يعرض 1 - 20 نتائج من 4,354 نتيجة بحث عن '"активности"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Book

    المصدر: Development of the Russian socio-economic system: challenges and prospects; ; Экономика и право: проблемы, стратегия, мониторинг

    وصف الملف: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-98-1; https://phsreda.com/e-articles/10668/Action10668-115226.pdf; АФК «Система» в 2024 году начнет строить горнолыжный комплекс в Шерегеше [Электронный ресурс]. – Режим доступа: https://www.interfax.ru/russia/924520 (дата обращения: 25.10.2024).; Белоусов А.В. Механизм привлечения капитала в развитии промышленного производства России: дис. … канд. экон. наук / А.В. Белоусов. – Нальчик, 1993. – C. 7.; В Кемеровской области выросло производство шампиньонов [Электронный ресурс]. – Режим доступа: https://finance.rambler.ru/economics/48008894-v-kemerovskoy-oblasti-vyroslo-proizvodstvo-shampinonov/ (дата обращения: 26.10.2024).; Для обслуживания горнодобывающей техники Кузбасса и других регионов открыт новый центр технической поддержки БЕЛАЗ // Министерство угольной промышленности Кузбасса: сайт [Электронный ресурс]. – Режим доступа: https://mupk42.ru/ru/press-center/news/novosti-organizatsii/769605/ (дата обращения: 25.10.2024).; Инвестиции в охрану окружающей среды в Кузбассе в 2014–2016 году снизились на 41% [Электронный ресурс]. – Режим доступа: https://www.kommersant.ru/doc/3410227?ysclid=m2pr7xhc635036667 (дата обращения: 26.10.2024).; Инвестиционный портал Кузбасса: сайт [Электронный ресурс]. – Режим доступа: https://kuzbass-invest.ru/ru/projects/6128c4a96f71c3351400049a (дата обращения: 26.10.2024).; Инвестор фанерного завода на Кузбассе попал под иск налоговиков о банкротстве [Электронный ресурс]. – Режим доступа: https://rusbankrot.ru/new-claim/investor_fanernogo_zavoda_na_kuzbasse_popal_pod_isk_nalogovikov_o_bankrotstve/ (дата обращения: 25.10.2024).; Интернет-портал Кемеровостата: сайт [Электронный ресурс]. – Режим доступа: https://view.officeapps.live.com (дата обращения: 26.10.2024).; Лавренков И. Комбинат подвинули в сроках / И. Лавренков [Электронный ресурс]. – Режим доступа: https://www.kommersant.ru/doc/6321918 (дата обращения: 25.10.2024).; Матющенко Ю. Птицефабрика пошла по грибы / Ю. Матющенко [Электронный ресурс]. – Режим доступа: https://www.kommersant.ru/doc/3881957 (дата обращения: 26.10.2024).; Первый в РФ центр техобслуживания «БелАЗ» открыли в кузбасском моногороде Белово [Электронный ресурс]. – Режим доступа: https://tass.ru/ekonomika/9282335 (дата обращения: 25.10.2024).; Сергей Цивилев подписал соглашение о строительстве гостиничного комплекса на территории курорта «Шерегеш» [Электронный ресурс]. – Режим доступа: https://ako.ru/news/detail/sergey-tsivilev-podpisal-soglashenie-o-stroitelstve-gostinichnogo-kompleksa-na-territorii-kurorta-sh (дата обращения: 25.10.2024).; Статистический ежегодник «Кузбасс». 2017 [Электронный ресурс]. – Режим доступа: https://service.kemerovostat.gks.ru (дата обращения: 26.10.2024).; Статистический ежегодник «Кузбасс». 2022 // Интернет-портал Кемеровостата: сайт [Электронный ресурс]. – Режим доступа: https://service.kemerovostat.gks.ru (дата обращения: 26.10.2024).; Стратегирование экономического и инвестиционного развития Кузбасса / В.Л. Квинт, М.К. Алимурадов, К.Л. Астапов [и др.]. – Кемерово: Кемеровский государственный университет, 2021. – 364 с. DOI 10.21603/978-5-8353-2724-9. EDN VOLPIU; Теория и методология региональной экономической политики / Р.М. Котов, Е.Г. Казанцева, О.С. Карпова, А.М. Дворовенко. – М.: Русайнс, 2023. – 138 с. EDN IASFVJ; Тошматов С.Р. Инвестиционная политика структурной перестройки переходной экономики в центральных азиатских странах: автореф. дис. … канд. экон. наук / С.Р. Тошматов. – СПб., 1995. – C. 9.; Brusnikin K.N. Scenarios for the development of regional production and economic systems based on industrial parks / K.N. Brusnikin, E.I. Piskun, N.S. Bondarev // E3S Web of Conferences (Voronezh, 9–13 октября 2023 года). Vol. 458. Voronezh: EDP Sciences, 2023. P. 05020. DOI 10.1051/e3sconf/202345805020. EDN WNGGNK; Brusnikin K.N. Formation of strategic alternatives for the development of regional production and economic systems in industrial parks / K.N. Brusnikin, E.I. Piskun, N.S. Bondarev // E3S Web of Conferences (Voronezh, 9–13 октября 2023 года). Vol. 458. – Voronezh: EDP Sciences, 2023. – P. 05021. DOI 10.1051/e3sconf/202345805021. EDN ZUSURC; Cosmos Шерегеш [Электронный ресурс]. – Режим доступа: https://www.tadviser.ru/index.php/Компания:Cosmos_Шерегеш (дата обращения: 25.10.2024).; https://phsreda.com/article/115226/discussion_platform

  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: Psychological and Pedagogical Research – Tula Region; ; Психолого-педагогические исследования – Тульскому региону

    وصف الملف: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-36-3; https://phsreda.com/e-articles/10611/Action10611-111905.pdf; Выготский Л.С. Собрание сочинений / Л.С. Выготский; под ред. Д.Б. Эльконина. – В 6 т. Т. 4. Детская психология. – М.: Педагогика, 1984. – 432 с.; Ильин Е.П. Психология творчества, креативности, одаренности / Е.П. Ильин. – СПб.: Питер, 2012. – 434 с. EDN VICFGR; https://phsreda.com/files/Books/10611/Cover-10611.jpg?req=111905; https://phsreda.com/article/111905/discussion_platform

  8. 8
    Academic Journal

    المصدر: Socio-Pedagogical Issues of Education and Upbringing; ; Социально-педагогические вопросы образования и воспитания

    وصف الملف: text/html

    Relation: https://phsreda.com/e-articles/10581/Action10581-110014.pdf; Российский кардиологический журнал. – 2017. – №4 (144). – С. 44–48.; Макарова Г.А. Спортивная медицина: учебник / Г.А. Макарова. – М.: Советский спорт, 2002. – С. 129–136. EDN PYFNRP; Хабарова О.Ю. Анализ морфофункциональных показателей организма студента с избыточной массой тела // Актуальные вопросы гуманитарных и социальных наук: от теории к практике: материалы II Всероссийской научно-практической конференции с международным участием. – Чебоксары, 2023. – С. 285–288. – EDN GPZIQC; https://phsreda.com/files/Books/10581/Cover-10581.jpg?req=110014; https://phsreda.com/article/110014/discussion_platform

  9. 9
    Academic Journal

    المصدر: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 5 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 602-608 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 5 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 602-608 ; 2181-3469

    وصف الملف: application/pdf

  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: Образование и наука № 06 (2024); Кружкова, О. В. Особенности восприятия учащимися городских граффити с выраженным воспитательным потенциалом / О. В. Кружкова, М. Р. Бабикова, С. Д. Робин // Образование и наука. — 2024. — № 6. — С. 68-94. — 10.17853/1994-5639-2024-6-68-94.; https://elar.rsvpu.ru/handle/123456789/44613

  11. 11
    Academic Journal

    المساهمون: The work was carried out with the financial support of the Russian Science Foundation (project No. 23-25-00276), Работа выполнена при финансовой поддержке Российского научного фонда (проект № 23-25-00276)

