يعرض 1 - 20 نتائج من 136 نتيجة بحث عن '"влияние температуры"', وقت الاستعلام: 0.84s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was carried out within the framework of the Federal program “Scientific justification for the design of technologies for new types of drinks based on the study of the characteristic features of traditional and non-traditional raw materials of plant origin” FGUS‑2022–0012., Работа выполнена в рамках Федеральной программы «Научное обоснование проектирования технологий новых видов напитков на основе изучения характеристических особенностей традиционного и нетрадиционного сырья растительного происхождения» FGUS‑2022–0012

    المصدر: Food systems; Vol 6, No 2 (2023); 130-138 ; Пищевые системы; Vol 6, No 2 (2023); 130-138 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-2

    وصف الملف: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/263/224; Оганесянц, Л. А., Панасюк, А. Л. (2022). Специальная технология виноделия. СПб.: Профессия, 2022.; Авидзба, А. М., Макаров, А. С., Яланецкий, А. Я., Шмигельская, Н. А., Лутков, И. П., Шалимова, Т. Р. и др. (2017). Исследование качества виноматериалов из различных сортов винограда для возможного использования их в производстве игристых вин. Магарач. Виноградарство и виноделие, 2, 31–35.; Оганесянц, Л. А., Песчанская, В. А., Дубинина, Е. В. (2018). Совершенствование оценки качества столовых виноматериалов для игристых вин. Пиво и напитки, 3, 72–75.; Христюк, В. Т., Струкова, В. Е., Лазутин, А. А., Агеева, Н. М. (2000). Влияние технологических приемов подготовки шампанских виноматериалов на их игристые и пенистые свойства. Известия высших учебных заведений. Пищевая технология, 1, 49–52.; Рейтблат, Б. Б., Оганесянц, Л. А., Дубинчук, Л. В., Моисеева, А. А. (2016). Исследование процесса обогащения игристых вин биологически активными веществами осадочных дрожжей. Виноделие и виноградарство, 5, 20–24.; Оганесянц, Л. А., Дубинчук, Л. В., Ротару, И. А., Драган, В. М. (2013). Влияние танинсодержащих соединений на качественные показатели ликёра. Виноделие и виноградарство, 3, 9–11.; Echave, J., Barral, M., Fraga-Corral, M., Prieto, M. A., Simal-Gandara, J. (2021). Bottle aging and storage of wines: A review. Molecules, 26(3), Article 713. https://doi.org/10.3390/molecules26030713; Ricci, A., Parpinello, G. P., Versari, A. (2017). Modelling the evolution of oxidative browning during storage of white wines: Effects of packaging and closures. International Journal of Food Science and Technology, 52(2), 472–479. https://doi.org/10.1111/ijfs.13303; Del Caro, A., Piombino, P., Genovese, A., Moio, L., Fanara, C., Piga, A. (2014). Effect of bottle storage on colour, phenolics and volatile composition of Malvasia and Moscato white wines. South African Journal for Enology and Viticulture, 35(1), 128–138. https://doi.org/10.21548/35–1–992; Худякова, О. Д. (2012). Тара для напитков как фактор сохранения качества готовой продукции. Сибирский торгово-экономический журнал, 16, 116–119.; Агеева, Н. М., Чемисова, Л. Э., Марковский, М. Г. (2014). Влияние качества упаковки на сохранность напитков в процессе их хранения [Электронный ресурс]. Плодоводство и виноградарство Юга России, 30(6), 143–158.; Саришвили, Н. Г., Новикова, В. Н., Горшкова, А. Т., Полякова, Г. И. (1987). Влияние цвета стекла бутылки на качество вина. Виноделие и виноградарство, 2, 35–37.; Maury, C., Clark, A., Scollary, G. (2010). Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions. Analytica Chimica Acta, 660(1–2), 81–86. https://doi.org/10.1016/j.aca.2009.11.048; Blake, A., Kotseridis, Y., Brindle, I. D., Inglis, D., Pickering, G. J. (2010). Effect of light and temperature on 3-alkyl-2-methoxypyrazine concentration and other impact odourants of Riesling and Cabernet franc wine during bottle ageing. Food Chemistry, 119(3), 935–944. https://doi.org/10.1016/j.foodchem.2009.07.052; Dias, D. A, Smith, T. A., Ghiggino, K. P., Scollary, G. A. (2012). The role of light, temperature and wine bottle colour on pigment enhancement in white wine. Food Chemistry, 135(4), 2934–2941. https://doi.org/10.1016/j.foodchem.2012.07.068; Dias, D. A., Clark, A. C., Smith, T. A., Ghiggino, K. P., Scollary, G. R. (2013). Wine bottle colour and oxidative spoilage: Whole bottle light exposure experiments under controlled and uncontrolled temperature conditions. Food Chemistry, 138(4), 2451–2459. http://doi.org/10.1016/j.foodchem.2012.12.024; Cáceres-Mella, A., Flores-Valdivia, D., Laurie, V. F., López-Solís, R., Peña-Neira, Á. (2014). Chemical and sensory effects of storing Sauvignon blanc wine in colored bottles under artificial light. Journal of Agricultural and Food Chemistry, 62(29), 7255–7262. https://doi.org/10.1021/jf501467f; Recamales, A., Sayago, A., González-Miret, M. L., Hernanz, D. (2006). The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Research International, 39(2), 220–229. https://doi.org/10.1016/j.foodres.2005.07.009; Clark, A., Vestner, J., Barril, C., Maury, C., Prenzler, P., Scollary, G. (2010). The influence of stereochemistry of antioxidants and flavanols on oxidation processes in a model wine system: Ascorbic acid, erythorbic acid, (+)-catechin and (–)-epicatechin. Journal of Agricultural and Food Chemistry, 58(2), 1004–1011. https://doi.org/10.1021/jf903233x; Dias, D. A., Ghiggino, K. P., Smith, T. A., Scollary, G. R. (2010). Wine Bottle Colour and Oxidative Spoilage. School of Chemistry: The University of Melbourne, 80.; Arena, E., Rizzo, V., Licciardello, F., Fallico, B., Muratore, G. (2021). Effects of light exposure, bottle colour and storage temperature on the quality of Malvasia Delle Lipari sweet wine. Foods, 10(8), Article 1881. https://doi.org/10.3390/foods100818812021; De Souza, J. F., De Souza Nascimento, A. M., Silva Linhares, M. S., Prudêncio Dutra, M. C., Lima, M.S., Pereira, G. E. (2018). Evolution of phenolic compound profiles and antioxidant activity of Syrah red and sparkling Moscatel wines stored in bottles of different colors. Beverages, 4(4), Article 89. http://doi.org/10.3390/beverages4040089; Родопуло, А. К. (1983). Основы биохимии виноделия. М.: Легкая и пищевая промышленность, 1983.; Garrido, J., Borges, F. (2013). Wine and grape polyphenols — A chemical perspective. Food Research International, 54(2), 1844–1858. https://doi.org/10.1016/j.foodres.2013.08.002; Оганесянц, Л. А., Андриевская, Д. В., Песчанская, В. А., Урусова, Л. М., Ревина, А. А., Ульянова, Е. В. и др. (2010). Влияние различных сроков хранения на биологическую активность вин. Виноделие и виноградарство, 6, 11–14.; Muselík, J., García-Alonso, M., Martín-López, M. P., Žemliča, M., Rivas-Gonzalo, J. C. (2007). Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. International Journal of Molecular Sciences, 8(8), 797–809. https://doi.org/10.3390/i8080797; Kallthraka, S., Salacha, M. I., Tzourou, I. (2009). Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chemistry, 113(2), 500–505. https://doi.org/10.1016/j.foodchem.2008.07.083; Arapitsas, P., Dalledonne, S., Scholz, M., Catapano, A., Carlin, S., Mattivi, F. (2020). White wine light-strike fault: A comparison between flint and green glass bottles under the typical supermarket conditions. Food Packaging and Shelf Life, 24(5), Article 100492. https://doi.org/10.1016/j.fpsl.2020.100492; Hartley, A. (2008). Bulk shipping of wine and its implications for product quality Retrieved from https://vineandwine.vin/en/articles/the-bulkshipping-of-wine-versus-bottling-at-source// Accessed January 19, 2023; Benítez, P., Castro, R., Natera, R., Barroso, C. G. (2006). Changes in the polyphenolic and volatile content of “Fino” Sherry wine exposed to high temperature and ultraviolet and visible radiation. European Food Research and Technology, 222(3), 302–309. https://doi.org/10.1007/s00217–005–0126–7; Butzke, C. E., Vogt, E. E., Chacón-Rodríguez, L. (2012). Effects of heat exposure on wine quality during transport and storage. Journal of Wine Research, 23(1), 15–25. https://doi.org/10.1080/09571264.2011.646254; Lopes, P., Saucier, C., Teissèdre, P.