-
1Academic Journal
المؤلفون: V. O. Varachev, O. Yu. Susova, A. A. Mitrofanov, G. S. Krasnov, D. R. Naskhletashvili, Yu. I. Ammour, S. D. Bezhanova, N. V. Sevyan, E. V. Prozorenko, A. Kh. Bekyashev, T. V. Nasedkina, В. О. Варачев, О. Ю. Сусова, А. А. Митрофанов, Г. С. Краснов, Д. Р. Насхлеташвили, Ю. И. Аммур, С. Д. Бежанова, Н. В. Севян, Е. В. Прозоренко, А. Х. Бекяшев, Т. В. Наседкина
المساهمون: The study was carried out with the financial support of the Russian Science Foundation (grant No. 22-15-00304)., Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 22-15-00304).
المصدر: Advances in Molecular Oncology; Том 11, № 3 (2024); 68-78 ; Успехи молекулярной онкологии; Том 11, № 3 (2024); 68-78 ; 2413-3787 ; 2313-805X
مصطلحات موضوعية: рецидив, EGFR gene amplification, mutation, EGFRvIII transcript, glioblastoma, next-generation sequencing, recurrent tumor, амплификация гена EGFR, мутация, транскрипт EGFRvIII, глиобластома, секвенирование нового поколения
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/709/362; Herbst R.S. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59(2):21–6. DOI:10.1016/j.ijrobp.2003.11.041; Hynes N.E., Lane H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5(5):341–54. DOI:10.1038/nrc1609; Jones S., Rappoport J.Z. Interdependent epidermal growth factor receptor signalling and trafficking. Int J Biochem Cell Biol 2014;51:23–8. DOI:10.1016/j.biocel.2014.03.014; Sigismund S., Avanzato D., Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018;12(1):3–20. DOI:10.1002/1878-0261.12155; Dreux A.C., Lamb D.J., Modjtahedi H., Ferns G.A. The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis 2006;186(1):38–53. DOI:10.1016/j.atherosclerosis.2005.06.038; Saadeh F.S., Mahfouz R., Assi H.I. EGFR as a clinical marker in glioblastomas and other gliomas. Int J Biol Markers 2018;33(1): 22–32. DOI:10.5301/ijbm.5000301; Brennan C.W., Verhaak R.G., McKenna A. et al. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013;155(2):462–77. DOI:10.1016/j.cell.2013.09.034; HigaN., AkahaneT., Hamada T. et al Distribution and favorable prognostic implication of genomic EGFR alterations in IDH-wildtype glioblastoma. Cancer Med 2023;12(1):49–60. DOI:10.1002/cam4.4939; Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–51. DOI:10.1093/neuonc/noab106; Gan H.K., Cvrljevic A.N., Johns T.G. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013;280(21):5350–70. DOI:10.1111/febs.12393; Eskilsson E., Rosland G.V., Talasila K.M. et al. EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. Neuro Oncol 2016;18(12):55. DOI:10.1093/neuonc/now113; Alnahhas I., Rayi A., Guillermo Prieto Eibl M.D.P. et al. Prognostic implications of epidermal and platelet-derived growth factor receptor alterations in 2 cohorts of IDH wt glioblastoma. Neurooncol Adv 2021;3(1):vdab127. DOI:10.1093/noajnl/vdab127; Li J., Liang R., Song C. et al. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018;2018(11):731–42. DOI:10.2147/OTT.S155160; Hovinga K.E., McCrea H.J., Brennan C. et al. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J Neurooncol 2019;142(2):337–45. DOI:10.1007/s11060-019-03102-5; Le Rhun E., Preusser M., Roth P. et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev 2019;80:101896. DOI:10.1016/j.ctrv.2019.101896; Vivanco I., Robins H.I., Rohle D. et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2012;2(5):458–71. DOI:10.1158/2159-8290.CD-11-0284; Desai R., Suryadevara C.M., Batich K.A. et al. Emerging immunotherapies for glioblastoma. Expert Opin Emerg Drugs 2016;21(2):133–45. DOI:10.1080/14728214.2016.1186643; Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18(10):1373–85. DOI:10.1016/S1470-2045(17)30517-X; Felsberg J., Hentschel B., Kaulich K. et al. German Glioma Network. Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 2017;23(22):6846–55. DOI:10.1158/1078-0432.CCR-17-0890; Краснов Г.С., Гукасян Л.Г., Абрамов И.С., Наседкина Т.В. Определение субклональной структуры опухоли по данным высокопроизводительного секвенирования на примере острого миелоидного лейкоза у детей и акральной меланомы. Молекулярная биология 2021;55(5):829–45. DOI:10.31857/S0026898421050050; Chang M.T., Asthana S., Gao S.P. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 2016;34(2):155–63. DOI:10.1038/nbt.3391; Naidoo J., Sima C.S., Rodriguez K. et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: clinical outcomes and response to erlotinib. Cancer 2015;121(18):3212–20. DOI:10.1002/cncr.29493; The cBio Cancer Genomics Portal. https://www.cbioportal.org/.; Zacher A., Kaulich K., Stepanow S. et al. Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel. Brain Pathol 2017;27(2):146–59. DOI:10.1111/bpa.12367; Blobner J., Dengler L., Blobner S. et al. Significance of molecular diagnostics for therapeutic decision-making in recurrent glioma. Neurooncol Adv 2023;5(1):vdad060. DOI:10.1093/noajnl/vdad060; Rutkowska A., Strózik T., Jędrychowska-Dańska K. et al. Immunohistochemical detection of EGFRvIII in glioblastoma – anti-EGFRvIII antibody validation for diagnostic and CAR-T purposes. Biochem Biophys Res Commun 2023;685:149133. DOI:10.1016/j.bbrc.2023.149133; Padovan M., Maccari M., Bosio A. et al. Actionable molecular alterations in newly diagnosed and recurrent IDH1/2 wild-type glioblastoma patients and therapeutic implications: a large mono-institutional experience using extensive next-generation sequencing analysis. Eur J Cancer 2023;191:112959. DOI:10.1016/j.ejca.2023.112959; Li J., Liang R., Song C. et al. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018;11:731–42. DOI:10.2147/OTT.S155160; Yang K., Ren X., Tao L. et al. Prognostic implications of epidermal growth factor receptor variant III expression and nuclear translocation in Chinese human gliomas. Chin J Cancer Res 2019;31(1):188–202. DOI:10.21147/j.issn.1000-9604.2019.01.14; Begagić E., Pugonja R., Bečulić H. et al. Molecular targeted therapies in glioblastoma multiforme: a systematic overview of global trends and findings. Brain Sci 2023;13(11):1602. DOI:10.3390/brainsci13111602; An Z., Aksoy O., Zheng T. et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018;37(12):1561–75. DOI:10.1038/s41388-017-0045-7; Hegi M.E., Diserens A.C., Bady P. et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib – a phase II trial. Mol Cancer Ther 2011;10(6):1102–12. DOI:10.1158/1535-7163.MCT-11-0048; Hu C., Leche C.A., Kiyatkin A. et al. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022;602(7897):518–22. DOI:10.1038/s41586-021-04393-3; Nathanson D.A., Gini B., Mottahedeh J. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 2014;343(6166):72–6. DOI:10.1126/science.1241328; https://umo.abvpress.ru/jour/article/view/709
-
2Academic Journal
المؤلفون: Ptitsyn, K.G., Khmeleva, S.A., Kurbatov, L.K., Timoshenko, O.S., Suprun, E.V., Radko, S.P., Lisitsa, A.V.
المصدر: Biomedical Chemistry: Research and Methods; Vol. 7 No. 4 (2024): Online first; e00226 ; Biomedical Chemistry: Research and Methods; Том 7 № 4 (2024): Принято в печать; e00226 ; 2618-7531
مصطلحات موضوعية: LAMP, primer design, software, петлевая изотермическая амплификация, дизайн праймеров, программное обеспечение
وصف الملف: application/pdf
-
3Academic Journal
المؤلفون: M. M. Tsyganov, A. A. Frolova, E. A. Kravtsova, I. A. Tsydenova, M. K. Ibragimova, М. М. Цыганов, А. А. Фролова, Е. А. Кравцова, И. А. Цыденова, М. К. Ибрагимова
المساهمون: This research was funded by the Russian Science Foundation (grant No. 22-15-00169), Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 22-15-00169)
المصدر: Advances in Molecular Oncology; Том 11, № 2 (2024); 116-129 ; Успехи молекулярной онкологии; Том 11, № 2 (2024); 116-129 ; 2413-3787 ; 2313-805X
مصطلحات موضوعية: реверсия, cell cultures, BRCAness, homologous recombination deficiency, expression, deletion, amplification, reversion, клеточные культуры, дефицит гомологичной рекомбинации, экспрессия, делеция, амплификация
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/682/354; Turner N.C., Reis-Filho J.S. Basal-like breast cancer and the BRCA1 phenotype. Oncogene 2006;25(43):5846–53. DOI:10.1038/sj.onc.1209876; Jia X., Wang K., Xu L. et al. A systematic review and meta-analysis of BRCA1/2 mutation for predicting the effect of platinum-based chemotherapy in triple-negative breast cancer. The Breast 2022;66:31–9. DOI:10.1016/j.breast.2022.08.012; Sokolenko A.P., Savonevich E.L., Ivantsov A.O. et al. Rapid selection of BRCA1-proficient tumor cells during neoadjuvant therapy for ovarian cancer in BRCA1 mutation carriers. Cancer Lett 2017;397(1):127–32. DOI:10.1016/j.canlet.2017.03.036; Sokolenko A.P., Bizin I.V., Preobrazhenskaya E.V. et al. Molecular profiles of BRCA1-associated ovarian cancer treated by platinum-based therapy: analysis of primary, residual and relapsed tumors. Int J Cancer 2020;146(7):1879–88. DOI:10.1002/ijc.32776; Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001;29(9):45. DOI:10.1093/nar/29.9.e45; Teraoka S., Muguruma M., Takano N. et al. Association of BRCA mutations and BRCAness status with anticancer drug sensitivities in triple-negative breast cancer cell lines. J Surg Res 2020;250:200–8. DOI:10.1016/j.jss.2019.12.040; Min A., Im S.-A., Kim D.K. et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res 2015;17(1):1–13. DOI:10.1186/s13058-015-0534-y; Mio C., Gerratana L., Bolis M. et al. BET proteins regulate homologous recombinationmediated DNA repair: BRCAness and implications for cancer therapy. Int J Cancer 2019;144(4):755–66. DOI:10.1002/ijc.31898; Lord C.J., Ashworth A. BRCAness revisited. Nat Rev Cancer 2016;16(2):110–20. DOI:10.1038/nrc.2015.21; Fleming R.A. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 1997;17(5 Pt. 2):146–54.; Norquist B., Wurz K.A., Pennil C.C. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol 2011;29(22):3008–15. DOI:10.1200/JCO.2010.34.2980; Sakai W., Swisher E.M., Jacquemont C. et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res 2009;69(16):6381–6. DOI:10.1158/0008-5472.CAN-09-1178; Wu Z., Li S., Tang X. et al. Copy number amplification of DNA damage repair pathways potentiates therapeutic resistance in cancer. Theranostics 2020;10(9):3939–51. DOI:10.7150/thno.39341; Zhu Y., Liu Y., Zhang C. et al. Tamoxifen-resistant breast cancer cells are resistant to DNA-damaging chemotherapy because of upregulated BARD1 and BRCA1. Nat Commun 2018;9(1):1–11. DOI:10.1038/s41467-018-03951-0; Afghahi A., Timms K.M., Vinayak S. et al. Tumor BRCA1 reversion mutation arising during neoadjuvant platinum-based chemotherapy in triple-negative breast cancer is associated with therapy resistance. Clin Cancer Res 2017;23(13):3365–70. DOI:10.1158/1078-0432.CCR-16-2174; Weigelt B., Comino-Méndez I., De Bruijn I. et al. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin Cancer Res 2017;23(21):6708–20. DOI:10.1158/1078-0432.CCR-17-0544; Pishvaian M.J., Biankin A.V., Bailey P. et al. BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. Br J Cancer 2017;116(8):1021–6. DOI:10.1038/bjc.2017.40; Goodall J., Mateo J., Yuan W. et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov 2017;7(9):1006–17. DOI:10.1158/2159-8290.CD-17-0261; Feng L., Fong K.-W., Wang J. et al. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J Biol Chem 2013;288(16):11135–43. DOI:10.1074/jbc.M113.457440; https://umo.abvpress.ru/jour/article/view/682