    المصدر: Advances in Molecular Oncology; Том 11, № 2 (2024); 8-28 ; Успехи молекулярной онкологии; Том 11, № 2 (2024); 8-28 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/673/344; Haber D.A., Gray N.S., Baselga J. The evolving war on cancer. Cell 2011;145(1):19–24. DOI:10.1016/j.cell.2011.03.026; Heng J., Heng H.H. Genome chaos, information creation, and cancer emergence: searching for new frameworks on the 50 th anniversary of the “War on Cancer.” Genes (Basel) 2021;13(1):101. DOI:10.3390/genes13010101; Martincorena I., Roshan A., Gerstung M. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015;348(6237):880–6. DOI:10.1126/science.aaa6806; Yokoyama A., Kakiuchi N., Yoshizato T. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 2019;565(7739):312–7. DOI:10.1038/s41586-018-0811-x; Lee-Six H., Olafsson S., Ellis P. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 2019;574(7779):532–7. DOI:10.1038/s41586-019-1672-7; Keogh M.J., Wei W., Aryaman J. et al. High prevalence of focal and multifocal somatic genetic variants in the human brain. Nat Commun 2018;9(1):4257. DOI:10.1038/s41467-018-06331-w; Yizhak K., Aguet F., Kim J. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 2019;364(6444):eaaw0726. DOI:10.1126/science.aaw0726; Maher B. ENCODE: the human encyclopaedia. Nature 2012;489(7414): 46–8. DOI:10.1038/489046a; Nebbioso A., Tambaro F.P., Dell’Aversana C., Altucci L. Cancer epigenetics: moving forward. PLoS Genet 2018;14(6):e1007362. DOI:10.1371/journal.pgen.1007362; Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12(1):31–46. DOI:10.1158/2159-8290.CD-21-1059; Flavahan W.A., Gaskell E., Bernstein B.E. Epigenetic plasticity and the hallmarks of cancer. Science 2017;357(6348):eaal2380. DOI:10.1126/science.aal2380; Hendrix M.J.C., Seftor E.A., Seftor R.E.B. et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 2007;7(4):246–55. DOI:10.1038/nrc2108; Lu Y., Chan Y.T., Tan H.Y. et al. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 2020;19(1):79. DOI:10.1186/s12943-020-01197-3; de Thé H. Differentiation therapy revisited. Nat Rev Cancer 2018;18(2):117–27. DOI:10.1038/nrc.2017.103; Fulghieri P., Stivala L.A., Sottile V. Modulating cell differentiation in cancer models. Biochem Soc Trans 2021;49(4):1803–16. DOI:10.1042/BST20210230; Holoch D., Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 2015;16(2):71–84. DOI:10.1038/nrg3863; Spadafora C. The epigenetic basis of evolution. Prog Biophys Mol Biol 2023;178:57–69. DOI:10.1016/j.pbiomolbio.2023.01.005; Hubisz M.J., Pollard K.S. Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution. Curr Opin Genet Dev 2014;29:15–21. DOI:10.1016/j.gde.2014.07.005; Lander E.S., Linton L.M., Birren B. et al. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860–921. DOI:10.1038/35057062; Bourque G., Burns K.H., Gehring M. et al. Ten things you should know about transposable elements. Genome Biol 2018;19(1):199. DOI:10.1186/s13059-018-1577-z; Richardson S.R., Doucet A.J., Kopera H.C. et al. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 2015;3(2):MDNA3-0061-2014. DOI:10.1128/microbiolspec.MDNA3-0061-2014; Houck C.M., Rinehart F.P., Schmid C.W. A ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol 1979;132(3):289–306. DOI:10.1016/0022-2836(79)90261-4; Gianfrancesco O., Geary B., Savage A.L. et al. The role of SINE-VNTR-Alu (SVA) retrotransposons in shaping the human genome. Int J Mol Sci 2019;20(23):5977. DOI:10.3390/ijms20235977; Ivics Z. Genomic parasites and genome evolution. Genome Biol 2009;10(4):306. DOI:10.1186/gb-2009-10-4-306; Hancks D.C., Goodier J.L., Mandal P.K. et al. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 2011;20(17):3386–400. DOI:10.1093/hmg/ddr245; Brouha B., Schustak J., Badge R.M. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 2003;100(9):5280–5. DOI:10.1073/pnas.0831042100; Belancio V.P., Roy-Engel A.M., Deininger P.L. All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol 2010;20(4):200–10. DOI:10.1016/j.semcancer.2010.06.001; Chénais B. Transposable elements and human diseases: mechanisms and implication in the response to environmental pollutants. Int J Mol Sci 2022;23(5):2551. DOI:10.3390/ijms23052551; Moran J.V., DeBerardinis R.J., Kazazian H.H. Exon shuffling by L1 retrotransposition. Science 1999;283(5407):1530–4. DOI:10.1126/science.283.5407.1530; Tubio J.M.C., Li Y., Ju Y.S. et al. Extensive transduction of non-repetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 2014;345(6196):1251343. DOI:10.1126/science.1251343; Ardeljan D., Steranka J.P., Liu C. et al. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat Struct Mol Biol 2020;27(2):168–78. DOI:10.1038/s41594-020-0372-1; Faulkner G.J., Kimura Y., Daub C.O. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 2009;41(5):563–71. DOI:10.1038/ng.368; Hata K., Sakaki Y. Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 1997;189(2):227–34. DOI:10.1016/S0378-1119(96)00856-6; Li H., Zimmerman S.E., Weyemi U. Genomic instability and metabolism in cancer. In: International review of cell and molecular biology. Ed. by U. Weyemi, L. Galluzzi. Vol. 364. Chromatin and Genomic Instability in Cancer. Academic Press, 2021. Pp. 241–265. DOI:10.1016/bs.ircmb.2021.05.004; Chen M., Linstra R., van Vugt M.A.T.M. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Act Rev Cancer 2022;1877(1):188661. DOI:10.1016/j.bbcan.2021.188661; Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020;52(3):306–19. DOI:10.1038/s41588-019-0562-0; Hancks D.C., Kazazian H.H. Roles for retrotransposon insertions in human disease. Mob DNA 2016;7:9. DOI:10.1186/s13100-016-0065-9; Iskow R.C., McCabe M.T., Mills R.E. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010;141(7):1253–61. DOI:10.1016/j.cell.2010.05.020; Solyom S., Ewing A.D., Rahrmann E.P. et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 2012;22(12):2328–38. DOI:10.1101/gr.145235.112; Doucet-O’Hare T.T., Rodić N., Sharma R. et al. LINE-1 expression and retrotransposition in Barrett’s esophagus and esophageal carcinoma. Proc Natl Acad Sci USA 2015;112(35):E4894–900. DOI:10.1073/pnas.1502474112; Rodić N., Steranka J.P., Makohon-Moore A. et al. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat Med 2015;21(9):1060–4. DOI:10.1038/nm.3919; Ewing A.D., Gacita A., Wood L.D. et al. Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res 2015;25(10):1536–45. DOI:10.1101/gr.196238.115; Tang Z., Steranka J.P., Ma S. et al. Human transposon insertion profiling: analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc Natl Acad Sci USA 2017;114(5):E733–40. DOI:10.1073/pnas.1619797114; Lee E., Iskow R., Yang L. et al. Landscape of somatic retrotransposition in human cancers. Science 2012;337(6097):967–71. DOI:10.1126/science.1222077; Shukla R., Upton K.R., Muñoz-Lopez M. et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 2013;153(1):101–11. DOI:10.1016/j.cell.2013.02.032; Protasova M.S., Andreeva T.V., Rogaev E.I. Factors regulating the activity of LINE1 retrotransposons. Genes (Basel) 2021;12(10): 1562. DOI:10.3390/genes12101562; Izquierdo-Bouldstridge A., Bustillos A., Bonet-Costa C. et al. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats. Nucleic Acids Res 2017;45(20):11622–42. DOI:10.1093/nar/gkx746; Izzo A., Kamieniarz-Gdula K., Ramírez F. et al. The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep 2013;3(6):2142–54. DOI:10.1016/j.celrep.2013.05.003; Hatanaka Y., Inoue K., Oikawa M. et al. Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proc Natl Acad Sci USA 2015;112(47):14641–6. DOI:10.1073/pnas.1512775112; Healton S.E., Pinto H.D., Mishra L.N. et al. H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proc Natl Acad Sci USA 2020;117(25):14251–8. DOI:10.1073/pnas.1920725117; Liu Y.M., Liou J.P. An updated patent review of histone deacetylase (HDAC) inhibitors in cancer. Expert Opin Ther Pat 2023;33(5): 349–69. DOI:10.1080/13543776.2023.2219393; Lopez M., Gilbert J., Contreras J. et al. Inhibitors of DNA methylation. Adv Exp Med Biol 2022;1389:471–513. DOI:10.1007/978-3-031-11454-0_17; Benafif S., Hall M. An update on PARP inhibitors for the treatment of cancer. Onco Targets Ther 2015;8:519–28. DOI:10.2147/OTT.S30793; Khazina E., Truffault V., Büttner R. et al. Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat Struct Mol Biol 2011;18(9):1006–14. DOI:10.1038/nsmb.2097; Alisch R.S., Garcia-Perez J.L., Muotri A.R. et al. Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 2006;20(2):210–24. DOI:10.1101/gad.1380406; Taylor M.S., LaCava J., Mita P. et al. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 2013;155(5):1034–48. DOI:10.1016/j.cell.2013.10.021; Flasch D.A., Macia Á., Sánchez L. et al. Genome-wide de novo L1 retrotransposition connects endonuclease activity with replication. Cell 2019;177(4):837–51.e28. DOI:10.1016/j.cell.2019.02.050; Cost G.J., Feng Q., Jacquier A. et al. Human L1 element target-primed reverse transcription in vitro. EMBO J 2002;21(21):5899–910. DOI:10.1093/emboj/cdf592; Su Y., Davies S., Davis M. et al. Expression of LINE-1 p40 protein in pediatric malignant germ cell tumors and its association with clinicopathological parameters: a report from the Children’s Oncology Group. Cancer Lett 2007;247(2):204–12. DOI:10.1016/j.canlet.2006.04.010; Mangiacasale R., Pittoggi C., Sciamanna I. et al. Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation. Oncogene 2003;22(18):2750–61. DOI:10.1038/sj.onc.1206354; Landriscina M., Fabiano A., Altamura S. et al. Reverse transcriptase inhibitors down-regulate cell proliferation in vitro and in vivo and restore thyrotropin signaling and iodine uptake in human thyroid anaplastic carcinoma. J Clin Endocrinol Metab 2005;90(10):5663-5671. DOI:10.1210/jc.2005-0367; Wang G., Gao J., Huang H. et al. Expression of a LINE-1 endonuclease variant in gastric cancer: its association with clinicopathological parameters. BMC Cancer 2013;13:265. DOI:10.1186/1471-2407-13-265; Chen L., Dahlstrom J.E., Chandra A. et al. Prognostic value of LINE-1 retrotransposon expression and its subcellular localization in breast cancer. Breast Cancer Res Treat 2012;136(1):129–42. DOI:10.1007/s10549-012-2246-7; Gualtieri A., Andreola F., Sciamanna I. et al. Increased expression and copy number amplification of LINE-1 and SINE B1 retrotransposable elements in murine mammary carcinoma progression. Oncotarget 2013;4(11):1882–93.; De Luca C., Guadagni F., Sinibaldi-Vallebona P. et al. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation. Oncotarget 2015;7(4):4048–61. DOI:10.18632/oncotarget.6767; Sciamanna I., De Luca C., Spadafora C. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression, and therapy of cancer. Front Chem 2016;4:6. DOI:10.3389/fchem.2016.00006; Aschacher T., Wolf B., Enzmann F. et al. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. Oncogene 2016;35(1):94–104. DOI:10.1038/onc.2015.65; Sciamanna I., Sinibaldi-Vallebona P., Serafino A. et al. LINE-1-encoded reverse Transcriptase as a target in cancer therapy. Front Biosci (Landmark Ed) 2018;23(7):1360–9. DOI:10.2741/4648; Prokofjeva M.M., Kochetkov S.N., Prassolov V.S. Therapy of HIV infection: current approaches and prospects. Acta Naturae 2016;8(4):23–32. DOI:10.32607/20758251-2016-8-4-23-32; Li G., Wang Y., De Clercq E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm Sin B 2022;12(4):1567–90. DOI:10.1016/j.apsb.2021.11.009; Young M.J. Off-target effects of drugs that disrupt human mitochondrial DNA maintenance. Front Mol Biosci 2017;4:74. DOI:10.3389/fmolb.2017.00074; Benedicto A.M., Fuster-Martínez I., Tosca J. et al. NNRTI and liver damage: evidence of their association and the mechanisms involved. Cells 2021;10(7):1687. DOI:10.3390/cells10071687; Furman P.A., Fyfe J.A., St Clair M.H. et al. Phosphorylation of 3’-azido-3’-deoxythymidine and selective interaction of the 5’-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 1986;83(21):8333–7. DOI:10.1073/pnas.83.21.8333; Rousseau F.S., Wakeford C., Mommeja-Marin H. et al. Prospective randomized trial of emtricitabine versus lamivudine short-term monotherapy in human immunodeficiency virus-infected patients. J Infect Dis 2003;188(11):1652–8. DOI:10.1086/379667; Kuretu A., Arineitwe C., Mothibe M. et al. Drug-induced mitochondrial toxicity: risks of developing glucose handling impairments. Front Endocrinol (Lausanne) 2023;14:1123928. DOI:10.3389/fendo.2023.1123928; McKee E.E., Bentley A.T., Hatch M. et al. Phosphorylation of thymidine and AZT in heart mitochondria. Cardiovasc Toxicol 2004;4(2):155–67. DOI:10.1385/ct:4:2:155; Smith R.L., Tan J.M.E., Jonker M.J. et al. Beyond the polymerase-γ theory: production of ROS as a mode of NRTI-induced mitochon-drial toxicity. PLoS One 2017;12(11):e0187424. DOI:10.1371/journal.pone.0187424; Mataramvura H., Bunders M.J., Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023;14:1182217. DOI:10.3389/fimmu.2023.1182217; Lewis W., Day B.J., Copeland W.C. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov 2003;2(10):812–22. DOI:10.1038/nrd1201; Torres R.A., Lewis W. Aging and HIV/AIDS: pathogenetic role of therapeutic side effects. Lab Invest 2014;94(2):120–8. DOI:10.1038/labinvest.2013.142; HIV 2014/15: www.hivbuch.de. Ed. by C. Hoffmann, J. Rockstroh. Medizin Fokus Verlag, 2014.; Rock A.E., Lerner J., Badowski M.E. Doravirine and its potential in the treatment of HIV: an evidence-based review of the emerging data. HIV AIDS (Auckl) 2020;12:201–10. DOI:10.2147/HIV.S184018; Terrault N.A., Lok A.S., McMahon B.J. et al. Update on prevention, diagnosis, and treatment and of chronic hepatitis B: AASLD 2018 Hepatitis B Guidance. Hepatology (Baltimore, Md) 2018;67(4): 1560. URL: https://www.hcvguidelines.org/references/terrault-2018; de Fraga R.S., Van Vaisberg V., Mendes L.C.A. et al. Adverse events of nucleos(t)ide analogues for chronic hepatitis B : a systematic review. J Gastroenterol 2020;55(5):496–514. DOI:10.1007/s00535-020-01680-0; Battini L., Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type-1 non-nucleoside reverse transcriptase inhibitors. Med Res Rev 2019;39(4):1235-1273. DOI:10.1002/med.21544; Wallace J., Gonzalez H., Rajan R. et al. Anti-HIV drugs cause mitochondrial dysfunction in monocyte-derived macrophages. Antimicrob Agents Chemother 2022;66(4):e01941–21. DOI:10.1128/aac.01941-21; Arts E.J., Wainberg M.A. Mechanisms of nucleoside analog antiviral activity and resistance during human immunodeficiency virus reverse transcription. Antimicrob Agents Chemother 1996;40(3):527–40. DOI:10.1128/AAC.40.3.527; Dai L., Huang Q., Boeke J.D. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 2011;12:18. DOI:10.1186/1471-2091-12-18; Jones R.B., Garrison K.E., Wong J.C. et al. Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS One 2008;3(2):e1547. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001547; Banuelos-Sanchez G., Sanchez L., Benitez-Guijarro M. et al. Synthesis and Characterization of Specific Reverse Transcriptase Inhibitors for Mammalian LINE-1 Retrotransposons. Cell Chem Biol 2019;26(8):1095–1109.e14. DOI:10.1016/j.chembiol.2019.04.010; Carlini F., Ridolfi B., Molinari A. et al. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines. PLoS One 2010;5(12):e14221. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014221; Simon M., Meter M.V., Ablaeva J. et al. LINE1 derepression in aged wild type and SIRT6 deficient mice drives inflammation. Cell Metab 2019;29(4):871–85.e5. DOI:10.1016/j.cmet.2019.02.014; Bersani F., Lee E., Kharchenko P.V. et al. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci USA 2015;112(49):15148–53. DOI:10.1073/pnas.1518008112; Shao J., Wang Y., Hu L. et al. Lower risk of hepatocellular carcinoma with tenofovir than entecavir in antiviral treatment-naïve chronic hepatitis B patients : a systematic review and meta-analysis involving 90,897 participants. Clin Exp Med 2023;23(6):2131–40. DOI:10.1007/s10238-023-00990-w; Houédé N., Pulido M., Mourey L. et al. A phase ii trial evaluating the efficacy and safety of efavirenz in metastatic castration-resistant prostate cancer. Oncologist 2014;19(12):1227–8. DOI:10.1634/theoncologist.2014-0345; Rajurkar M., Parikh A.R., Solovyov A. et al. Reverse transcriptase inhibition disrupts repeat element life cycle in colorectal cancer. Cancer Discov 2022;12(6):1462–81. DOI:10.1158/2159-8290.CD-21-1117; Yang J., Xu W.W., Hong P. et al. Adefovir dipivoxil sensitizes colon cancer cells to vemurafenib by disrupting the KCTD12-CDK1 interaction. Cancer Lett 2019;451:79–98. DOI:10.1016/j.canlet.2019.02.050; Şekeroğlu Z.A., Şekeroğlu V. and Küçük N. Effects of reverse transcriptase inhibitors on proliferation, apoptosis, and migration in breast carcinoma cells. Int J Toxicol 2021;40(1):52–61. DOI:10.1177/1091581820961498; Sherif D.A., Makled M.N., Suddek G.M. The HIV reverse transcriptase Inhibitor Tenofovir suppressed DMH/HFD-induced colorectal cancer in Wistar rats. Fundam Clin Pharmacol 