-L., Glories, Y. (2006). Impact of storage position on oxygen ingress through different closures into wine bottles. Journal of Agricultural and Food Chemistry, 54(18), 6741–6746. https://doi.org/10.1021/jf0614239; Maujean, A., Haye, M., Feuillat, M., Thomas, J. C., Petit, D. (1978). Contribution à l’étude des «goûts de lumière» dans le vin de champagne. II. Influence de la lumière sur le potentiel d’oxydoreduction. Corrélation avec la teneur en thiols du vin. Connaissance de la Vigne et du Vin, 12(4), 277–290. https://doi.org/10.20870/oeno-one.1978.12.4.1427; Presa-Owens, C. D. L., Noble, A. C. (1997). Effect of storage at elevated temperatures on aroma of Chardonnay wines. American Journal of Enology and Viticulture, 48(3), 310–316. https://doi.org/10.5344/ajev.1997.48.3.310; Marquez, L., Dunstall, S., Bartholdi, J., Maccawley, A. (2012). «Cool or hot»: A study of container temperatures in Australian wine shipments. Australasian Journal of Regional Studies, 18(3), 420–443.; Ough, C. S. (1992). Winemaking basics. Binghamton. N. Y.: The Haworth Press. Inc., 1992.; Ibern-Gómez, M., Andrés-Lacueva, C., Lamuela-Raventós, R. M., Buxaderas, S., Singleton, V. L., de la Torre-Boronat, M. C. (2000). Browning of Cava (sparkling wine) during aging in contact with lees due to the phenolic composition. American Journal of Enology and Viticulture, 51(1), 29–36. https://doi.org/10.5344/ajev.2000.51.1.29; Serra-Cayuela, A., Aguilera-Curiel, M. A., Riu-Aumatell, M., Buxaderas, S., Lopez-Tamames, E. (2013). Browning during biological aging and commercial storage of Cava sparkling wine and the use of 5-HMF as a quality marker. Food Research International, 53(1), 226–231. https://doi.org/10.1016/j.foodres.2013.04.010; Betnga, P. F. T., Longo, E., Poggesi, S., Boselli, E. (2021). Effects of transport conditions on the stability and sensory quality of wines. OENO One, 2, 197–208. https://doi.org/10.20870/oeno-ne.2021.55.2.4524; Benucci, I. (2019). Impact of post-bottling storage conditions on colour and sensory profile of a rosé sparkling wine. LWT, 118, Article 108732. https://doi.org/10.1016/j.lwt.2019.108732; Robinson, A. L., Mueller, M., Heymann, H., Ebeler, S. E., Boss, P. K., Solomon, P. S. et al. (2010). Effect of simulated shipping conditions on sensory attributes and volatile composition of commercial white and red wines. American Journal of Enology and Viticulture, 61(3), 337–347. https://doi.org/10.1163/ej.9789004187993.i-382.372010; Pérez-Coella, M. C., González-Viñas, M. A., Garcı́a-Romero, E., Dı́az-Maroto, M. C., Cabezudo, M. D. (2003). Influence of storage temperature on the volatile compounds of young white wines. Food Control, 14(5), 301–306. https://doi.org/10.1016/S0956–7135(02)00094–4; Scrimgeour, N., Nordestgaard, S., Lloyd, N. D. R., Wilkes, E. N. (2015). Exploring the effect of elevated storage temperature on wine composition. Australian Journal of Grape and Wine Research. 21(S1), 713–722. https://doi.org/10.1111/ajgw.12196; Vázquez-Pateiro, I., Arias-González, U., Mirás-Avalos, J. M., Falqué, E. (2020). Evolution of the aroma of treixadura wines during bottle aging. Foods, 9(10), Article 1419. https://doi.org/10.3390/foods9101419; Recamales, A. F., Gallo, V., Hernanz, D., González-Miret, M. L., Heredia, F. J. (2011). Effect of time and storage conditions on major volatile compounds of Zalema white wine. Journal of Food Quality, 34(2), 100–110. https://doi.org/10.1111/j.1745–4557.2011.00371.x; Maujean, A., Seguin, N. (1983). Contribution à l’étude des goûts de lumière dans les vins de Champagne. 