يعرض 1 - 20 نتائج من 120 نتيجة بحث عن '"архей"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المصدر: Здоровые почвы – гарант устойчивого развития

    وصف الملف: application/pdf

    Relation: info:eu-repo/grantAgreement/EC/FP7/17200/EU/Eficientizarea utilizării resurselor de sol și a diversității microbiene prin aplicarea elementelor agriculturii biologice organice/20.80009.5107.08; https://ibn.idsi.md/vizualizare_articol/167805

  3. 3
    Academic Journal

    المؤلفون: Макарчиков, А.Ф.

    المصدر: Bulletin of Polessky State University. Series in Natural Sciences; No. 2 (2021); 34-53 ; Веснік Палескага дзяржаўнага універсітэта. Серыя прыродазнаўчых навук; № 2 (2021); 34-53 ; 2524-2326 ; 2078-5461

    وصف الملف: application/pdf

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المساهمون: Работа выполнена по государственному заданию ИГМ СО РАН при поддержке Министерства науки и высшего образования Российской Федерации.

    المصدر: Geodynamics & Tectonophysics; Том 11, № 1 (2020); 107-121 ; Геодинамика и тектонофизика; Том 11, № 1 (2020); 107-121 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/988/487; Anderson J.L., Smith D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist 80 (5–6), 549–559. https://doi.org/10.2138/am-1995-5-614.; Beard J.S., Lofgren G.E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology 32 (2), 365–401. https://doi.org/10.1093/petrology/32.2.365.; Bertrand P., Mercier J.-C.C., 1985. The mutual solubility of coexisting ortho-and clinopyroxene: toward an absolute geothermometer for the natural system? Earth and Planetary Science Letters 76 (1–2), 109–122. https://doi.org/10.1016/0012-821X(85)90152-9.; Blundy J.D., Holland T.J.B., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology 104 (2), 208–224. https://doi.org/10.1007/BF00306444.; Berman R.G., Aranovich L.Y., 1996. Optimized standard state and mixing properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet and ilmenite in the system FeO±MgO±CaO±Al2O3±SiO2±TiO2. Contributions to Mineralogy and Petrology 126, 1–24. https://doi.org/10.1007/s004100050232.; Choudhuri A., Winkler H.G.F., 1967. Anthophyllit und hornblende in einigen metamorphen reaktionen. Contributions to Mineralogy and Petrology 14 (4), 293–315. https://doi.org/10.1007/BF00373809.; Dale J., Holland T., Powell R., 2000. Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology 140 (3), 353–362. https://doi.org/10.1007/s004100000187.; Donskaya T.V., Gladkochub D.P., Pisarevsky S.A., Poller U., Mazukabzov A.M., Bayanova T.V., 2009. Discovery of Archaean crust within the Akitkan orogenic belt of the Siberian craton: New insight into its architecture and history. Precambrian research 170 (1-2), 61-72. https://doi.org/10.1016/j.precamres.2008.12.003.; Ellis D.J., Green D.H., 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology 71 (1), 13–22. https://doi.org/10.1007/BF00371878.; Gerya T.V., Maresh W.V., 2004. Metapelites of the Kanskiy granulite complex (eastern Siberia): kinked P–T paths and geodynamic model. Journal of Petrology 45 (7), 1393–1412. https://doi.org/10.1093/petrology/egh017.; Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Sal’nikova E.B., Sklyarov E.V., Yakovleva S.Z., 2005. The age and geodynamic interpretation of the Kitoi granitoid complex (southern Siberian craton). Geologiya i Geofizika (Russian Geology and Geophysics) 46 (11), 1121–1133.; Glebovitskii V.A., Levchenkov O.A., Levitskii V.I., Rizvanova N.G., Levskii L.K., Bogomolov E.S., Levitskii I.V., 2011. Age stages of metamorphism at