يعرض 1 - 20 نتائج من 34 نتيجة بحث عن '"геномный импринтинг"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Vavilov Journal of Genetics and Breeding; Том 23, № 2 (2019); 244-249 ; Вавиловский журнал генетики и селекции; Том 23, № 2 (2019); 244-249 ; 2500-3259

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1943/1207; Botstein D., Risch N. Discovering genotypes underlying human phe-notypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet. 2003;33:228-237. DOI 10.1038/ ng1090.; Ceballos F.C., Hazelhurst S., Ramsay M. Assessing runs of homozy-gosity: a comparison of SNP array and whole genome sequence low coverage data. BMC Genomics. 2018;19(1):106. DOI 10.1186/ s12864-018-4489-0.; Christofidou P., Nelson C.P., Nikpay M., Qu L., Li M., Loley C., De- biec R., Braund P.S., Denniff M., Charchar F.J., Arjo A.R., Tre- gouet D.A., Goodall A.H., Cambien F., Ouwehand W.H., Roberts R., Schunkert H., Hengstenberg C., Reilly M.P., Erdmann J., McPher¬son R., Konig I.R., Thompson J.R., Samani N.J., Tomaszewski M. Runs of homozygosity: association with coronary artery disease and gene expression in monocytes and macrophages. Am. J. Hum. Genet. 2015;97(2):228-237. DOI 10.1016/j.ajhg.2015.06.001.; El Hachem H., Crepaux V., May-Panloup P. Recurrent pregnancy loss: current perspectives. Int. J. Womens Health. 2017;9:331-345. DOI 10.2147/IJWH.S100817.; Gamsiz E.D., Viscidi E.W., Frederick A.M., Nagpal S., Sanders S.J., Murtha M.T., Schmidt M., Triche E.W., Geschwind D.H., State M.W., Istrail S., Cook E.H., Jr., Devlin B., Morrow E.M. Intel-lectual disability is associated with increased runs of homozygosity in simplex autism. Am. J. Hum. Genet. 2013;93(1):103-109. DOI 10.1016/j.ajhg.2013.06.004.; Ghani M., Reitz C., Cheng R., Vardarajan B.N., Jun G., Sato C., Naj A., Rajbhandary R., Wang L.S., Valladares O., Lin C.F., Lar¬son E.B., Graff-Radford N.R., Evans D., De Jager P.L., Crane P.K., Buxbaum J.D., Murrell J.R., Raj T., Ertekin-Taner N., Logue M., Baldwin C.T., Green R.C., Barnes L.L., Cantwell L.B., Fallin M.D., Go R.C., Griffith P.A., Obisesan T.O., Manly J.J., Lunetta K.L., Kamboh M.I., Lopez O.L., Bennett D.A., Hendrie H., Hall K.S., Goate A.M., Byrd G.S., Kukull W.A., Foroud T.M., Haines J.L., Far- rer L.A., Pericak-Vance M.A., Lee J.H., Schellenberg G.D., George- Hyslop P.St., Mayeux R., Rogaeva E. Association of long runs of homozygosity with Alzheimer disease among African American individuals. JAMA Neurol. 2015;72(11):1313-1323. DOI 10.1001/ jamaneurol.2015.1700.; Goddijn M. ESHRE. Recurrent Pregnancy Loss. Guideline of the Euro¬pean Society of Human Reproduction and Embryology, 2017.; McQuillan R., Leutenegger A.L., Abdel-Rahman R., Franklin C.S., Pericic M., Barac-Lauc L., Smolej-Narancic N., Janicijevic B., Po- lasek O., Tenesa A., Macleod A.K., Farrington S.M., Rudan P., Hay¬ward C., Vitart V., Rudan I., Wild S.H., Dunlop M.G., Wright A.F., Campbell H., Wilson J.F. Runs of homozygosity in European popu¬lations. Am. J. Hum. Genet. 2008;83(3):359-372. DOI 10.1016/j. ajhg.2008.08.007.; Niida Y., Ozaki M., Shimizu M., Ueno K., Tanaka T. Classification of uniparental isodisomy patterns that cause autosomal recessive dis¬orders: proposed mechanisms of different proportions and parental origin in each pattern. Cytogenet. Genome Res. 2018;154(3):137- 146. DOI 10.1159/000488572.; Nikitina T.V., Sazhenova E.A., Tolmacheva E.N., Sukhanova N.N., Kashevarova A.A., Skryabin N.A., Vasilyev S.A., Nemtseva T.N., Yuriev S.Y., Lebedev I.N. Comparative cytogenetic analysis of spontaneous abortions in recurrent and sporadic pregnancy losses. Biomed. Hub. 2016;1:446099. DOI 10.1159/000446099.; Nothnagel M., Lu T.T., Kayser M., Krawczak M. Genomic and geo-graphic distribution of SNP-defined runs of homozygosity in Eu-ropeans. Hum. Mol. Genet. 2010;19(15):2927-2935. DOI 10.1093/ hmg/ddq198.; Papenhausen P., Schwartz S., Risheg H., Keitges E., Gadi I., Burn¬side R.D., Jaswaney V., Pappas J., Pasion R., Friedman K., Tep- perberg J. UPD detection using homozygosity profiling with a SNP genotyping microarray. Am. J. Med. Genet. Pt. A. 2011;155(4):757- 768. DOI 10.1002/ajmg.a.33939.; Pemberton T.J., Absher D., Feldman M.W., Myers R.M., Rosen¬berg N.A., Li J.Z. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 2012;91(2):275-292. DOI 10.1016/j.ajhg.2012.06.014.; Peripolli E., Munari D.P., Silva M.V.G.B., Lima A.L.F., Irgang R., Bal- di F. Runs of homozygosity: current knowledge and applications in livestock. Anim. Genet. 2017;48(3):255-271. DOI 10.UU/age.12526.; Robberecht C., Pexsters A., Deprest J., Fryns J.P., D’Hooghe T., Ver- meesch J.R. Cytogenetic and morphological analysis of early pro-ducts of conception following hystero-embryoscopy from couples with recurrent pregnancy loss. Prenat. Diagn. 2012;32(10):933-942. DOI 10.1002/pd.3936.; Rooney D.E., Czepulkowski B.H. Human Cytogenetics. A Practical Approach. New York: Oxford Univ. Press, 1992.; Yang H.C., Chang L.C., Liang Y.J., Lin C.H., Wang P.L. A genome-wide homozygosity association study identifies runs of homozygo¬sity associated with rheumatoid arthritis in the human major histo¬compatibility complex. PLoS One. 2012;7(4):e34840. DOI 10.1371/ journal.pone.0034840.; https://vavilov.elpub.ru/jour/article/view/1943