-
4Academic Journal
المؤلفون: G. V. Tereshchenko, V. A. Lopatina, L. V. Zemtsova, D. M. Konovalov, N. A. Andreeva, T. V. Shamanskaya, G. A. Novichkova, D. Yu. Kachanov, A. E. Druy, Г. В. Терещенко, В. А. Лопатина, Л. В. Земцова, Д. М. Коновалов, Н. А. Андреева, Т. В. Шаманская, Г. А. Новичкова, Д. Ю. Качанов, А. Е. Друй
المصدر: Diagnostic radiology and radiotherapy; Том 15, № 2 (2024); 25-34 ; Лучевая диагностика и терапия; Том 15, № 2 (2024); 25-34 ; 2079-5343
مصطلحات موضوعية: ганглионейробластома, apparent diffusion coefficient, MRI in children, quantitative MRI, neuroblastoma, MYCN gene amplification, ganglioneuroma, ganglioneuroblastoma, измеряемый коэффициент диффузии, МРТ у детей, количественная МРТ, нейробластома, амплификация гена MYCN, ганглионеврома
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/1002/643; Nakazawa A., Haga C., Ohira M., Okita H., Kamijo T., Nakagawara A. Correlation between the International Neuroblastoma Pathology Classification and genomic signature in neuroblastoma // Cancer Sci. 2015. Vol. 106, No. 6. Р. 766–771. doi:10.1111/cas.12665.; Monclair T., Brodeur G.M., Ambros P.F. et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report // Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2009. Vol. 2, No. 27. Р. 298–303, doi:10.1200/JCO.2008.16.6876.; London W.B., Castleberry R.P., Matthay K.K. et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group // Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2005. Vol. 27, No. 23. Р. 6459–6465, doi:10.1200/JCO.2005.05.571.; Cohn S.L., Pearson A.D., London W.B. et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report // J. Clin. Oncol. 2009. Vol. 27, No. 2. Р. 289–297. doi:10.1200/JCO.2008.16.6785.; Attiyeh E.F., London W.B., Mossé Y.P. et. al. Chromosome 1p and 11q deletions and outcome in neuroblastoma // N. Engl. J. Med. 2005. Vol. 353, No. 21. Р. 2243– 2253. doi:10.1056/NEJMoa052399.; Berthold F., Spix C., Kaatsch P., Lampert F. Incidence, Survival, and Treatment of Localized and Metastatic Neuroblastoma in Germany 1979-2015 // Paediatr Drugs. 2017. Vol. 19, No. 6. Р. 577–593. doi:10.1007/s40272-017-0251-3.; Liang W.H., Federico S.M., London W.B., Naranjo A., Irwin M.S., Volchenboum S.L., Cohn S.L. Tailoring Therapy for Children With Neuroblastoma on the Basis of Risk Group Classification: Past, Present, and Future // JCO Clin Cancer Inform. 2020. Vol. 4. Р. 895–905. doi:10.1200/CCI.20.00074.; Ackermann S., Cartolano M., Hero B. et. al. A mechanistic classification of clinical phenotypes in neuroblastoma // Science. 2018. Vol. 362, No. 6419. Р. 1165–1170. doi:10.1126/science.aat6768.; Kumps C., Fieuw A., Mestdagh P., et al. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes // PLoS One. 2013. Vol. 8, No. 1. e52321. doi:10.1371/journal.pone.0052321.; Zhang Q., Zhang Q., Jiang X., et. al. Collaborative ISL1/GATA3 interaction in controlling neuroblastoma oncogenic pathways overlapping with but distinct from MYCN // Theranostics. 2019. Vol. 9, No. 4. Р. 986–1000. doi:10.7150/thno.30199.; Chicard M., Boyault S., Colmet Daage L. et al. Genomic Copy Number Profiling Using Circulating Free Tumor DNA Highlights Heterogeneity in Neuroblastoma // Clin. Cancer Res. 2016. Vol. 22, No. 22. Р. 5564–5573. doi:10.1158/1078-0432.CCR-16-0500.; Van Roy N., Van Der Linden M., Menten B. et al. Shallow Whole Genome Sequencing on Circulating Cell-Free DNA Allows Reliable Noninvasive Copy-Number Profiling in Neuroblastoma Patients // Clin. Cancer Res. 2017. Vol. 23, No. 20. Р. 6305–6314. doi:10.1158/1078-0432.CCR-17-0675.; Gassenmaier S., Tsiflikas I., Fuchs J. et. al. Feasibility and possible value of quantitative semi-automated diffusion weighted imaging volumetry of neuroblastic tumors // Cancer Imaging. 2020. Vol. 20 (1). Р. 89. doi:10.1186/s40644-020-00366-3.; Neubauer H., Li M., Müller V.R., Pabst T., Beer M. Diagnostic Value of Diffusion-Weighted MRI for Tumor Characterization, Differentiation and Monitoring in Pediatric Patients with Neuroblastic Tumors // RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren. 2017. Vol. 7, No. 189. Р. 640–650. doi:10.1055/s-0043-108993.; Wang H., Chen X., Yu W. et al. Whole-tumor radiomics analysis of T2-weighted imaging in differentiating neuroblastoma from ganglioneuroblastoma/ganglioneuroma in children: an exploratory study // Abdom. Radiol. (NY). 2023. Vol. 48, No. 4. Р. 1372–1382. doi:10.1007/s00261-023-03862-9.; Ghosh A., Yekeler E., Teixeira S.R. Role of MRI radiomics for the prediction of MYCN amplification in neuroblastomas // Eur. Radiol. 2023. Vol. 33, No. 10. Р. 6726–6735. doi:10.1007/s00330-023-09628-7. Epub 2023 May 13.; https://radiag.bmoc-spb.ru/jour/article/view/1002
-
5Academic Journal
المؤلفون: N. P. Prishchepa, N. Yu. Dobrovol’skaya, V. I. Nikiforova, T. S. Tarasova, E. V. Preobrazhenskaya, Н. П. Прищепа, Н. Ю. Добровольская, В. И. Никифорова, Т. С. Тарасова, Е. В. Преображенская
المصدر: Problems of Particularly Dangerous Infections; № 4 (2023); 156-159 ; Проблемы особо опасных инфекций; № 4 (2023); 156-159 ; 2658-719X ; 0370-1069
مصطلحات موضوعية: ПЦР-амплификация, SARS‑CoV‑2, Delta, Omicron, spike protein mutations, reverse transcription, PCR amplification, дельта, омикрон, мутации белкового шипа, обратная транскрипция
وصف الملف: application/pdf
Relation: https://journal.microbe.ru/jour/article/view/1910/1444; Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). 30 January 2020. WHO. (Cited 31 May 2023). [Internet]. Available from: https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meetingofthe-international-health-regulations-(2005)-emergency-committeeregarding-the-outbreak-of-novel-coronavirus-(2019-ncov).; Lupala C.S., Ye Y., Chen H., Su X.D., Liu H. Mutations on RBD of SARS CoV 2 Omicron variant result in stronger binding to human ACE2 receptor. Biochem. Biophys. Res. Commun. 2022; 590:34–41. DOI:10.1016/j.bbrc.2021.12.079.; Hirabara S.M., Serdan T.D.A., Gorjao R., Masi L.N., Pithon-Curi T.C., Covas D.T., Curi R., Durigon E.L. SARS COV 2 variants: differences and potential of immune evasion. Front. Cell. Infect. Microbiol. 2022; 11:781429. DOI:10.3389/fcimb.2021.781429.; Motozono C., Toyoda M., Zahradnik J., Saito A., Nasser H., Tan T.S., Ngare I., Kimura I., Uriu K., Kosugi Y., Yue Y., Shimizu R., Ito J., Torii S., Yonekawa A., Shimono N., Nagasaki Y., Minami R., Toya T., Sekiya N., Fukuhara T., Matsuura Y., Schreiber G.; Genotype to Phenotype Japan (G2P-Japan) Consortium; Ikeda T., Nakagawa S., Ueno T., Sato K. SARS CoV 2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021; 29(7):1124–1136.e11. DOI:10.1016/j.chom.2021.06.006.; Wang Q., Guo Y., Iketani S., Nair M.S., Li Z., Mohri H., Wang M., Yu J., Bowen A.D., Chang J.Y., Shah J.G., Nguyen N., Chen Z., Meyers K., Yin M.T., Sobieszczyk M.E., Sheng Z., Huang Y., Liu L., Ho D.D. Antibody evasion by SARS CoV 2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature. 2022; 608(7923):603–8. DOI:10.1038/s41586-022-05053-w.; Zhao X., Zhang R., Qiao S., Wang X., Zhang W., Ruan W., Dai L., Han P., Gao G.F. Omicron SARS CoV 2 neutralization from inactivated and ZF2001 vaccines. N. Engl. J. Med. 2022; 387(3):277– 80. DOI:10.1056/NEJMc2206900.; Deng X., Garcia-Knight M.A., Khalid M.M., Servellita V., Wang C., Morris M.K., Sotomayor-González A., Glasner D.R., Reyes K.R., Gliwa A.S., Reddy N.P., Sanchez San Martin C., Federman S., Cheng J., Balcerek J., Taylor J., Streithorst J.A., Miller S., Sreekumar B., Chen P.Y., Schulze-Gahmen U., Taha T.Y., Hayashi J.M., Simoneau C.R., Kumar G.R., McMahon S., Lidsky P.V., Xiao Y., Hemarajata P., Green N.M., Espinosa A., Kath C., Haw M., Bell J., Hacker J.K., Hanson C., Wadford D.A., Anaya C., Ferguson D., Frankino P.A., Shivram H., Lareau L.F., Wyman S.K., Ott M., Andino R., Chiu C.Y. Transmission, infectivity, and neutralization of a spike L452R SARS CoV 2 variant. Cell. 2021; 184(13):3426–3437.e8. DOI:10.1016/j.cell.2021.04.025.; Ou J., Wu J., Zhang Q. Structural insights into the Omicron spike trimer: tackling the challenges of continuously evolving SARS CoV 2 variants. Signal Transduct. Target. Ther. 2022; 7(1):322. DOI:10.1038/s41392-022-01179-5.; Chung H.Y., Jian M.J., Chang C.K., Lin J.C., Yeh K.M., Chen C.W., Hsieh S.S., Hung K.S., Tang S.H., Perng C.L., Chang F.Y., Wang C.H., Shang H.S. Emergency SARS CoV 2 variants of concern: novel multiplex real-time RT-PCR assay for rapid detection and surveillance. Microbiol. Spectr. 2022; 10(1):e0251321. DOI:10.1128/spectrum.02513-21.; Saito A., Irie T., Suzuki R., Maemura T., Nasser H., Uriu K., Kosugi Y., Shirakawa K., Sadamasu K., Kimura I., Ito J., Wu J., Iwatsuki-Horimoto K., Ito M., Yamayoshi S., Loeber S., Tsuda M., Wang L., Ozono S., Butlertanaka E.P., Tanaka Y.L., Shimizu R., Shimizu K., Yoshimatsu K., Kawabata R., Sakaguchi T., Tokunaga K., Yoshida I., Asakura H., Nagashima M., Kazuma Y., Nomura R., Horisawa Y., Yoshimura K., Takaori-Kondo A., Imai M.; Genotype to Phenotype Japan (G2P-Japan) Consortium; Tanaka S., Nakagawa S., Ikeda T., Fukuhara T., Kawaoka Y., Sato K. Enhanced fusogenicity and pathogenicity of SARS CoV 2 Delta P681R mutation. Nature. 2022; 602(7896):300–6. DOI:10.1038/s41586-021-04266-9.; Ou J., Lan W., Wu X., Zhao T., Duan B., Yang P., Ren Y., Quan L., Zhao W., Seto D., Chodosh J., Luo Z., Wu J., Zhang Q. Tracking SARS CoV 2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduct. Target. Ther. 2022; 7(1):138. DOI:10.1038/s41392-022-00992-2.; Zhang Y., Zhang T., Fang Y., Liu J., Ye Q., Ding L. SARS CoV 2 spike L452R mutation increases Omicron variant fusogenicity and infectivity as well as host glycolysis. Signal Transduct. Target. Ther. 2022; 7(1):76. DOI:10.1038/s41392-022-00941-z.; Boehm E., Kronig I., Neher R.A., Eckerle I., Vetter P., Kaiser L.; Geneva Centre for Emerging Viral Diseases. Novel SARS CoV 2 variants: the pandemics within the pandemic. Clin. Microbiol. Infect. 2021; 27(8):1109–17. DOI:10.1016/j.cmi.2021.05.022.; Badua C.L.D.C., Baldo K.A.T., Medina P.M.B. Genomic and proteomic mutation landscapes of SARS CoV 2. J. Med. Virol. 2021; 93(3):1702–21. DOI:10.1002/jmv.26548.; Cosar B., Karagulleoglu Z.Y., Unal S., Ince A.T., Uncuoglu D.B., Tuncer G., Kilinc B.R., Ozkan Y.E., Ozkoc H.C., Demir I.N., Eker A., Karagoz F., Simsek S.Y., Yasar B., Pala M., Demir A., Atak I.N., Mendi A.H., Bengi V.U., Cengiz Seval G., Gunes Altuntas E., Kilic P., Demir-Dora D. SARS CoV 2 mutations and their viral variants. Cytokine Growth Factor Rev. 2022; 63:10–22. DOI:10.1016/j.cytogfr.2021.06.001.; https://journal.microbe.ru/jour/article/view/1910