3. Les reactions photochimiques responsables des goûts de lumière dans le vin de Champagne. Sciences des Aliments, 3(4), 589–601. (In French).; Dozon, N. M., Noble, A. C. (1989). Sensory study of the effect of fluorescent light on a sparkling wine and its base wine. American Journal of Enology and Viticulture, 40(4), 265–271. https://doi.org/10.5344/ajev.1989.40.4.265; Grant-Preece, P., Barril, C., Schmidtke, L. M., Scollary, G. R., Clark, A. C. (2015). Light-induced xhanges in bottled white wine and underlying photochemical mechanisms. Critical Reviews in Food Science and Nutrition, 57(4), 753–754. https://doi.org/10.1080/10408398.2014.919246; Grant-Preece, P., Barril, C., Leigh, M., Schmidtke, L. M., Clark, A. C. (2018). Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron. Food Chemistry, 243, 239–248. https://doi.org/10.1016/j.foodchem.2017.09.093; Fracassetti, D., Limbo, S., Pellegrino, L., Tirelli, A. (2019). Light-induced reactions of methionine and riboflavin in model wine: Effects of hydrolysable tannins and sulfur dioxide. Food Chemistry, 298, Article 124952. https://doi.org/10.1016/j.foodchem.2019.124952; Fracassetti, D., Canito, A. D., Bodon, R., Messina, N., Vigentini, I., Foschino, R. et al. (2021). Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends in Food Science and Technology, 112, 547–558. https://doi.org/10.1016/j.tifs.2021.04.013; Celotti, E., Lazaridis, G., Figelj, J., Scutaru, Y., Natolino, A. (2022). Comparison of a rapid light-induced and forced test to study the oxidative stability of white wines. Molecules, 27(1), Article 326. https://doi.org/10.3390/molecules27010326; Díaz-Maroto, M. C., Viñas, M. L., Marchante, L., Alañón, M. E., Díaz-Maroto, I. J., Pérez-Coello, M. S. (2021). Evaluation of the storage conditions and type of cork stopper on the quality of bottled white wines. Molecules, 26(1), Article 232. https://doi.org/10.3390/molecules260; Mislata, A. M., Puxeu, M., Nadal, M., de Lamo, S., Mestres, M., Ferrer-Gallego, R. (2022). Influence of different types of LEDs lights on the formation of volatile sulfur compounds in white and rosé wines. Food Chemistry, 371, Article 131144. https://doi.org/10.1016/j.foodchem.2021.131144; Lan, H., Li, S., Yang, J., Li, J., Yuan, C., Guo, A. (2020). Effects of light exposure on chemical and sensory properties of storing Meili rosé wine in colored bottles. Food Chemistry, 345(6), Article 128854. https://doi.org/10.1016/j.foodchem.2020.128854; Fracassetti, D., Limbo, S., Tirelli, A. (2019). Antioxidants for limiting the light-struck taste during the shelf-life. BIO Web of Conferences, 12, Article 02016. https://doi.org/10.1051/bioconf/20191202016; Clark, A. C., Dias, D. A., Smith, T. A., Ghiggino, K. P., Scollary, G. R. (2011). Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: Studies in a model wine system. Journal of Agricultural and Food Chemistry, 59(8), 3575–3581. https://doi.org/10.1021/jf104897z; Asaduzzman, M., Scampicchio, M., Biasioli, F., Bremer, P. J., Silcock, P. (2020). Methanethiol formation during the photochemical oxidation of methionine-riboflavin system. Flavour and Fragrance Journal, 35(1), 34–41. https://doi.org/10.1002/ffj.3536; Diaz, I., Castro, R. I., Ubeda, C., Loyola, R., Laurie, V. F. (2021). Combined effects of sulfur dioxide, glutathione and light exposure on the conservation of bottled Sauvignon blanc. Food Chemistry, 356(12), Article 129689. https://doi.org/10.1016/j.foodchem.2021.129689; Vignault, A., González-Centeno, M. R., Pascual, O., Gombau, J., Jourdesa, M., Moine, V. et al. (2018). Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chemistry, 268, 210–219. https://doi.org/10.1016/j.foodchem.2018.06.031; Fracassetti, D., Limbo, S., Messina, N., Pellegrino, L., Tirelli, A. (2021). Light-struck taste in white wine: Protective role of glutathione, sulfur dioxide and hydrolysable tannins. Molecules, 26(17), Article 5297. https://doi.org/10.3390/molecules26175297; Fracassetti, D., Limbo, S., Pellegrino, L., Tirelli, A. (2019). The lightstruck taste in white wine: Effect and evolution during the storage. BIO Web of Conferences, 15, Article 02028. https://doi.org/10.1016/j.foodchem.2019.124952; https://www.fsjour.com/jour/article/view/263