the Kitoi sillimanite schist deposit, southeastern Prisayan’e. Doklady Earth Sciences 436 (1), 13–17. https://doi.org/10.1134/S1028334X11010247.; Glebovitsky V.A., Khil’tova V.Y., Kozakov I.K., 2008. Tectonics of the Siberian Craton: interpretation of geological, geophysical, geochronological, and isotopic geochemical data. Geotectonics 42 (1), 8–20. https://doi.org/10.1134/S0016852108010020.; Green D.H., Ringwood A.E., 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta 31 (5), 767–833. https://doi.org/10.1016/S0016-7037(67)80031-0.; Holland T., Blundy J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116 (4), 433–447. https://doi.org/10.1007/BF00310910.; Хлестов В.В., Ушакова Е.Н. Метаморфизм пород китойской свиты в Восточном Саяне // Материалы по генетической и экспериментальной минералогии. Труды Института геологии и геофизики СО АН СССР. Вып. 3. № 3. Новосибирск: Наука. Сибирское отделение, 1965. С. 245–286.; Kohn M.J., Spear F.S., 1990. Two new geobarometers for garnet amphibolites with applications to southeastern Vermont. American Mineralogist 75 (1–2), 89–96.; Lepezin G.G., Khlestov V.V., 2009. Mass transfer at the contact of high-Al metapelites and metabasites: An example of the high-temperature Sharyzhalgai Complex, Eastern Sayan. Geochemistry International 47 (3), 244–259. https://doi.org/10.1134/S0016702909030033.; Levitskii V.I., Reznitskii L.Z., Sal’nikova E.B., Levitskii I.V., Kotov A.B., Barash I.G., Yakovleva S.Z., Anisimova I.V., Plotkina Y.V., 2010. Age and origin of the Kitoi sillimanite schist deposit, eastern Siberia. Doklady Earth Sciences 431 (1), 394– 398. https://doi.org/10.1134/S1028334X1003027X.; Левицкий В.И., Сандимирова Г.П., Мельников А.И. Корреляция эндогенных процессов в докембрийских комплексах Юго-Восточного Присаянья // Геодинамические режимы формирования Центрально-Азиатского складчатого пояса / Ред. А.И. Сизых. М.: Интермет Инжинеринг, 2001. С. 177–213.; Likhanov I.I., Nozhkin A.D., Reverdatto V.V., Krylov A.A., Kozlov P.S., Khiller V.V., 2016. Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the south Yenisei ridge and tectonic implications. Petrology 24 (4), 392– 408. https://doi.org/10.1134/S086959111603005X.; Molina J.F., Moreno J.A., Castro A., Rodríguez C., Fershtater G.B., 2015. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 232, 286–305. https://doi.org/10.1016/j.lithos.2015.06.027.; Ножкин А.Д., Туркина О.М. Геохимия гранулитов Канского и Шарыжалгайского комплексов. Новосибирск: Изд-во ОИГГМ РАН, 1993. 223 с.; Nozhkin A.D., Turkina O.M., Mel’gunov M.S., 2001. Geochemistry of the metavolcanosedimentary and granitoid rocks of the Onot greenstone belt. Geochemistry International 39 (1), 27–44.; Patino-Douce A.E., Beard J.S., 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 36 (3), 707–738. https://doi.org/10.1093/petrology/36.3.707.; Poller U., Gladkochub D., Donskaya T., Mazukabzov A., Sklyarov E., Todt W., 2005. Multistage magmatic and metamorphic evolution in the Southern Siberian craton: Archaean and Paleoproterozoic zircon ages revealed by SHRIMP and TIMS. Precambrian Research 136 (3–4), 353–368. https://doi.org/10.1016/j.precamres.2004.12.003.; Rogers J.J.W., Santosh M., 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research 5 (1), 5–22. https://doi.org/10.1016/S1342-937X(05)70883-2.; Rosen O.M., 2003. The Siberian craton: tectonic zonation and stages of evolution. Geotectonics 37 (3), 175–192.; Rosen O.M., Condie K.C. (Ed.), Natapov L.M., Nozhkin A.D., 1994. Archaean and Early Proterozoic evolution of the