-
6Academic Journal
المؤلفون: Dolgova A.S., Kapitonova M.А., Shabalina A.V., Saitova A.T., Polev D.E., Makarova M.A., Kaftyreva L.A., Dedkov V.G.
المساهمون: 0
المصدر: Russian Journal of Infection and Immunity; Vol 14, No 1 (2024); 66-76 ; Инфекция и иммунитет; Vol 14, No 1 (2024); 66-76 ; 2313-7398 ; 2220-7619
مصطلحات موضوعية: Salmonella enterica serovar Typhi, LAMP, molecular diagnostics, STBHUCCB_38510, isothermal amplification, typhoid fever, молекулярная диагностика, изотермическая амплификация, брюшной тиф
وصف الملف: application/pdf
Relation: https://iimmun.ru/iimm/article/view/17545/1891; https://iimmun.ru/iimm/article/view/17545/1942; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136155; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136156; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136157; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136158; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136159; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136160; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136161; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136162; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136163; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136164; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136165; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136176; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136252; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136253; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136254; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136255; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136256; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136257; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136258; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136259; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136260; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136271; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136273; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136274; https://iimmun.ru/iimm/article/downloadSuppFile/17545/136327; https://iimmun.ru/iimm/article/downloadSuppFile/17545/137132; https://iimmun.ru/iimm/article/downloadSuppFile/17545/137133; https://iimmun.ru/iimm/article/view/17545
-
7Academic Journal
المؤلفون: Алсу Фаритовна Сайфитдинова, Ольга Андреевна Павлова, Андрей Андреевич Зелинский, Марина Владиславовна Рябинина, Олег Сергеевич Глотов, Денис Игоревич Богомаз, Александр Анатольевич Рубель
المصدر: Интегративная физиология, Vol 4, Iss 3 (2023)
مصطلحات موضوعية: вырожденные праймеры, амплификация с множественным вытеснением цепи, полимеразная цепная реакция (ПЦР), секвенирование ДНК отдельных клеток, изменение числа копий участков генома, молекулярный кариотип, Physiology, QP1-981
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Yu. M. Markelov, E. N. Belyaeva, T. V. Sunchalina
المصدر: Туберкулез и болезни лёгких, Vol 100, Iss 9, Pp 21-26 (2022)
مصطلحات موضوعية: множественная и широкая лекарственная устойчивость микобактерий туберкулеза, амплификация лекарственной устойчивости, Diseases of the respiratory system, RC705-779
وصف الملف: electronic resource
-
9Academic Journal
المؤلفون: Пазухина Светлана Вячеславовна, ФГБОУ ВО «Тульский государственный педагогический университет им. Л.Н. Толстого», Svetlana V. Pazukhina, Tula State Pedagogical University named after L.N. Tolstoy
المصدر: Socio-Cultural and Psychological Problems of the Modern Family: Current Issues of Assistance and Support; ; Социокультурные и психологические проблемы современной семьи: актуальные вопросы сопровождения и поддержки
مصطلحات موضوعية: одаренные дети, одаренность, способности, сензитивный период, консультирование, задатки, амплификация детского развития
وصف الملف: text/html
Relation: https://phsreda.com/e-articles/10551/Action10551-108794.pdf; Богоявленская Д.Б. Рабочая концепция одаренности / Д.Б. Богоявленская // Вопросы образования. – 2004. – №2. – С. 46–68. – EDN WQDCBL; Емельянова И.Е. Понятие «Одаренность» в психолого-педагогической литературе / И.Е. Емельянова // Вестник Южно-Уральского государственного гуманитарно-педагогического университета. – 2011. – №3. – С. 62–69. – EDN NQWMCT; Кудрявцев В.Т. А.В. Запорожец: от идеи самоценности детства – к принципам самодетерминации и амплификации детского развития / В.Т. Кудрявцев // Науки о детстве и современное образование: сб. матер. Междунар. юбилейной науч. конф., посвящ. 100-летию со дня рождения А.В. Запорожца. – М.: Школьная книга, 2005. – 184 с.; Мещеряков Б.Г. Взгляды Л.С. Выготского на науку о детском развитии / Б.Г. Мещеряков // Культурно-историческая психология. – 2008. Т. 4. №3. – С. 103–112. – EDN JXKMDH; Психология одаренности детей и подростков / под ред. Н.С. Лейтеса. – М.: Академия, 1996. – 407 с.; https://phsreda.com/files/Books/10551/Cover-10551.jpg?req=108794; https://phsreda.com/article/108794/discussion_platform
-
10Academic Journal
المؤلفون: R. S. Blizkiy, E. A. Divaeva, Р. С. Близкий, Э. А. Диваева
المصدر: Vestnik Universiteta; № 10 (2023); 92-104 ; Вестник университета; № 10 (2023); 92-104 ; 2686-8415 ; 1816-4277
مصطلحات موضوعية: трансформация, market infrastructure amplification, factors, regional and local markets, generation, convergence, model, personalization, transformation, рыночная инфраструктура, амплификация, факторы, поколение, пространственное развитие, модель, персонализация
وصف الملف: application/pdf
Relation: https://vestnik.guu.ru/jour/article/view/4818/2827; Российская Федерация. Указ Президента Российской Федерации от 21 июля 2020 г. № 474 «О национальных целях развития Российской Федерации на период до 2030 года». http://pravo.gov.ru/proxy/ips/?docbody=&firstDoc=1&lastDoc=1&nd=102792289 (дата обращения: 12.06.2023).; Российская Федерация. Распоряжение Правительства Российской Федерации от 13 февраля 2019 г. № 207-р «Об утверждении Стратегии пространственного развития РФ на период до 2025 г.» (с изменениями и дополнениями). https://base.garant.ru/72174066/ (дата обращения: 12.06.2023).; Silin Ya.P., Animitsa E.G. Evolution of the regional economics paradigm. Journal of New Economy. 2020:1(21):5–28. https://doi.org/10.29141/2658-5081-2020-21-1-1; Невьянцева Л.С. Научные подходы к исследованию понятия «региональная инвестиционная политика». Вестник университета. 2021;7:124–130. https://doi.org/10.26425/1816-4277-2021-7-124-130; Третьякова Л.А., Астахин А.С. Пространственное развитие территорий: состояние, тенденции, комплексный подход к оценке дифференциации регионов (территорий). Вестник университета. 2020;4:107–114. https://doi.org/10.26425/1816-4277-2020-4-107-114; Строев В.В., Анисимов Н.Ю., Ломовцева О.А. Постковидное развитие территории Дальнего Востока: проблемы и решения региональных точек роста. Вестник МГПУ. Серия: Экономика. 2021;3(29):19–29. https://doi.org/10.25688/2312-6647.2021.29.3.2; Рахмеева И.И., Лысенко А.Н., Близкий Р.С. Исследование региональных процессов цифровизации. Управление устойчивым развитием. 2021;2(33):14–21.; Береговская Т.А., Гришаева С.А. Поколение Z: потребительское поведение в цифровой среде. Вестник университета. 2020;1:92–99. https://doi.org/10.26425/1816-4277-2020-1-92-99; Ершова Р.В., Корягина Т.М. Психологические особенности цифрового поколения: от теории к практике исследования. Коломна: Государственный социально-гуманитарный университет; 2021. 123 с.; Косыгина К.Е. Вовлеченность населения региона в онлайн-участие: опыт некоммерческих организаций. Вестник университета. 2021;12:157–167. https://doi.org/11.26425/1816-4277-2021-12-157-167; Сплендер В.А., Палюх А.И. Федеральный бюджет как основной источник финансирования структурной перестройки российской экономики в условиях нестабильности. Форум. 2023;2(28):48–53.; Плешакова Е.А. Процессы трансформации экономики в современной России. E-Scio. 2023;5(80):603–611.; Алиев А.Т., Желтенков А.В., Балдин К.В. Проблемы и потенциал развития экономики, промышленного производства и инноваций в современной России. Вестник Московского государственного областного университета. Серия: Экономика. 2023;2:48–58. https://doi.org/10.18384/2310-6646-2023-2-48-58; Федеральная служба государственной статистики. Росстат представляет первую оценку ВВП за I квартал 2023 года. https://rosstat.gov.ru/folder/313/document/209465 (дата обращения: 12.06.2023).; Российская Федерация. Указ Президента Российской Федерации от 16 января 2017 № 13 «Об утверждении Основ государственной политики регионального развития Российской Федерации на период до 2025 года». http://kremlin.ru/acts/bank/41641 (дата обращения: 12.06.2023).; Российская Федерация. Стратегия пространственного развития Российской Федерации на период до 2025 года (утверждена распоряжением Правительства Российской Федерации от 13 февраля 2019 г. № 207-р). https://www.economy.gov.ru/material/dokumenty/rasporyazhenie_ot_13_fevralya_2019_g_207_r.html (дата обращения: 12.06.2023).; Лапаева М.Г., Гузина А.А. Теоретические основы формирования региональных рынков. Интеллект. Инновации. Инвестиции. 2016;9:51–54.; Новоселов А.С. Теоретические аспекты исследования региональных рынков. Регион: Экономика и Социология. 2008;3:3–22.; Черкасская Г.В. Региональные и локальные рынки публичных социальных обязательств в современных условиях. Теория и практика общественного развития. 2023;6:162–168. https://doi.org/10.24158/tipor.2023.6.19; Митрофанов А.В. Единство экономического пространства: подходы к трактовке и содержание понятия. Вестник Пензенского государственного университета. 2013;2:46–52.; Федеральная служба государственной статистики. Численность населения Российской Федерации по полу и возрасту. https://rosstat.gov.ru/compendium/document/13284 (дата обращения: 12.06.2023).; Российская Федерация. Федеральный закон от 06 декабря 2021 г. N 390-ФЗ «О федеральном бюджете на 2022 год и на плановый период 2023 и 2024 годов». https://www.consultant.ru/document/cons_doc_LAW_402647/ (дата обращения: 12.09.2023).; Федеральная служба государственной статистики. Национальные счета. Валовой региональный продукт. https://rosstat.gov.ru/storage/mediabank/VRP_s_1998.xlsx (дата обращения: 12.06.2023).; https://vestnik.guu.ru/jour/article/view/4818
-
11Academic Journal
المؤلفون: Икромов, Э.Э., Кучбоев, А.Е., Амиров, О.О., Икромов, Э.Ф.