  2. 2
    Report

    المساهمون: Максимова, Юлия Анатольевна

    وصف الملف: application/pdf

    Relation: Овсенёв А. Е. Оценка влияния снижения температуры добываемого флюида в технологических процессах добычи и подготовки газа на месторождениях Западной Сибири : дипломный проект / А. Е. Овсенёв; Национальный исследовательский Томский политехнический университет (ТПУ), Инженерная школа природных ресурсов (ИШПР), Отделение нефтегазового дела (ОНД); науч. рук. Ю. А. Максимова. — Томск, 2023.; http://earchive.tpu.ru/handle/11683/75699

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Civil Aviation High Technologies; Том 24, № 3 (2021); 71-80 ; Научный вестник МГТУ ГА; Том 24, № 3 (2021); 71-80 ; 2542-0119 ; 2079-0619 ; 10.26467/2079-0619-2021-24-3

    وصف الملف: application/pdf

    Relation: https://avia.mstuca.ru/jour/article/view/1835/1257; Tomblin J., Seneviratne W. Determining the fatigue life of composite aircraft structures using life and load-enhancement factors // Report DOT/FAA/AR-10/6, June 2011. 155 p.; Mandell J.F. Fatigue behaviour of fibre-resin composites. In Developments in Reinforced Plastics 2 / Ed. by G. Pritchard. London: Applied Science Publishers, 1982. Pp. 67–107.; Burhan I., Kim H.S. S-N curve models for composite materials characterisation: an evaluative review // Journal of Composites Science. 2018. Vol. 2, iss. 3. DOI:10.3390/JCS2030038; Стрижиус В.Е. Оценка усталостной долговечности слоистых композитов с использованием нормализованных кривых усталости // Материаловедение. Энергетика. 2020. Т. 26, № 3. С. 20–32. DOI:10.18721/JEST.26302; Kawai M., Itoh N. A failure-mode based anisomorphic constant life diagram for a unidirectional carbon/epoxy laminate under off-axis fatigue loading at room temperature // Journal of Composite Materials. 2014. Vol. 48, iss. 5. Pp. 571–592. DOI:10.1177/0021998313476324; Kawai M., Yano K. Anisomorphic constant fatigue life diagrams of constant probability of failure and prediction of P-S-N curves for unidirectional carbon/epoxy laminates // Composites Part A: Applied Science and Manufacturing. 2016. Vol. 83, part 2. Pp. 323–334. DOI:10.1016/j.ijfatigue.2015.11.005; Kawai M., Yano K. Probabilistic anisomorphic constant fatigue life diagram approach for prediction of P-S-N curves for woven carbon/epoxy laminates at any stress ratio // Composites Part A: Applied Science and Manufacturing. 2016. Vol. 80. Pp. 244–258. DOI:10.1016/j.compositesa.2015.10.021; Broer A. Fatigue life prediction of carbon fibre-reinforced epoxy laminates using a single S-N curve: Master of Science thesis. Delft University of Technology, 2018. 111 p.; Buimovich Y., Elmalich D. Examination of the KAWAI CLD method for fatigue life prediction of composites // Proceedings of the 30th Symposium of the International Committee on Aeronautical Fatigue. Krakow, Poland, 2–7 June 2019. Pp. 399–409.; Strizhius V. Fatigue life prediction of CFRP laminate under quasi-random loading // Proceedings of the 30th Symposium of the International Committee on Aeronautical Fatigue. Krakow, Poland, 2–7 June 2019. Pp. 423–431.; https://avia.mstuca.ru/jour/article/view/1835