  2. 2
    Academic Journal

    المصدر: Medical Genetics; Том 17, № 11 (2018); 3-6 ; Медицинская генетика; Том 17, № 11 (2018); 3-6 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/595/376; Da Silva-Santiago SC, Pacheco C, Rocha TC et al. The linked human imprintome v1.0: over 120 genes confirmed as imprinted impose a major review on previous censuses. Int J Data Min Bioinform. 2014;10(3): 329-56; Parry DA, Logan CV, Hayward BE Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am. J. Hum. Genet. 2011; 89(3): 451-458.; Court F, Martin-Trujillo A, Romanelli V et al. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum. Mutat. 2013; 34(4): 595-602.; Docherty LE, Rezwan FI, Poole RL et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat. Commun. 2015; 6: e8086.; Sanchez-Delgado M, Martin-Trujillo A, Tayama C et al. Absence of Maternal Methylation in Biparental Hydatidiform Moles from Women with NLRP7 Maternal-Effect Mutations Reveals Widespread Placenta-Specific Imprinting. PLoS Genet. 2015; 11(11): e1005644.; Qian J, Nguyen NM, Rezaei M et al. Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur J Hum Genet. 2018; 26(7):1007-1013.; Moein-Vaziri N, Fallahi J, Namavar-Jahromi B et al. Clinical and genetic-epignetic aspects of recurrent hydatidiform mole: A review of literature. Taiwan J Obstet Gynecol. 2018; 57(1): 1-6.; Sazhenova EA, Lebedev IN Evidence of NLRP7 mutations in etiology of mutations methylation defects of imprinted genes in spontaneous abortions from women with recurrent pregnancy loss. Eur Med J Reprod Health. 2016; 2(1): 36-37.; Eggermann T, Leisten I, Binder G Disturbed methylation at multiple imprinting loci: an increasing observation in imprinting disorders. Epigenomics. 2011; 3(5): 625-637.; Meyer E, Lim D, Pasha S et al. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet. 2009; 5(3): e1000423.; Begemann M, Rezwan FI, Beygo J et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet. 2018; 55(7): 497-504.; Prickett AR, Ishida M, Bohm S et al. Genome-wide methylation analysis in Silver-Russell syndrome patients. Hum. Genet. 2015; 134( 3): 317-333.; Kagami M, Mizuno S, Matsubara K, et al. Epimutations of the IGDMR and the MEG3-DMR at the 14q32.2 imprinted region in two patients with Silver-Russell syndrome-compatible phenotype. Eur J Hum Genet. 2015; 23(8): 1062-1067.; Boonen SE, Mackay DJ, Hahnemann JM et al. Transient neonatal diabetes, ZFP57 and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care. 2013; 36: 505-512.; Reddy R, Nguyen NM, Sarrabay G et al. The genomic architecture of NLRP7 is Alu rich and predisposes to disease-associated large deletions. Eur J Hum Genet. 2016; 24(10): 1516.; Deveault C, Qian JH, Chebaro W et al. NLRP7 mutations in women with diploid androgenetic and triploid moles: a proposed mechanism for mole formation. Hum Mol Genet. 2009; 18(5): 888-897.; Okada K, Hirota E, Mizutani Y et al. Oncogenic role of NALP7 in testicular seminomas Cancer Sci. 2004; 95: 949-954.; Mahadevan S, Wen S, Wan YW et al. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet. 2014; 23(3): 706-716.; Kinoshita T, Wang Y, Hasegawa M, Imamura R et al. PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1beta secretion. J Biol Chem. 2005; Jun 10; 280(23): 21720-5.; Peng H, Chang B, Lu C Nlrp2, a maternal effect gene required for early embryonic development in the mouse. PLoS One. 2012; 7: e30344.; Zhu K, Yan L, Zhang X et al. Identification of a human subcortical maternal complex. Mol Hum Reprod. 2015; 21(4): 320-329.; Messerschmidt DM, de Vries W, Ito M et al. Trim is required for epigenetic stability during mouse oocyte to embryo transition. Science. 2012; 335 (6075): 1499-1502.; Smith ZD, Meissner A DNA methylation: roles in mammalian development. Nat Rev Genet. 2013; 14(3): 204-220.; Xu Y, Shi Y, Fu J et al. Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest. Am J Hum Genet. 2016; Sep 1; 99(3): 744-752.; Bebbere D, Masala L, Albertini DF et al. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet. 2016; 33(11):1431-1438.; Monk D, Sanchez-Delgado M, Fisher R NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction. 2017; 154(6): 161-170.; https://www.medgen-journal.ru/jour/article/view/595