Siberian Craton: a preliminary assessment Developments in Precambrian Geology 11, 411–459. https://doi.org/10.1016/S0166-2635(08)70228-7.; Sal’nikova E.B., Kotov A.B., Levitskii V.I., Reznitskii L.Z., Mel’nikov A.I., Kozakov I.K., Kovach V.P., Barash I.G., Yakovleva S.Z., 2007. Age constraints of high-temperature metamorphic events in crystalline complexes of the Irkut block, the Sharyzhalgai ledge of the Siberian platform basement: results of the U-Pb single zircon dating. Stratigraphy and Geological Correlation 15 (4), 343–358. https://doi.org/10.1134/S0869593807040016.; Schmidt M.W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110 (2–3), 304–310. https://doi.org/10.1007/BF00310745.; Широбоков И.М., Сезько А.И. Основные черты стратиграфии докембрия Восточного Саяна // Основные черты геологии Восточного Саяна. Иркутск: Восточно-Сибирское книжное изд-во, 1979. С. 8–36.; Spear F.S., 1981. An experimental study of hornblende stability and compositional variability in amphibolite. American Journal of Science 281 (6), 697–734. https://doi.org/10.2475/ajs.281.6.697.; Sukhorukov V.P., 2013. Decompression mineral microtextures in granulites of the Irkut block (Sharyzhalgai uplift of the Siberian Platform). Russian Geology and Geophysics 54 (9), 1026–1044. https://doi.org/10.1016/j.rgg.2013.07.017.; Sukhorukov V.P., Turkina O.M., 2018. The PT path of metamorphism and age of migmatites from the northwestern Irkut block (Sharyzhalgai uplift of the Siberian Platform). Russian Geology and Geophysics 59 (6), 673–689. https://doi.org/10.1016/j.rgg.2018.05.006.; Sukhorukov V.P., Turkina O.M., Tessalina S., Talavera C., 2018. Sapphirine-bearing Fe-rich granulites in the SW Siberian craton (Angara-Kan block): Implications for Paleoproterozoic ultrahigh-temperature metamorphism. Gondwana Research 57, 26–47. https://doi.org/10.1016/j.gr.2017.12.012.; Turkina O.M., Berezhnaya N.G., Lepekhina E.N., Kapitonov I.N., 2012. U-Pb (SHRIMP II), Lu-Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut terrane, Sharyzhalgay Uplift: implications for the Neoarchaean evolution of the Siberian craton. Gondwana Research 21 (4), 801–817. https://doi.org/10.1016/j.gr.2011.09.012.; Туркина О.М., Капитонов И.Н., Адамская Е.В. Геохимия палеопротерозойских гранитоидов юго-запада Сибирского кратона (Шарыжалгайский выступ): свидетельства вклада мантийных и коровых источников // Петрология магматических и метаморфических комплексов: Материалы Всероссийской конференции с международным участием. Томск: Изд-во ЦНТИ, 2017. С. 414–419.; Turkina O.M., Sukhorukov V.P., 2015a. Early Precambrian high-grade metamorphosed terrigenous rocks of granulite-gneiss terranes of the Sharyzhalgai uplift (southwestern Siberian craton). Russian Geology and Geophysics 56 (6), 874–884. https://doi.org/10.1016/j.rgg.2015.05.004.; Turkina O.M., Sukhorukov V.P., 2015b. Stages and conditions of metamorphism of mafic granulites in the Early Precambrian complex of the Angara–Kan terrane (southwestern Siberian craton). Russian Geology and Geophysics 56 (11), 1544–1567. https://doi.org/10.1016/j.rgg.2015.10.004.; Winther K.T., Newton R.C., 1991. Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons. Bulletin of the Geological Society of Denmark 39, 213–228.; Zhao G.C., Cawood P.A., Wilde S.A., Sun M., 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59 (1–4), 125–162. https://doi.org/10.1016/S0012-8252(02)00073-9.; https://www.gt-crust.ru/jour/article/view/988

  10. 10
    Academic Journal
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
  20. 20