5):718–22. DOI:10.4103/aian.AIAN_32_20; Popescu D.E., Marian D., Zeleniuc M. et al. Features of the Wolf–Hirschhorn syndrome (WHS) from infant to young teenager. Balkan J Med Genet 2023;26(1):75–82. DOI:10.2478/bjmg-2023-0006; Redler S., Strom T.M., Wieland T. et al. Variants in CPLX1 in two families with autosomal-recessive severe infantile myoclonic epilepsy and ID. Eur J Hum Genet 2017;25(7):889–93. DOI:10.1038/ejhg.2017.52; Tremblay-Laganière C., Maroofian R., Nguyen T.T.M. et al. PIGG variant pathogenicity assessment reveals characteristic features within 19 families. Genet Med 2021;23(10):1873–81. DOI:10.1038/s41436-021-01215-9; Uzay B., Kavalali E.T. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023;15:1148957. DOI:10.3389/fnsyn.2023.1148957; Zhang X., Lu H., Yang H. et al. Genotype-phenotype correlation of deletions and duplications of 4p: Case reports and literature review. Front Genet 2023;14:1174314. DOI:10.3389/fgene.2023.1174314; Zhang X., Chen G., Lu Y., Liu J. et al. Association of mitochondrial letm1 with epileptic seizures. Cereb Cortex 2014;24:2533–40. DOI:10.1093/cercor/bht118; Zollino M., Orteschi D., Ruiter M. et al. Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf–Hirschhorn syndrome-associated seizures disorder. Epilepsia 2014;55(6):849–57. DOI:10.1111/epi.12617; https://rjdn.abvpress.ru/jour/article/view/460

  5. 5
    Academic Journal

    المساهمون: The study was carried out without sponsorship, Исследование выполнено без спонсорской поддержки

    المصدر: Medical Genetics; Том 22, № 1 (2023); 36-42 ; Медицинская генетика; Том 22, № 1 (2023); 36-42 ; 2073-7998

    مصطلحات موضوعية: 4p-синдром, 4p deletion, WHS, 4p-syndrome, делеция

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2241/1690; Battaglia A., Filippi T., Carey J. C. Update on the clinical features and natural history of Wolf-Hirschhorn (4p-) syndrome: experience with 87 patients and recommendations for routine health supervision. Am J Med Genet C Semin Med Genet. 2008 Nov 15; 148C(4): 246-51. doi:10.1002/ajmg.c.30187.; Mekkawy M. K., Kamel A. K., Thomas M. M., Ashaat E. A., Zaki M. S., Eid O. M., Ismail S., Hammad S. A., Megahed H., El Awady H., Refaat K. M., Hussien S., Helmy N., Abd Allah S. G., Mohamed A. M., El Ruby M. O. Clinical and genetic characterization of ten Egyptian patients with Wolf-Hirschhorn syndrome and review of literature. Mol Genet Genomic Med. 2021 Feb; 9 (2): e1546. doi:10.1002/mgg3.1546.; Sharathkumar A., Kirby M., Freedman M., Abdelhaleem M., Chitayat D., Teshima I. E., Dror Y. Malignant hematological disorders in children with Wolf-Hirschhorn syndrome. Am J Med Genet A. 2003 Jun 1; 119A(2): 194-9. doi:10.1002/ajmg.a.20080.; Batton B., Amanullah A., Main C., Fivenson D., Jamil S. Cutaneous T-cell lymphoma in a 21-year-old male with Wolf-Hirschhorn syndrome. Am J Med Genet A. 2004 May 15; 127A(1): 81-5. doi:10.1002/ajmg.a.20608.; Marte A., Indolfi P., Ficociello C., Russo D., Oreste M., Bottigliero G., Gualdiero G., Barone C., Vigliar E., Indolfi C., Casale F. Inflammatory myofibroblastic bladder tumor in a patient with wolf-hirschhorn syndrome. Case Rep Urol. 2013; 2013: 675059. doi:10.1155/2013/675059.; https://www.medgen-journal.ru/jour/article/view/2241

  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal

    المصدر: Сборник статей

    وصف الملف: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г.; Чемякина, К. Н. Синдром Саtch 22: синдром Ди Джорджи – синдром делеции 22 хромосомы. Клинический случай / К. Н. Чемякина, Т. С. Лепешкова. // Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г. – Екатеринбург : УГМУ, 2022. – C. 2380-2384.; http://elib.usma.ru/handle/usma/10024

  9. 9
    Academic Journal

    المساهمون: The work was supported by the Russian Ministry of Education and Science grant No. 075-15-2021-1004.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 26, № 3 (2022); 298-307 ; Вавиловский журнал генетики и селекции; Том 26, № 3 (2022); 298-307 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-22-27