  5. 5
    Academic Journal

    Relation: Определение антоцианов винограда в условиях обращенно-фазовой ВЭЖХ / В.И. Дейнека [и др.] // Сорбционные и хроматографические процессы. - 2021. - Т.21, №5.-С. 653-660. - Doi:10.17308/sorpchrom.2021.21/3771. - Библиогр.: с. 658-660.; http://dspace.bsu.edu.ru/handle/123456789/52741

  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 74, № 3 (2019); 170-178 ; Вестник Московского университета. Серия 16. Биология; Том 74, № 3 (2019); 170-178 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/765/475; Dawson D.A., McCormick C.A., Bantle J.A. Detection of teratogenic substances in acidic mine water samples using the frog embryo teratogenesis assay-Xenopus (FETAX) // J. Appl. Toxicol. 1985. Vol. 5. N 4. P. 233–244.; Herkovits J., Pérez-Coll C.S., Herkovits F.D. Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test (AMPHITOX) // Environ. Pollut. 2002. Vol. 116. N 1. P. 177–183.; Кузьмин С.Л. Земноводные бывшего СССР. М.: Т-во научных изданий КМК, 2012. 370 с.; Amicarelli F., Colafarina S., Cesare P., Aimola P., Di Ilio C., Miranda M., Ragnelli A.M. Morphofunctional mitochondrial response to methylglyoxal toxicity in Bufo bufo embryos // Int. J. Biochem. Cell Biol. 2001. Vol. 33. N 11. P. 1129–1139.; Mandrillon A.L, Saglio P. Herbicide exposure affects the chemical recognition of a non native predator in common toad tadpoles (Bufo bufo) // Chemoecology. 2007. Vol. 17. N 1. P. 31– 36.; Bernabo I., Brunelli E., Berg C., Bonacci A., Tripepi S. Endosulfan acute toxicity in Bufo bufo gills: Ultrastructural changes and nitric oxide synthase localization // Aquat. Toxicol. 2008. Vol. 86. N 3. P. 447–456.; Bernabo I., Bonaccia A., Coscarelli F., Tripepib M., Brunelli E. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na+/K+-ATPase localization // Aquat. Toxicol. 2013. Vol. 132–133. P. 119–133.; Дмитриева Е.В. Влияние структуры кладки серой жабы (Bufo bufo) на эмбриональное развитие // Зоол. журн. 2013. Т. 92. № 12. С. 1437–1449.; Cooke A.S. Spawn site selection and colony size of the frog (Rana temporaria) and the toad (Bufo bufo) // J. Zool. 1975. Vol. 175. P. 29–38; Drobenkov S.M., Novitsky R.V., Kosova L.V., Ryzhevich K.K., Pikulik M.M. The amphibians of the Belarus. Advances in amphibian research in the former Soviet Union, vol. 10. Sofia-Moscow: Pensoft, 2006. 168 p.; Dmitrieva E. The effects of density on mortality and development of the Bufo bufo eggs and tadpoles // Herpetologia Petropolitana / Eds. N. Ananjeva and O. Tsinenko. St. Petersburg, 2005. P. 130–133.; Дмитриева Е.В. Влияние плотности икры на темпы развития и смертность серой жабы (Bufo bufo) в лабораторных условиях // Зоол. журн. 2007. Т. 86. № 2. С. 229–235.; Dmitrieva E.V. Experimental study of the temperature effect on survival and development rates in the early ontogenesis of common toad (Bufo bufo) // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N. 2. P. 71–73.; Cambar R., Gipouloux J. Table chronologique du development embryonnaire et larvaire du crapaud commun Bufo bufo L. // Bull. Biol. Fr. Belg. 1956. Vol. 90. P. 198–217.; Dmitrieva E.V. Influence of the concentration of dissolved oxygen on embryonic development of the common toad (Bufo bufo) // Russ. J. Dev. Biol. 2015. Vol. 46. N. 6. P. 368–380.; Moore J.A. Temperature tolerance and rates of development in the eggs of amphibia // Ecology. 1939. Vol. 20. N. 4. P. 459–478.; Дабагян Н.В., Слепцова Л.А. Травяная лягушка Rana temporaria L. // Объекты биологии развития. М.: Наука, 1975. C. 442–462.; Bachmann K. Temperature adaptations of amphibian embryos // Am. Nat. 1969. Vol. 103. N 930. P. 115–130.; Hayek L.-A. Research design for quantitative amphibian studies // Measuring and monitoring biological diversity. Standard methods for amphibians / Eds. W.R. Heyer, M.A. Donnelly, R.W. McDiarmid, L.-A.C. Hayek, and M.S. Foster / Washington DC: Smithsonian Institution Press, 1994. P. 21–38.; https://vestnik-bio-msu.elpub.ru/jour/article/view/765

