-
1Academic Journal
المؤلفون: S. M. Komissarova, N. M. Rineiskaya, N. N. Chakova, A. A. Efimova, T. V. Dolmatovich, S. S. Niyazova, С. М. Комиссарова, Н. М. Ринейская, Н. Н. Чакова, А. А. Ефимова, Т. В. Долматович, С. С. Ниязова
المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 2 (2023); 156-165 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 2 (2023); 156-165 ; 2713-265X ; 2713-2927
مصطلحات موضوعية: высокопроизводительное секвенирование (NGS), genotype-phenotype correlation, cardiac magnetic resonance imaging, high-throughput sequencing (NGS), генотип-фенотип корреляции, магнитно-резонансная томография
وصف الملف: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/1580/750; Oechslin E.N., Attenhofer Jost C.H., Rojas J.R., Kaufmann P.A., Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J. Am. Coll. Cardiol. 2000;36(2):493–500. DOI:10.1016/s0735-1097(00)00755-5.; Oechslin E., Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur. Heart J. 2011;32(12):1446–1456. DOI:10.1093/eurheartj/ehq508.; Towbin J.A., Lorts A., Jefferies J.L. Left ventricular non-compaction cardiomyopathy. Lancet. 2015;386(9995):813–825. DOI:10.1016/S0140-6736(14)61282-4.; Cortés M., Oliva M.R., Orejas M., Navas M.A., Rábago R.M., Martínez M.E. et al. Usefulness of speckle myocardial imaging modalities for differential diagnosis of left ventricular non-compaction of the myocardium. Int. J. Cardiol. 2016;223:813–818. DOI:10.1016/j.ijcard.2016.08.278.; Van Waning J.I., Caliskan K., Michels M., Schinkel A.F.L., Hirsch A., Dalinghaus M. et al. Cardiac phenotypes, genetics, and risk familiar noncompaction cardiomyopathy. J. Am. Coll. Cardiol. 2019;73(13):1601–1611. DOI:10.1016/j.jacc.2018.12.085.; Jefferies J.L. Barth syndrome. Am. J. Med. Genet. Semin. Med. Genet. 2013;163(3):198–205. DOI:10.1002/ajmg.c.31372.; Jenni R., Oechslin E., Schneider J., Attenhofer Jost C., Kaufmann P.A. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: A step towards classification as a distinct cardiomyopathy. Heart. 2001;86(6):666–671. DOI:10.1136/heart.86.6.666.; Petersen S.E., Selvanayagam J.B., Wiesmann F., Robson M.D., Francis J.M., Anderson R.H. et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 2005;46(1):101–105. DOI:10.1016/j.jacc.2005.03.045.; Jacquier A., Thuny F., Jop B., Giorgi R., Cohen F., Gaubert J.Y. et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur. Heart J. 2010;31(9):1098–104. DOI:10.1093/eurheartj/ehp595.; Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16);e164. DOI:10.1093/nar/gkq603.; Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J. et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17(5):405–424. DOI:10.1038/gim.2015.30.; Miszalski-Jamka K., Jefferies J.L., Mazur W., Głowacki J., Hu J., Lazar M. et al. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ. Cardiovasc. Genet. 2017;10(4):e001763. DOI:10.1161/CIRCGENETICS.117.001763.; Casas G., Limeres J., Oristrell G., Gutierrez-Garcia L., Andreini D., Borregan M. et al. Clinical risk prediction in patients with left ventricular myocardial noncompaction. J. Am. Coll. Cardiol. 2021;78(7):643–662. DOI:10.1016/j.jacc.2021.06.016.; https://www.sibjcem.ru/jour/article/view/1580
-
2Academic Journal
المؤلفون: N. D. Savenkova, Н. Д. Савенкова
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 6 (2020); 12-21 ; Российский вестник перинатологии и педиатрии; Том 65, № 6 (2020); 12-21 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-6
مصطلحات موضوعية: стратегия ведения, congenital and infantile nephrotic syndrome, genotype-phenotype correlations, isolated and syndromic forms, strategy management, врожденный и инфантильный нефротический синдром, генотип-фенотип корреляции, изолированные и синдромальныe формы
