يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"абскопальный эффект"', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2022); 186-192 ; Медицинский Совет; № 9 (2022); 186-192 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6932/6229; Miller K.D., Goding Sauer A., Ortiz A.P., Fedewa S.A., Pinheiro P.S., Tortolero-Luna G. et al. Cancer Statistics for Hispanics/Latinos, 2018. CA Cancer J Clin. 2018;68:425-445. https://doi.org/10.3322/caac.21494.; Владимирова Л.Ю., Сторожакова А.Э., Попова И.Л., Кабанов С.Н., Абрамова Н.А., Теплякова М.А. и др. Некоторые аспекты применения ниволумаба в лечении метастатической меланомы (клинические наблюдения). Медицинский совет. 2021;(9):64-74. https://doi.org/10.21518/2079-701X-2021-9-64-74.; Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csoszi T., Brahmer J.R. et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37(7):537-546. https://doi.org/10.1200/JCO.18.00149.; Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E. et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627-1639. https://doi.org/10.1056/NEJMoa1507643.; Brahmer J., Reckamp K.L., Baas P., Crino L., Eberhardt W.E., Poddubskaya E. et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell NonSmall-Cell Lung Cancer. N Engl J Med. 2015;373(2):123-135. https://doi.org/10.1056/NEJMoa1504627.; Herbst R.S., Baas P., Kim D.W., Felip E., Perez-Gracia J.L., Han J.Y. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A Randomised Controlled Trial. Lancet. 2016;387(10027):1540-1550. https://doi.org/10.1016/S0140-6736(15)01281-7.; Rittmeyer A., Barlesi F., Waterkamp D., Park K., Ciardiello F., von Pawel J. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255-265. https://doi.org/10.1016/S0140-6736(16)32517-X.; Antonia S.J., Villegas A., Daniel D., Vicente D., Murakami S., Hui R. et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377(20):1919-1929. https://doi.org/10.1056/NEJMoa1709937.; Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csoszi T., Brahmer J.R. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-smallcell lung cancer. N Engl J Med. 2016;375(19):1823-1833. https://doi.org/10.1056/NEJMoa1606774.; Gandhi L., Rodriguez-Abreu D., Gadgeel S., Esteban E., Felip E., Garassino M.C. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078-2092. https://doi.org/10.1056/NEJMoa1801005.; Pollack M.H., Betof A., Dearden H., Rapazzo K., Valentine I., Shoushtari A.N. et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol. 2018;29(1):250-255. https://doi.org/10.1093/annonc/mdx642.; Lebbe C., Weber J.S., Maio M., Neyns B., Harmankaya K., Wolchok J.D. et al. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann Oncol. 2014;25(11):2277-2284. https://doi.org/10.1093/annonc/mdu441.; Watanabe H., Kubo T., Ninomiya K., Kudo K., Minami D., Murakami E. et al. The effect and safety of immune checkpoint inhibitor rechallenge in non small cell lung cancer. Jpn J Clin Oncol. 2019;49(8):762-765. https://doi.org/10.1093/jjco/hyz066.; Fujita K., Uchida N., Kanai O., Okamura M., Nakatani K., Mio T. Retreatment with pembrolizumab in advanced non-small cell lung cancer patients previously treated with nivolumab: Emerging reports of 12 cases. Cancer Chemother Pharmacol. 2018;81(6):1105-1109. https://doi.org/10.1007/s00280-018-3585-9.; Nayak L, Lee E.Q., Wen P.Y. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48-54. https://doi.org/10.1007/s11912-011-0203-y.; Gaspar L., Scott C., Rotman M., Asbell S., Phillips T., Wasserman T. et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997;37(4):745-751. https://doi.org/10.1016/s0360-3016(96)00619-0.; Sperduto P.W., Kased N., Roberge D., Xu Z., Shanley R., Luo X. et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol. 2012;30(4):419-425. https://doi.org/10.1200/JCO.2011.38.0527.; Lee D.H., Han J.Y., Kim H.T., Yoon S.J., Pyo H.R., Cho K.H. et al. Primary chemotherapy for newly diagnosed nonsmall cell lung cancer patients with synchronous brain metastases compared with whole-brain radiotherapy administered first: result of a randomized pilot study. Cancer. 2008;113(1):143-149. https://doi.org/10.1002/cncr.23526.; Attia А., Page B.P., Lesser G.J., Chan M. Treatment of radiation-induced cognitive decline. Curr Treat Options Oncol. 2014;15(4):539-550. https://doi.org/10.1007/s11864-014-0307-3.; Peters S., Adjei A.A., Gridelli C., Reck M., Kerr K., Felip E. Metastatic nonsmall-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl. 7):vii56-vii64. https://doi.org/10.1093/annonc/mds226.; Robinet G., Thomas P., Breton J.L., Lena H., Gouva S., Dabouis G. et al. Results of a phase III study of early versus delayed whole brain radiotherapy with concurrent cisplatin and vinorelbine combination in inoperable brain metastasis of non-small-cell lung cancer: Groupe Frangais de Pneumo-Cancerologie (GFPC) protocol 95-1. Ann Oncol. 2011;12(1):59-67. https://doi.org/10.1023/a:1008338312647.; Besse В., Le Moulec S., Senellart H., Mazieres J., Barlesi F., Dansin E. et al. Phase II study of bevacizumab in combination with first-line chemotherapy or second-line erlotinib in non-squamous NSCLC patients with asymptomatic untreated brain metastases (ML21823). Ann Oncol. 2012;23:ix426. https://doi.org/10.1016/S0923-7534(20)33897-7.; Goldberg S.B., Gettinger S.N., Mahajan A., Chiang A.C., Herbst R.S., Sznol M. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-ran-domised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976-983. https://doi.org/10.1016/S1470-2045(16)30053-5.; Chargari C., Magne N., Guy J.-B., Rancoule C., Levy A., Goodman K.A., Deutsch E. Optimize and refine therapeutic index in radiation therapy: overview of a century. Cancer Treat Rev. 2016;45:58-67. https://doi.org/10.1016/j.ctrv.2016.03.001.; Formenti S.C., Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256-265. https://doi.org/10.1093/jnci/djs629.; Frey B., Ruckert M., Deloch L., Ruhle P.F., Derer A., Fietkau R., Gaipl U.S. Immunomodulation by ionizing radiation-impact for design of radioimmunotherapies and for treatment of inflammatory diseases. Immunol Rev. 2017;280(1):231-248. https://doi.org/10.1111/imr.12572.; https://www.med-sovet.pro/jour/article/view/6932

  2. 2
    Academic Journal