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3364/1616; Abd El-Hack M.E., Abdelnour S.A., Swelum A.A., Arif M. The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed. Mol. Biol. Rep. 2018;45(5):1445-1456. DOI 10.1007/s11033-018-4211-y.; Afanasyeva A.I., Knyazev S.S., Lotz K.N. Reproductive capacity of Hereford beef cattle of Siberian and Finnish breeding under the conditions of the Altai region. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of the Altai State Agricultural University. 2015;8(130):86-89. (in Russian); Beever J.E., Marron B.M., Parnell P.F., Teseling C.F., Steffen D.J., Denholm L.J. Developmental Duplications (DD): 1. Elucidation of the underlying molecular genetic basis of polymelia phenotypes in Angus cattle. In: Proc. XXVIII World Buiatrics Congress. Cairns, 2014.; Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. DOI 10.1186/s13059-018-1577-z.; Buggiotti L., Yurchenko A.A., Yudin N.S., Vander Jagt C.J., Vorobieva N.V., Kusliy M.A., Vasiliev S.K., Rodionov A.N., Boronetskaya O.I., Zinovieva N.A., Graphodatsky A.S., Daetwyler H.D., Larkin D.M. Demographic history, adaptation, and NRAP convergent evolution at amino acid residue 100 in the world northernmost cattle from Siberia. Mol. Biol. Evol. 2021;38(8):3093-3110. DOI 10.1093/molbev/msab078.; Ciepłoch A., Rutkowska K., Oprzkadek J., Poławska E. Genetic disorders in beef cattle: a review. Genes Genomics. 2017;39(5):461-471. DOI 10.1007/s13258-017-0525-8.; Curi R.A., de Oliveira H.N., Gimenes M.A., Silveira A.C., Lopes C.R. Effects of CSN3 and LGB gene polymorphisms on production traits in beef cattle. Genet. Mol. Biol. 2005;28(2):262-266. DOI 10.1590/S1415-47572005000200015.; Fasquelle C., Sartelet A., Li W., Dive M., Tamma N., Michaux C., Druet T., Huijbers I.J., Isacke C.M., Coppieters W., Georges M., Charlier C. Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle. PLoS Genet. 2009;5(9):e1000666. DOI 10.1371/journal.pgen.1000666.; Fontanesi L., Scotti E., Russo V. Haplotype variability in the bovine MITF gene and association with piebaldism in Holstein and Simmental cattle breeds. Anim. Genet. 2012;43(3):250-256. DOI 10.1111/j.1365-2052.2011.02242.x.; Fornara M.S., Kostyunina O.V., Filipchenko A.A., Sermyagin A.A., Zinovyeva N.A. Polymorphism determination system of gene SUGT1 associated with Fleckvieh fertility haplotype FH4. Veterinariya, Zootekhniya i Biotekhnologiya = Veterinary Medicine, Zootechnics and Biotechnology. 2019;3:92-97. DOI 10.26155/vet.zoo.bio.201903015. (in Russian); Gwazdauskas F.C. Effects of climate on reproduction in cattle. J. Dairy Sci. 1985;68(6):1568-1578. DOI 10.3168/jds.S0022-0302(85)80995-4.; Hayes B.J., Daetwyler H.D. 1000 Bull Genomes Project to map simple and complex genetic traits in cattle: applications and outcomes. Annu. Rev. Anim. Biosci. 2019;7:89-102. DOI 10.1146/annurev-animal-020518-115024.; Hirano T., Kobayashi N., Matsuhashi T., Watanabe D., Watanabe T., Takasuga A., Sugimoto M., Sugimoto Y. Mapping and exome sequencing identifies a mutation in the IARS gene as the cause of hereditary perinatal weak calf syndrome. PLoS One. 2013;8(5):e64036. DOI 10.1371/journal.pone.0064036.; Hirano T., Matsuhashi T., Takeda K., Hara H., Kobayashi N., Kita K., Sugimoto Y., Hanzawa K. IARS mutation causes prenatal death in Japanese Black cattle. Anim. Sci. J. 2016;87(9):1178-1181. DOI 10.1111/asj.12639.; Hohmann L.G., Weimann C., Scheper C., Erhardt G., König S. Associations between maternal milk protein genotypes with preweaning calf growth traits in beef cattle. J. Anim. Sci. 2020;98(10):skaa280. DOI 10.1093/jas/skaa280.; Ibeagha-Awemu E.M., Kgwatalala P., Ibeagha A.E., Zhao X. A critical analysis of disease-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm. Genome. 2008;19(4):226-245. DOI 10.1007/s00335-008-9101-5.; Jianqin S., Leiming X., Lu X., Yelland G.W., Ni J., Clarke A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr. J. 2016;15:35. DOI 10.1186/s12937-016-0147-z.; Johnson E.B., Steffen D.J., Lynch K.W., Herz J. Defective splicing of Megf7/Lrp4, a regulator of distal limb development, in autosomal recessive mulefoot disease. Genomics. 2006;88(5):600-609. DOI 10.1016/j.ygeno.2006.08.005.; Klungland H., Våge D.I., Gomez-Raya L., Adalsteinsson S., Lien S. The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm. Genome. 1995;6(9):636-639. DOI 10.1007/BF00352371.; Kuhn R.M., Haussler D., Kent W.J. The UCSC genome browser and associated tools. Brief. Bioinform. 2013;14(2):144-161. DOI 10.1093/bib/bbs038.; Kunieda M., Tsuji T., Abbasi A.R., Khalaj M., Ikeda M., Miyadera K., Ogawa H., Kunieda T. An insertion mutation of the bovine F11 gene is responsible for factor XI deficiency in Japanese black cattle. Mamm. Genome. 2005;16(5):383-389. DOI 10.1007/s00335-004-2462-5.; Larkin D.M., Yudin N.S. The genomes and history of domestic animals. Molecular Genetics, Microbiology and Virology. 2016;31(4):197-202. DOI 10.3103/S0891416816040054.; Lenffer J., Nicholas F.W., Castle K., Rao A., Gregory S., Poidinger M., Mailman M.D., Ranganathan S. OMIA (Online Mendelian Inheritance in Animals): an enhanced platform and integration into the Entrez search interface at NCBI. Nucleic Acids Res. 2006;34(1):D599-D601. DOI 10.1093/nar/gkj152.; Li H. Tabix: fast retrieval of sequence features from generic TABdelimited files. Bioinformatics. 2011;27(5):718-719. DOI 10.1093/bioinformatics/btq671.; Li H., Durbin R. Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics. 2009;25(14):1754-1760. DOI 10.1093/bioinformatics/btp324.; Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079. DOI 10.1093/bioinformatics/btp352.; Liu G.E., Bickhart D.M. Copy number variation in the cattle genome. Funct. Integr. Genomics. 