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1285/1018; Jalanko H., Holmberg C. Congenital Nephrotic Syndrome. In: Pediatric Nephrology. E.D. Avner, W.E. Harmon, P. Niaudet, N. Yoshikawa, F. Emma, S.L. Goldstein (eds). Springer-Verlag, Berlin Heidelberg, 2016; 1: 753–769. DOI:10.1007/978-3-662-43596-0-78; Preston R., Stuart H.M., Lennon R. Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol 2019; 34(2): 195–210. DOI:10.1007/s00467-017-3838-6; Online Mendelian Inheritance in Man: An online catalog of human genes and genetic disorders Electronic resours. https://omim.org. Ссылка активна на 02.07.2020.; Boyer О., Tory K., Machuca E., Antignac С. Idiopathic Nephrotic Syndrome in Children: Genetic Aspects. In: Pediatric Nephrology. E.D. Avner, W.E. Harmon, P. Niaudet, N. Yoshikawa, F. Emma, S.L. Goldstein (eds). Springer-Verlag, Berlin Heidelberg, 2016; 1: 805–837. DOI:10.1007/978-3-662-43596-0-23; Weber S. Hereditary Nephrotic Syndrome. In: Pediatric Kidney Disease. D.F. Geary, F. Schaefer (eds). Springer-Verlag, Berlin, Heidelberg, 2016; 17. DOI:10.1007/978-3-662-52972-0-17; Kestilla M., Lenkkeri U., Mannikko M., Lamerdin J., McCready P. et al. Positionally cloned gene for a novel glomerular protein nephrin – is mutated in congenital nephrotic syndrome. Mol Cell 1998;1 (4): 575–582.; Jalanko Н., Holmberg C. Congenital nephrotic syndrome. Pediatric Nephrology. In: E.D. Avner, W.E. Harmon, P. Niaudet, N. Yoshikawa (eds). Springer, 2009; 1: 601–619.; Jalanko H. Congenital nephrotic syndrome. Pediatr Nephrol 2009; 24: 2121–2128. DOI:10.1007/s00467-007-0633-9; Kari J., Montini G., Bokenhauer D., Brennan E., Rees L., Trompeter R.S. et al. Clinico-patological correlations of congenital and infantile nephrotic syndrome. Pediatr Nephrol 2014; 29(11): 2173–2180. DOI:10.1007/s00467-014-2856-x; Trautmann A., Bodria M., Ozaltin F., Gheisari A., Melk A. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol 2015; 10(4): 592–600. DOI:10.2215/CJN.06260614; Brady T., Mitra A., Hooks J. Maternal serum alpha-fetoprotein level peak at 19–21weeks gestation and subsequently decline in a NPHS1 sequence variant heterozygote; implications for prenatal diagnosis of congenital nephrosis the of Finnish type. Prenat Diagn 2014; 34: 1–3. DOI:10.1002/pd.4375; Gbadegesin R., Hinkes B., Hoskins B. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis. Nephrol Dial Transplant 2008; 23(4): 1291–1297. DOI:10.1093/ndt/gfm759; Cil O., Besbas N., Duzova A., Topaloglu R., Peco-Antic A., Korkmaz E., Ozaltin F. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr Nephrol 2015; 30: 1279–1287. DOI:10.1007/s00467-015-3058-х; Li G.M., Cao Q., Shen Q., Sun L., Zhai Y.H. Gene mutation analysis in 12 Chinese children with congenital nephrotic syndrome. BMC Nephrol 2018; 1: 382. DOI:10.1186/s12882-018-1184-y; Boyer O., Woerner S., Yang F., Oakeley E., Linghu B. et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol 2013; 24:1216–1222. DOI:10.1681/ASN.2013020171; Harita Y., Kitanaka S., Isojima T., Ashida A., Hattori M. Spectrum of LMX1B mutations: from Nail-Patella syndrome to isolated nephropathy. Pediatr Nephrol 2017; 32(10): 1845–1850. DOI:10.1007/s00467-016-3462-x; Andeen N.K., Schleit J., Blosser C.D., Dorschner M.O., Hisama F.M., Smith K.D. LMX1B-Associated Nephropathy With Type III Collagen Deposition in the Glomerular and Tubular Basement Membranes. Am J Kidney Dis 2018; 72(2): 296– 301. DOI:10.1053/j.ajkd.2017.09.02318; Ebarasi L., Ashraf S., Bierzynska A., Gee H.Y., McCarthy H. J., Lovric S., Sadowski C.E. Defects of CRB2 cause steroid-resistaant nephritic syndrome. Am J Hum Genet 2015; 96 (1): 153–161. DOI:10.1016/j.ajhg.2014.11.014.; Dorval G., Kuzmuk V., Gribouval