2021;35(6):940–54. DOI:10.1111/fcp.12679; Abouelezz H.M., El-Kashef D.H., Abdеlaziz R.R. et al. Tenofovir alone or combined with doxorubicin abrogates DMBA-induced mammary cell carcinoma: An insight into its modulatory impact on oxidative/Notch/apoptotic signaling. Life Sci 2023;326:121798. DOI:10.1016/j.lfs.2023.121798; Tsai W.L., Cheng J.S., Liu P.F. et al. Sofosbuvir induces gene expression for promoting cell proliferation and migration of hepatocellular carcinoma cells. Aging (Albany NY) 2022;14(14):5710–26. DOI:10.18632/aging.204170; Aschacher T., Sampl S., Käser L. et al. The combined use of known antiviral reverse transcriptase inhibitors AZT and DDI induce anticancer effects at low concentrations. Neoplasia 2012;14(1):44–53. DOI:10.1593/neo.11426; Horner M.J., Hazra R., Barnholtz-Sloan J.S. et al. Cancer risk among HIV-exposed uninfected children in the United States. AIDS 2023;37(3):549–51. URL: https://www.researchgate.net/publication/366545482_Cancer_risk_among_HIV-exposed_uninfected_children_in_the_United_States; Hleyhel M., Goujon S., Delteil C. et al. Risk of cancer in children exposed to didanosine in utero. AIDS 2016;30(8):1245–56. URL: https://journals.lww.com/aidsonline/abstract/2016/05150/risk_of_cancer_in_children_exposed_to_didanosine.10.aspx; Chen X., Wang C., Guan S. et al. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines. Oncol Rep 2016;36(1):239–46. DOI:10.3892/or.2016.4819; Zhou F.X., Liao Z.K., Dai J. et al. Radiosensitization effect of zidovudine on human malignant glioma cells. Biochem Biophys Res Commun 2007;354(2):351–6. DOI:10.1016/j.bbrc.2006.12.180; Humer J., Ferko B., Waltenberger A. et al. Azidothymidine inhibits melanoma cell growth in vitro and in vivo. Melanoma Res 2008;18(5):314–21. URL: https://journals.lww.com/melanomaresearch/abstract/2008/10000/azidothymidine_inhibits_melanoma_cell_growth_in.2.aspx; Brown T., Sigurdson E., Rogatko A. et al. Telomerase inhibition using azidothymidine in the HT-29 colon cancer cell line. Ann Surg Oncol 2003;10(8):910–5. DOI:10.1245/aso.2003.03.032; Schneider M.A., Buzdin A.A., Weber A. et al. Combination of antiretroviral drugs zidovudine and efavirenz impairs tumor growths in a mouse model of cancer. Viruses 2021;13(12):2396. DOI:10.3390/v13122396; Giovinazzo A., Balestrieri E., Petrone V. et al. The concomitant expression of human endogenous retroviruses and embryonic genes in cancer cells under microenvironmental changes is a potential target for antiretroviral drugs. Cancer Microenviron 2019;12(2–3): 105–18. DOI:10.1007/s12307-019-00231-3; Novototskaya-Vlasova K.A., Neznanov N.S., Molodtsov I. et al. Inflammatory response to retrotransposons drives tumor drug resistance that can be prevented by reverse transcriptase inhibitors. Proc Natl Acad Sci USA 2022;119(49):e2213146119. DOI:10.1073/pnas.2213146119; Zhang S., Li N., Sheng Y. et al. Hepatitis B virus induces sorafenib resistance in liver cancer via upregulation of cIAP2 expression. Infect Agent Cancer 2021;16(1):20. DOI:10.1186/s13027-021-00359-2; Zhang Y., Zhang R., Ding X. et al. FNC efficiently inhibits mantle cell lymphoma growth. PLoS One 2017;12(3):e0174112. URL: https://journals.plos.org/plosone/article/figures?id=10.1371/journal.pone.0174112; Zhang Y., Wang C.P., Ding X.X. et al. FNC, a novel nucleoside analogue, blocks invasion of aggressive non-Hodgkin lymphoma cell lines via inhibition of the Wnt/β-catenin signaling pathway. Asian Pac J Cancer Prev 2014;15(16):6829–35. DOI:10.7314/apjcp.2014.15.16.6829; Jing X., Niu S., Liang Y. et al. FNC inhibits non-small cell lung cancer by activating the mitochondrial apoptosis pathway. Genes Genomics 2022;44(1):123–31. DOI:10.1007/s13258-021-01179-9; Wang Q., Liu X., Wang Q. et al. FNC, a novel nucleoside analogue inhibits cell proliferation and tumor growth in a variety of human cancer cells. Biochem Pharmacol 2011;81(7):848–55. DOI:10.1016/j.bcp.2011.01.001; Rossi A., Russo G., Puca A. et al. The antiretroviral nucleoside analogue abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells. Int J Cancer 2009;125(1):235–43. DOI:10.1002/ijc.24331; Hecht M., Erber S., Harrer T. et al. Efavirenz has the highest anti-proliferative effect of non-nucleoside reverse transcriptase inhibitors against pancreatic cancer cells. PLoS One 2015;10(6):e0130277. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130277; Sciamanna I., Landriscina M., Pittoggi C. et al. Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene 2005;24(24):3923–31. DOI:10.1038/sj.onc.1208562; Dong J.J., Zhou Y., Liu Y.T. et al. In vitro evaluation of the therapeutic potential of nevirapine in treatment of human thyroid anaplastic carcinoma. Mol Cell Endocrinol 2013;370(1–2):113–8. DOI:10.1016/j.mce.2013.02.001; Shang H., Zhao J., Yao J. et al. Nevirapine inhibits migration and invasion in dedifferentiated thyroid cancer cells. Thorac Cancer 2019;10(12):2243–52. DOI:10.1111/1759-7714.13211; Stefanidis K., Loutradis D., Vassiliou L.V. et al. Nevirapine induces growth arrest and premature senescence in human cervical carcinoma cells. Gynecol Oncol 2008;111(2):344–9. DOI:10.1016/j.ygyno.2008.08.006; Zhang R., Zhang F., Sun Z. et al. LINE-1 retrotransposition promotes the development and progression of lung squamous cell carcinoma by disrupting the tumor-suppressor gene FGGY. Cancer Res 2019;79(17):4453–65. DOI:10.1158/0008-5472.CAN-19-0076; Patnala R., Lee S.H., Dahlstrom J.E. et al. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells. Breast Cancer Res Treat 2014;143(2):239–53. DOI:10.1007/s10549-013-2812-7; Hecht M., Harrer T., Büttner M. et al. Cytotoxic effect of efavirenz is selective against cancer cells and associated with the cannabinoid system. AIDS 2013;27(13):2031–40. URL: https://pubmed.ncbi.nlm.nih.gov/23612009/; Sciamanna I., Gualtieri A., Cossetti C. et al. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines. Oncotarget 2013;4(12):2271–87. DOI:10.18632/oncotarget.1403; Chiou P.T., Ohms S., Board P.G. et al. Efavirenz as a potential drug for the treatment of triple-negative breast cancers. Clin Transl Oncol 2021;23(2):353–63. DOI:10.1007/s12094-020-02424-5; Marima R., Hull R., Dlamini Z. et al. Efavirenz induces DNA damage response pathway in lung cancer. Oncotarget 2020;11(41):3737–48. DOI:10.18632/oncotarget.27725; Brüning A., Jückstock J., Kost B. et al. Induction of DNA damage and apoptosis in human leukemia cells by efavirenz. Oncol Rep 2017;37(1):617–21. DOI:10.3892/or.2016.5243; Bellisai C., Sciamanna I., Rovella P. et al. Reverse transcriptase inhibitors promote the remodelling of nuclear architecture and induce autophagy in prostate cancer cells. Cancer Lett 2020;478:133–45. DOI:10.1016/j.canlet.2020.02.029; Ly T.T.G., Yun J., Ha J.S. et al. Inhibitory effect of etravirine, a non-nucleoside reverse transcriptase inhibitor, via anterior gradient protein 2 homolog degradation against ovarian cancer metastasis. Int J Mol Sci 2022;23(2):944. DOI:10.3390/ijms23020944; Islam S., Rahaman M.H., Yu M. et al. Anti-leukaemic activity of rilpivirine is mediated by Aurora A kinase inhibition. Cancers (Basel) 2023;15(4):1044. DOI:10.3390/cancers15041044; Weinrich S.L., Pruzan R., Ma L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997;17(4):498–502. DOI:10.1038/ng1297-498; Calado R., Young N. Telomeres in disease. F1000 Med Rep 2012;4:8. DOI:10.3410/M4-8; Wang H., Zhou J., He Q. et al. Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer. Mol Med Rep 2017;15(6):4055–60. DOI:10.3892/mmr.2017.6549; Kyo S., Takakura M., Fujiwara T. et al. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 2008;99(8):1528–38. DOI:10.1111/j.1349-7006.2008.00878.x; Jin R.R., Chao R., Xi Y.M. et al. Effects of AZT on leukemia cell line KG-1a proliferation and telomerase activity. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2012;20(2):277–81.; Palamarchuk A.I., Kovalenko E.I., Streltsova M.A. Multiple actions of telomerase reverse transcriptase in cell death regulation. Biomedicines 2023;11(4):1091. DOI:10.3390/biomedicines11041091; Hsieh Y., Tseng J.J. Azidothymidine (AZT) inhibits proliferation of human ovarian cancer cells by regulating cell cycle progression. Anticancer Res 2020;40(10):5517–27. DOI:10.21873/anticanres.14564; Bondarev I.E., Khavinson V.K. Suppression of alternative telomere lengthening in cancer cells with reverse transcriptase inhibitors. Adv Gerontol 2016;29(2):218–21. DOI:10.1134/s2079057016040020; https://umo.abvpress.ru/jour/article/view/673