    المصدر: Malignant tumours; Том 10, № 3 (2020); 5-14 ; Злокачественные опухоли; Том 10, № 3 (2020); 5-14 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/817/572; Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13 (1):8–10.; Lievens I, Guckenberger M, Gomez D, et al. ESTRO-ASTRO OMD Consensus Document. Radiotherapy and Oncology 2020;148:157–166; Guckenberger M, Lievens Y, Bouma AB, et al. Characterization and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organization for Research and Treatment of Cancer consensus recommendation. The Lancet Oncology. 2020;21 (1):e18–28; Greco C, Pares O, Pimentel N, et al. Phenotype-Oriented Ablation of Oligometastatic Cancer with Single Dose Radiation Therapy. IJROBP 2019;104 (3):593–603; Arnold KM, Flynn NJ, Raben A, et al. The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules. Cancer Growth and Metastasis 2018;11:1–17; Tree AC, Khoo VS, Eeles RA, et al. Stereotactic body radiotherapy for oligometastases. Lancet Oncol 2013;14 (1):e28–37; Gomez DR, Blumenschein GR Jr, Lee JJ, et al: Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: A multicentre, randomised, controlled, phase 2 study. Lancet Oncol 2016;17:1672–1682; Gomez DR, Tang C, Zhang J, et al. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non — Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J Clin Oncol 2019;37:1558–1565; Iyengar P, Wardak Z, Gerber DE, et al: Consolidative radiotherapy for limited metastatic non-small-cell lung cancer: A phase 2 randomized clinical trial. JAMA Oncol 2018;4: e173501; Palma DA, Olson R, Harrow S, et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J Clin Oncol 2020;38; Petrelli F, Ghidini A, Cabiddu M, et al., Addition of radiotherapy to the primary tumour in oligometastatic NSCLC: A systematic review and meta-analysis. Lung Cancer 2018;126:194–200; Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect Curr Probl Cancer 2016;40:25–37; Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.; Friedman D, Baird JR, Young KH et al. Programmed cell death-1 blockade enhances response to stereotactic radiation in an orthotopic murine model of hepatocellular carcinoma. Hepatology Research 2016;47 (7): 702–714; Postow MA, Callahan MK, Barker CA, et al. Immunologic Correlates of the Abscopal Effect in a Patient with Melanoma. N Engl J Med 2012;366:925–931; Chicas-Sett R, Morales-Orue I, Castilla-Martinez J, et al. Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: A systematic review. Clinical and Translational Radiation Oncology 2018;9: P5–11; Chandra RA, Wilhite TJ, Balboni TA, et al. A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab Oncoimmunology 2015; 4 (11):e1046028; Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumor immunogenicity. Nat Commun 2017;8:15618 DOI:10.1038; Brooks ED, Chang JY. Time to abandon single-site irradiation for inducing abscopal effects. Nature Reviews 2019;16:123–135.; US Department of Health & Human Services. CTCAE) v4.03. NIH. gov https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE; Tubin S, Popper HH, Brcic L. Novel stereotactic body radiation therapy (SBRT) — based partial tumor irradiation targeting hypoxic segment of bulky tumors (SBRT-PATHY): improvement of the radiotherapy outcome by exploiting the bystander and abscopal effects. Radiation Oncology 2019;14:21; Zhang X., Niedermann G. OC - 0052: Abscopal effects with RT schedules extending to the effector phase of the antitumor T cell response. ESTRO 37 abstract book.; Marciscano AE, Ghasemzadeh A, Nirschl TR, et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin Cancer Research 2018;;24 (20):5058–5071.; Ho AY, Barker CA, Arnold BB, et al. A Phase 2 Clinical Trial Assessing the Efficacy and Safety of Pembrolizumab and Radiotherapy in Patients with Metastatic Triple-Negative Breast Cancer. Cancer 2020;126:850–860; Nanda R, Chow LQM, Dees EC, et al. Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE - 012 Study. J Clin Oncol 2016, 34 (21):2460–2467; Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE - 086 study. Ann Oncol 2019, 30 (3):397–404; Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1‑positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE - 086 study. Ann Oncol 2019, 30 (3):405–411; Voorwerk L, Slagter M, Horlings HM, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD - 1 blockade: the TONIC trial. Nat Med 2019;25 (6):920–928; Barroso-Sousa R, Krop IE, Trippa L, et al. A Phase II Study of Pembrolizumab in Combination with Palliative Radiotherapy for Hormone Receptor-positive Metastatic Breast Cancer. Clinical Breast Cancer 2020, 20 (3):238–245; McBride S, Sherman E, Tsai CJ, et al. Randomized Phase II Trial of Nivolumab With Stereotactic Body Radiotherapy Versus Nivolumab Alone in Metastatic Head and Neck Squamous Cell Carcinoma. J Clin Oncol 2021;39 (1):30–37; Theelen WSME, Peulen HMU, Lalezari F, et al. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients with Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncology 2019;5 (9):1276–1282; Welsh J, Menon H, Chen D, et al. Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: a randomized phase I / II trial. Journal for ImmunoTherapy of Cancer 2020;8: e001001; Theelen WSME, Chen D, Verma V, et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respir Med. 2020;20: S2213–2600; Herbst RS, Garon EB, Kim DW, et al. Long-Term Outcomes and Retreatment Among Patients with Previously Treated, Programmed Death-Ligand 1‒Positive, Advanced Non‒Small-Cell Lung Cancer in the KEYNOTE - 010 Study. J Clin Oncol 2020;38(14):1580-1590.; https://www.malignanttumors.org/jour/article/view/817

  3. 3
    Academic Journal

    المصدر: Siberian journal of oncology; Том 19, № 2 (2020); 108-115 ; Сибирский онкологический журнал; Том 19, № 2 (2020); 108-115 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-2

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1406/735; Siva S., Lobachevsky P., MacManus M.P., Kron T., A., Lobb R.J., Ventura J., BestN., Smith J., BallD., Martin O.A. Radiotherapy for non-small cell lung cancer induces DNA damage response in both irradiated and out-of-field normal tissues. Clin Cancer Res. 2016 Oct 1; 22(19): 48174826. doi:10.1158/1078-0432.CCR-16-0138.; Tang Y., Cui Y., Li Z., Jiao Z., Zhang Y, He Y, Chen G., Zhou Q., Wang W., Zhou X., Luo J., Zhang S. Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. J Exp Clin Cancer Res. 2016 Jan 12; 35: 7. doi:10.1186/s13046-016-0285-3.; Wang H., Zhang L., Shi Y, Javidiparsijani S., Wang G., Li X., Ouyang W, Zhou J., Zhao L., Wang X., Zhang X., Gao F, Liu J., Luo J., Tang J. Oncol Lett. Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats. Oncol. Lett. 2014 Mar; 7(3): 764770. doi:10.3892/ol.2014.1803.; Tamkovich S.N., Tutanov O.S., LaktionovP.P. Exosomes: Generation, Structure, Transport, Biological Activity, and Diagnostic Application. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2016; 10 (3): 163-173. doi:10.1134/S1990747816020112.; Yunusova N.V., Tugutova E.A., Tamkovich S.N., Kondakova I.V The Role of Exosomal Tetraspanins and Proteases in Tumor Progression Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2018; 12(3): 191202. doi:10.1134/S1990750818030095.; Jabbari N., NawazM., Rezaie J. Ionizing Radiation Increases the Activity of Exosomal Secretory Pathway in MCF-7 Human Breast Cancer Cells: A Possible Way to Communicate Resistance against Radiotherapy. Int J Mol Sci. 2019 Jul 25; 20(15). pii: E3649. doi:10.3390/ijms20153649.; Jelonek K., Widlak P., Pietrowska M. The Influence of Ionizing Radiation on Exosome Composition, Secretion and Intercellular Communication. Protein Pept Lett. 2016; 23(7): 65663. doi:10.2174/0929866523666160427105138.; Luo A., Zhou X., Shi X., Zhao Y., Men Y., Chang X., Chen H., Ding F., Li Y., Su D., Xiao Z., Hui Z., Liu Z. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene. 2019 Jun; 38(25): 49905006. doi:10.1038/s41388-019-0771-0.; Dai X., Liao K., Zhuang Z., Chen B., Zhou Z., Zhou S., Lin G., Zhang F., Lin Y., Miao Y., Li Z., Huang R., Qiu Y, Lin R. AHIF promotes glioblastoma progression and radioresistance via exosomes. Int J Oncol. 2019 Jan; 54(1): 261270. doi:10.3892/ijo.2018.4621.; Yahyapour R., Motevaseli E., Rezaeyan A., Abdollahi H., Far-hoodB., Cheki M., NajafiM., Villa V Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy. Curr Radiopharm. 2018; 11(1): 3445. doi:10.2174/1874471011666171229123130.; Mutschelknaus L., Azimzadeh O., Heider T., WinklerK., VetterM., Kell R., Tapio S., Merl-Pham J., Huber S.M., EdalatL., Radulovic V, An-astasovN., AtkinsonM.J., Moertl S. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep. 2017 Sep 29; 7(1): 12423. doi:10.1038/s41598-017-12403-6.; Koole K., Brunen D., van Kempen PM., Noorlag R., de Bree R., Lieftink C., van Es.R.J., Bernards R., Willems S.M. FGFR1 Is a Potential Prognostic Biomarker and Therapeutic Target in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res. 2016 Aug 1; 22(15): 388493. doi:10.1158/1078-0432.CCR-15-1874.; Gouaze-Andersson V, Delmas C., TaurandM., Martinez-Gala J., EvrardS.,MazoyerS., Toulas C., Cohen-Jonathan-MoyalE. FGFR1 Induces Glioblastoma Radioresistance through the PLCgamma/Hif1alpha Pathway. Cancer research. 2016; 76: 3036-3044. doi:10.1158/0008-5472.; Yu Q., Li P., Weng M., Wu S., Zhang Y, Chen X., Zhang Q., Shen G., DingX., Fu S. Nano-Vesicles are a Potential Tool to Monitor Therapeutic Efficacy of Carbon Ion Radiotherapy in Prostate Cancer. J Biomed Nanotechnol. 2018 Jan 1; 14(1): 168178. doi:10.1166/jbn.2018.2503.; Yang Y., Chen Y., Zhang F, Zhao Q., Zhong H. Increased antitumour activity by exosomes derived from doxorubicin-treated tumour cells via heat stress. Int J Hyperthermia. 2015; 31(5): 498506. doi:10.3109/02656736.2015.1036384.; Chen T., Guo J., YangM., Zhu X., Cao X. Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raftdependent pathway and act as efficient tumor vaccine. J Immunol. 2011 Feb 15; 186(4): 221928. doi:10.4049/jimmunoU002991.; Zhong H., Yang Y., Ma S., Xiu F., Cai Z., Zhao H., Du L. Induction of a tumour-specific CTL response by exosomes isolated from heat-treated malignant ascites of gastric cancer patients. Int J Hyperthermia. 2011; 27(6): 60411. doi:10.3109/02656736.2011.564598.; Altanerova U., BabincovaM., BabinecP., BenejovaK., Jakubecho-va J., Altanerova V, Zduriencikova M., Repiska V, Altaner C. Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine. 2017 Oct 27; 12: 79237936. doi:10.2147/IJN.S145096.; Guo D., Chen Y., Wang S., Yu L., Shen Y., Zhong H., Yang Y. Exo-somes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology. 2018 May; 154(1): 132143. doi:10.1111/imm.12874.; Yu Z., Geng J., Zhang M., Zhou Y., Fan Q., Chen J. Treatment of osteosarcoma with microwave thermal ablation to induce immunogenic cell death. Oncotarget. 2014 Aug 15; 5(15): 652639. doi:10.18632/on-cotarget.2310.; Tugutova E.A., Tamkovich S.N., Patysheva M.R., Afanasev S.G., TsydenovaA.A., Grigor’evaA.E., KolegovaE.S., Kondakova I.V., Yunuso-va N.V. Relation between Tetraspanin- Associated and Tetraspanin- NonAssociated Exosomal Proteases and Metabolic Syndrome in Colorectal Cancer Patients. Asian Pac J Cancer Prev. 2019 Mar 26; 20(3): 809815. doi:10.31557/APJCP2019.20.3.809.; MatthewsA.L., NoyP.J., Reyat J.C. Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The emerging role of tetraspanins and rhomboids. Platelets. 2017; 28(4): 333-341. doi:10.1080/09537104.2016.1184751.; Gutwein P., Stoeck A., Riedle S., GastD., Runz S., Condon T.P., MarmeA., PhongM.C., Linderkamp O., SkorokhodA., AltevogtP. Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin. Cancer Res. 2005; 11(7): 2492501. doi:10.1158/1078-0432.CCR-04-1688.; Buzas E.I., Toth E.A., Sodar B.W., Szabo-Taylor K.E. Molecular interactions at the surface of extracellular vesicles. Semin Immunopathol. 2018 Sep; 40(5): 453464. doi:10.1007/s00281-018-0682-0.; Tamkovich S., Yunusova N., Tugutova E., Somov A., Proskura K., Kolomiets L., Stakheyeva M., Grigor ’eva E., Laktionov P, Kondakova I. Protease Cargo in Circulating Exosomes of Breast Cancer and Ovarian Cancer Patients. Semin Immunopathol. 2018 Sep; 40(5): 453464. doi:10.1007/s00281-018-0682-0.; Shimoda M., Khokha R. Metalloproteinases in extracellular vesicles. Biochim Biophys Acta Mol Cell Res. 2017 Nov; 1864(11 Pt A): 19892000. doi:10.1016/j.bbamcr.2017.05.027.; Keller S., KonigA.K., MarmeF., Runz S., WolterinkS., KoensgenD., Mustea A., Sehouli J., Altevogt P. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. 2009; 278(1): 7381. doi:10.1016/j.canlet.2008.12.028.; Melzer C., Rehn V, Yang Y., Bahre H., von der Ohe J., Hass R. Taxol-Loaded MSC-Derived Exosomes Provide a Therapeutic Vehicle to Target Metastatic Breast Cancer and Other Carcinoma Cells. Cancers (Basel). 2019 Jun 9; 11(6): pii: E798. doi:10.3390/cancers11060798.; Kalinina N.I., Sysoeva VY., Rubina K.A., Parfenova Y.V., Tka-chuk V.A. Mesenchymal stem cells in tissue growth and repair. Acta Naturae. 2011 Oct; 3(4): 307.; Zuo R., Liu M., Wang Y., Li J., Wang W., Wu J., Sun C., Li B., Wang Z., Lan W., Zhang C., Shi C., Zhou Y. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/p-catenin signaling. Stem Cell Res Ther. 2019 Jan 15; 10(1): 30. doi:10.1186/s13287-018-1121-9.; Zhou Y, XuH.,Xu W, WangB., WuH., Tao Y, ZhangB., WangM., Mao F., Yan Y., Gao S., Gu H., Zhu W., Qian H. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidativestress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013 Apr 25; 4(2): 34. doi:10.1186/scrt194.; de Araujo Farias V, O'Valle F., Serrano-Saenz S., Anderson P, Andres E., Lopez-Penalver J., Tovar I., Nieto A., Santos A., Martin F., Exposito J., Oliver F.J., de Almodovar J.M.R. Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol Cancer. 2018 Aug 15; 17(1): 122. doi:10.1186/s12943-018-0867-0.; Durak-KozicaM.,Baster Z., KubatE., StqpiehK. 3D visualization of extracellular vesicle uptake by endothelial cells. Cell Mol Biol Lett. 2018 Dec 17; 23: 57. doi:10.1186/s11658-018-0123-z.; Mastoridis S., Minani Bertolino G.M., Whitehouse G., Dazzi F., Sanchez-Fueyo A., Marc Martinez-Llordella M. Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front Immunol. 2018; 9: 1583. doi:10.3389/fimmu.2018.01583; Tamkovich S.N., Yunusova N.V, Stakheeva M.N., Somov A.K., Frolova A.Y., Kirushina N.A., Afanasyev S.G., Grigoryeva A.E., Laktionov PP, Kondakova I.V. Isolation and characterization of exosomes from blood plasma of breast cancer and colorectal cancer patients. Biochemistry (Moscow), Suppl.Series B: Biomedical Chemistry. 2017; 11(3): 291-295. doi:10.1134/S1990750817030106.; Yunusova N.V, Tamkovich S.N., Stakheeva M.N., Afanasev S.G., Frolova A.Y., Kondakova I.V. The characterization of exosome from blood plasma of patients with colorectal cancer. AIP Conference Proceedings, 020070 (2016).; https://www.siboncoj.ru/jour/article/view/1406

  4. 4
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 20 (2020); 188-193 ; Медицинский Совет; № 20 (2020); 188-193 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/5955/5440; Orth M., Lauber K., Niyazi M., Friedl A., Li M., Maihöfer C. et al. Current concepts in clinical radiation oncology. Radiat Environ Biophys. 2014;53(1):1–29. doi:10.1007/s00411-013-0497-2.; Mole R.H. Whole body irradiation; radiobiology or medicine? Br J Radiol. 1953;26(305):234–241. doi:10.1259/0007-1285-26-305-234.; Sklar G.N., Eddy H.A., Jacobs S.C., Kyprianou N. Combined antitumor effect of suramin plus irradiation in human prostate cancer cells: the role of apoptosis. J Urol. 1993;150(5 Pt 1):1526–1532. doi:10.1016/s0022-5347(17)35835-4.; Schaue D., McBride W.H. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015;12(9):527–540. doi:10.1038/nrclinonc.2015.120.; Reynders K., Illidge T., Siva S., Chang J.Y., De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41(6):503–510. doi:10.1016/j.ctrv.2015.03.011.; Demaria S., Ng B., Devitt M.L., Babb J.S., Kawashima N., Liebes L., Formenti S.C. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3):862– 870. doi:10.1016/j.ijrobp.2003.09.012.; Trowell O.A. The sensitivity of lymphocytes to ionising radiation. J Pathol Bacteriol. 1952;64(4):687–704. doi:10.1002/path.1700640403.; Hoppe R.T., Fuks Z.Y., Strober S., Kaplan H.S. The long term effects of radiation of T and B lymphocytes in the peripheral blood after regional irradiation. Cancer. 1977;40(5):2071–2078. doi:10.1002/1097-0142(197711)40:53.0.co;2-v.; Cao M.D., Chen Z.D., Xing Y. Gamma irradiation of human dendritic cells influences proliferation and cytokine profile of T cells in autologous mixed lymphocyte reaction. Cell Biol Int. 2004;28(3):223–228. doi:10.1016/j.cellbi.2003.12.006.; Li N., Karin M. Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci USA. 1998;95(22):13012–13017. doi:10.1073/pnas.95.22.13012.; Weichselbaum R.R., Liang H., Deng L., Fu Y.X. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol. 2017;14(6):365–379. doi:10.1038/nrclinonc.2016.211.; Demaria S., Formenti S.C. Role of T lymphocytes in tumor response to radiotherapy. Front Oncol. 2012;2:95. doi:10.3389/fonc.2012.00095.; Younes E., Haas G.P., Dezso B., Ali E., Maughan R.L., Kukuruga M.A. et al. Local tumor irradiation augments the response to IL-2 therapy in a murine renal adenocarcinoma. Cell Immunol. 1995;165(2):243–251. doi:10.1006/cimm.1995.1211.; Filatenkov A., Baker J., Mueller A., Kenkel J., Ahn G., Dutt S. et al. Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions. Clin Cancer Res. 2015;21(16):3727–3739. doi:10.1158/1078-0432.CCR-14-2824.; Zeng J., See A., Phallen J., Jackson C., Belcaid Z., Ruzevick J. et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–349. doi:10.1016/j.ijrobp.2012.12.025.; Vanpouille-Box C., Diamond J.M., Pilones K.A., Zavadil J., Babb J.S., Formenti S.C. et al. TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity. Cancer Res. 2015;75(11):2232–2242. doi:10.1158/0008-5472.CAN-14-3511.; Rodriguez-Ruiz M.E., Rodriguez I., Garasa S., Barbes B., Solorzano J.L., Perez-Gracia J.L. et al. Abscopal Effects of Radiotherapy Are Enhanced by Combined Immunostimulatory mAbs and Are Dependent on CD8 T Cells and Crosspriming. Cancer Res. 2016;76(20):5994–6005. doi:10.1158/0008-5472.CAN-16-0549.; Shiraishi K., Ishiwata Y., Nakagawa K., Yokochi S., Taruki C., Akuta T. et al. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha. Clin Cancer Res. 2008;14(4):1159–1166. doi:10.1158/1078-0432.CCR-07-4485.; Park S.S., Dong H., Liu X., Harrington S.M., Krco C.J., Grams M.P. et al. PD-1 Restrains Radiotherapy-Induced Abscopal Effect. Cancer Immunol Res. 2015;3(6):610–619. doi:10.1158/2326-6066.CIR-14-0138.; Lee Y., Auh S., Wang Y., Burnette B., Wang Y., Meng Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–595. doi:10.1182/blood-2009-02-206870.; Yoshimoto Y., Suzuki Y., Mimura K., Ando K., Oike T., Sato H. et al. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model. PLoS One. 2014;9(3):e92572. doi:10.1371/journal.pone.0092572.; Tang C., Welsh J.W., de Groot P., Massarelli E., Chang J.Y., Hess K.R. et al. Ipilimumab with Stereotactic Ablative Radiation Therapy: Phase I Results and Immunologic Correlates from Peripheral T Cells. Clin Cancer Res. 2017;23(6):1388–1396. doi:10.1158/1078-0432.CCR-16- 1432.; Wang R., Zhou T., Liu W., Zuo L. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy. Oncotarget. 2018;9(26):18637–18647. doi:10.18632/oncotarget.24746.; Hamid O., Robert C., Daud A., Hodi S., Hwu W.J., Kefford R. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–144. doi:10.1056/NEJMoa1305133.; Gaipl U.S., Multhoff G., Scheithauer H., Lauber K., Hehlgans S., Frey B., Rödel F. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy. 2014;6(5):597–610. doi:10.2217/imt.14.38.; Habets T.H., Oth T., Houben A.W., Huijskens M.J., Senden-Gijsbers B.L., Schnijderberg M.C. et al. Fractionated Radiotherapy with 3 x 8 Gy Induces Systemic Anti-Tumour Responses and Abscopal Tumour Inhibition without Modulating the Humoral Anti-Tumour Response. PLoS One. 2016;11(7):e0159515. doi:10.1371/journal.pone.0159515.; Camphausen K., Moses M.A., Ménard C., Sproull M., Beecken W.D., Folkman J., O’Reilly M.S. Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 2003;63(8):1990–1993. Available at: https://pubmed.ncbi.nlm.nih.gov/12702593.; de Araújo Farias V., O’Valle F., Lerma B.A., Ruiz de Almodóvar C., LópezPeñalver J.J., Nieto A. et al. Human mesenchymal stem cells enhance the systemic effects of radiotherapy. Oncotarget. 2015;6(31):31164–31180. doi:10.18632/oncotarget.5216.; Abuodeh Y., Venkat P., Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016;40(1):25–37. doi:10.1016/j. currproblcancer.2015.10.001.; Siva S., Callahan J., MacManus M.P., Martin O., Hicks R.J., Ball D.L. Abscopal [corrected] effects after conventional and stereotactic lung irradiation of non-small-cell lung cancer. J Thorac Oncol. 2013;8(8):e71-2. doi:10.1097/JTO.0b013e318292c55a.; Hamilton A.J., Seid J., Verdecchia K., Chuba P. Abscopal Effect after Radiosurgery for Solitary Brain Metastasis from Non-small Cell Lung Cancer. Cureus. 2018;10(12):e3777. doi:10.7759/cureus.3777.; Chuang C.H., Hsu J.F., Shen Y.T., Yang C.J. Regression of a metastatic lung mass after receiving whole brain irradiation: Can the abscopal effect cross the blood-brain barrier? Asia Pac J Clin Oncol. 2018;14(5):e548–e550. doi:10.1111/ajco.13051.; Okwan-Duodu D., Pollack B.P., Lawson D., Khan M.K. Role of radiation therapy as immune activator in the era of modern immunotherapy for metastatic malignant melanoma. Am J Clin Oncol. 2015;38(1):119–125. doi:10.1097/COC.0b013e3182940dc3.; Bitran J. The Abscopal Effect Exists in Non-small Cell Lung Cancer: A Case Report and Review of the Literature. Cureus. 2019;11(2):e4118. doi:10.7759/cureus.4118.; Liu Y., Dong Y., Kong L., Shi F., Zhu H., Yu J. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J Hematol Oncol. 2018;11(1):104. doi:10.1186/s13045-018-0647-8.; Shi F., Wang X., Teng F., Kong L., Yu J. Abscopal effect of metastatic pancreatic cancer after local radiotherapy and granulocytemacrophage colony-stimulating factor therapy. Cancer Biol Ther. 2017;18(3):137–141. doi:10.1080/15384047.2016.1276133.; Deplanque G., Shabafrouz K., Obeid M. Can local radiotherapy and IL-12 synergise to overcome the immunosuppressive tumor microenvironment and allow “in situ tumor vaccination”? Cancer Immunol Immunother. 2017;66(7):833–840. doi:10.1007/s00262-017-2000-4.; https://www.med-sovet.pro/jour/article/view/5955

  5. 5
    Academic Journal

    المصدر: Malignant tumours; Том 9, № 3s1 (2019); 23-25 ; Злокачественные опухоли; Том 9, № 3s1 (2019); 23-25 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/660/453; Sridharan V., Schoenfeld J.D. Immune effects of targeted radiation therapy for cancer // Discov Med. 2015 Mar;19 (104):219–28.; Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018; 18 (5): 313–322. https://doi.org/10.1038/nrc.2018.6.; Mole RH. Whole body irradiation; radiobiology or medicine? Br J Radiol 1953;26:234–241. https://doi.org/10.1259/0007‑1285‑26‑305‑234.; Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 2007;13:7271–7279. https://doi.org/10.1158/1078–0432.CCR-07–1595.; Marconi R, Strolin S, Bossi G, Strigari L. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger? PLoS ONE 2017;12 (2): 1–16. https://doi.org/10.1371/journal.pone.0171559.; Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T, Weichselbaum RR, Fu YX. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 2009;114: 589–595. https://doi.org/10.1182/blood-2009‑02‑206870.; Gerber SA, Sedlacek AL, Cron KR, Murphy SP, Frelinger JG, Lord EM. IFN-gamma mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol 2013; 182:2345–2354. https://doi.org/10.1016/j.ajpath.2013.02.041; Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, Babb JS, Schneider RJ, Formenti SC, Dustin ML, Demaria S. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 2008;181:3099–3107. https://doi.org/10.4049/jimmunol.181.5.3099; Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res 1996;56:5150–5155.; Xing D, Siva S, Hanna GG. The abscopal effect of stereotactic radiotherapy and immunotherapy: fool»s gold or el dorado? Clin Oncol (R Coll Radiol). 2019; 31 (7): 432–443. https://doi.org/10.1016/j.clon.2019.04.006.; Trujillo JA, Sweis RF, Bao R, Luke J J. T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol Res 2018;6:990–1000. https://doi.org/10.1158/2326–6066.CIR-18–0277.; Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, Sedrak C, Jungbluth AA, Chua R, Yang AS, Roman RA, Rosner S, Benson B, Allison JP, Lesokhin AM, Gnjatic S, Wolchok JD. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 2012;366:925–931. https://doi.org/10.1056/NEJMoa1112824.; Okwan-Duodu D, Pollack BP, Lawson D, Khan MK. Role of radiation therapy as immune activator in the era of modern immunotherapy for metastatic malignant melanoma. Am J Clin Oncol 2015;38:119–125. https://doi.org/10.1097/COC.0b013e3182940dc3.; Van deWalle M, Demol J, Staelens L, Rottey S. Abscopal effect in metastatic renal cell carcinoma. Acta Clin Belg 2017;72:245–249. https://doi.org/10.1080/17843286.2016.1201614.; Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 2013;1: 365–372. https://doi.org/10.1158/2326–6066.CIR-13–0115.; Theelen W, Peulen H, Lalezari F, de Vries J, De Langen J, Aerts J. Randomized phase II study of pembrolizumab after stereotactic body radiotherapy (SBRT) versus pembrolizumab alone in patients with advanced non-small cell lung cancer: the PEMBRO-RT study. J Clin Oncol 2018;36: 9023.; Anti-PD 1 brain collaboration ю radiotherapy: the ABC–X Study. Available at: https://clinicaltrials.gov/ct2/show/NCT03340129; Theurich S, Rothschild SI, Hoffmann M, Fabri M, Sommer A, Garcia-Marquez M, Thelen M, Schill C, Merki R, Schmid T, Koeberle D, Zippelius A, Baues C, Mauch C, Tigges C, Kreuter A, Borggrefe J, von Bergwelt-Baildon M, Schlaak M. Local Tumor Treatment in Combination with Systemic Ipilimumab Immunotherapy Prolongs Overall Survival in Patients with Advanced Malignant Melanoma. Cancer Immunol Res 2016; 4 (9): 744–754. https://doi.org/10.1158/2326–6066.CIR-15–0156.; https://www.malignanttumors.org/jour/article/view/660

  6. 6
    Academic Journal

    المؤلفون: G. N. Machak, Г. Н. Мачак