المصدر: Science and Education; Vol. 4 No. 6 (2023): Science and Education; 175-183 ; 2181-0842
مصطلحات موضوعية: Фарғона водийси, кўл бақаси, трематода, морфометрия, амплификация, ДНК полимераза
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: A. V. Tarakanova, A. S. Sharlai, A. E. Druy, D. M. Konovalov, А. В. Тараканова, А. С. Шарлай, А. Е. Друй, Д. М. Коновалов
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 3 (2023); 63-69 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 3 (2023); 63-69 ; 2413-5496 ; 2311-1267
مصطلحات موضوعية: амплификация c-myc, MYC, TERT, ATRX, oct4, c-myc amplification
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/964/848; Shimada H., Chatten J., Newton W.A. Jr, Sachs N., Hamoudi A.B., Chiba T., Marsden H.B., Misugi K. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst. 1984;73(2):405–16. doi:10.1093/jnci/73.2.405.; Shimada H., Ambros I.M., Dehner L.P., Hata J., Joshi V.V., Roald B., Stram D.O., Gerbing R.B., Lukens J.N., Matthay K.K., Castleberry R.P. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999;86(2):364–72. doi:10.1002/ (SICI)1097-0142(19990715)86:23.0.CO;2-7.; Ikegaki N., Shimada H.; International Neuroblastoma Pathology Committee. Subgrouping of unfavorable histology neuroblastomas with immunohistochemistry toward precision prognosis and therapy stratification. JCO Precis Oncol. 2019:3:PO.18.00312. doi:10.1200/PO.18.00312.; Ackermann S., Cartolano M., Hero B. A mechanistic classification of clinical phenotypes in neuroblastoma. Science. 2018;362(6419):1165–70. doi:10.1126/science.aat6768.; Seeger R.C., Brodeur G.M., Sather H. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313(18):1111–6. doi:10.1056/nejm198510313131802.; Brodeur G.M., Seeger R.C., Schwab M., Varmus H.E., Bishop J.M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224(4653):1121–4. doi:10.1126/science.6719137.; Shimada H., Ikegaki N. Genetic and histopathological heterogeneity of neuroblastoma and precision therapeutic approaches for extremely unfavorable histology subgroups. Biomolecules. 2022;12(1):79. doi:10.3390/biom12010079.; Wang L.L., Teshiba R., Ikegaki N., Tang X.X., Naranjo A., London W.B., Hogarty M.D., Gastier-Foster J.M., Look A.T., Park J.R., Maris J.M., Cohn S.L., Seeger R.C., Asgharzadeh S., Shimada H. Augmented expression of Myc and/or MYCN protein defines highly aggressive myc-driven neuroblastoma: A Children’s Oncology Group study. Br J Cancer. 2015;113(1):57–63. doi:10.1038/bjc.2015.188.; Niemas-Teshiba R., Matsuno R., Wang L.L., Tang X.X., Chiu B., Zeki J., Coburn J., Ornell K., Naranjo A., Van Ryn C. MYC-family protein overexpression and prominent nucleolar formation represent prognostic indicators and potential therapeutic targets for aggressive high-MKI neuroblastomas: A report from the Children’s Oncology Group. Oncotarget. 2018;9:6416–32. doi:10.18632/oncotarget.23740.; Tornoczky T., Kalman E., Kajtar P.G. Large cell neuroblastoma: a distinct phenotype of neuroblastoma with aggressive clinical behavior. Cancer. 2004;100(2):390–7. doi:10.1002/cncr.20005.; Ikegaki N., Shimada H., Fox A.M., Regan P.L., Jacobs J.R., Hicks S.L., Rappaport E.F., Tang X.X. Transient treatment with epigenetic modifiers yields stable neuroblastoma stem cells resembling aggressive large-cell neuroblastomas. Proc Natl Acad Sci. (USA) 2013;110:6097–102. doi:10.1073/pnas.1118262110.; Khudyakov J., Bronner-Fraser M. Comprehensive spatiotemporal analysis of early chick neural crest network genes. Dev Dyn. 2009;238(3):716–23. doi:10.1002/dvdy.21881.; Matsuno R., Giff ord A.J., Fang J., Warren M., Lukeis R.E., Trahair T., Sugimoto T., Marachelian A., Asgharzadeh S., Maris J.M. Rare MYCamplified Neuroblastoma With Large Cell Histology. Pediatric Dev Pathol. 2018;21:461–6. doi:10.1177/1093526617749670.; Tornóczky T., Kaszás B., Ottóff y G., Hosnyánszki D., Simon R., Hazard F.K., Shimada H. Large cell neuroblastoma – Phenotypical variant of MYC-driven neuroblastoma: Report of 2 cases with different molecular characteristics. Hum Pathol: Case Reports. 2021;24:200493. doi.org/10.1016/j.ehpc.2021.200493.; Fetahu I.S., Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev. 2021;40:173–89. doi:10.1007/s10555-020-09946-y.; Zimmerman M.W., Liu Y., He S., Durbin A.D., Abraham B.J., Easton J., Shao Y., Xu B., Zhu S., Zhang X. MYC Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discov. 2018;8:320–35. doi:10.1158/2159-8290.cd-17-0993.; Wei S.J., Nguyen T.H., Yang I.H. MYC transcription activation mediated by OCT4 as a mechanism of resistance to 13-cisRA-mediated differentiation in neuroblastoma. Cell Death Dis. 2020;11:368. doi:10.1038/s41419-020-2563-4.; Duan X.-F., Zhao Q. TERT-mediated and ATRX-mediated Telomere Maintenance and Neuroblastoma. J Pediatr Hematol Oncol. 2018;40(1):1–6. doi:10.1097/MPH.0000000000000840.; Valentijn L.J., Koster J., Zwijnenburg D.A. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet. 2015;47:1411–4. doi:10.1038/ng.3438.; Peifer M., Hertwig F., Roels F. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature. 2015;526:700–4. doi:10.1038/nature14980.; Flynn R.L., Cox K.E., Jeitany M. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science. 2015;347:273–7. doi:10.1126/science.1257216.; https://journal.nodgo.org/jour/article/view/964
-
13Academic Journal
المؤلفون: K. K. Laktionov, E. V. Reutova, К. К. Лактионов, Е. В. Реутова
المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 34-40 ; Медицинский Совет; № 11 (2023); 34-40 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: интракраниальная активность, METex14 mutation, MET amplification, capmatinib, intracranial activity, мутация МЕТex14, амплификация МЕТ, капматиниб
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7666/6800; Finocchiaro G., Toschi L., Gianoncelli L., Baretti M., Santoro А. Prognostic and predictive value of MET deregulation in non-small cell lung cancer. Ann Transl Med. 2015;3(6):83. https://doi.org/10.3978/j.issn.2305-5839.2015.03.43.; Drilon A., Cappuzzo F., Ou S.I., Camidge D.R. Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol. 2017;12(1):15–26. https://doi.org/10.1016/j.jtho.2016.10.014.; Liu X., Jia Y., Stoopler M.B., Shen Y., Cheng H., Chen J. et al. Next-Generation Sequencing of Pulmonary Sarcomatoid Carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 2016;34(8):794–802. https://doi.org/10.1200/JCO.2015.62.0674.; Byers L.A., Diao L., Wang J., Saintigny P., Girard L., Peyton M. et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifi es Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19(1):279–290. https://doi.org/10.1158/1078-0432.; Tong J.H., Yeung S.F., Chan A.W., Chung L.Y., Chau S.L., Ming Lung R.W. et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;22(12):3048–3056. https://doi.org/10.1158/1078-0432.CCR-15-2061.; Wolf J., Baik C., Heist R.S., Neal J.W., Mansfield A.S., Buettner R. et al. Natural history, treatment (tx) patterns, and outcomes in MET dysregulated non-small cell lung cancer (NSCLC) patients (pts). Presented at the EORTC-NCI-AACR Molecular Targets and Cancer Therapeutics, Dublin, November 13–16, 2018. Available at: https://stanfordhealthcare.org/publications/507/507112.html.; Sabari J.K., Leonardi G.C., Shu C.A., Umeton R., Montecalvo J., Ni A. et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29(10):2085–2091. https://doi.org/10.1093/annonc/mdy334.; Reis H., Metzenmacher M., Goetz M., Savvidou N., Darwiche K., Aigner C. et al. MET expression in advanced nonsmall-cell lung cancer: effect on clinical outcomes of chemotherapy, targeted therapy, and immunotherapy. Clin Lung Cancer. 2018;19(4):e441–e4633. https://doi.org/10.1016/j.cllc.2018.03.010.; Шнейдер О.В., Камилова Т.А., Голота А.С., Сарана А.М., Щербак С.Г. Биомаркеры и таргетная терапия при раке легких. Физическая и реабилитационная медицина, медицинская реабилитация. 2021;3(1):74–94. https://doi.org/10.36425/rehab63268.; Wang S.X.Y., Zhang B.M., Wakelee H.A., Koontz M.Z., Pan M., Diehn M. et al. Case Series of MET Exon 14 Skipping Mutation-Positive Non-Small-Cell Lung Cancers with Response to Crizotinib and Cabozantinib. Anticancer Drugs. 2019;30(5):537–541. https://doi.org/10.1097/CAD.0000000000000765.; Waqar S.N., Morgensztern D., Sehn J. MET Mutation Associated with Responsiveness to Crizotinib. J Thorac Oncol. 2015;10(5):e29–e31. https://doi.org/10.1097/JTO.0000000000000478.; Drilon A., Clark J.W., Weiss J., Ou S.