  12. 12
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 61, No 6 (2023); 672-677 ; Научно-практическая ревматология; Vol 61, No 6 (2023); 672-677 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3483/2343; Singh MK, Clements PJ, Furst DE Maranian P, Khanna D. Work productivity in scleroderma: analysis from the University of California, Los Angeles scleroderma quality of life study. Arthritis Care Res (Hoboken). 2012;64(2):176-183. doi:10.1002/acr.20676; Hudson M, Steele R, Lu Y, Thombs BD; Canadian Scleroderma Research Group; Baron M. Work disability in systemic sclerosis. J Rheumatol. 2009;36(11):2481-2486. doi:10.3899/jrheum.081237; Lee JJY, Gignac MAM, Johnson SR. Employment outcomes in systemic sclerosis. Best Pract Res Clin Rheumatol. 2021;35(3):101667. doi:10.1016/j.berh.2021.101667; Ouimet JM, Pope JE, Gutmanis I, Koval J. Work disability in scleroderma is greater than in rheumatoid arthritis and is predicted by high HAQ scores. Open Rheumatol J. 2008;2:44-52. doi:10.2174/1874312900802010044; Mau W, Listing J, Huscher D, Zeidler H, Zink A. Employment across chronic inflammatory rheumatic diseases and comparison with the general population. J Rheumatol. 2005;32(4):721-728.; Morrisroe K, Sudararajan V, Stevens W, Sahhar J, Zochling J, Roddy J, et al. Work productivity in systemic sclerosis, its economic burden and association with health-related quality of life. Rheumatology (Oxford). 2018;57(1):73-83. doi:10.1093/rheumatology/kex362; Клабукова ДЛ, Крысанова ВС, Ермолаева ТН, Давыдовская МВ, Кокушкин КА. Социально-экономическое бремя системной склеродермии: систематический обзор. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(3):291-303. doi:10.17749/2070-4909/farmakoekonomika.2020.041; Knarborg M, Løkke A, Hilberg O, Ibsen R, Sikjaer MG. Direct and indirect costs of systemic sclerosis and associated interstitial lung disease: A nationwide population-based cohort study. Respirology. 2022;27(5):341-349. doi:10.1111/resp.14234; Xiang L, Kua SMY, Low AHL. Work productivity and economic burden of systemic sclerosis in a multiethnic Asian population. Arthritis Care Res (Hoboken). 2022;74(5):818-827. doi:10.1002/acr.24521; Padala SD, Lao C, Solanki K, White D. Direct and indirect health-related costs of systemic sclerosis in New Zealand. Int J Rheum Dis. 2022;25(12):1386-1394. doi:10.1111/1756-185X.14433; Sandqvist G, Scheja A, Hesselstrand R. Pain, fatigue and hand function closely correlated to work ability and employment status in systemic sclerosis. Rheumatology (Oxford). 2010;49(9):1739-1746. doi:10.1093/rheumatology/keq145; Peres N, Morell-Dubois S, Hachulla E, Hatron PY, Duhamel A, Godard D, et al. Sclérodermie systémique et difficultés professionnelles : résultats d’une enquête prospective [Systemic sclerosis and occupational difficulties: Results of a prospective study]. Rev Med Interne. 2017;38(11):718-724 (In French). doi:10.1016/j.revmed.2017.06.006; Nguyen C, Poiraudeau S, Mestre-Stanislas C, Rannou F, Bérezné A, Papelard A, et al. Employment status and socio-economic burden in systemic sclerosis: A cross-sectional survey. Rheumatology (Oxford). 2010;49(5):982-989. doi:10.1093/rheumatology/kep400; Decuman S, Smith V, Verhaeghe S, Deschepper E, Vermeiren F, De Keyser F. Work participation and work transition in patients with systemic sclerosis: A cross-sectional study. Rheumatology (Oxford). 2012;51(2):297-304. doi:10.1093/rheumatology/ker288; Кричевская ОА, Вакуленко ОЮ, Горячев ДВ, Эрдес ШФ. О некоторых подходах к количественной оценке снижения производительности труда при ревматических заболеваниях. Научно-практическая ревматология. 2012;54(5):90-97. doi:10.14412/1995-4484-2012-1188; Cordeiro RA, Fischer FM, Shinjo SK. Systemic autoimmune diseases and work outcomes in Brazil: A scoping review. Rev Saude Publica. 2022;56:24. doi:10.11606/s1518-8787.2022056003918; Вакуленко ОЮ, Кричевская ОА, Горячев ДВ, Эрдес ШФ. Взаимосвязь клинических характеристик ревматоидного артрита с трудоспособностью и производительностью труда. Научно-практическая ревматология. 2012;52(3):60-67. doi:10.14412/1995-4484-2012-711; Xavier RM, Zerbini CAF, Pollak DF, Morales-Torres JLA, Chalem P, Restrepo JFM, et al. Burden of rheumatoid arthritis on patients’ work productivity and quality of life. Adv Rheumatol. 2019;59(1):47. doi:10.1186/s42358-019-0090-8; Подряднова МВ, Балабанова РМ, Урумова ММ. Эрдес ШФ. Взаимосвязь клинических характеристик анкилозирующего спондилита с трудоспособностью и производительностью труда. Научно-практическая ревматология. 2014;52(5):513-519. doi:10.14412/1995-4484-2014-513-519; Sağ S, Nas K, Sağ MS, Tekeoğlu İ, Kamanlı A. Relationship of work disability between the disease activity, depression and quality of life in patients with ankylosing spondylitis. J Back Musculoskelet Rehabil. 2018;31(3):499-505. doi:10.3233/BMR-169657; Boonen A, Boone C, Albert A, Mielants H. Understanding limitations in at-work productivity in patients with active ankylosing spondylitis: The role of work-related contextual factors. J Rheumatol. 2015;42(1):93-100. doi:10.3899/jrheum.131287; Scofield L, Reinlib L, Alarcón GS, Cooper GS. Employment and disability issues in systemic lupus erythematosus: A review. Arthritis Rheum. 2008;59(10):1475-1479. doi:10.1002/art.24113; Baker K, Pope J. Employment and work disability in systemic lupus erythematosus: A systematic review. Rheumatology (Oxford). 2009;48(3):281-284. doi:10.1093/rheumatology/ken477; Jetha A, Johnson SR, Gignac MAM. Unmet workplace support needs and lost productivity of workers with systemic sclerosis: A path analysis study. Arthritis Care Res (Hoboken). 2021;73(3):423-431. doi:10.1002/acr.24123; Lerner D, Amick BC 3rd, Rogers WH, Malspeis S, Bungay K. The work limitations questionnaire. Med Care. 2001;39(1):72-85. doi:10.1097/00005650-200101000-00009; Tang K, Beaton DE, Boonen A, Gignac MA, Bombardier C. Measures of work disability and productivity: Rheumatoid Arthritis Specific Work Productivity Survey (WPS-RA), Workplace Activity Limitations Scale (WALS), Work Instability Scale for Rheumatoid Arthritis (RA-WIS), Work Limitations Questionnaire (WLQ), and Work Productivity and Activity Impairment Questionnaire (WPAI). Arthritis Care Res (Hoboken). 2011;63(11):337-349. doi:10.1002/acr.20633; Morrisroe K, Huq M, Stevens W, Rabusa C, Proudman SM, Nikpour M; and the Australian Scleroderma Interest Group (ASIG). Determinants of unemployment amongst Australian systemic sclerosis patients: Results from a multicentre cohort study. Clin Exp Rheumatol. 2016;34(Suppl 100(5)):79-84.; Bérezné A, Seror R, Morell-Dubois S, de Menthon M, Fois E, Dzeing-Ella A, et al. Impact of systemic sclerosis on occupational and professional activity with attention to patients with digital ulcers. Arthritis Care Res (Hoboken). 2011;63(2):277-285. doi:10.1002/acr.20342; Steen VD, Medsger TA. The value of the Health Assessment Questionnaire and special patient-generated scales to demonstrate change in systemic sclerosis patients over time. Arthritis Rheum. 1997;40:1984-1991. doi:10.1002/art.1780401110; Schnitzer M, Hudson M, Baron M, Steele R; Canadian Scleroderma Research Group. Disability in systemic sclerosis – A longitudinal observational study. J Rheumatol. 2011;38(4):685-692. doi:10.3899/jrheum.100635; Jaeger VK, Distler O, Maurer B, Czirják L, Lóránd V. Functional disability and its predictors in systemic sclerosis: A study from the DeSScipher project within the EUSTAR group. Rheumatology (Oxford). 2018;57(3):441-450. doi:10.1093/rheumatology/kex182; Valenzuela A, Baron M, Rodriguez-Reyna TS, Proudman S, Khanna D. Calcinosis is associated with ischemic manifestations and increased disability in patients with systemic sclerosis. Semin Arthritis Rheum. 2020;50(5):891-896. doi:10.1016/j.semarthrit.2020.06.007; Guillevin L, Hunsche E, Denton CP, Krieg T, Schwierin B, Rosenberg D, et al.; DUO Registry Group. Functional impairment of systemic scleroderma patients with digital ulcerations: Results from the DUO Registry. Clin Exp Rheumatol. 2013;31(2 Suppl 76):71-80.; Castellví I, Eguiluz S, Escudero-Contreras A, Ríos JJ, Calvo-Alén J, Callejas-Rubio JL, et al.; LAUDES Study Group. LAUDES Study: Impact of digital ulcers on hand functional limitation, work productivity and daily activities, in systemic sclerosis patients. Rheumatol Int. 2019;39(11):1875-1882. doi:10.1007/s00296-019-04436-z; Sharif R, Mayes MD, Nicassio PM, Gonzalez EB, Draeger H, McNearney TA, et al.; GENISOS Study Group. Determinants of work disability in patients with systemic sclerosis: A longitudinal study of the GENISOS cohort. Semin Arthritis Rheum. 2011;41(1):38-47. doi:10.1016/j.semarthrit.2011.01.002; Poole JL, Anwar S, Mendelson C, Allaire S. Workplace barriers encountered by employed persons with systemic sclerosis. Work. 2016;55(4):923-929. doi:10.3233/WOR-162448; https://rsp.mediar-press.net/rsp/article/view/3483