2012;12(4):609-624. DOI 10.1007/s10142-012-0289-9.; McClure M., McClure J. Genetic Disease and Trait Information for IDB Genotyped Animals in Ireland. Bandon: Irish Cattle Breeding Federation, 2016.; McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. DOI 10.1101/gr.107524.110.; Mee J.F. Investigation of bovine abortion and stillbirth/perinatal mortality – similar diagnostic challenges, different approaches. Ir. Vet. J. 2020;73:20. DOI 10.1186/s13620-020-00172-0.; Mullen M.P., Berry D.P., Howard D.J., Diskin M.G., Lynch C.O., Berkowicz E.W., Magee D.A., MacHugh D.E., Waters S.M. Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle. J. Dairy Sci. 2010;93(12):5959-5969. DOI 10.3168/jds.2010-3385.; Notter D.R. The importance of genetic diversity in livestock populations of the future. J. Anim. Sci. 1999;77(1):61-69. DOI 10.2527/1999.77161x.; Ohba Y., Takasu M., Nishii N., Takeda E., Maeda S., Kunieda T., Kitagawa H. Pedigree analysis of factor XI deficiency in Japanese black cattle. J. Vet. Med. Sci. 2008;70(3):297-299. DOI 10.1292/jvms.70.297.; Pighetti G.M., Elliott A.A. Gene polymorphisms: the keys for marker assisted selection and unraveling core regulatory pathways for mastitis resistance. J. Mammary Gland Biol. Neoplasia. 2011;16(4):421-432. DOI 10.1007/s10911-011-9238-9.; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and populationbased linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. DOI 10.1086/519795.; Raina V.S., Kour A., Chakravarty A.K., Vohra V. Marker-assisted selection vis-à-vis bull fertility: coming full circle – a review. Mol. Biol. Rep. 2020;47(11):9123-9133. DOI 10.1007/s11033-020-05919-0.; Romanenkova O.V., Gladyr E.A., Kostyunina O.V., Zinovieva N.A. Development of test system for diagnostics of cattle fertility haplotype HH3 associated with early embryonic mortality. Dostizheniya Nauki i Tekhniki APK = Achievements of Science and Technology of AIC. 2015;29(11):91-94. (in Russian); Romanenkova O.V., Gladyr E.A., Kostyunina O.V., Zinovieva N.A. Screening of cattle for the presence of mutation in APAF1 gene, which is associated with fertility haplotype HH1. Dostizheniya Nauki i Tekhniki APK = Achievements of Science and Technology of AIC. 2016;30(2):94-97. (in Russian); Romanenkova O.S., Volkova V.V., Kostyunina O.V., Zinovieva N.A. Diagnostics of HH5 haplotype for Russian Holstein and Black-and-White cattle population. Molochnoe i Myasnoe Skotovodstvo = Dairy and Beef Cattle Breeding. 2018;6:13-15. DOI 10.25632/MMS.2018.2018.20295. (in Russian); Sabetova K.D., Podrechneva I.Yu., Belokurov S.G., Schegolev P.O., Kofiadi I.A. Test system for BLAD mutation diagnosis in cattle populations. Russ. J. Genet. 2021;57(8):936-941. DOI 10.1134/S1022795421080135.; Sebastiani C., Arcangeli C., Ciullo M., Torricelli M., Cinti G., Fisichella S., Biagetti M. Frequencies evaluation of β-casein gene polymorphisms in dairy cows reared in Central Italy. Animals (Basel). 2020;10(2):252. DOI 10.3390/ani10020252.; Storey J.D., Bass A.J., Dabney A., Robinson D. qvalue: Q-value estimation for false discovery rate control. R Packag. version 2.24.0. 2020. DOI 10.18129/B9.bioc.qvalue.; Storey J.D., Tibshirani R. Statistical significance for genome-wide experiments. Proc. Natl. Acad. Sci. USA. 2003;100(16):9440-9445. DOI 10.1073/pnas.1530509100.; Surzhikova E.S., Sharko G.N., Mikhailenko T.N. Allelic spectrum of CSN3, PIT-1, PRL genes in horned cattle of Black-and-White breed. Novosti Nauki v APK = Science News of AIC. 2019;3:136-139. DOI 10.25930/2218-855X/032.3.12.2019. (in Russian); Tambasco D.D., Paz C.C.P., Tambasco-Studart M., Pereira A.P., Alencar M.M., Freitas A.R., Coutinho L.L., Packer I.U., Regitano L.C.A. Candidate genes for growth traits in beef cattle crosses Bos taurus × Bos indicus. J. Anim. Breed. Genet. 2003;120(1):51-56. DOI 10.1046/j.1439-0388.2003.00371.x.; Tatum J.D. Pre-Harvest Cattle Management Practices for Enhancing Beef Tenderness. Colorado State Univ., 2006.; Terletskiy V.P., Buralkhiyev B.A., Usenbekov Y.S., Yelubayeva M., Tyshchenko V.I., Beyshova I.S. Screening for mutations that determine the development of hereditary diseases in breeding cattle. Aktual’nye Voprosy Veterinarnoi Biologii = Actual Questions of Veterinary Biology. 2016;3:3-7. (in Russian); Usova T.P., Usmanova N.N., Litvina N.I., Usov N.V. The spread of BLAD-syndrome of breeding bulls of Holstein breed of Russian and import selection. Vestnik Rossiyskogo Gosudarstvennogo Agrarnogo Zaochnogo Universiteta = Bulletin of the Russian State Agricultural Correspondence University. 2017;25:20-24. (in Russian); Vsyakikh A.S., Kurinsky M.S. Imported Сattle in the USSR. Moscow: Kolos Publ., 1976. (in Russian); Watanabe D., Hirano T., Sugimoto Y., Ogata Y., Abe S., Ando T., Ohtsuka H., Kunieda T., Kawamura S. Carrier rate of Factor XI deficiency in stunted Japanese black cattle. J. Vet. Med. Sci. 2006;68(12):1251-1255. DOI 10.1292/jvms.68.1251.; Xu L., Bickhart D.M., Cole J.B., Schroeder S.G., Song J., Tassell C.P., Sonstegard T.S., Liu G.E. Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol. Biol. Evol. 2015;32(3):711-725. DOI 10.1093/molbev/msu333.; Yudin N.S., Larkin D.M. Whole genome studies of origin, selection and adaptation of the Russian cattle breeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(5):559-568. DOI 10.18699/VJ19.525. (in Russian); Yudin N.S., Voevoda M.I. Molecular genetic markers of economically important traits in dairy cattle. Russ. J. Genet. 2015;51(5):506-517. DOI 10.1134/S1022795415050087.; Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity (Edinb.). 2018;120(2):125-137. DOI 10.1038/s41437-017-0024-3.; Zinovieva N.A. Haplotypes affecting fertility in Holstein cattle. Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 2016;51(4):423-435. DOI 10.15389/agrobiology.2016.4.423eng.; https://vavilov.elpub.ru/jour/article/view/3364