-H.I., Camidge D.R., Solomon B.J. et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26(1):47–51. https://doi.org/10.1038/s41591-019-0716-8.; Liu X., Wang Q., Yang G., Marando С., Koblish H.K., Hall L.M. et al. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin Cancer Res. 2011;17(22):7127–7138. https://doi.org/10.1158/1078-0432.CCR-11-1157.; Baltschukat S., Engstler B.S., Huang A., Hao H.-X., Tam A., Wang H.Q. et al. Capmatinib (INC280) is active against models of non-small cell lung cancer and other cancer types with defined mechanisms of MET activation. Clin Cancer Res. 2019;25(10):3164–3175. https://doi.org/10.1158/1078-0432.CCR-18-2814.; Wolf J., Seto T., Han J.-Y., Reguart N., Garon E., Groen H.J.M. et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer. J Engl J Med. 2020;383(10):944–957. https://doi.org/10.1056/nejmoa2002787.; Heist R.S., Seto T., Han J.-Y., Reguart N., Garon E.B., Groen H.J.M. et al. CMET-22. Capmatinib (INC280) in METΔex14-mutated advanced non-small cell lung cancer (NSCLC): efficacy data from the phase 2 GEOMETRY mono-1 study. Neuro Oncol. 2019;21(6 Suppl.):vi56. https://doi.org/10.1093%2Fneuonc%2Fnoz175.223.; Shih K., Falchook G.S., Becker K., Battiste J., Pearlman M., Shastry M., Burris H. A phase Ib study evaluating the c-MET inhibitor INC280 in combination with bevacizumab in glioblastoma multiforme (GBM) patients. Neuro Oncol. 2016;18(6):vi11–vi12. https://doi.org/10.1093/neuonc/now212.043.; Schuler M., Berardi R., Lim W.-T., de Jonge M., Bauer T.M., Azaro A. et al. Molecular correlates of response to capmatinib in advanced non-smallcell lung cancer: clinical and biomarker results from a phase I trial. Ann Oncol. 2020;31(6):789–797. https://doi.org/10.1016/j.annonc.2020.03.293.; Орлов С.В., Mусаелян А., Кочесокова Д.Л., Одинцова С.В., Загребин Ф.A., Тюрин В.И. и др. Капматиниб у пациентов с MET-положительным распространенным немелкоклеточныи раком легкого: анализ российской группы в исследовании GEOMETRY MONO-1. Вопросы онкологии. 2022;68(6):758–768. https://doi.org/10.37469/0507-3758-2022-68-6-758-767.; Paik P.K., Goyal R.K., Cai B., Price M.A., Davis K.L., Ansquer V.D. et al. Realworld outcomes in non-small-cell lung cancer patients with MET Exon 14 skipping mutation and brain metastases treated with capmatinib. Future Oncol. 2023;19(3):217–228. https://doi.org/10.2217/fon-2022-1133.; Awad M.M., Leonardi G.C., Kravets S., Dahlberg S.E., Drilon A., Noonan S.A. et al. Impact of MET inhibitors on survival among patients with non-small cell lung cancer harboring MET exon 14 mutations: a retrospective analysis. Lung Cancer. 2019;133:96–102. https://doi.org/10.1016/j.lungcan.2019.05.011.; Dagogo-Jack I., Moonsamy P., Gainor J.F., Lennerz J.K., Piotrowska Z., Lin J.J. et al. A Phase 2 Study of Capmatinib in Patients With MET-Altered Lung Cancer Previously Treated With a MET Inhibitor. J Thorac Oncol. 2021;16(5):850–859. https://doi.org/10.1016/j.jtho.2021.01.1605.; Лактионов К.К., Артамонова Е.В., Бредер В.В., Горбунова В.А., Демидова И.А., Деньгина Н.В. и др. Практические рекомендации по лекарственному лечению немелкоклеточного рака легкого. Злокачественные опухоли. 2022;12(3s2-1):41–59. https://doi.org/10.18027/2224-5057-2022-12-3s2-41-59.; Kalemkerian G.P., Narula N., Kennedy E.B., Biermann W.A., Donington J., Leighl N.B. et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology clinical practice guideline update. J Clin Oncol. 2018;36(9):911–919. https://doi.org/10.1200/JCO.2017.76.7293.; Wu Y.L., Planchard D., Lu S., Sun H., Yamamoto N., Kim D.W. et al. Pan-Asian adapted Clinical Practice Guidelines for the management of patients with metastatic non-small cell lung cancer; a CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann Oncol. 2019;30(2):171–210. https://doi.org/10.1093/annonc/mdy554.; Gutierrez M.E., Choi K., Lanman R.B., Licitra E.J., Skrzypczak S.M., Pe Benito R. et al. Genomic profiling of advanced non-small cell lung cancer in community settings: gaps and opportunities. Clin Lung Cancer. 2017;18(6):651–659. https://doi.org/10.1016/j.cllc.2017.04.004.; Miller T.E., Yang M., Bajor D., Friedman J.D., Chang R.Y.C., Dowlati A. et al. Clinical utility of reflex testing using focused next-generation sequencing for management of patients with advanced lung adenocarcinoma. J Clin Pathol. 2018;71(12):1108–1115. https://doi.org/10.1136/jclinpath-2018-205396.; Ferry-Galow K.V., Datta V., Makhlouf H.R., Wright J., Wood B.J., Levy E. et al. What Can Be Done to Improve Research Biopsy Quality in Oncology Clinical Trials? J Oncol Pract. 2018;14(11):JOP1800092. https://doi.org/10.1200/JOP.18.00092.; Noonan S.A., Berry L., Lu X., Gao D., Barón A.E., Chesnut P. et al. Identifying the appropriate FISH criteria for defining MET copy number-driven lung adenocarcinoma through oncogene overlap analysis. J Thorac Oncol. 2016;11(8):1293–1304. https://doi.org/10.1016/j.jtho.2016.04.033.; Wu Y.-L., Zhang L., Kim D.-W., Liu X., Lee D.H., Yang J.C.-H. et al. Phase Ib/ II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFRmutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol. 2018;36(31):3101–3109. https://doi.org/10.1200/JCO.2018.77.7326.; https://www.med-sovet.pro/jour/article/view/7666
-
14Academic Journal
المؤلفون: S. А. Smolin, L. G. Zhukova, А. V. Smolin, D. N. Bubenko, К. S. Grechukhina, С. А. Смолин, Л. Г. Жукова, А. В. Смолин, Д. Н. Бубенко, К. С. Гречухина
المصدر: Malignant tumours; Том 13, № 3 (2023); 37-48 ; Злокачественные опухоли; Том 13, № 3 (2023); 37-48 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: таргетная терапия, MET mutation, MET amplification, targeted therapy, мутация МЕТ, амплификация МЕТ
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1167/811; Sung, H. Global Cancer Statistics 2020 : GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries / H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray // CA : a cancer journal for clinicians .– 2021 .– Vol. 71, iss. 3 .– P. 209–249.; Chemotherapy in Addition to Supportive Care Improves Survival in Advanced Non–Small-Cell Lung Cancer : A Systematic Review and Meta-Analysis of Individual Patient Data From 16 Randomized Controlled Trials // Journal of Clinical Oncology .– 2008 .– Vol. 26, iss. 28 .– P. 4617–4625.; Wang, C. The landscape of immune checkpoint inhibitor plus chemotherapy versus immunotherapy for advanced non-small-cell lung cancer : A systematic review and meta-analysis / C. Wang, W. Qiao, Y. Jiang, M. Zhu, J. Shao, T. Wang, D. Liu, W. Li // Journal of cellular physiology .– 2020 .– Vol. 235, iss. 5 .– P. 4913–4927.; Mok, T. S. K. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042) : a randomised, open-label, controlled, phase 3 trial / T. S. K. Mok, Y .– L. Wu, I. Kudaba, D. M. Kowalski, B. C. Cho, H. Z. Turna, G. Castro, V. Srimuninnimit, K. K. Laktionov, I. Bondarenko, K. Kubota, G. M. Lubiniecki, J. Zhang, D. Kush, G. Lopes, G. Adamchuk, M .– J. Ahn, A. Alexandru, O. Altundag, A. Alyasova, O. Andrusenko, K. Aoe, A. Araujo, O. Aren, O. Arrieta Rodriguez, T. Ativitavas, O. Avendano, F. Barata, C. H. Barrios, C. Beato, P. Bergstrom, D. Betticher, L. Bolotina, M. Botha, S. Buddu, C. Caglevic, A. Cardona, H. Castro, F. Cay Senler, C. A. S. Cerny, A. Cesas, G .– C. Chan, J. Chang, G. Chen, X. Chen, S. Cheng, Y. Cheng, N. Cherciu, C .– H. Chiu, S. Cicenas, D. Ciurescu, G. Cohen, M. A. Costa, P. Danchaivijitr, F. de Angelis, S. J. de Azevedo, M. Dediu, T. Deliverski, P. R. M. de Marchi, F. de The Bustamante Valles, Z. Ding, B. Doganov, L. Dreosti, R. Duarte, R. Edusma-Dy, S. Emelyanov, M. Erman, Y. Fan, L. Fein, J. Feng, D. Fenton, G. Fernandes, C. Ferreira, F. A. Franke, H. Freitas, Y. Fujisaka, H. Galindo, C. Galvez, D. Ganea, N. Gil, G. Girotto, E. Goker, T. Goksel, G. Gomez Aubin, L. Gomez Wolff, H. Griph, M. Gumus, J. Hall, G. Hart, L. Havel, J. He, Y. He, C. Hernandez Hernandez, V. Hespanhol, T. Hirashima, C. M. J. Ho, A. Horiike, Y. Hosomi, K. Hotta, M. Hou, S. H. How, T .