    المصدر: Malignant tumours; Том 8, № 2 (2018); 31-42 ; Злокачественные опухоли; Том 8, № 2 (2018); 31-42 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/513/368; Joshi S. S., Maron S. B., Catenacci D. V. Pembrolizumab for treatment of advanced gastric and gastroesophageal junction adenocarcinoma. Future Oncol. 2018. Vol. 14 (5). P. 417–430. doi:10.2217 / fon-2017-0436.; Peters S., Kerr K. M., Stahel R. PD-1 blockade in advanced NSCLC: A focus on pembrolizumab. Cancer Treat. Rev. 2018. Vol. 62. P. 39–49. doi:10.1016/j.ctrv.2017.10.002.; Schachter J., Ribas A., Long G. V., Arance A., Grob J. J., Mortier L. et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017. Vol. 390 (10105). P. 1853–1862. doi:10.1016/S0140–6736(17)31601-X.; Chen D. S., Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017. Vol. 541 (7637). P. 321–330. doi:10.1038/nature21349.; Alatrash G., Daver N., Mittendorf E. A. Targeting Immune Checkpoints in Hematologic Malignancies. Pharmacol. Rev. 2016. Vol. 68 (4). P. 1014–1025.; Atkins M. B., Larkin J. Immunotherapy Combined or Sequenced With Targeted Therapy in the Treatment of Solid Tumors: Current Perspectives. J. Natl. Cancer Inst. 2016. Vol. 108 (6). djv414. doi:10.1093/jnci/djv414.; Motzer R. J., Tannir N. M., McDermott D. F., Aren Frontera O., Melichar B., Choueiri T. K. et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018. Vol. 378 (14). P. 1277–1290. doi:10.1056/NEJMoa1712126.; Powles T., Eder J. P., Fine G. D., Braiteh F. S., Loriot Y., Cruz C. et al. MPDL3280A (anti – PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014. Vol. 515. P. 558–562.; Topalian S. L., Hodi F. S., Brahmer J. R., Gettinger S. N., Smith D. C., McDermott D. F. et al. Safety, activity, and immune correlates of anti – PD-1 antibody in cancer. N. Engl. J. Med. 2012. Vol. 366. P. 2443–2454.; Topalian S. L., Sznol M., McDermott D. F., Kluger H. M., Carvajal R. D., Sharfman W. H. et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 2014. Vol. 32. P. 1020–1030.; Sharma P., Allison J. P. The future of immune checkpoint therapy. Science. 2015. Vol. 348 (6230). P. 56–61. doi:10.1126/science.aaa8172; Ventola C. L. Cancer Immunotherapy, Part 3: Challenges and Future Trends. P&T. 2017. Vol. 42 (8). P. 514–521.; Koyama S., Akbay E. A., Li Y. Y. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 2016. Vol. 7. P. 10501.; Mothersill C., Rusin A., Fernandez-Palomo C., Seymour C. History of bystander effects research 1905-present; what is in a name? Int. J. Radiat. Biol. 2017. Vol. 29. P. 1–12. doi:10.1080/09553002.2017.1398436.; Siva S., MacManus M. P., Martin R. F., Martin O. A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 2015. Vol. 356 (1). P. 82–90. doi:10.1016/j.canlet.2013.09.018. Epub 2013 Oct 12.; Grass G. D., Krishna N., Kim S. The immune mechanisms of abscopal effect in radiation therapy. Curr. Probl. Cancer. 2016. Vol. 40 (1). P. 10–24. doi:10.1016/j.currproblcancer.2015.10.003. Epub 2015 Nov 21.; Levy A., Chargari C., Marabelle A., Perfettini J. L., Magne N., Deutsch E. Can immunostimulatory agents enhance the abscopal effect ofradiotherapy? Eur. J. Cancer. 2016. Vol. 62. P. 36–45. doi:10.1016/j.ejca. 2016.03.067. Epub 2016 May 18.; Postow M. A., Callahan M. K., Barker C. A., Yamada Y., Yuan J., Kitano S. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 2012. Vol. 366 (10). P. 925-931. doi:10.1056/NEJMoa1112824.; Shi L., Chen L., Wu C., Zhu Y., Xu B., Zheng X. et al. PD-1 blockade boosts radiofrequency ablation-elicited adaptive immuneresponses against tumor. Clin. Cancer Res. 2016. Vol. 22. P. 1173–1184.; Silvestrini M. T., Ingham E. S., Mahakian L. M., Kheirolomoom A., Liu Y., Fite B. Z. et al. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols. JCI Insight. 2017. Vol. 2 (6). e90521. doi:10.1172/jci.insight.90521.; Pampena M. B., Barrio M. M., Julia E. P., Blanco P. A., von Euw E. M., Mordoh J. et al. Early Events of the Reaction Elicited by CSF-470 Melanoma Vaccine Plus Adjuvants: An In Vitro Analysis of Immune Recruitment and Cytokine Release. Front Immunol. 2017. Vol. 8. P. 1342. doi:10.3389/fimmu.2017.01342.; Silva A., Mount A., Krstevska K., Pejoski D., Hardy M. P., Owczarek C. et al. The combination of ISCOMATRIX adjuvant and TLR agonists induces regression of established solid tumors in vivo. J. Immunol. 2015. Vol. 194 (5). P. 2199–2207. doi:10.4049/jimmunol.1402228.; Kushner B. H., Cheung I. Y., Modak S., Kramer K., Ragupathi G., Cheung N. K. Phase I trial of a bivalent gangliosides vaccine in combination with -glucan for high-risk neuroblastoma in second or later remission. Clin. Cancer Res. 2014. Vol. 20 (5). P. 1375– 1382. doi:10.1158/1078-0432.CCR-13-1012.; Adams S. Toll-like receptor agonists in cancer therapy. Immunotherapy. 2009. Vol. 1 (6). P. 949–964. doi:10.2217/imt.09.70.; Liu C., Xie Y., Sun B., Geng F., Zhang F., Guo Q. et al. MUC1- and Survivin-based DNA Vaccine Combining Immunoadjuvants CpG and interleukin-2 in a Bicistronic Expression Plasmid Generates Specific Immune Responses and Antitumour Effects in a Murine Colorectal Carcinoma Model. Scand. J. Immunol. 2018. Vol. 87 (2). P. 63–72. doi:10.1111/sji.12633.; Shukla N. M., Arimoto K. I., Yao S., Fan J. B., Zhang Y., Sato-Kaneko F. et al. Identification of Compounds That Prolong Type I Interferon Signaling as Potential Vaccine Adjuvants. SLAS Discov. 2018. May 11. 2472555218774308. doi:10.1177/2472555218774308.; Rammensee H. G., Singh-Jasuja H. HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev. Vaccines. 2013. Vol. 12. P. 1211–1217. doi:10.1586/14760584.2013.836911.; Kooreman N. G., Kim Y., de Almeida P. E., Termglinchan V., Diecke S., Shao N. Y. et al. Autologous iPSC-Based Vaccines Elicit Antitumor Responses In Vivo. Cell Stem. Cell. 2018. Vol. 22 (4). P. 501–513. e7 doi:10.1016/j.stem. 2018.01.016. Epub 2018 Feb 15.; Bull J. M. C. A review of immune therapy in cancer and a question: can thermal therapy increase tumor response? Int. J. Hyperthermia. 2017. Vol. 3. P. 1–13. doi:10.1080/02656736.2017.1387938.; Mauri G., Nicosia L., Xu Z., Di Pietro S., Monfardini L., Bonomo G. et al. Focused ultrasound: tumour ablation and its potential to enhance immunological therapy to cancer. Br. J. Radiol. 2018. Vol. 91 (1083). 20170641. doi:10.1259/bjr.20170641.; Wu F. High Intensity Focused Ultrasound (HIFU) Ablation. In: Keisari Y. (eds). Tumor Ablation. The Tumor Microenvironment. Springer Science+Business Media Dordrecht, 2013. Vol 5. P. 61–76. doi:10.1007/978-94-007-4694-7_2.; Tranberg K. G. Percutaneous ablation of liver tumours. Best Pract. Res. Clin. Gastroenterol. 2004. Vol. 18. P. 125-145.; Ohno T., Kawano K., Sasaki A. et al. Expansion of an ablated site and induction of apoptosis after microwave coagulation therapy in rat liver. J. Hepatobiliary Pancreat. Surg. 2001. Vol. 8. P. 360–366.; Canney M. S., Khokhlova V. A., Bessonova O. V., Bailey M. R., Crum L. A. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound. Ultrasound Med. Biol. 2010. Vol. 36. P. 250–267. doi:10.1016/j.ultrasmedbio. 2009.09.010.; Maxwell A. D., Wang T. Y., Cain C. A., Fowlkes J. B., Sapozhnikov O. A., Bailey M. R., Xu Z. Cavitation clouds created by shock scattering from bubbles during histotripsy. J. Acoust. Soc. Am. 2011. Vol. 130. P. 1888–1898. doi:10.1121/1.3625239.; Waitz R., Solomon S. B., Petre E. N., Trumble A. E., Fasso M., Norton L. et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res. 2012. Vol. 72 (2). P. 430–439.; Davidovich P., Kearney C. J., Martin S. J. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol. Chem. 2014. Vol. 395 (10). P. 1163–1171.; Julier Z., Park A. J., Briquez P. S., Martino M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017. Vol. 53. P. 13–28. doi:10.1016/j.actbio.2017.01.056.; Wu F., Zhou L., Chen W. R. Host antitumour immune responses to HIFU ablation. Int. J. Hyperthermia. 2007. Vol. 23. P. 165–171; Ghanamah M., Berber E., Siperstein A. Pattern of carcinoembryonic antigen drop after laparoscopic radiofrequency ablation of liver metastasis from colorectal carcinoma. Cancer. 2006. Vol. 107. P. 149–153.; den Brok M. H. M. G. M., Sutmuller R. P. M, Nierkens S., Bennink E. J., Frielink C., Toonen L. W. J. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer. 2006. Vol. 95. P. 896–905.; Ito F., Ku A. W., Bucsek M. J., Muhitch J. B., Vardam-Kaur T., Kim M. et al. Immune adjuvant activity of pre-resectional radiofrequency ablation protects against local and systemic recurrence in aggressive murine colorectal cancer. PLoS One. 2015. Vol. 10. e0143370. doi:10.1371/journal.pone.0143370.; Xing Y., Lu X., Pua EC., Zhong P. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model. Biochem. Biophys. Res. Commun. 2008. Vol. 375 (4). P. 645–650. doi:10.1016/j.bbrc. 2008.08.072.; Chu K. F., Dupuy D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer. 2014. Vol. 14 (3). P. 199–208.; Kramer G., Steiner G. E., Grobl M., Hrachowitz K., Reithmayr F., Paucz L. et al. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate. 2004. Vol. 58 (2). P. 109–120.; Hu Z., Yang X. Y., Liu Y., Morse M. A., Lyerly H. K., Clay T. M., Zhong P. Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs. Biochem. Biophys. Res. Commun. 2005. Vol. 335. P. 124–131 DOI:10.1016/j.bbrc. 2005.07.071.; Wu F., Wang Z. B., Cao Y. D., Zhou Q., Zhang Y., Xu Z. L., Zhu X. Q. Expression of tumor antigens and heat-shock protein 70 in breast cancer cells after high-intensity focused ultrasound ablation. Ann. Surg. Oncol. 2007. Vol. 14. P. 1237–1242. doi:10.1245/s10434-006-9275-6.; Haen S. P., Gouttefangeas C., Schmidt D., Boss A., Clasen S., von Herbay A. et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones. 2011. Vol. 16 (5). P. 495–504. doi:10.1007/s12192-011-0261-y.; Evrard S., Menetrier-Caux C., Biota C., Neaud V., Mathoulin-Pelissier S., Blay J.Y., Rosenbaum J. Cytokines pattern after surgical radiofrequency ablation of liver colorectal metastases. Gastroenterol. Clin. Biol. 2007. Vol. 31. P. 141–145.; Hori K., Mihich E., Ehrke M.J. Role of tumor necrosis factor and interleukin 1 in gammainterferon-promoted activation of mouse tumoricidal macrophages. Cancer Res. 1989. Vol. 49. P. 2606–2614.; Kirn A., Bingen A., Steffan A.M., Wild M.T., Keller F., Cinqualbre J. Endocytic capacities of Kupffer cells isolated from the human adult liver. Hepatology.1982. Vol. 2. P. 216–222.; Napoletano C., Taurino F., Biffoni M., De Majo A., Coscarella G., Bellati F. et al. A RFA strongly modulates the immune system and anti-tumor immune responses in metastatic liver patients. Int. J. Oncol. 2008. Vol. 32. P. 481–490.; Hu Z., Yang X.Y., Liu Y., Sankin G.N., Pua E.C., Morse M.A. et al. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J. Transl. Med. 2007. Vol. 5. P. 34. doi:10.1186/1479-5876-5-34.; Xing Y., Lu X., Pua E.C., Zhong P. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model. Biochem. Biophys. Res. Commun. 2008. Vol. 375(4). P. 645–650. doi:10.1016/j.bbrc.2008.08.072.; Dromi S.A., Walsh M.P., Herby S., Traughber B., Xie J., Sharma K.V. et al. Radiofrequency ablation induces antigenpresenting cell infiltration and amplification of weak tumor-induced immunity. Radiology. 2009. Vol. 251(1). P. 58–66. doi:10.1148/radiol.2511072175.; Huang X., Yuan F., Liang M., Lo H.W., Shinohara M.L., Robertson C., Zhong P. M-HIFU inhibits tumor growth, suppresses STAT3 activity and enhances tumor specific immunity in a transplant tumor model of prostate cancer. PLoS ONE. 2012. Vol. 7. e41632. doi:10.1371/journal.pone.0041632.; Xu Z.L., Zhu X.Q., Lu P., Zhou Q., Zhang J., Wu F. Activation of tumor-infiltrating antigen presenting cells by high intensity focused ultrasound ablation of human breast cancer. Ultrasound Med. Biol. 2009. Vol. 35. P. 50–57. doi:10.1016/j.ultrasmedbio.2008.08.005.; Zerbini A., Pilli M., Fagnoni F., Pelosi G., Pizzi M.G., Schivazappa S. et al. Increased immunostimulatory activity conferred to antigenpresenting cells by exposure to antigen extract from hepatocellular carcinoma afterradiofrequency thermal ablation. J. Immunother. 2008. Vol. 31(3). P. 271–282. doi:10.1097/CJI.0b013e318160ff1c.; Zhang Y., Deng J., Feng J., Wu F. Enhancement of antitumor vaccine in ablated hepatocellular carcinoma by high-intensity focused ultrasound: a preliminary report. World J. Gastroenterol. 2010. Vol. 16. P. 3584–3591.; Deng J., ZhangY., Feng J., Wu F. Dendritic cells loaded with ultrasound-ablated tumour induce in vivo specific antitumour immune responses. Ultrasound Med. Biol. 2010. Vol. 36. P. 441–448.; Rosberger D.F., Coleman D.J., Silverman R., Woods S., Rondeau M., Cunningham-Rundles S. Immunomodulation in choroidal melanoma: Reversal of inverted CD4/CD8 ratios following treatment with ultrasonic hyperthermia. Biotechnol. Ther. 1994. Vol. 5. P. 59–68.; Wu F., Wang Z.B., Lu P., Xu Z.L., Chen W.Z., Zhu H., Jin C.B. Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med. Biol. 2004. Vol. 30. P. 1217–1222. doi:10.1016/j.ultrasmedbio.2004.08.003.; Wang X., Sun J. High-intensity focused ultrasound in patients with late-stage pancreatic carcinoma. Chin. Med. J. (Engl.). 2002. Vol. 115. P. 1332–1335.; Yang W., Wang W., Liu B., Zhu B., Li J., Xu D. et al. Immunomodulation characteristics by thermal ablation therapy in cancer patients. Asia Pac. J. Clin. Oncol. 2018. Jan 8. doi:10.1111/ajco.12836.; Wissniowski T.T., Hansler J., Neureiter D., Frieser M., Schaber S., Esslinger B. et al. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res. 2003. Vol. 63(19). P. 6496–500.; van den Bijgaart R.J., Eikelenboom D.C., Hoogenboom M., Futterer J.J., den Brok M.H., Adema G.J. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol. Immunother. 2017. Vol. 66(2). P. 247–258. doi:10.1007/s00262-016-1891-9.; Zhou Q., Zhu X.Q., Zhang J., Xu J.L., Lu P., Wu F. Changes in circulating immunosuppressive cytokine levels of cancer patients after high intensity focused ultrasound treatment. Ultrasound Med. Biol. 2008. Vol. 34. P. 81–87. DOI:10.1016/j.ultrasmedbio.2007.07.013.; Xia J.Z., Xie F.L., Ran L.F., Xie X.P., Fan Y.M., Wu F. High-intensity focused ultrasound tumor ablation activates autologous tumor-specific cytotoxic T lymphocytes. Ultrasound Med. Biol. 2012. Vol. 38(8). P. 1363–1371. doi:10.1016/j.ultrasmedbio.2012.03.009.; Yang R., Reilly C.R., Rescorla F.J., Sanghvi N.T., Fry F.J., Franklin T.D. Jr, Grosfeld J.L. Effects of high-intensity focused ultrasound in the treatment of experimental neuroblastoma. J. Pediatr. Surg. 1992. Vol. 27. P. 246–250.; Ran L.F., Xie X.P., Xia J.Z., Xie F.L., Fan Y.M., Wu F. Specific antitumour immunity of HIFU-activated cytotoxic T lymphocytes after adoptive transfusion in tumour-bearing mice. Int. J. Hyperthermia. 2016. Vol. 32(2). P. 204–210. doi:10.3109/02656736.2015.1112438.; den Brok M.H., Sutmuller R.P., van der Voort R., Bennink E.J., Figdor C.G., Ruers T.J., Adema G.J. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res. 2004. Vol. 64(11). P. 4024–4029.; Lu P., Zhu X.Q., Xu Z.L., Zhou Q., Zhang J., Wu F. Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery. 2009. Vol. 145. P. 286–293. doi:10.1016/j.surg.2008.10.010.; Dong B.W., Zhang J., Liang P., Yu X.L., Su L., Yu D.J. et al. Sequential pathological and immunologic analysis of percutaneousmicrowave coagulation therapy of hepatocellular carcinoma. Int. J. Hyperthermia. 2003. Vol. 19(2). P. 119–133.; Zerbini A., Pilli M., Penna A., Pelosi G., Schianchi C., Molinari A. et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res. 2006. Vol. 66(2). P. 1139–1146.; Hansler J., Wissniowski T.T., Schuppan D., Witte A., Bernatik T., Hahn E.G., Strobel D. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J. Gastroenterol. 2006. Vol. 12(23). P. 3716–3721.; Zerbini A., Pilli M., Laccabue D., Pelosi G., Molinari A., Negri E. et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology. 2010. Vol. 138(5). P. 1931–1942. doi:10.1053/j.gastro.2009.12.051.; Widenmeyer M., Shebzukhov Y., Haen S.P., Schmidt D., Clasen S., Boss A. et al. Analysis of tumor antigen-specific T cells and antibodies in cancer patients treated with radiofrequency ablation. Int. J. Cancer. 2011. Vol. 128(11). P. 2653–2662. doi:10.1002/ijc.25601.; Hiroishi K., Eguchi J., Baba T., Shimazaki T., Ishii S., Hiraide A. et al. Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients withhepatocellular carcinoma. J. Gastroenterol. 2010. Vol. 45(4). P. 451–458. doi:10.1007/s00535-009-0155-2.; Herbst R.S., Soria J.C., Kowanetz M., Fine G.D., Hamid O., Gordon M.S. et al. Predictive correlates of response to the anti–PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014. Vol. 515. P. 563–567.; Taube J.M., Klein A., Brahmer J.R., Xu H., Pan X., Kim J.H. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014. Vol. 20. P. 5064–5074.; Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J., Robert L. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014. Vol. 515. P. 568–571.; Diab A., McArthur H.L., Solomon S.B., Sacchini V., Comstock C., Maybody M. et al. A pilot study of preoperative (Pre-op), singledose ipilimumab (Ipi) and/or cryoablation (Cryo) in women (pts) with early-stage/resectable breast cancer (ESBC). ASCO Meeting Abstracts. 2014. Vol. 32. P. 1098.; Page D.B., Yuan J., Redmond D., Wen Y.H., Durack J.C., Emerson R. et al. Deep Sequencing of T-cell Receptor DNA as a Biomarker of Clonally Expanded TILs in Breast Cancer after Immunotherapy. Cancer Immunol. Res. 2016. Vol. 4(10). P. 835–844.; Hodi F.S., Chesney J., Pavlick A.C., Robert C., Grossmann K.F., McDermott D.F. et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016. Vol. 17(11). P. 1558–1568. doi:10.1016/S1470-2045(16)30366-7.; Sznol M., Ferrucci P.F., Hogg D., Atkins M.B., Wolter P., Guidoboni M. et al. Pooled Analysis Safety Profile of Nivolumab and Ipilimumab Combination Therapy in Patients With Advanced Melanoma. J. Clin. Oncol. 2017. Vol. 35(34). P. 3815–3822. doi:10.1200/JCO.2016.72.1167.; Sibaud V., David I., Lamant L., Resseguier S., Radut R., Attal J. et al. Acute skin reaction suggestive of pembrolizumab-induced radiosensitization. Melanoma Res. 2015. Vol. 25(6). P. 555–558. doi:10.1097/CMR.0000000000000191.; Chang X. Radiofrequency ablation of primary tumors combined with anti-programmed death-1 (PD-1) antibody results in an enhanced antitumor effect against advanced renal cell carcinoma. J. Urology. 2016. Vol. 195. No.4S, Suppl. Abstract MP03-07.; Chen Z., Shen S., Peng B., Tao J. Intratumoural GM-CSF microspheres and CTLA-4 blockade enhance the antitumour immunity induced by thermal ablation in a subcutaneous murine hepatoma model. Int. J. Hyperthermia. 2009. Vol. 25(5) . P. 374–382. doi:10.1080/02656730902976807.; Chen D.S., Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013. Vol. 39. P. 1–10.; Kim J.M., Chen D.S. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Annals of Oncology. Vol. 27. P. 1492–1504. 2016 doi:10.1093/annonc/mdw217.; Ferguson T.A., Choi J., Green D.R. Armed response: how dying cells influence T-cell functions. Immunol. 2011. Vol. 241. P. 77–88.; Golden E.B., Apetoh L. Radiotherapy and immunogenic cell death. Semin. Radiat. Oncol. Vol. 25(1). P. 11–17. doi:10.1016/j. semradonc.2014.07.005.; Tesniere A., Apetoh L., Ghiringhelli F., Joza N., Panaretakis T., Kepp O. et al. Immunogenic cancer cell death: a key-lock paradigm. Curr. Opin. Immunol. 2008. Vol. 20. P. 504–511. doi:10.1016/j.coi.2008.05.007.; Chalovich J.M., Eisenberg E. NIH Public Access. Biophys. Chem. 2012. Vol. 257. P. 2432–2437.; Curley C.T., Sheybani N.D., Bullock T.N., Price R.J. Focused Ultrasound Immunotherapy for Central Nervous System Pathologies: Challenges and Opportunities. Theranostics. 2017. Vol. 7(15) . P. 3608–3623. doi:10.7150/thno.21225.; Blank C.U., Haanen J.B., Ribas A., Schumacher TN. CANCER IMMUNOLOGY. The “cancer immunogram”. Science. 2016. Vol. 352(6286). P. 658–60. doi:10.1126/science.aaf2834.; https://www.malignanttumors.org/jour/article/view/513

  7. 7
    Academic Journal