  10. 10
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 66, № 6 (2021); 63-70 ; Российский вестник перинатологии и педиатрии; Том 66, № 6 (2021); 63-70 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1531/1179; Debopam S. Epilepsy in Angelman syndrome: A scoping review. Brain Dev 2021; 43(1): 32–44. DOI:10.1016/j.braindev.2020.08.014; Angelman H. ‘Puppet’ children. A Report on Three Cases. Development Med Child Neurol 2008. DOI:10.1111/j.14698749.1965.tb07844.x; Pelc K., Boyd S.G., Cheron G., Dan B. Epilepsy in Angelman syndrome. Seizure 2008; 17:211–217. DOI:10.1016/j.seizure.2007.08.004; Park S.H., Yoon J.R., Kim H.D., Lee J.S., Lee Y.M., Kang H.C. Epilepsy in Korean patients with Angelman syndrome. Korean J Pediatr 2012; 55: 171–176. DOI:10.3345/kjp.2012.55.5.171; Thibert R.L., Larson M., Hsieh D.T., Raby A.R., Thiele E.A. Neurologic manifestations of Angelman syndrome. Pediatr Neurol 2013; 48(4): 271–279. DOI:10.1016/j.pediatrneurol.2012.09.015; Meng L., Person R.E., Beaudet A.L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum Mol Genet 2012; 21: 3001–3012. DOI:10.1093/hmg/dds130; Khatri N., Man H.Y. The Autism and Angelman Syndrome Protein Ube3A/E6AP: The Gene, E3 Ligase Ubiquitination Targets and Neurobiological Functions. Front Mol Neurosci 2019; 12:109. DOI:10.3389/fnmol.2019.00109; Baloghova N., Lidak T., Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10(10): 815. DOI:10.3390/genes10100815; Ramsden S.C., Clayton-Smith J., Birch R., Buiting K. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med Genet 2010; 11: 70. DOI:10.1186/1471-2350-11-70; Duca D.G., Craiu D., Boer M., Chirieac S.M., Arghir A., Tutulan-Cunita A. et al. Diagnostic approach of Angelman syndrome. Maedica (Buchar) 2013; 8(4): 321–327; Bird L.M. Angelman syndrome: review of clinical and molecular aspects. Appl Clin Genet 2014; 7: 93–104. DOI:10.2147/TACG.S57386; Williams C.A., Beauder A.L., Clayton-Smith J., Knoll J.H., Kyllerman M., Laan L.A. et al. Angelman syndrome 2005: consensus for diagnostic criteria. Am J Med Genet A 2006; 140(5): 413–418. DOI:10.1002/ajmg.a.31074; Николаева Е.А., Воинова В.Ю., Яблонская М.И., Данцев И.С., Березина М.Ю., Харабадзе М.Н. и др. Клинические проявления и структура хромосомной патологии у детей с нарушениями нервно-психического развития в специализированной генетической клинике. Педиатрия. Журнал им. Г.Н. Сперанского 2020; 99(3): 102–108. DOI:10.24110/0031-403Х-2020-99-3-102-108; Van Lierde A., Atza M.G., Giardino D., Viani F. Angelman’s syndrome in the first year of life. Dev Med Child Neurol 1990; 32: 1011–1016. DOI:10.1111/j.1469-8749.1990.tb08125.x; Robinson A.A., Goldman S., Barnes G., Goodpaster L., Malow B.A. Electroencephalogram (EEG) duration needed to detect abnormalities in angelman syndrome: is 1 hour of overnight recording sufficient? J Child Neurol 2015; 30: 58–62. DOI:10.1177/0883073814530498; Leyser M., Penna P.S., de Almeida A.C., Vasconcelos M.M., Nascimento O.J. Revisiting epilepsy and the electroencephalogram patterns in Angelman syndrome. Neurol Sci 2014; 35: 701–705. DOI:10.1007/s10072-013-1586-3; Takaesu Y., Komada Y., Inoue Y. Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. Sleep Med 2012; 13(9): 1164–1170. DOI:10.1016/j.sleep.2012.06.015; Wang J., Zhang Q., Chen Y., Yu S., Wu X., Bao X. Rett and Rett-like syndrome: Expanding the genetic spectrum to KIF1A and GRIN1 gene. Mol Genet Genomic Med 2019; 7(11): e968. DOI:10.1002/mgg3.968; https://www.ped-perinatology.ru/jour/article/view/1531