– C. Hsia, Y. Hu, M. Ichiki, F. Imamura, O. Ivashchuk, Y. Iwamoto, J. Jaal, J. Jassem, C. Jordaan, R. A. Juergens, D. Kaen, E. Kalinka-Warzocha, N. Karaseva, B. Karaszewska, A. Kazarnowicz, K. Kasahara, N. Katakami, T. Kato, T. Kawaguchi, J. H. Kim, K. Kishi, V. Kolek, M. Koleva, P. Kolman, L. Koubkova, R. Kowalyszyn, D. Kowalski, K. Koynov, D. Ksienski, T. Kurata, G. Kuusk, L. Kuzina, I. Laczo, G. E. I. Ladrera, K. Laktionov, G. Landers, S. Lazarev, G. Lerzo, K. Lesniewski Kmak, W. Li, C. K. Liam, I. Lifirenko, O. Lipatov, X. Liu, Z. Liu, S. H. Lo, V. Lopes, K. Lopez, S. Lu, G. Martinengo, L. Mas, M. Matrosova, R. Micheva, Z. Milanova, L. Miron, T. Mok, M. Molina, S. Murakami, Y. Nakahara, T. Q. Nguyen, T. Nishimura, A. Ochsenbein, T. Ohira, R. Ohman, C. K. Ong, G. Ostoros, X. Ouyang, E. Ovchinnikova, O. Ozyilkan, L. Petruzelka, X. D. Pham, P. Picon, B. Piko, A. Poltoratsky, O. Ponomarova, P. Popelkova, G. Purkalne, S. Qin, R. Ramlau, B. Rappaport, F. Rey, E. Richardet, J. Roubec, P. Ruff, A. Rusyn, H. Saka, J. Salas, M. Sandoval, L. Santos, T. Sawa, K. Seetalarom, M. Seker, N. Seki, F. Seolwane, L. Shepherd, S. Shevnya, A. K. Shimada, Y. Shparyk, I. Sinielnikov, D. Sirbu, O. Smaletz, J. P. H. Soares, A. Sookprasert, G. Speranza, V. Sriuranpong, Z. Stara, W .– C. Su, S. Suga wara, W. Szpak, K. Takahashi, N. Takigawa, H. Tanaka, J. Tan Chun Bing, Q. Tang, P. Taranov, H. Tejada, L. M. Tho, Y. Torii, D. Trukhyn, M. Turdean, H. Turna, G. Ursol, J. Vanasek, M. Varela, M. Vallejo, L. Vera, A .– P. Victorino, T. Vlasek, I. Vynnychenko, B. Wang, J. Wang, K. Wang, Y. Wu, K. Yamada, C .– H. Yang, T. Yokoyama, T. Yokoyama, H. Yoshioka, F. Yumuk, A. Zambrano, J. J. Zarba, O. Zarubenkov, M. Zemaitis, L. Zhang, X. Zhang, J. Zhao, C. Zhou, J. Zhou, Q. Zhou, A. Zippelius // The Lancet .– 2019 .– Vol. 393, iss. 10183 .– P. 1819–1830.; Seegobin, K. Immunotherapy in Non-Small Cell Lung Cancer With Actionable Mutations Other Than EGFR / K. Seegobin, U. Majeed, N. Wiest, R. Manochakian, Y. Lou, Y. Zhao // Frontiers in oncology .– 2021 .– Vol. 11 .– P. 750657.; Birchmeier, C. Met, metastasis, motility and more / C. Birchmeier, W. Birchmeier, E. Gherardi, G. F. Vande Woude // Nature reviews. Molecular cell biology .– 2003 .– Vol. 4, iss. 12 .– P. 915–925.; Olivero, M. Overexpression and activation of hepatocyte growth factor / scatter factor in human non-small-cell lung carcinomas / M. Olivero, M. Rizzo, R. Madeddu, C. Casadio, S. Pennacchietti, M. R. Nicotra, M. Prat, G. Maggi, N. Arena, P. G. Natali, P. M. Comoglio, M. F. Di Renzo // British journal of cancer .– 1996 .– Vol. 74, iss. 12 .– P. 1862–1868.; Ríos-Hoyo, A. Acquired Mechanisms of Resistance to Osimertinib-The Next Challenge / A. Ríos-Hoyo, L. Moliner, E. Arriola // Cancers .– 2022 .– Vol. 14, iss. 8.; Gherardi, E. Structural basis of hepatocyte growth factor / scatter factor and MET signalling / E. Gherardi, S. Sandin, M. V. Petoukhov, J. Finch, M. E. Youles, L .– G. Ofverstedt, R. N. Miguel, T. L. Blundell, G. F. Vande Woude, U. Skoglund, D. I. Svergun // Proceedings of the National Academy of Sciences of the United States of America .– 2006 .– Vol. 103, iss. 11 .– P. 4046–4051.; Duh, F. M. Gene structure of the human MET proto-oncogene / F. M. Duh, S. W. Scherer, L. C. Tsui, M. I. Lerman, B. Zbar, L. Schmidt // Oncogene .– 1997 .– Vol. 15, iss. 13 .– P. 1583–1586.; Gentile, A. The Met tyrosine kinase receptor in development and cancer / A. Gentile, L. Trusolino, P. M. Comoglio // Cancer metastasis reviews .– 2008 .– Vol. 27, iss. 1 .– P. 85–94.; Boccaccio, C. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway / C. Boccaccio, M. Andò, L. Tamagnone, A. Bardelli, P. Michieli, C. Battistini, P. M. Comoglio // Nature .– 1998 .– Vol. 391, iss. 6664 .– P. 285–288.; Kong-Beltran, M. Somatic mutations lead to an oncogenic deletion of met in lung cancer / M. Kong-Beltran, S. Seshagiri, J. Zha, W. Zhu, K. Bhawe, N. Mendoza, T. Holcomb, K. Pujara, J. Stinson, L. Fu, C. Severin, L. Rangell, R. Schwall, L. Amler, D. Wickramasinghe, R. Yauch // Cancer research .– 2006 .– Vol. 66, iss. 1 .– P. 283–289.; Frampton, G. M. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors / G. M. Frampton, S. M. Ali, M. Rosenzweig, J. Chmielecki, X. Lu, T. M. Bauer, M. Akimov, J. A. Bufill, C. Lee, D. Jentz, R. Hoover, S .– H. I. Ou, R. Salgia, T. Brennan, Z. R. Chalmers, S. Jaeger, A. Huang, J. A. Elvin, R. Erlich, A. Fichtenholtz, K. A. Gowen, J. Greenbowe, A. Johnson, D. Khaira, C. McMahon, E. M. Sanford, S. Roels, J. White, J. Greshock, R. Schlegel, D. Lipson, R. Yelensky, D. Morosini, J. S. Ross, E. Collisson, M. Peters, P. J. Stephens, V. A. Miller // Cancer discovery .– 2015 .– Vol. 5, iss. 8 .– P. 850–859.; Schrock, A. B. Characterization of 298 Patients with Lung Cancer Harboring MET Exon 14 Skipping Alterations / A. B. Schrock, G. M. Frampton, J. Suh, Z. R. Chalmers, M. Rosenzweig, R. L. Erlich, B. Halmos, J. Goldman, P. Forde, K. Leuenberger, N. Peled, G. P. Kalemkerian, J. S. Ross, P. J. Stephens, V. A. Miller, S. M. Ali, S .– H. I. Ou // Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer .– 2016 .– Vol. 11, iss. 9 .– P. 1493–1502.; Tong, J. H. MET Amplification and Exon 14 Splice Site Mutation Define Unique Molecular Subgroups of Non-Small Cell Lung Carcinoma with Poor Prognosis / J. H. Tong, S. F. Yeung, A. W. H. Chan, L. Y. Chung, S. L. Chau, R. W. M. Lung, C. Y. Tong, C. Chow, E. K. Y. Tin, Y. H. Yu, H. Li, Y. Pan, W. P. Chak, C. S. H. Ng, T. S. K. Mok, K. F. To // Clinical cancer research : an official journal of the American Association for Cancer Research .– 2016 .– Vol. 22, iss. 12 .– P. 3048–3056.; Paik, P. K. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping / P. K. Paik, A. Drilon, P .– D. Fan, H. Yu, N. Rekhtman, M. S. Ginsberg, L. Borsu, N. Schultz, M. F. Berger, C. M. Rudin, M. Ladanyi // Cancer discovery .– 2015 .– Vol. 5, iss. 8 .– P. 842–849.; Kawakami, H. Targeting MET Amplification as a New Oncogenic Driver / H. Kawakami, I. Okamoto, W. Okamoto, J. Tanizaki, K. Nakagawa, K. Nishio // Cancers .– 2014 .– Vol. 6, iss. 3 .– P. 1540–1552.; Engelman, J. A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling / J. A. Engelman, K. Zejnullahu, T. Mitsudomi, Y. Song, C. Hyland, J. O. Park, N. Lindeman, C .– M. Gale, X. Zhao, J. Christensen, T. Kosaka, A. J. Holmes, A. M. Rogers, F. Cappuzzo, T. Mok, C. Lee, B. E. Johnson, L. C. Cantley, P. A. Jänne // Science (New York, N. Y.) .– 2007 .– Vol. 316, iss. 5827 .– P. 1039–1043.; Go, H. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer / H. Go, Y. K. Jeon, H. J. Park, S .– W. Sung, J .– W. Seo, D. H. Chung // Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer .– 2010 .– Vol. 5, iss. 3 .– P. 305–313.; Caparica, R. Responses to Crizotinib Can Occur in High-Level MET-Amplified Non-Small Cell Lung Cancer Independent of MET Exon 14 Alterations / R. Caparica, C. T. Yen, R. Coudry, S .– H. I. Ou, M. Varella-Garcia, D. R. Camidge, G. de Castro // Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer .– 2017 .– Vol. 12, iss. 1 .– P. 141–144.; Ou, S .– H. I. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification / S .– H. I. Ou, E. L. Kwak, C. Siwak-Tapp, J. Dy, K. Bergethon, J. W. Clark, D. R. Camidge, B. J. Solomon, R. G. Maki, Y .– J. Bang, D .– W. Kim, J. Christensen, W. Tan, K. D. Wilner, R. Salgia, A. J. Iafrate // Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer .– 2011 .– Vol. 6, iss. 5 .– P. 942–946.; Davies, K. D. Dramatic Response to Crizotinib in a Patient with Lung Cancer Positive for an HLA-DRB1-MET Gene Fusion / K. D. Davies, T. L. Ng, A. Estrada-Bernal, A. T. Le, P. R. Ennever, D. R. Camidge, R. C. Doebele, D. L. Aisner // JCO precision oncology .– 2017 .– Vol. 2017, iss. 1.; Danilkovitch-Miagkova, A. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors / A. Danilkovitch-Miagkova, B. Zbar // Journal of Clinical Investigation .– 2002 .– Т. 109, № 7 .– С. 863–867.; Park, S. High MET copy number and MET overexpression : poor outcome in non-small cell lung cancer patients / S. Park, Y .– L. Choi, C. O. Sung, J. An, J. Seo, M .– J. Ahn, J. S. Ahn, K. Park, Y. K. Shin, O. C. Erkin, K. Song, J. Kim, Y. M. Shim, J. Han // Histology and histopathology .– 2012 .– Vol. 27, iss. 2 .– P. 197–207.; Kwon, D. MET exon 14 skipping mutation in triple-negative pulmonary adenocarcinomas and pleomorphic carcinomas : An analysis of intratumoral MET status heterogeneity and clinicopathological characteristics / D. Kwon, J. Koh, S. Kim, H. Go, Y. A. Kim, B. Keam, T. M. Kim, D .– W. Kim, Y. K. Jeon, D. H. Chung // Lung cancer (Amsterdam, Netherlands) .– 2017 .– Vol. 106 .– P. 131–137.; Spigel, D. R. Treatment Rationale Study Design for the MetLung Trial : A Randomized, Double-Blind Phase III Study of Onartuzumab (MetMAb) in Combination With Erlotinib Versus Erlotinib Alone in Patients Who Have Received Standard Chemotherapy for Stage IIIB or IV Met-Positive Non-Small-Cell Lung Cancer / D. R. Spigel, M. J. Edelman, T. Mok, K. O’Byrne, L. Paz-Ares, W. Yu, K. Rittweger, H. Thurm // Clinical lung cancer .