  13. 13
    Academic Journal

    المساهمون: The study was supported by the grant of the Russian Science Foundation No. 22-27-00268 “Reconstruction of the long-term dynamics of nival-glacial phenomena in the contrasting landscape conditions of Altai according to tree-ring indication”, https://rscf.ru/ project/22-27-00268/., Исследование выполнено за счёт гранта Российского научного фонда № 22-27-00268 “Реконструкция многолетней динамики нивально-гляциальных явлений в контрастных ландшафтных условиях Алтая по данным древесно-кольцевой индикации”, https://rscf.ru/project/22-27-00268/.

    المصدر: Ice and Snow; Том 64, № 1 (2024); 81-95 ; Лёд и Снег; Том 64, № 1 (2024); 81-95 ; 2412-3765 ; 2076-6734

    وصف الملف: application/pdf

    Relation: https://ice-snow.igras.ru/jour/article/view/1363/707; Бенькова В. Е., Швейнгрубер Ф. Х. Анатомия древеси­ны растений России. Берн: Хаупт, 2004. 465 с.; Быков Н. И. ихенометрические исследования лавин­ных процессов на Алтае // Известия Алтайского гос. ун-та. 1999. № 3 (13). С. 29–32.; Быков Н. И. Дендрохронология снежных лавин и цир­куляционных процессов атмосферы зимнего и пе­реходного периодов на Алтае // Проблемы рекон­струкции климата и природной среды голоцена и плейстоцена Сибири. Новосибирск: Изд-во Ин-та археологии и этнографии СОРАН, 2000. Вып. 2. С. 56–60.; Быков Н. И. Растительность лавиносборов Алтая и воз­можности фитоиндикации лавинных процессов // География и природопользование Сибири. Вып. 15. Барнаул: Изд-во Алтайского ун-та, 2013. С. 23–31.; Быков Н. И. авиносборы бассейна р. Коргон (левый приток р. Чарыш) // География и природопользо­вание Сибири. Вып. 19. Барнаул: Изд-во Алт. ун- та, 2015. С. 25–45.; Гляциологический словарь / Под ред. В. М. Котляко­ва. Л.: Гидрометеоиздат, 1984. 526 с.; Королева Т. В. ценка снежности и лавинной опас­ности Алтая в среднем масштабе. Автореф. дис. на соиск. уч. степ. канд. геогр. наук: МГУ им. М. В. омоносова, 1993. 23 с.; Кравцова В. И. собенности режима лавинной дея­тельности на Алтае по данным дендрохроноло­гических наблюдений // Фитоиндикационные методы в гляциологии. М.: Изд-во МГУ, 1971. С. 103–123.; Николаева С. А., Савчук Д. А. ценка методов дендро­индикации при датировании экзогенных гравита­ционных процессов прошлого в верховьях р. Ак­тру (Горный Алтай) // Изв. РАН. Сер. геогр. 2021. Т. 85. № 3. С. 392–404.; Ревякин В. С., Кравцова В. И. Снежный покров и ла­вины Алтая. Томск: Изд-во Томского гос. ун-та, 1976. 215 с.; Ревякин В. С. Природные льды Алтае-Саянской гор­ной области. Л.: Гидрометеоиздат, 1981. 288 с.; Сурнаков И. В. Некоторые результаты фитоиндика­ции нивально-гляциальных процессов на Алтае // Тезисы докладов Всес. конф. “Роль нивально-гля­циальных образований в динамике горных эко­систем”. Барнаул: Изд-во Алтайского гос. ун-та, 1985. С. 35–36.; Сурнаков И. В. Некоторые сведения об элементах ни­вально-гляциального комплекса верховьев реки Большой Абакан // Тезисы докладов науч.-прак­тич. конф. “Ледники и климат Сибири”. Томск: Изд-во Томск. гос. ун-та, 1987. С. 178–179.; Турманина В. И. Дендрохронология лавин в верховьях Баксанской долины // Ритмы гляциальных про­цессов. М.: Изд-во МГУ, 1979. С. 128–134.; Germain D., Hétu B., Filion L. Tree-Ring Based Re­construction of Past Snow Avalanche Events and Risk Assessment in Northern Gaspé Peninsu­la (Québec, Canada) // Tree Rings and Natural Hazards: A State-of-the-Art, Advances in Global Change Research. 2010. V. 41. P. 51–73. https://doi.org/10.1007/978-90-481-8736-2_5; Germain D. A statistical framework for treering reconstruc­tion of high-magnitude mass movements: case study of snow avalanches in Eastern Canada // Geografis­ka Annaler: Series A, Physical Geography. 2016. V. 98. № 4. P. 303–311. https://doi.org/10.1111/geoa.12138; Kaennel M., Schweingruber F. H. Multilingu l Glossary of Dendrochronology. Bern, Stuttgart, Vienna: Haupt, 1995. 467 p.; Köse N., Aydın A., Yurtseven H., Akkemik Ü. Using tree-ring signals and numerical model to identify the snow avalanche tracks in Kastamonu, Turkey // Natural Hazards. 2010. № 54 (2). P. 435–449. https://doi.org/10.1007/s11069-009-9477-x; Laute K., Beylich A. A. Potential effects of climate change on future snow avalanche activity in western Norway deduced from meteorological data // Geografiska An­naler: Series A, Physical Geography. 2018. V. 100. № 2. P. 163–184. https://doi.org/10.1080/04353676.2018.1425622; Martin J. P., Germain D. Can we discriminate snow av­alanches from other disturbances using the spatial patterns of tree-ring response? Case studies from the Presidential Range, White Mountains, New Hampshire, United States // Dendrochronolo­gia. 2016. V. 37. P. 17–32. https://doi.org/10.1016/j.dendro.2015.12.004; Mundo I. A., Barrera M. D., Roig F. A. Testing the utility of Nothofagus pumilio for dating a snow avalanche in Tierra del Fuego, Argentina // Dendrochronologia. 2007. V. 25. № 1. P. 19–28. https://doi.org/10.1016/j.dendro.2007.01.001; Perov V. F., Turmanina I., Akifeva K. V. Indications of ava­lanches and mudflow by dendrochronology // Russian Papers on Dendrochronology and Dendroclimatelogy 1962, 1968, 1970, 1972. Research Laboratory for Ar­chealogy and History of Art. Oxford University, 1977. P. 49–51.; Pop O. T., Munteanu A., Flaviu M., Gavrilă I. G., Timofte C., Holobâcă I. H. Tree-ring-based reconstruction of highmagnitude snow avalanches in Piatra Craiului Mountains (Southern Carpathians, Romania) // Ge­ografiska Annaler: Series A, Physical Geography. 2017. V. 100. № 7. P. 1–17. https://doi.org/10.1080/04353676.2017.1405715; Schweingruber F. H. Jahrringe und Umwelt — Dendrookol­ogie. Birmensdorf: Eidgenoessische Forschungsanstalt fuer Wald, Schnee und Landschaft, 1993. 474 p.; Speer J. H. Fundamentals of Tree-Ring Research. Tucson: The University of Arizona Press, 2010. 509 p.; Tumajer J., Treml V. Reconstruction ability of dendro­chronology in dating avalanche events in the Giant Mountains, Czech Republic // Dendrochronolo­gia. 2015. V. 34. P. 1–9. https://doi.org/10.1016/j.dendro.2015.02.002; Zubairov B., Lentschke J., Schröder H. Dendroclimatology in Kazakhstan // Dendrochronologia. 2019. V. 56. Article 125602. https://doi.org/10.1016/j.dendro.2019.05.006; https://ice-snow.igras.ru/jour/article/view/1363