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: Medical Genetics; Том 20, № 4 (2021); 49-56 ; Медицинская генетика; Том 20, № 4 (2021); 49-56 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1906/1486; De Gregori M, Ciccone R, Magini P, et al. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet. 2007;44:750-762.; Higgins A.W. et al. Characterization of apparently balanced chromosomal rearrangements from the Developmental Genome Anatomy Project. Am J Hum Genet. 2008;82:712-722.; Schluth-Bolard С, Delobel B, Damien S et al. Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: Array CGH study of 47 unrelated. Eur J Med Genet. 2009;52:291-296.; Миньженкова М.Е., Маркова Ж.Г., Гусева Д.М. и др. Характеристика геномного дисбаланса у пациентов со сбалансированными хромосомными перестройками и аномалиями развития. Медицинская генетика. 2020; 19(9):18-24.; Kuechler A., et al. Five patients with novel overlapping interstitial deletion in 8q22.2-q22.3. Am. J. Med. Genet. 2011; Part A 155:1857-1864.; Kuroda Y., et al. Refinement of the deletion in 8q22.2-q22.3: the minimum deletion size at 8q22.3 related to intellectual disability and epilepsy. Am. J. Med. Genet. 2014;Part A: 9999, 1-5.; Sinajon P., Gofine T., Ingram J., So J. Microdeletion 8q22.2-q22.3 in a 40-year-old male. Eu J Med Genet. 2015;58(11):569-572.; Rincon A., Paez-Rojas P. and Suárez-Obando F. 8q22.2q22.3 Microdeletion Syndrome Associated with Hearing Loss and Intractable Epilepsy. Case Reports in Genetics. 2019;1-6.; Marcinkute R., Brazdziunaite D.,Burokiene N. et al. A de novo 8q22.2q22.3 interstitial microdeletion in a girl with developmental delay and congenital defects. Eu J Med Genet. 2015;58(11): E-P11.08:977.; Busche A., Tuttelmann F., et al. Clinical and molecular characterization of a novel patient with a 8q22.2q22.3 microdeletion. German society of human genetics 2017 meeting.2017; P-CytoG-127:125.; Venegas-Vega C., Guardado M., Juarez E. et al. Clinical and molecular delineation of the emerging 8q22.3 microdeletion syndrome. Eu J Med Genet. 2014;22(1): P08.07-S:149.; Paez P., Perdomo S., Rojas X. A first reported case of a microdeletion in 8q22.22q23 in Colombia. Phenotypic and genotyping correlation. Clinical genetics and dysmorphology. 2012;3115W.; Swisshelm K., Toomey S., LeRoux J. et al. Co-existence of a complex, three-way translocation with a 4.6 Mb deletion in 8q22.3-8q23.1. American Society of Human Genetics 2016 Annual Meeting. 2016;867F:338.; Vlaskamp D.R.M., Callenbach P.M.C., Rump P. et al. Copy number variation in a hospital-based cohort of children with epilepsy. Epilepsia Open. 2017;2(2):244-254.; Chen C.-P., Chang T.-Y., Hung F.-Y. et al. Prenatal diagnosis of an 8q22.2-q23.3 deletion associated with bilateral cleft lip and palate and intrauterine growth restriction on fetal ultrasound. Taiwanese Journal of Obstetrics & Gynecology. 2017;56:843-846.; Douzgou S., Petersen M. B. Clinical variability of genetic isolates of Cohen syndrome. Clinical Genetics. 2011;79(6):501-506.; Wang W,Zhou Z, Zhao W, Huang Y,TangR, YingK,XieY,MaoY. Molecular cloning, mapping and characterization of the human neurocalcin delta gene (NCALD). Biochim Biophys Acta. 2001;1518: 162-167.; Tyynismaa H., Ylikallio E., Patel M. et al. A heterozygous truncating mutation in RRM2B causes autosomal-dominant progressive external ophthalmoplegia with multiple mtDNA deletions. Am. J. Hum. Genet. 2009;85(2):290-295.; Kellis M. et al. Defining functional DNA elements in the human genome. Proceedings of the National Academy of Sciences: journal. 2014;111(17):6131-6138.; https://www.medgen-journal.ru/jour/article/view/1906