– 2012 .– Vol. 13, iss. 6 .– P. 500–504.; Scagliotti, G. V. Rationale and design of MARQUEE : a phase III, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer / G. V. Scagliotti, S. Novello, J. H. Schiller, V. Hirsh, L. V. Sequist, J .– C. Soria, J. von Pawel, B. Schwartz, R. von Roemeling, A. B. Sandler // Clinical lung cancer .– 2012 .– Vol. 13, iss. 5 .– P. 391–395.; Camidge, D. R. Telisotuzumab vedotin (Teliso-V) monotherapy in patients (pts) with previously treated c-Met–overexpressing (OE) advanced non-small cell lung cancer (NSCLC) / D. R. Camidge, J. Bar, H. Horinouchi, J. W. Goldman, F. V. Moiseenko, E. Filippova, I. Cicin, P. A. Bradbury, N. Daaboul, P. Tomasini, T .– E. Ciuleanu, D. Planchard, M. Moskovitz, N. Girard, J. Y. Jin, M. Dunbar, E. Bolotin, J. Looman, C. Ratajczak, S. Lu // Journal of Clinical Oncology .– 2022 .– Т. 40, 16_suppl .– С. 9016.; Neal, J. W. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512) : a randomised, controlled, open-label, multicentre, phase 2 trial / J. W. Neal, S. E. Dahlberg, H. A. Wakelee, S. C. Aisner, M. Bowden, Y. Huang, D. P. Carbone, G. J. Gerstner, R. E. Lerner, J. L. Rubin, T. K. Owonikoko, P. J. Stella, P. D. Steen, A. A. Khalid, S. S. Ramalingam // The Lancet. Oncology .– 2016 .– Vol. 17, iss. 12 .– P. 1661–1671.; Camidge, D. R. Efficacy and safety of crizotinib in patients with advanced c-MET -amplified non-small cell lung cancer (NSCLC) / D. R. Camidge, S .– H. I. Ou, G. Shapiro, G. A. Otterson, L. C. Villaruz, M. A. Villalona-Calero, A. J. Iafrate, M. Varella-Garcia, S. Dacic, S. Cardarella, W. Zhao, L. Tye, P. Stephenson, K. D. Wilner, L. P. James, M. A. Socinski // Journal of Clinical Oncology .– 2014 .– Т. 32, 15_suppl .– С. 8001.; Zou, H. Y. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms / H. Y. Zou, Q. Li, J. H. Lee, M. E. Arango, S. R. McDonnell, S. Yamazaki, T. B. Koudriakova, G. Alton, J. J. Cui, P .– P. Kung, M. D. Nambu, G. Los, S. L. Bender, B. Mroczkowski, J. G. Christensen // Cancer research .– 2007 .– Vol. 67, iss. 9 .– P. 4408–4417.; Shalata, W. Crizotinib in MET Exon 14-Mutated or MET-Amplified in Advanced Disease Non-Small Cell Lung Cancer : A Retrospective, Single Institution Experience / W. Shalata, A. Yakobson, S. Weissmann, E. Oscar, M. Iraqi, W. Kian, N. Peled, A. Agbarya // Oncology .– 2022 .– Vol. 100, iss. 9 .– P. 467–474.; Lara, M. S. Preclinical Evaluation of MET Inhibitor INC-280 With or Without the Epidermal Growth Factor Receptor Inhibitor Erlotinib in Non-Small-Cell Lung Cancer / M. S. Lara, W. S. Holland, D. Chinn, R. A. Burich, P. N. Lara, D. R. Gandara, K. Kelly, P. C. Mack // Clinical lung cancer .– 2017 .– Vol. 18, iss. 3 .– P. 281–285.; Jürgen Wolf, M. D., Takashi Seto, M. D., Ji-Youn Han, M. D., Ph. D., Noemi Reguart, M. D., Ph. D., Edward B. Garon, M. D., Harry J. M. Groen, M. D., Ph. D., Daniel S. W. Tan, M. D., Ph. D., Toyoaki Hida, M. D., Ph. D., Maja de Jonge, M. D., Ph. D., Sergey V. Orlov, M. D., Egbert F. Smit, M. D., Ph. D., Pierre-Jean Souquet, M. D., et al. Capmatinib in MET Exon 14–Mutated or MET-Amplified Non–Small-Cell Lung Cancer / Jürgen Wolf, M. D., Takashi Seto, M. D., Ji-Youn Han, M. D., Ph. D., Noemi Reguart, M. D., Ph. D., Edward B. Garon, M. D., Harry J. M. Groen, M. D., Ph. D., Daniel S. W. Tan, M. D., Ph. D., Toyoaki Hida, M. D., Ph. D., Maja de Jonge, M. D., Ph. D., Sergey V. Orlov, M. D., Egbert F. Smit, M. D., Ph. D., Pierre-Jean Souquet, M. D., et al. // N Engl J Med .– 03.09.2020 .– Т. 383 .– С. 2020.; Illini, O. Real-world experience with capmatinib in MET exon 14-mutated non-small cell lung cancer (RECAP) : a retrospective analysis from an early access program / O. Illini, H. Fabikan, A. Swalduz, A. Vikström, D. Krenbek, M. Schumacher, E. Dudnik, M. Studnicka, R. Öhman, R. Wurm, L. Wannesson, N. Peled, W. Kian, J. Bar, S. Daher, A. Addeo, O. Rotem, G. Pall, A. Zer, A. Saad, T. Cufer, H. G. Sorotsky, S. M. S. Hashemi, K. Mohorcic, R. Stoff, Y. Rovitsky, S. Keren-Rosenberg, T. Winder, C. Weinlinger, A. Valipour, M. J. Hochmair // Therapeutic advances in medical oncology .– 2022 .– Vol. 14 .– 17588359221103206.; Friese-Hamim, M. The selective c-Met inhibitor tepotinib can overcome epidermal growth factor receptor inhibitor resistance mediated by aberrant c-Met activation in NSCLC models / M. Friese-Hamim, F. Bladt, G. Locatelli, U. Stammberger, A. Blaukat // American Journal of Cancer Research .– 2017 .– Vol. 7, iss. 4 .– P. 962–972.; Le, X. Tepotinib Efficacy and Safety in Patients with MET Exon 14 Skipping NSCLC : Outcomes in Patient Subgroups from the VISION Study with Relevance for Clinical Practice / X. Le, H. Sakai, E. Felip, R. Veillon, M. C. Garassino, J. Raskin, A. B. Cortot, S. Viteri, J. Mazieres, E. F. Smit, M. Thomas, W. T. Iams, B. C. Cho, H. R. Kim, J. C .– H. Yang, Y .– M. Chen, J. D. Patel, C. M. Bestvina, K. Park, F. Griesinger, M. Johnson, M. Gottfried, C. Britschgi, J. Heymach, E. Sikoglu, K. Berghoff, K .– M. Schumacher, R. Bruns, G. Otto, P. K. Paik // Clinical cancer research : an official journal of the American Association for Cancer Research .– 2022 .– Vol. 28, iss. 6 .– P. 1117–1126.; Ahn, M. P1.01–134 SAVANNAH : Phase II Trial of Osimertinib + Savolitinib in EGFR-Mutant, MET-Driven Advanced NSCLC, Following Prior Osimertinib / M. Ahn, M. Cantarini, P. Frewer, G. Hawkins, J. Peters, P. Howarth, G. Ahmed, T. Sahota, R. Hartmaier, X. Li-Sucholeiki, G. Oxnard // Journal of Thoracic Oncology .– 2019 .– Т. 14, № 10 .– S415-S416.; Zaborowska-Szmi, M. Savolitinib for non-small cell lung cancer / M. Zaborowska-Szmi, S. Szmit, M. Krzakowski, D. M. Kowalski // Drugs of today (Barcelona, Spain : 1998) .– 2023 .– Vol. 59, iss. 1 .– P. 17–36.; Miranda, O. Status of Agents Targeting the HGF / c-Met Axis in Lung Cancer / O. Miranda, M. Farooqui, J. M. Siegfried // Cancers .– 2018 .– Vol. 10, iss. 9.; Murakami, H. Preliminary Results of Safety and PK of Telisotuzumab Vedotin (T) in Japanese Patients with Advanced Solid Tumors / H. Murakami, K. Wakuda, H. Kenmotsu, A. Todaka, T. Yokota, N. Yamamoto, T. Shimizu, A. Shimomura, K. Yonemori, C. Ocampo, A. Parikh, K. Fukasawa, I. Matsumoto, K. Suzuki, Y. Fujiwara // Annals of Oncology .– 2019 .– Т. 30 .– vi125.; https://www.malignanttumors.org/jour/article/view/1167
-
15Academic Journal
المؤلفون: Э.Э. Икромов, А.Е. Кучбоев, О.О. Амиров, Э.Ф. Икромов
المصدر: Science and Education, Vol 4, Iss 6, Pp 175-183 (2023)
مصطلحات موضوعية: фарғона водийси, кўл бақаси, трематода, морфометрия, амплификация, днк полимераза, Science (General), Q1-390, Education (General), L7-991
-
16Academic Journal
المؤلفون: L. V. Bolotina, A. L. Kornietskaya, A. A. Kachmazov, N. S. Prizova, A. A. Paichadze, T. V. Ustinova, T. I. Deshkina, S. F. Evdokimova, Л. В. Болотина, А. Л. Корниецкая, А. А. Качмазов, Н. С. Призова, А. А. Пайчадзе, Т. В. Устинова, Т. И. Дешкина, С. Ф. Евдокимова
المصدر: Meditsinskiy sovet = Medical Council; № 9 (2022); 179-184 ; Медицинский Совет; № 9 (2022); 179-184 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: герминальные мутации, PARP inhibitors, olaparib, HER2neu amplification, germline mutation, PARP-ингибиторы, олапариб, амплификация HER2neu