O. TBC1D8B loss-of-function mutations lead to X-linked nephrotic syndrome via defective trafficking pathways. Am J Hum Genet 2019; 104(2): 348–355. DOI:10.1016/j.ajhg.2018.12.016.; Denys P., Malvaux P., Van den Berghe H. Assotion d’un syndrome anatomo-pathologique depseudo hermaphroditisme masculine, d’une tumeur de Wilms, d’une nephropathie parynchymateuse et d’une mosaicisme XX/XY. Arch Fr Pediatr 1967; 24: 729–731.; Drash A., Sherman F., Hartmann W.H., Blizzard R.M. A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr 1970; 76(4): 585–593.; Habib R., Gubler M., Antignac C. Syndrome nephrotique congenital ou infantile avec sclerose mesangiale diffuse. Ann Pediatr 1990; 37(2): 73–77.; Nishi K., Nishi K., Inoguchi T., Kamei K., Hamada R., Hataya H., Ogura M. et al. Detailed clinical manifestations at onset and prognosis of neonatal-onset Denys-Drash syndrome and congenital nephrotic syndrome of the Finnish type. Clin Exp Nephrol 2019; 23(8): 1058–1065. DOI:10.1007/s10157-019-01732-7; Савенкова Н.Д., Папаян А.В. Врожденный и инфантильный нефротический синдром. В кн.: Клиническая нефрология детского возраста. А.В. Папаян, Н.Д. Савенкова (ред.). С-Пб: Левша, 2008; 252–258. [Savenkova N.D., Papayan A.V. Congenital and infantile nephrotic syndrome. In: Clinical nephrology of childhood. A.V. Papayan, N.D. Savenkova (eds). St-P: Levcha, 2008; 252–258. (In Russ.)]; Савенкова Н.Д., Чахалян М.И. Клинико-генетическиe особенности и стратегия терапии наследственного врожденного и инфантильного нефротического синдрома у детей. Нефрология 2019; 23(5): 17–28. [Savenkova N.D., Chakhalian M.I. Clinical-genetic features and strategy treatment Hereditary Congenital and Infantile Nephrotic Syndrome in Children. Nefrologiya 2019; 23(5): 17–28. DOI:10.24884/1561-6274-2019-23-5-17-28. (in Russ.)]; Приходина Л.C., Папиж С.В., Столяревич Е.С., Повилайтите П.Е., Шаталов П.А. Инфантильный нефротический синдром: клинико-морфологическая характеристика, генетическая гетерогенность, исходы. Опыт одного центра. Нефрология и диализ 2019; 21(2): 234–242. [Prihodina L.S., Papizh S.V., Stolyarevich E.S., Povilaitite P.E., Shatalov P.A. Infantile nephrotic syndrome: сliniсal-pathology features, genetic heterogeneity, outcome. Nefrologiya i Dialis 2019;21(2):234–242. DOI:10.28996/2618-9801-2019-2-342-242. (in Russ.)]; Игнатова М.С., Длин В.В. Роль генетики в развитиии детской нефрологии. Российский вестник перинатологии и педиатрии 2015; 60(3): 6–9. [Ignatova M.S., Dlin V.V. Role of genetics in the development of of pediatric nephrology. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2015; 60(3): 6–9. (in Russ.)]; Van De Voorde R., Witte D., Kogan J., Goebel J. Pierson syndrome: a novel cause of congenital nephrotic syndrome. Pediatrics 2006; 118(2): 501–505. DOI:10.1542/peds.2005-3154; Savenkova N., Leviashvili Z., Snezhkova E., Karpova T. Nephropathy with proteinuria, hematuria, pretibial epidermolisis bullosa and neurosensory deafness by mutations CD151 gene in sibs. Pediatr Nephrol 2019; 34(10): 1927–1928. DOI:10.1007/s00467-019-04325-4; Colin E., Cong E.H., Mollet G., Guichet A., Gribouval O., Arrondel C., Boyer O. et al. Loss-of-function mutations in WDR 73 are responsible for microcephaly and steroid resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 2014;95(6):637–648. DOI:10.1016/j.ajhg.2014.10.011; Hyun H.S., Kim S.H., Park E., Cho M.H., Kang H.G. et al. A familial case of Galloway-Mowat syndrome due to a novel TP53RK mutation: a case report. BMC Med Genet 2018; 19(1): 131. DOI:10.1186/s12881-018-0649-y; Ghoumid J., Petit F., Holder-Espinasse M., Jourdain A.