  13. 13
    Academic Journal

    المصدر: Medical Genetics; Том 20, № 10 (2021); 40-43 ; Медицинская генетика; Том 20, № 10 (2021); 40-43 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1986/1523; ISCN 2020. An International System for Human Cytogenomic Nomenclature (2020) Editor(s): McGowan-Jordan J., Hastings R. J., Moore S., Karger. 2020; 503. Reprint of: Cytogenetic and Genome Research 2020; 160(7-8).; Van Esch H., Rosser E.M. et al. Developmental delay and connective tissue disorder in four patients sharing a common microdeletion at 6q13-14. J Med Genet. 2010; 47: 717-720.; Lespinasse J., Gimelli S. et al. Characterization of an interstitial deletion 6q13- q14.1 in a female with mild mental retardation, language delay and minor dysmorphisms. Eur J Med Genet. 2009; 52: 49-52.; Becker K., Di Donato N., et al. De novo microdeletions of chromosome 6q14.1-q14.3 and 6q12.1-q14.1 in two patients with intellectual disability-further delineation of the 6q14 microdeletion syndrome and review of the literature. Eur J Med Genet. 2012; 55: 490-497.; Webster E., Cho M.T., Alexander N., et al. De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features. Cold Spring Harb Mol Case Stud. 2016; 2(6): a001172.; Jansen S., Hoischen A., et al: A genotype-first approach identifies an intellectual disabilityoverweight syndrome caused by PHIP haploinsufficiency. Eur J Hum Genet. 2018; 26: 54-63.; https://www.medgen-journal.ru/jour/article/view/1986

  14. 14
    Academic Journal

    المصدر: Medical Genetics; Том 18, № 1 (2019); 45-50 ; Медицинская генетика; Том 18, № 1 (2019); 45-50 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/625/401; Tuschl K, Gal A, Paschke E, et al. Mucopolysaccharidosis type II in females: case report and review of literature. Pediatr Neurol. 2005 Apr;32(4):270-272.; Hunter CA. A rare disease in two brothers. Proc R Soc Med. 1917;10:104-116.; Froissart R, Da Silva IM, Maire I. Mucopolysaccharidosis type II: an update on mutation spectrum. Acta Paediatr Suppl. 2007;96:71-77.; Timms KM, Bondeson ML, Ansari-Lari MA, et al. Molecular and phenotypic variation in patients with severe Hunter syndrome. Hum Mol Genet. 1997;6:479-486.; Karsten S, Voskoboeva E, Tishkanina S, et al. Mutational spectrum of the iduronate-2-sulfatase (IDS) gene in 36 unrelated Russian MPS II patients. Hum Genet. 1998 Dec;103(6):732-735.; Corzo D, Gibson W, Johnson K et al. Contiguous deletion of the X-linked adrenoleukodystrophy gene (ABCD1) and DXS1357E: a novel neonatal phenotype similar to peroxisomal biogenesis disorders. Am J Hum Genet. 2002;70:1520-1531.; Osaka H, Takagi A, Tsuyusaki Y, et al. Contiguous deletion of SLC6A8 and BAP31 in a patient with severe dystonia and sensoneural deafness; Mol Genet Metab. 2012 May;106(1):43-47.; Francke U, Ochs HD, de Martinville B et al. Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa, and McLeod syndrome. Am J Hum Genet. 1985;37: 250-267.; Gedeon AK, Keinanen M, Ades LC, et al. Overlapping submicroscopic deletion in Xq28 in two unrelated boys with developmental disorders: identification of a gene near FRAXE. Am. J. Hum. 1995 Apr;56(4):907-914.; Voznyi YV, Keulemans JLM, van Diggelen OP. A fluorogenic assay for the diagnosis of Hunter disease (MPSII) J Inher Metab Dis. 2001; 24: 675-680.; Blau N, Duran M, Gibson KM. Laboratory Guide to the Methods in Biochemical Genetics Springer 2008.; Kearney H, Thorland E, Brown K et al., American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med. 2011;13:680-685.; Wraith JE, Scarpa M, Beck M, et al. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr. 2008 Mar;167(3):267-277.; Martin R, Beck M, Eng C, et al. Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome). Pediatrics. 2008 Feb;121(2):e377-386.; Brusius-Facchin AC, De Souza CF, Schwartz IV, et al. Severe phenotype in MPS II patients associated with a large deletion including contiguous genes. Am J Med Genet A. 2012;158A:1055-1059.; Burruss DM, Wood TC, Espinoza L et al. Severe Hunter syndrome (mucopolysaccharidosis II) phenotype secondary to large deletion in the X chromosome encompassing IDS, FMR1, and AFF2 (FMR2) J Child Neurol. 2012;27:786-790.; Probst FJ, Roeder ER, Enciso VB, et al. Chromosomal microarray analysis (CMA) detects a large X chromosome deletion including FMR1, FMR2, and IDS in a female patient with mental retardation. Am J Med Genet A. 2007;143A:1358-1365.; Honda S, Hayashi S, Kato M, et al. Clinical and molecular cytogenetic characterization of two patients with non-mutational aberrations of the FMR2 gene. Am J Med Genet A. 2007;143:687-693.; Wraith JE, Cooper A, Thornley M, et al. The clinical phenotype of two patients with a complete deletion of the iduronate-2-sulphatase gene (mucopolysaccharidosis II-Hunter syndrome). Hum Genet. 1991;87:205-206.; Ballenger CE, Swift TR, Leshner RT et al. Myelopathy in mucopolysaccharidosis type II (Hunter syndrome). Ann Neurol. 1980 Apr;7(4):382-385.; https://www.medgen-journal.ru/jour/article/view/625