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/6931/6228; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. https://doi.org/10.3322/caac.21551.; Litton J.K., Rugo H.S., Ettl J., Hurvitz SA., Goncalves A., Lee K.H. et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N Engl J Med. 2018;379(8):753-763. https://doi.org/10.1056/NEJMoa1802905.; Robson M., Im S.A., Senkus E., Xu B., Domchek S.M., Masuda N. et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med. 2017;377(6):523-533. https://doi.org/10.1056/NEJMoa1706450.; Malone K.E., Daling J.R., Doody D.R., Hsu L., Bernstein L., Coates R.J. et al. Prevalence and Predictors of BRCA1 and BRCA2 Mutations in a Population-Based Study of Breast Cancer in White and Black American Women Ages 35 to 64 Years. Cancer Res. 2006;66(16):8297-8308. https://doi.org/10.1158/0008-5472.CAN-06-0503.; Engel C., Fischer C. Breast Cancer Risks and Risk Prediction Models. Breast Care (Basel). 2015;10(1):7-12. https://doi.org/10.1159/000376600.; Antoniou A., Pharoah P.D.P., Narod S., Risch H.A., Eyfjord J.E., Hopper J.L. et al. Average Risks of Breast and Ovarian Cancer Associated with BRCA1 or BRCA2 Mutations Detected in Case Series Unselected for Family History: A Combined Analysis of 22 Studies. Am J Hum Genet. 2003;72(5):1117-1130. https://doi.org/10.1086/375033.; Chen S., Parmigiani G. Meta-Analysis of BRCA1 and BRCA2 Penetrance. J Clin Oncol. 2007;25(11):1329-1333. https://doi.org/10.1200/JCO.2006.09.1066.; Mavaddat N., Barrowdale D., Andrulis I.L., Domchek S.M., Eccles D., Nevanlinna H. et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev. 2012;21(1):134-147. https://doi.org/10.1158/1055-9965.EPI-11-0775.; Levy-Lahad E., Friedman E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2007;96(1):11-15. https://doi.org/10.1038/sj.bjc.6603535.; Wang X., Liu H., Maimaitiaili A., Zhao G., Li S., Lv Z. et al. Prevalence of BRCA1 and BRCA2 gene mutations in Chinese patients with high-risk breast cancer. Mol Genet Genomic Med. 2019;7(6):e677. https://doi.org/10.1002/mgg3.677.; Thompson D., Easton D. The Genetic Epidemiology of Breast Cancer Genes. J Mammary Gland Biol Neoplasia. 2004;9(3):221-236. https://doi.org/10.1023/B:JOMG.0000048770.90334.3b.; Foulkes W.D. Germline BRCA1 Mutations and a Basal Epithelial Phenotype in Breast Cancer. J Natl Cancer Inst. 2003;95(19):1482-1485. https://doi.org/-10.1093/jnci/djg050.; Ratnam K., Low J.A. Current Development of Clinical Inhibitors of Poly(ADP-Ribose) Polymerase in Oncology. Clin Cancer Res. 2007;13(5):1383-1388. https://doi.org/10.1158/1078-0432.CCR-06-2260.; Lord C.J., Ashworth A. Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol. 2008;8(4):363-369. https://doi.org/10.1016/j.coph.2008.06.016.; Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair.J Clin Oncol. 2008;26(22):3785-3790. https://doi.org/10.1200/JCO.2008.16.0812.; Lord C.J., Ashworth A. PARP Inhibitors: The First Synthetic Lethal Targeted Therapy. Science. 2017;355(6330):1152-1158. https://doi.org/10.1126/science.aam7344.; Shukla M.A., Barrera A.G., Gruschkus S.K., Layman R.M., Murthy R.K., Arun B.K. Abstract PS4-31: Characteristics of HER2/neu positive breast cancer among patients with and without germline BRCAmutations. Cancer Res. 2021;81 (4_Suppl.):PS4-31. https://doi.org/10.1158/1538-7445.SABCS20-PS4-31; Evans D.G., Lalloo F., Howell S., Verhoe S., Woodward E.R., Howell A. Low prevalence of HER2 positivity amongst BRCA1 and BRCA2 mutation carriers and in primary BRCA screens. Breast Cancer Res Treat. 2016;155(3):597-601. https://doi.org/10.1007/s10549-016-3697-z.; Garda-Parra J., Dalmases A., Morancho B., Arpí O., Menendez S., Sabbaghi M. et al. Poly (ADP-ribose) polymerase ihibition enhances trastuzumab antitumour activity in HER2 overexpressing breast cancer. Eur J Cancer. 2014;50(15):2725-2734. https://doi.org/10.1016/j.ejca.2014.07.004.; Oh K.S., Nam A.R., Bang J.H., Seo H.R., Kim J.M., Yoon J. et al. Abstract 1079: A synthetic lethal strategy using PARP and ATM inhibition for overcoming trastuzumab-resistance in HER2-positive cancers. Cancer Res. 2021;81 (13_Suppl.):1079. https://doi.org/10.1158/1538-7445.AM2021-1079; Frenel J.S., Dalenc F., Pistilli B., de La Motte Rouge T., Levy C., Mouret--Reynier M.A. et al. 304P ESR1 mutations and outcomes in BRCA1/2 or PALB2 germline mutation carriers receiving first line aromatase inhibitor + palbociclib (AI+P) for metastatic breast cancer (MBC) in the PADA-1 trial. Ann Oncol. 2020;31:S364. https://doi.org/10.1016/j.annonc.2020.08.406; Zundelevich A., Dadiani M., Kahana-Edwin S., Itay A., Sella T., Gadot M. et al. Correction to: ESR1 mutations are frequent in newly diagnosed metastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis. 2020 г. Breast Cancer Res. 2020;22(1):28. https://doi.org/10.1186/s13058-020-01265-y.; Moeder C.B., Giltnane J.M., Harigopal M., Molinaro A., Robinson A., Gelmon K. et al. Quantitative Justification of the Change From 10% to 30% for Human Epidermal Growth Factor Receptor 2 Scoring in the American Society of Clinical Oncology/College of American Pathologists Guidelines: Tumor Heterogeneity in Breast Cancer and Its Implications for Tissue Microarray - Based Assessment of Outcome. J Clin Oncol. 2007;25(34):5418-5425. https://doi.org/10.1200/JCO.2007.12.8033.; Seol H. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol. 2012;25(7): 938-948. https://doi.org/10.1038/modpathol.2012.36.; Lee H.J., Seo A.N., Kim E.J., Jang M.H., Suh K.J., Ryu H.S. et al. HER2 Heterogeneity Affects Trastuzumab Responses and Survival in Patients With HER2-Positive Metastatic Breast Cancer. Am J Clin Pathol. 2014;142(6):755-766. https://doi.org/10.1309/AJCPIRL4GUVGK3YX.; Lee K., Jang M.H., Chung Y.R., Lee Y., Kang E., Kim S.W. et al. Prognostic significance of centromere 17 copy number gain in breast cancer depends on breast cancer subtype. Hum Pathol. 2017;61:111-120. https://doi.org/10.1016/j.humpath.2016.12.004.; Hanna W.M., Ruschoff J., Bilous M., Coudry R.A., Dowsett M., Osamura R.Y. et al. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol. 2014;27(1):4-18. https://doi.org/10.1038/modpathol.2013.103.; Ahn S., Kim H.J., Kim M., Chung Y.R., Kang E., Kim E.K. et al. Negative Conversion of Progesterone Receptor Status after Primary Systemic Therapy Is Associated with Poor Clinical Outcome in Patients with Breast Cancer. Cancer Res Treat. 2018;50(4):1418-1432. https://doi.org/10.4143/crt.2017.552.; De La Cruz L.M., Harhay M.O., Zhang P., Ugras S. Impact of Neoadjuvant Chemotherapy on Breast Cancer Subtype: Does Subtype Change and, if so, How?: IHC Profile and Neoadjuvant Chemotherapy. Ann Surg Oncol. 2018;25(12):3535-3540. https://doi.org/10.1245/s10434-018-6608-1.; Schrijver W.A.M.E., Suijkerbuijk K.P.M., van Gils C.H., van der Wall E., Moelans C.B., van Diest P.J. Receptor Conversion in Distant Breast Cancer Metastases: A Systematic Review and Meta-analysis. J Natl Cancer Inst. 2018;110(6):568-580. https://doi.org/10.1093/jnci/djx273.; https://www.med-sovet.pro/jour/article/view/6931
-
17Academic Journal
المؤلفون: Volkov A.A., Dolgova A.S., Dedkov V.G.
المصدر: Russian Journal of Infection and Immunity; Vol 12, No 1 (2022); 9-20 ; Инфекция и иммунитет; Vol 12, No 1 (2022); 9-20 ; 2313-7398 ; 2220-7619
مصطلحات موضوعية: CRISPR/Cas, molecular diagnostics, Cas12, Cas13, isothermal amplification, молекулярная диагностика, изотермическая амплификация
وصف الملف: application/pdf
Relation: https://iimmun.ru/iimm/article/view/1843/1427; https://iimmun.ru/iimm/article/downloadSuppFile/1843/7408; https://iimmun.ru/iimm/article/downloadSuppFile/1843/7409; https://iimmun.ru/iimm/article/downloadSuppFile/1843/7410; https://iimmun.ru/iimm/article/downloadSuppFile/1843/7411; https://iimmun.ru/iimm/article/downloadSuppFile/1843/7412; https://iimmun.ru/iimm/article/downloadSuppFile/1843/7413; https://iimmun.ru/iimm/article/downloadSuppFile/1843/7555; https://iimmun.ru/iimm/article/downloadSuppFile/1843/7621; https://iimmun.ru/iimm/article/view/1843
-
18Conference
المؤلفون: Ткаченко И.В., Чепуштанова О.В., Татаринцева Е.А.
مصطلحات موضوعية: генотип, ДНК-исследование, полимеразная цепная реакция (ПЦР), амплификация, генетическая экспертиза
Relation: https://doi.org/10.5281/zenodo.4433204; https://doi.org/10.5281/zenodo.4433205; oai:zenodo.org:4433205
-
19Academic Journal
المؤلفون: Дмитрий Павлович Гладин, Александр Михайлович Королюк, Ирина Владимировна Дробот, Надежда Сергеевна Козлова, Ирина Даниловна Анненкова
المصدر: Российские биомедицинские исследования, Vol 6, Iss 3 (2021)
مصطلحات موضوعية: Кэри Мюллис, полимеразная цепная реакция, Tag полимераза, амплификация, Medicine (General), R5-920
وصف الملف: electronic resource
-
20Conference
المؤلفون: Лебедева, С. А., Lebedeva, S. A.
مصطلحات موضوعية: PRESCHOOL CHILDHOOD, MODERN PRESCHOOLER, DEVELOPMENTAL AMPLIFICATION, ДОШКОЛЬНОЕ ДЕТСТВО, СОВРЕМЕННЫЙ ДОШКОЛЬНИК, АМПЛИФИКАЦИЯ РАЗВИТИЯ
وصف الملف: application/pdf
Relation: 30 лет Конвенции о правах ребенка: современные вызовы и пути решения проблем в сфере защиты прав детей. - Екатеринбург, 2020; Лебедева, С. А. Детство есть самоценная жизнь / С. А. Лебедева // 30 лет Конвенции о правах ребенка: современные вызовы и пути решения проблем в сфере защиты прав детей : сборник материалов Международной научно-практической конференции, 17 ноября 2020 г., Екатеринбург / Рос. гос. проф.-пед. ун-т. - Екатеринбург: РГППУ, 2020. - С. 518-522.; https://elar.rsvpu.ru/handle/123456789/32795