  14. 14
    Academic Journal

    المصدر: Andrology and Genital Surgery; Том 25, № 1 (2024); 24-30 ; Андрология и генитальная хирургия; Том 25, № 1 (2024); 24-30 ; 2412-8902 ; 2070-9781

    وصف الملف: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/732/563; Rule AD, Lieske JC, Li X, et al. The ROKS nomogram for predicting a second symptomatic stone episode. J Am Soc Nephrol. 2014;25(12):2878-2886. PMID: 25104803. doi:10.1681/ ASN.2013091011.; Laube N, Pullmann M. The use of risk indices: do they predict recurrence? Yes, they (at least some) do. Urol Res. 2006 Apr;34(2):118-21. PMID: 16397777. doi:10.1007/s00240-005-0022-4.; D’Costa MR, Pais VM, Rule AD. Leave no stone unturned: defining recurrence in kidney stone formers. Curr Opin Nephrol Hypertens. 2019 Mar;28(2):148-153. PMID: 30531469. doi:10.1097/MNH.0000000000000478.; Daudon M, Hennequin C, Boujelben G, et al. Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney Int. 2005 May;67(5):1934-43. PMID: 15840041. doi:10.1111/j.1523-1755.2005.00292.x.; Gambaro G, Croppi E, Coe F, et al. Consensus Conference Group. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol. 2016 Dec;29(6):715-734. PMID: 27456839. doi:10.1007/s40620-016-0329-y.; Williams JC Jr, Gambaro G, Rodgers A, et al. Urine and stone analysis for the investigation of the renal stone former: a consensus conference. Urolithiasis. 2021 Feb;49(1):1-16. PMID: 33048172. doi:10.1007/s00240-020-01217-3.; Williams JC, Al-Awadi H, Muthenini M, et al. Stone morphology distinguishes two pathways of idiopathic calcium oxalate stone pathogenesis. J Endourol. 2021 Dec 17. PMID: 34915736. doi:10.1089/end.2021.0685.; Estrade V, Denis de Senneville B, Meria P, et al. Toward improved endoscopic examination of urinary stones: a concordance study between endoscopic digital pictures vs microscopy. BJU Int. 2021 Sep;128(3):319-330. PMID: 33263948. doi:10.1111/bju.15312.; D’Costa MR, Haley WE, Mara KC, et al. Symptomatic and Radiographic Manifestations of Kidney Stone Recurrence and Their Prediction by Risk Factors: A Prospective Cohort Study. J Am Soc Nephrol. 2019 Jul;30(7):1251-1260. PMID: 31175141. doi:10.1681/ASN.2018121241.; Sutherland. J. W., Parks, J. H. and Coe, F. L.: Recurrence after a single renal stone in a community practice. Miner. Electrolyte Metab., 11: 267, 1985. PMID: 4033604.; Johnson, C. M., Wilson, D. M., OFallon, W. M., et al. Renal stone epidemiology: a 25-year study in Rochester, Minnesota. Kidney Int., 16 624, 1979. PMID: 548606.doi:10.1038/ki.1979.173.; Ahlstrand, C. and Tiselius, H. G.: Recurrences during a 10-year follow-up after first renal stone episode. Urol. Res., 18: 397, 1990. PMID: 2100415. doi:10.1007/BF00297372.; Ljunghall. S., Danielson, B. G.: A prospective study of renal stone recurrences. Brit. J. Urol., 56: 122, 1984. PMID: 6498430 doi:10.1111/j.1464-410x.1984.tb05346.x; Методология дистанционного мониторинга пациентов с мочекаменной болезнью: разработка и первичная апробация / Г. С. Лебедев, И. А. Шадеркин, М. А. Газимиев и др // Урология. 2021;5:26– 34), PMID: 34743428.; Lindberg JS, Cole FE, Romani W, et al. Calcium Oxalate Stone Agglomeration Inhibition [tm] Reflects Renal Stone-Forming Activity. Ochsner J. 2000 Apr;2(2):68-78. PMID: 21811395.; Шустер П. И., Глыбочко П.В. Состояние процессов камнеобразования в почках на фоне андрогенной терапии, Саратовский научно-медицинский журнал, vol. 5, no. 4, 2009.; Grases F, García-Ferragut L, Costa-Bauzá A, et al. Simple test to evaluate the risk of urinary calcium stone formation. Clin Chim Acta. 1997 Jul 4;263(1):43-55. PMID: 9247727 . doi:10.1016/s0009-8981(97)06554-6.; Tiselius HG. Should we modify the principles of risk evaluation and recurrence preventive treatment of patients with calcium oxalate stone disease in view of the etiologic importance of calcium phosphate? Urolithiasis. 2015 Jan;43 Suppl 1:47-57. PMID: 25086904. doi:10.1007/s00240-014-0698-4.; Marickar YM, Salim A. Temporary risk identification in urolithiasis. Urol Res. 2009 Dec;37(6):377-80. PMID: 19830414. doi:10.1007/s00240-009-0225-1.; Rodriguez A, Cunha TDS, Rodgers AL, et al. Comparison of Supersaturation Outputs from Different Programs and Their Application in Testing Correspondence with Kidney Stone Composition. J Endourol. 2021 May;35(5):687-694. PMID: 33050741. doi:10.1089/end.2020.0894.; Marangella M, Petrarulo M, Vitale C, et al. LITHORISK.COM: the novel version of a software for calculating and visualizing the risk of renal stone. Urolithiasis. 2021 Jun;49(3):211-217. PMID: 33245396. doi:10.1007/s00240-020-01228-0.; Tiselius H-G (1997) Risk formulas in calcium oxalate urolithiasis. World J Urol 15:176. PMID: 9228725. doi:10.1007/BF02201855; Robertson WG. A risk factor model of stone-formation. Front Biosci. 2003 Sep 1;8:s1330-8. PMID: 12957848. doi:10.2741/1181.; Robertson WG. Methods for diagnosing the risk factors of stone formation. Arab J Urol. 2012 Sep;10(3):250-7. PMID: 26558033. doi:10.1016/j.aju.2012.03.006.; Ganter, K., Bongartz, D. & Hesse, A. Tamm-Horsfall protein excretion and its relation to citrate in urine of stone-forming patients. Urology 53, 492–495 (1999). PMID: 10096372 DOI:10.1016/s0090-4295(98)00581-0.; Wu J, Zhao J, Zhao Z, et al. Significance of TRPV5 and OPN biomarker levels in clinical diagnosis of patients with early urinary calculi. Am J Transl Res. 2021 Jun 15;13(6):6778-6783. PMID: 34306426.; Boonla C, Wunsuwan R, Tungsanga K, et al. Urinary 8-hydroxydeoxyguanosine is elevated in patients with nephrolithiasis. Urol Res. 2007 Aug;35(4):185-91. PMID: 17541572. doi:10.1007/s00240-007-0098-0.; Tsujihata M, Tsujikawa K, Tei N, et al. Urinary macromolecules and renal tubular cell protection from oxalate injury: comparison of normal subjects and recurrent stone formers. Int J Urol. 2006 Mar;13(3):197-201. PMID: 16643608. doi:10.1111/j.1442-2042.2006.01271.x; Golovanov S.A., Sinyukhin V.N., Tashlitsky V.A., et al. Urinary excretion of tryptophan, lysine, trimethyllysine, sarcosine, choline and 4-pyridoxic acid in urolithiasis. Experimental and Clinical Urology 2022;15(1):68-75; Голованов С.А., Синюхин В.Н., Ташлицкий В.