  15. 15
    Academic Journal

    المصدر: Medical Genetics; Том 16, № 11 (2017); 46-50 ; Медицинская генетика; Том 16, № 11 (2017); 46-50 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/348/264; Протокол aCGH для микрочипов Agilent Technologies - http://www.chem-agilent.com/pdf/G4410-90020v3_1_CGH_ULS_Protocol.pdf; База данных геномных вариантов - http://projects.tcag.ca/variation/?source=hg18; База о генах - https://www.ncbi.nlm.nih.gov/gene; Xu F, DiAdamo AJ, Grommisch B, Li P. Interstitial duplication and distal deletion in a ring chromosome 13 with pulmonary atresia and ventricular septal defect: a case report and review of literature. N A J Med Sci. 2013; 6(4):208-212.; Brandt CA, Hertz JM, Petersen MB et al. Ring chromosome 13: lack of distinct syndromes based on different breakpoints on 13q. J Med Genet. 1992; 29:704-708.; Izykowska K, Przybylski GK, Gand C et al. Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sezary syndrome. Oncotarget. 2017; 8(24):39627-39639.; https://www.medgen-journal.ru/jour/article/view/348

  16. 16
    Academic Journal
  17. 17
  18. 18
    Academic Journal

    المصدر: Medical Genetics; Том 15, № 12 (2016); 14-22 ; Медицинская генетика; Том 15, № 12 (2016); 14-22 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/191/168; Dunn GP, Rinne ML, Wykosky J et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012;26(8):756-784.; Hutter A. Overview of Primary Brain Tumors: Pathologic Classification, Epidemiology, Molecular Biology, and Prognostic Markers. Hematol Oncol Clin North Am. 2012 Aug;26(4):715-732.; Jesionek-Kupnicka D, Szybka M, Potemski P et al. Association of loss of heterozygosity with shorter survival in primary glioblastoma patients. Pol J Pathol. 2013 Dec;64(4):168-275.; Mizoguchi M, Kuga D, Guan Y et al. Loss of heterozygosity analysis in malignant gliomas. Brain Tumor Pathol. 2011 Jul; 28(3):191-196.; Ohgaki H, Kleihues P. Genetic Pathways to Primary and Secondary Glioblastoma. Am J Pathol. 2007 May;170(5):1445-1453.; Balesaria S, Brock C, Bower M et al. Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas. Br J Cancer. 1999 Dec;81(8):1371-1377.; Tada K, Shiraishi S, Kamiryo T. Analysis of loss of heterozygosity on chromosome 10 in patients with malignant astrocytic tumors: Correlation with patients age and survival. J. Neuroserg. 2001 Oct;95(4):651-659.; Crespo I, Tao H, Nieto AB et al. Amplified and Homozygously Deleted Genes in Glioblastoma: Impact on Gene Expression Levels. PLoS One. 2012 Sep;7(9):e46088.; Heroux MS, Chesnik MA, Halligan BD et al. Comprehensive characterization of glioblastoma tumor tissues for biomarker identification using mass spectrometry-based label-free quantitative proteomics. Physiol Genomics. 2014 Jul 1;46(13):467-481.; Gupta K, Salunke P. Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol. 2012 Dec;138(12):1971-1981.; Yang Y., Shao N, Luo G et al. Mutations of PTEN Gene in Gliomas Correlate to Tumor Differentiation and Short-term Survival Rate. Anticancer Res. 2010 Mar;30(3):P. 981-985.; Katoh M, Nakagama H. FGF Receptors: Cancer Biology and Therapeutics // Med Res Rev. 2014 Mar;34(2):280-300.; Nakahara Y, Shiraishi T, Okamoto H et al. Detrended fluctuation analysis of genome-wide copy number profiles of glioblastomas using array-based comparative genomic hybridization. Neuro-Oncology. 2004 Oct;6(4):281-289.; Ader I, Delmas C, Skuli N et al. Preclinical evidence that SSR128129E - A novel small-molecule multi-fibroblast growth factor receptor blocker - Radiosensitises human glioblastoma. Eur J Cancer. 2014 Sep;50(13):2351-2359.; Arshad H, Ahmad Z, Hasan SH. Gliomas: correlation of histologic grade, Ki67 and p53 expression with patient survival. Asian Pac J Cancer Prev. 2010;11(6):1637-1640.; Hegi ME, Liu L, Herman JG et al. Correlation of O6-Methylguanine Methyltransferase (MGMT) Promoter Methylation With Clinical Outcomes in Glioblastoma and Clinical Strategies to Modulate MGMT Activity. J Clin Oncol. 2008 Sep 1;26(25):4189-4199.; Стрельников ВВ, Малышева АС, Шубина МВ и др. Делеции области расположения гена MGMT на хромосоме 10q26.3. Молекулярная медицина. 2011;(2):28-31.; Ginzinger DG, Godfrey TE, Nigro J et al. Measurement of DNA Copy Number at Microsatellite Loci Using Quantitative PCR Analysis. Cancer Res. 2000 Oct;60(19):5405-5409.; Nigro JM, Takahashi MA, Ginzinger DG et al. Detection of 1p and 19q Loss in Oligodendroglioma by Quantitative Microsatellite Analysis, a Real-Time Quantitative Polymerase Chain Reaction Assay. Am J Pathol. 2001 Apr;158(4):1253-1262.; Алексеева Е.А., Танас А.С., Прозоренко Е.В. и др. Анализ аллельного дисбаланса при глиобластоме: новые хромосомные участки потери гетерозиготности и новые гены-кандидаты. Медицинская генетика. 2014;(11):41-46.; Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA. 1971 Apr.;68(4): 820-823.; Yin D, Ogawa S, Kawamata N et al. High Resolution Genomic Copy Number Profiling of Glioblastoma Multiforme by Single Nucleotide Polymorphism DNA Microarray.Mol. Cancer Res. 2009 May; 7(5): 665-677.; https://www.medgen-journal.ru/jour/article/view/191

