يعرض 1 - 20 نتائج من 288 نتيجة بحث عن '"ЯКУТЫ"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Interactive science; № 1(87); 42-44 ; Интерактивная наука; № 1(87); 42-44 ; ISSN: 2414-9411 ; 2414-9411 ; ISSN(electronic Version): 2500-2686 ; 2500-2686

    وصف الملف: text/html

    Relation: info:eu-repo/semantics/altIdentifier/pissn/2414-9411; info:eu-repo/semantics/altIdentifier/eissn/2500-2686; Monthly international scientific journal Interactive science Issue 1(87); https://interactive-plus.ru/e-articles/894/Action894-561688.pdf; Брагина Д.Г. Современные этнические процессы в Центральной Якутии / Д.Г. Брагина. – Якутск: Кн. изд-во, 1985. – 88 с. – EDN YXRNUD; Гурвич И.С. Культура северных якутов-оленеводов / И.С. Гурвич. – М.: Наука, 1977. – 247 с. EDN UBZVJD; Гурвич И.С. Этническая история Северо-Востока Сибири / И.С. Гурвич. – М.: Наука, 1966. – 269 с.; Динамические ряды «Цифры Якутии (XIX-XXI вв.)» [Электронный ресурс]. – Режим доступа: http://stat.sakha.gks.ru/page.aspx?s=ias&m=12589&p=4700 (дата обращения: 22.01.2024).; Золотарёва И.М. Территориальные варианты антропологического типа якутов (в связи с проблемой их происхождения) / И.М. Золотарёва // Этногенез и этническая история народов Севера: сб. статей. – М., 1975. – 264 с.; Парникова А.С. Расселение якутов в ХVII – начале ХХ в. / А.С. Парникова. – Якутск: Кн. изд-во, 1971. – 152 с.; Чикачев А.Г. Русские в Арктике: полярный вариант культуры: историко-этнографические очерки / А.Г. Чикачев. – Новосибирск: Наука, 2007. – 303 с. – EDN YSMNUR; Якуты. Саха. – М.: Наука, 2012. – С. 355.; Bragina D.G. Modern ethnic processes in Central Yakutia. Yakutsk: Publishing House, 1985. – 88 p.; Gurvich I. S. Culture of the northern Yakut reindeer herders. – M.: Nauka, 1977. – 247 p.; Gurvich I. S. Ethnic history of the North-East of Siberia. – M.: Nauka, 1966. – 269 p.; Dynamic series "Figures of Yakutia (XIX-XXI centuries)" website of the Territorial body of the Federal State Statistics Service for the Republic of Sakha (Yakutia) from http://stat.sakha.gks.ru/page.aspx?s=ias&m=12589&p=4700; Zolotareva I.M. Territorial variants of the anthropological type of the Yakuts (in connection with the problem of their origin) // Ethnogenesis and ethnic history of the peoples of the North: Collection of articles. – M., 1975. – 264 p.; Parnikova A.S. Settlement of the Yakuts in the XVII – early XX century. – Yakutsk: Publishing House, 1971. – 152 p.; Chikachev A.G. Russians in the Arctic: the polar variant of culture: historical and ethnographic essays. Novosibirsk: Nauka, 2007. – 303 p.; Yakuts. Sakha. Moscow Nauka, 2012. – p. 355.; https://interactive-plus.ru/files/Books/894/65a8ebc6dbcb9.jpg?req=561688; https://interactive-science.media/article/561688/discussion_platform; https://doi.org/10.21661/r-561688

  4. 4
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal

    المساهمون: The study of Buryat, Teleut, Yakut, and Dolgan populations was supported by the Russian Scientific Foundation, project No. 19-15-00219. The Russian sample was studied under the state assignment of the Institute of Cytology and Genetics, SB RAS (project No. 0259- 2021-0014).

    المصدر: Vavilov Journal of Genetics and Breeding; Том 26, № 2 (2022); 188-195 ; Вавиловский журнал генетики и селекции; Том 26, № 2 (2022); 188-195 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-22-14