  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المؤلفون: Юркевич, В. С.

    المساهمون: Андреевец, Ю. А.

    جغرافية الموضوع: Гомель

    وصف الملف: application/pdf

    Relation: Юркевич, В. С. Анализ влияния отрицательных температур на потерю давления в объемном гидроприводе / В. С. Юркевич; науч. рук. Ю. А. Андреевец // Исследования и разработки в области машиностроения, энергетики и управления : материалы XXIII Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых, Гомель, 27–28 апр. 2023 г. : в 2 ч. Ч. 1 / М-во образования Респ. Беларусь, Гомел. гос. техн. ун-т им. П. О. Сухого; под общ. ред. А. А. Бойко. – Гомель : ГГТУ им. П. О. Сухого, 2023. – С. 60-63.; https://elib.gstu.by/handle/220612/29080

  10. 10
    Report

    المؤلفون: Ли, Чуаньбинь

    المساهمون: Наймушин, Артем Георгиевич

    وصف الملف: application/pdf

    Relation: Ли Ч. Оптимизация конфигурации активной зоны водоводяного реактора типа ВВЭР : магистерская диссертация / Ч. Ли; Национальный исследовательский Томский политехнический университет (ТПУ), Инженерная школа ядерных технологий (ИЯТШ), Отделение ядерно-топливного цикла (ОЯТЦ); науч. рук. А. Г. Наймушин. — Томск, 2020.; http://earchive.tpu.ru/handle/11683/60922

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    وصف الملف: application/pdf

    Relation: Родионов, С. Ф. Влияние температуры воздуха на плодоношение Auricularia polytricha (Mont.) Sacc / С. Ф. Родионов, В. В. Трухоновец // Лесное хозяйство : материалы 86-й научно-технической конференции профессорско-преподавательского состава, научных сотрудников и аспирантов, Минск, 31 января - 12 февраля 2022 г. - Минск : БГТУ, 2022. – С. 236-238.; https://elib.belstu.by/handle/123456789/47628; 630*28:582.28

  17. 17
  18. 18
  19. 19
    Academic Journal

    المصدر: Будівництво, матеріалознавство, машинобудування; № 93 (2016); 80-84 ; Строительство, материаловедение, машиностроение; № 93 (2016); 80-84 ; Construction, materials science, mechanical engineering; No. 93 (2016); 80-84 ; 2415-7031

    وصف الملف: application/pdf

  20. 20
    Academic Journal

    مصطلحات موضوعية: ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СТЕПЕНЬ ИЗВЛЕЧЕНИЯ,ВНУТРИДИФФУЗИОННАЯ ОБЛАСТЬ,ВЫЩЕЛАЧИВАНИЕ,ЗОЛОТО,МОДИФИЦИРОВАННАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ "СЖИМАЮЩЕЕСЯ ЯДРО",ЦИАНИРОВАНИЕ,CYANIDATION,GOLD,INTERNAL DIFFUSION ZONE,LEACHING,LOW TEMPERATURE,"SHRINKING CORE" MODEL MODIFICATION

    وصف الملف: text/html