А., и др. Экскреция триптофана, лизина, триметиллизина, саркозина, холина и 4-пиридоксиновой кислоты с мочой при мочекаменной болезни. Экспериментальная и клиническая урология 2022;15(1):68-75; https://doi.org/10.29188/2222-8543-2022-15-1-68-75; Silverio AA, Chung WY, Cheng C, et al. The potential of at-home prediction of the formation of urolithiasis by simple multifrequency electrical conductivity of the urine and the comparison of its performance with urine ion-related indices, color and specific gravity. Urolithiasis. 2016 Apr;44(2):127-34. PMID: 22301017. doi:10.1007/s00240-015-0812-2.; Kavouras SA, Suh HG, Vallet M, et al. Urine osmolality predicts calcium-oxalate crystallization risk in patients with recurrent urolithiasis. Urolithiasis. 2021 Oct;49(5):399-405. PMID: 33635363. doi:10.1007/s00240-020-01242-2.; Shoag J, Eisner BH. Relationship between C-reactive protein and kidney stone prevalence. J Urol 2014;191:372-5. PMID: 24071479. doi:10.1016/j.juro.2013.09.033; Mao W, Wu J, Zhang Z, et al. Neutrophil-lymphocyte ratio acts as a novel diagnostic biomarker for kidney stone prevalence and number of stones passed. Transl Androl Urol. 2021 Jan;10(1):77- 86. PMID: 33532298. doi:10.21037/tau-20-890.; Kang HW, Seo SP, Kim WT, et al. Hypertriglyceridemia is associated with increased risk for stone recurrence in patients with urolithiasis. Urology. 2014 Oct;84(4):766-71. PMID: 25106943. doi:10.1016/j.urology.2014.06.013.; Sonmez MG, Kozanhan B, Deniz ÇD, et al. Dynamic thiol/ disulfide homeostasis as a novel indicator of oxidative stress in patients with urolithiasis. Investig Clin Urol. 2019 Jul;60(4):258- 266. PMID: 31294135. doi:10.4111/icu.2019.60.4.258.; Ciudin A, Luque MP, Salvador R, et al. Abdominal computed tomography--a new tool for predicting recurrent stone disease. J Endourol. 2013 Aug;27(8):965-9. PMID: 23668633. doi:10.1089/end.2013.0161.; Ciudin A, Luque MP, Salvador R, et al. The evolution of CT diagnosed papillae tip microcalcifications: can we predict the development of stones? J Endourol. 2014 Aug;28(8):1016-21. PMID: 24735416. doi:10.1089/end.2014.0151.; Ferraro PM, Vittori M, Macis G, et al. Changes in renal papillary density after hydration therapy in calcium stone formers. BMC Urol. 2018 Nov 12;18(1):101. PMID: 30419887. doi:10.1186/s12894-018-0415-7.; Borofsky MS, Paonessa JE, Evan AP, et al. A Proposed Grading System to Standardize the Description of Renal Papillary Appearance at the Time of Endoscopy in Patients with Nephrolithiasis. J Endourol. 2016 Jan;30(1):122-7. PMID: 26414908. doi:10.1089/end.2015.0298.; Almeras C, Pradere B, Estrade V, et al. On Behalf Of The Lithiasis Committee Of The French Urological Association. Endoscopic Papillary Abnormalities and Stone Recognition (EPSR) during Flexible Ureteroscopy: A Comprehensive Review. J Clin Med. 2021 Jun 29;10(13):2888. PMID: 34209668. doi:10.3390/jcm10132888.; Robertson WG, Peacock M, Marshall RW, et al. Saturationinhibition index as a measure of the risk of calcium oxalate stone formation in the urinary tract. N Engl J Med. 1976;294(5):249- 252. PMID: 1244550. doi:10.1056/NEJM197601292940504.; Hallson PC, Rose GA. A new urinary test for stone «activity». Br J Urol. 1978 Dec;50(7):442-8. PMID: 753493. doi:10.1111/j.1464-410x.1978.tb06188.x.; Pak CY, Galosy RA. Propensity for spontaneous nucleation of calcium oxalate. Quantitative assessment by urinary FPR-APR discriminant score. Am J Med. 1980;69(5):681-689. PMID: 7435510. doi:10.1016/0002-9343(80)90418-0.; Nicar MJ, Hill K, Pak CY. A simple technique for assessing the propensity for crystallization of calcium oxalate and brushite in urine from the increment in oxalate or calcium necessary to elicit precipitation. Metabolism. 1983 Sep;32(9):906-10. PMID: 6888271.doi:10.1016/0026-0495(83)90205-6.; Tiselius HG. Measurement of the risk of calcium phosphate crystallization in urine. Urol Res. 1987;15(2):79-81. doi:10.1007/BF00260937. PMID: 3590433.; Erwin DT, Kok DJ, Alam J, et al. Calcium oxalate stone agglomeration reflects stone-forming activity: citrate inhibition depends on macromolecules larger than 30 kilodalton. Am J Kidney Dis. 1994 Dec;24(6):893-900. PMID: 7985666. doi:10.1016/s0272-6386(12)81057-2.; Grases F, García-Ferragut L, Costa-Bauzá A, et al. Simple test to evaluate the risk of urinary calcium stone formation. Clin Chim Acta. 1997 Jul 4;263(1):43-55. PMID: 9247727.ndoi: 10.1016/s0009-8981(97)06554-6.; Шатохина С.Н., Шабалин В.Н. Ранняя диагностика уролитиаза, определение степени его активности и состава камнеобразующих солей мочи (система Литос. Урология и нефрология. 1998. № 1. С. 19–23)).; Laube N, Berg W, Bernsmann F, et al. Induced urinary crystal formation as an analytical strategy for the prediction and monitoring of urolithiasis and other metabolism-related disorders. EPMA J. 2014 Aug 16;5(1):13. doi:10.1186/1878-5085-5-13. PMID: 25206937.; Yang, B. et al. Calcium oxalate crystallization index (COCI): an alternative method for distinguishing nephrolithiasis patients from healthy individuals. Ann. Clin. Lab. Sci. 44, 262–271 (2014). PMID: 25117095.; More-Krong P, Tubsaeng P, Madared N, et al. Clinical validation of urinary indole-reacted calcium oxalate crystallization index (iCOCI) test for diagnosing calcium oxalate urolithiasis. Sci Rep. 2020 May 20;10(1):8334. PMID: 32433482.doi:10.1038/s41598-020-65244-1.; Porowski T, Kirejczyk JK, Mrozek P, et al. Upper metastable limit osmolality of urine as a predictor of kidney stone formation in children. Urolithiasis. 2019 Apr;47(2):155-163. PMID: 29356875. doi:10.1007/s00240-018-1041-2.; https://agx.abvpress.ru/jour/article/view/732

  15. 15
    Academic Journal

    المصدر: Health, physical culture and sports; Vol 33 No 1 (2024): Health, Physical Culture and Sports; 137-144 ; Здоровье человека, теория и методика физической культуры и спорта; Том 33 № 1 (2024): Здоровье человека, теория и методика физической культуры и спорта; 137-144 ; 2414-0244

    وصف الملف: application/pdf

  16. 16
    Academic Journal

    المصدر: Health, physical culture and sports; Vol 34 No 2 (2024): Health, Physical Culture and Sports ; Здоровье человека, теория и методика физической культуры и спорта; Том 34 № 2 (2024): Здоровье человека, теория и методика физической культуры и спорта ; 2414-0244

    وصف الملف: application/pdf

  17. 17
  18. 18
    Report
  19. 19
  20. 20
    Report