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3295/1604; Ametov A.S., Kamynina L.L., Akhmedova Z.G. The clinical aspects of effectiveness of incretin therapy (Wnt-pathogenic path and polymorphism of gene TCF7L2). Rossiyskiy Meditsinskiy Zhurnal = Medical Journal of the Russian Federation. 2016;22(1):47-51. DOI 10.18821/0869-2106-2016-22-1-47-51. (in Russian); Anjum N., Jehangir A., Liu Y. Two TCF7L2 variants associated with type 2 diabetes in the Han nationality residents of China. J. Coll. Physicians Surg. Pak. 2018;28(10):794-797.; Asfandiyarova N.S. A review of mortality in type 2 diabetes mellitus. Sakharnyi Diabet = Diabetes Mellitus. 2015;18(4):12-21. DOI 10.14341/DM6846. (in Russian); Avzaletdinova D.S., Sharipova L.F., Kochetova O.V., Morugova T.V., Erdman V.V., Somova R.S., Mustafina O.E. The association of TCF7L2rs7903146 polymorphism with type 2 diabetes mellitus among Tatars of Bashkortostan. Sakharnyi Diabet = Diabetes Mellitus. 2016;19(2):119-124. DOI 10.14341/DM2004138-45. (in Russian); Bairova T.A., Dolgikh V.V., Kolesnikova L.I., Pervushina O.A. Nutriciogenetics and risk factors of cardiovascular disease: associated research in Eastern Siberia populations. Byulleten’ VSNTs SO RAMN = Bulletin of the East Siberian Scientific Center SB RAMS. 2013; 4(92):87-92. (in Russian); Baturin A.K., Sorokinа E.Yu., Pogozheva A.V., Keshabyants E.E., Kobelkova I.V., Kambarov A.O., Elizarova E.V., Tutelyan V.A. The association of rs993609 polymorphisms of gene FTO and rs659366 polymorphisms of gene UCP2 with obesity among Arctic Russian population. Voprosy Pitaniya = Problems of Nutrition. 2017;86(3): 32-39. (in Russian); Bennett C.N., Ross S.E., Longo K.A., Bajnok L., Hemati N., Johnson K.W., Harrison S.D., MacDougald O.A. Regulation of Wnt signaling during adipogenesis. J. Biol. Chem. 2002;277(34):30998-31004. DOI 10.1074/jbc.M204527200.; Bondar’ I.A., Filipenko M.L., Shabel’nikova O.Yu., Sokolova E.A. Rs7903146 variant of TCF7L2 gene and rs18012824 variant of PPARG2 gene (Pro12Ala) are associated with type 2 diabetes mellitus in Novosibirsk population. Sakharnyi Diabet = Diabetes Mellitus. 2013;4:17-22. DOI 10.14341/DM2013417-22. (in Russian); Cauchi S., El Achhab Y., Choquet H., Dina C., Krempler F., Weitgasser R., Nejjari C., Patsch W., Chikri M., Meyre D., Froguel P. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J. Mol. Med. 2007;85(7):777-782. DOI 10.1007/s00109-007 0203-4.; Cygankova D.P., Mulerova T.A., Ogarkov M.Yu., Saarela Ye.Yu., Barbarash O.L. Traditional lifestyle change as a reason for metabolic disorders risk increase in residents of Gornaya Shoriya. Consilium Medicum. 2018;20(5):66-70. DOI 10.26442/2075-1753_2018.5.66-71. (in Russian); Franceschini N., Shara N.M., Wang H., Voruganti V.S., Laston S., Haack K., Lee E.T., Best L.G., MacCluer J.W., Cohran B., Dyer T.D., Howard B.V., Cole S.A., North K.E., Umans J.G. The association of genetic variants of type 2 diabetes with kidney function. Kidney Int. 2012;82(2):220-225. DOI 10.1038/ki.2012.107.; Hallmark B., Karafet T.M., Hsieh P.H., Osipova L.P., Watkins J.C., Hammer M.F. Genomic evidence of local adaptation to climate and diet in indigenous Siberians. Mol. Biol. Evol. 2018;36(2):315-327. DOI 10.1093/molbev/msy211.; Han X., Luo Y., Ren Q., Zhang X., Wang F., Sun X., Zhou X., Ji L. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med. Genet. 2010;11:81. DOI 10.1186/1471-2350-11-81.; Haupt A., Thamer C., Heni M., Ketterer C., Machann J., Schick F., Machicao F., Stefan N., Claussen C.D., Häring H.U., Fritsche A., Staiger H. Gene variants of TCF7L2 influence weight loss and body composition during lifestyle intervention in a population at risk for type 2 diabetes. Diabetes. 