-S., Guerra J., Dieux-Coeslier A. et al. Nail-Patella syndrome: clinical and molecular data in 55 families raisinf the hypothetsis of a genetic heterogeneity. Eur J Hum Genet 2016; 24(1): 44–50. DOI:10.1038/ejhg.2015.77; Janecke A.R., Xu R., Steichen-Gersdorf E., Waldegger S., Entenmann A., Giner T. et al. Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. Hum Mutat 2017; 38(4): 365–372. DOI:10.1002/humu.23192; Lovric S., Goncalves S., Gee, H.Y., Oskouian B., Srinivas H., Choi W.-I. et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest 2017; 127: 912–928. DOI:10.1172/JCI89626; Prasad R., Hadjidemetriou I., Maharaj A., Meimaridou E., Buonocore F., Saleem M. et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest 2017; 127: 942–953. DOI:10.1172/JCI90171; Carney E.F. Genetics: SGPL1 mutations cause a novel SRNS syndrome. Nat Rev Nephrol 2017; 13(4): 191. DOI:10.1038/nrneph.2017.19; Reynods B.C., Pikles C.W., Lambert H.J., Ognjanovic M., Crosier J., Johnson S.A., Tse Y. Dominiciliary administration of intravenous albumin in congenital nephrotic syndrome. Pediatr Nephrol 2015; 30: 2045–2050. DOI:10.1007/s00467-015-3177-4; Dufek S., Holtta T., Trautmann, Ylinen A., Alpay H., Ariceta G .et al. and ESPN Dialysis Working Group. Management of children with congenital nephrotic syndrome: challenging treatment paradigms. Nephrol Dial Transplant 2019; 34(8): 1369–1377. DOI:10.1093/ndt/gfy165; Lau K.K., Chan H.H., Massicotte P., Chan A.K. Thrombotic complications of neonates and children with congenital nephrotic syndrome. Curr Pediatr Rev 2014; 10(3): 169–176. DOI:10.1007/573396309666131209210310; Hamasaki Y., Muramatsu M., Hamada R., Ishikura K., Hataya H., Satou H. et al. Long-term outcome of congenital nephrotic syndrome after kidney transplantation in Japan. Clin Exp Nephrol 2018; 22(3): 719–726. DOI:10.1007/s10157-017-1508-4; Holmberg C., Jalanko H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr Nephrol 2014; 29: 2309–2317. DOI:10.1007/s00467-014-2781-z; Graves R.C., Fine R.N. Kidney retransplantation in children following rejection and recurrent disease. Pediatr Nephrol 2016; 31(12): 2235–2247. DOI:10.1007/s00467-016-3346-0; Hölttä T., Bonthuis M., Hölttä T., Bonthuis M., Van Stralen K.J., Bjerre A. et al. Timing of renal replacement therapy does not influence survival and growth in children with congenital nephrotic syndrome caused by mutations in NPHS1: data from the ESPN/ERA-EDTA Registry. Pediatr Nephrol 2016; 31(12): 2317–2325. DOI: org/10.1007/s00467-016-3517-z; Ashoor I.F., Dharnidharka V.R. Non-Immunologic allograft loss in pediatric kidney transplant recipients. Pediatr Nephrol 2019; 34: 211–222. DOI:10.1007/s00467-018-3908-4; Постановление правительства Российской Федерации от 10 декабря 2018 года №1506 «О Программе государственных гарантий бесплатного оказания гражданам медицинской помощи на 2019 год и на плановый период 2020 и 2021 годов». https://www.garant.ru/products/ipo/prime/doc/72023058/. [Decree of the Government of the Russian Federation of December 10, 2018 No. 1506 «On the Program of State Guarantees of Free Provision of Medical Care to Citizens for 2019 and for the Planning Period of 2020 and 2021» https://www.garant.ru/products/ipo/prime/doc/72023058. (in Russ.)]; https://www.ped-perinatology.ru/jour/article/view/1285
-
3Academic Journal
المؤلفون: N. D. Savenkova
المصدر: Rossijskij Vestnik Perinatologii i Pediatrii, Vol 65, Iss 6, Pp 12-21 (2021)
مصطلحات موضوعية: новорожденные и грудные дети, врожденный и инфантильный нефротический синдром, генотип-фенотип корреляции, изолированные и синдромальныe формы, стратегия ведения, Pediatrics, RJ1-570
Relation: https://www.ped-perinatology.ru/jour/article/view/1285; https://doaj.org/toc/1027-4065; https://doaj.org/toc/2500-2228; https://doaj.org/article/56a85829bf704f2d8769c7af6ff82fb2