  19. 19
    Academic Journal

    المصدر: Scientific studies: theory, methodology and practice; № 3; 66-67 ; Научные исследования: теория, методика и практика; № 3; 66-67

    وصف الملف: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/ 978-5-6040208-6-9; https://interactive-plus.ru/e-articles/437/Action437-465874.pdf; Мастюкова Е.М. Основы генетики. Клинико-генетические основы коррекционной педагогики и специальной психологии: Учебное пособие для вузов / Е.М. Мастюкова, А.Г. Московкина. – М.: Владос, 2001.; Синдром Уильямса или ребенок с лицом Эльфа [Электронный ресурс]. – Режим доступа: http://prodepressiju.ru/narusheniya-intellekta/sindrom-uilyamsa.html; https://interactive-plus.ru/files/Books/Cover-437.jpg?req=465874; https://interactive-plus.ru/article/465874/discussion_platform

  20. 20
    Academic Journal

    المصدر: Problems of Particularly Dangerous Infections; № 2 (2017); 54-57 ; Проблемы особо опасных инфекций; № 2 (2017); 54-57 ; 2658-719X ; 0370-1069 ; 10.21055/0370-1069-2017-2

    وصف الملف: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/392/390; Онищенко Г.Г., Ломов Ю.М., Москвитина Э.А., Фёдоров Ю.М., Подосинникова Л.С., Горобец А.В. Холера в начале ХХI века. Журн. микробиол., эпидемиол. и иммунобиол. 2005; 3:44–8.; Смирнова Н.И., Заднова С.П., Шашкова А.В., Кутырев В.В. Вариабельность генома измененных вариантов Vibrio cholerae биовара Эль-Тор, изолированных на территории России в современный период. Мол. генет., микробиол. и вирусол. 2011; 3:11–8.; Смирнова Н.И., Кульшань Т.А., Баранихина Е.Ю., Краснов Я.М., Агафонов Д.А., Кутырев В.В. Структура генома и происхождение нетоксигенных штаммов Vibrio cholerae биовара Эль Тор с различной эпидемиологической значимостью. Генетика. 2016; 52(9):1029–41. DOI:10.7868/S0016675816060126.; Almagro-Moreno S., Pruss K., Taylor R.K. Intestinal colonization dynamics of Vibrio cholerae. PLoS Pathog. 2015; 11(5):e1004787. DOI:10.1371/journal.ppat.1004787.; Finkelstein R.A., Boesman-Finkelstein M., Chang Y., Häse C.C. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect. Immun. 1992; 60(2):472–8.; Hitchсock P.J., Brown T.M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 1983; 154(1):269–77.; Kaper J.B., Morris J.G., Levin M.M. Cholera. Clin. Microbiol. Rev. 1995; 8:48–89.; Krukonis E.S., DiRita V.J. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol. 2003; 6:186–90. DOI:10.1016/S1369-5274(03)00032-8.; Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680–5. DOI:10.1038/227680a0.; Nair G.B., Qadri F., Holmgren J., Svennerholm A.M., Safa A., Bhuiyan N.A., Ahmad Q.S., Farugue A.S., Takeda Y., Sack D.A. Cholera due to altered El Tor strains of Vibrio cholerae О1 in Bangladesh. J. Clin. Microbiol. 2006; 44:4211–3. DOI:10.1128/JCM.01304-06.; Nesper J., Lauriano C.M., Klose K.E., Kapfhammer D., Kraiß A., Reidl J. Characterization of Vibrio cholerae O1 El Tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect. Immun. 2001; 69(1):435–45. DOI:10.1128/IAI.69.1.435-445.2001.; Pierce N.F., Cray W.C., Kaper J.B., Mekalanos J.J. Determinants of immunogenicity and mechanisms of protection by virulent and mutant Vibrio cholerae O1 in rabbits. Infect. Immun. 1988; 56(1):142–8.; Saka H.A., Bidinost C., Sola C., Carranza P., Collino C., Ortiz S., Echenique J.R., Bocco J.L. Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain. Microb. Pathog. 2008; 44:118–28. DOI:10.1016/j.micpath.2007.08.013.; Satchella K.J.F., Jonesb C.J., Wonga J., Queena J., Agarwal S., Yildiz F.H. Phenotypic analysis reveals that the 2010 Haiti cholera epidemic is linked to a hypervirulent strain. Infect. Immun. 2016; 84(9):2473–81. DOI:10.1128/IAI.00189-16.; Singh D.V., Matte M.H., Matte G.R., Jiang S., Sabeena F., Shukla B.N., Sanyal S.C., Huq A., Colwell R.R. Molecular analyses of Vibrio cholerae O1, O139, non-O1 and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl. Environ. Microbiol. 2001; 67(2):910–21. DOI:10.1128/AEM.67.2.910–921.2001.; Teschler J.K., Zamorano-Sánchez D., Utada A.S., Warner C.J.A., Wong G.C.L., Linington R.G., Yildiz F.H. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 2015; 13(5):255–68. DOI:10.1038/nrmicro3433.; https://journal.microbe.ru/jour/article/view/392