  3. 3
    Academic Journal

    المصدر: Medical Genetics; Том 17, № 3 (2018); 8-12 ; Медицинская генетика; Том 17, № 3 (2018); 8-12 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/400/295; Радзинский ВЕ. Неразвивающаяся беременность. Методические рекомендации МАРС / ВЕ Радзинский. М.: Редакция журнала StatusPraesens. 2015; 48 c.; Elhamamsy A.R. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet. 2017; 34(5): 549-562.; Adalsteinsson BT, Ferguson-Smith AC. Epigenetic control of the genome-lessons from genomic imprinting. Genes. 2014; 5(3): 635-655.; Лебедев ИН, Саженова ЕА. Эпимутации импринтированных генов в геноме человека: классификация, причины возникновения, связь с наследственной патологией. Генетика. 2008; 44(10): 1356-1373.; Саженова ЕА, Скрябин НА, Суханова НН, Лебедев ИН. Мультилокусные эпимутации импринтома при патологии эмбрионального развития человека. Молекулярная биология. 2012; 46(2): 204-213.; Саженова ЕА, Никитина ТВ, Скрябин НА и др. Эпигенетический статус импринтированных генов в плаценте при привычном невынашивании беременности. Генетика. 2017; 53 (3): 364-377.; Turan S, Bastepe M. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm Res Paediatr. 2013: 80(4); 229-241.; Chotalia M, Smallwood SA, Ruf N et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 2009; 23(1): 105-17.; Каталог импринтированных генов и родительских эффектов у человека и животных. университет Отаго - Режим доступа: http://igc.otago.ac.nz.; Babak T, DeVeale B, Tsang EK et al. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet. 2015; 47 (5): 544-549.; Bartolomucci A, Possenti R, Mahata SK et al. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011; 32: 755-797.; Yu Y, Yoon SO, Poulogiannis G et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011; 332: 1322-1326.; Pliushch G, Schneider E, Weise D et al. Extreme methylation values of imprinted genes in human abortions and stillbirths. Am. J. Pathol. 2010; 176(3): 1084-1090.; Hayward BE, De Vos M, Talati N et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum. Mutat. 2009; 30(5): 629-639.; Grafodatskaya D, Choufani S, Basran R et al. An update on molecular diagnostic testing of human imprinting disorders. J. Pediatr. Genet. 2017; 6(1): 3-17.; Kelsey G. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus. Am. J. Med. Genet. C Semin. Med. Genet. 2010; 154(3): 377-386.; https://www.medgen-journal.ru/jour/article/view/400

  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal
  8. 8
  9. 9
  10. 10
    Academic Journal
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20