2010;59(3):747-750. DOI 10.2337/db09-1050.; Ievleva K.D., Bairova T.A., Sheneman E.A., Ayurova Zh.G., Bal’zhieva V.V., Novikova E.A., Bugun O.V., Rychkova L.V., Kolesnikova L.I. The protective effect of the G-allele of PPARG2 rs1801282 polymorphism against overweight and obesity in Mongoloid adolescents. Zhurnal Mediko-Biologicheskikh Issledovaniy = Journal of Medical and Biological Research. 2019;7(4):452-463. DOI 10.17238/issn2542-1298.2019.7.4.452. (in Russian); Katsoulis K., Paschou S.A., Hatzi E., Tigas S., Georgiou I., Tsatsoulis A. TCF7L2 gene variants predispose to the development of type 2 diabetes mellitus among individuals with metabolic syndrome. Hormones (Athens). 2018;17(3):359-365. DOI 10.1007/s42000-018-0047-z.; Kaya E.D., Arikoğlu H., Kayiş S.A., Öztürk O., Gönen M.S. Transcription factor 7-like 2 (TCF7L2) gene polymorphisms are strong predictors of type 2 diabetes among nonobese diabetics in the Turkish population. Turk. J. Med. Sci. 2017;47(1):22-28. DOI 10.3906/sag-1507-160.; Kichigin V.A., Kochemirova T.N., Akimova V.P. Ethnic peculiarities in prevalence of cardiovascular risk factors in urban population. Acta Medica Eurasica. 2017;4:16-23. (in Russian); Kurtanov Kh.A., Sydykova L.A., Pavlova N.I., Filippova N.P., Dodokhov V.V., Apsolikhova G.A., Solov’eva N.A., D’yakonova A.T., Neustroeva L.M., Varlamova M.A., Borisova N.V. Polymorphism of the adiponutrin gene (PNPLA3) in the indigenous inhabitants of the Republic of Sakha (Yakutia) with type 2 diabetes mellitus. Al’manakh Klinicheskoy Meditsiny = Almanac of Clinical Medicine. 2018;46(3):258-263. DOI 10.18786/2072-0505-2018-46-3-258-263. (in Russian); Mel’nikova E.S., Rymar O.D., Ivanova A.A., Mustafina S.V., Shapkina M.Ju., Bobak M., Maljutina S.K., Voevoda M.I., Maximov V.N. Association of polymorphisms of genes TCF7L2, FABP2, KCNQ1, ADIPOQ with the prognosis of the development of type 2 diabetes mellitus. Terapevticheskiy arkhiv = Therapeutic Archive. 2020;92(10):40-47. DOI 10.26442/00403660.2020.10.000393. (in Russian); Melzer D., Murray A., Hurst A.J., Weedon M.N., Bandinelli S., Corsi A.M., Ferrucci L., Paolisso G., Guralnik J.M., Frayling T.M. Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med. 2006;4:34. DOI 10.1186/1741-7015-4-34.; Nobrega M.A. TCF7L2 and glucose metabolism: time to look beyond the pancreas. Diabetes. 2013;62(3):706-708. DOI 10.2337/db12-1418.; Orlov P.S., Kulikov I.V., Ustinov S.N., Gafarov V.V., Malyutina S.K., Romashchenko A.G., Voyevoda M.I., Maksimov V.N. Association analysis of some single nucleotide polymorphism markers of the second type of diabetes with myocardial infarction. Byulleten’ SO RAMN = Bulletin of Siberian Branch of Russian Academy of Medical Sciences. 2011;31(5):19-24. (in Russian); Ostaptseva A.V., Shabaldin A.V., Akhmatianova V.R., Minina V.I., Glushkov A.N., Druzhinin V.G., Zorkoltseva I.V., Shabaldin E.V., Glushkova O.A., Makarchenko O.S., Ageyeva T.N. Molecular genetic analysis of interleukin 4 gene polymorphism among Teleutians, Shorians, and Caucasians of Kemerovo region. Meditsinskaya Immunologiya = Medical Immunology. 2006;8(5-6):737-740. (in Russian); Ovsyannikova O.V., Podkhomutnikov V.M., Kolbasko A.V., Luzina F.A., Gus’kova E.V. Cardiovascular disease in rural Kuzbass aborigines – Teleut. Rossiyskiy Kardiologicheskiy Zhurnal = Russian Journal of Cardiology. 2007;6:59-62. (in Russian); Potapov V.A., Nosikov V.V., Shamkhalova M.N., Shestakova M.V., Smetanina S.A., Bel’chikova L.N., Suplotova L.A. TCF7L2 rs12255372 and SLC30A8 rs13266634 confer susceptibility to type 2 diabetes in a Russian population. Russ. J. Genet. 2010;46(8):1001-1008. DOI 10.1134/S1022795410080132.; Rosales-Reynoso M.A., Arredondo-Valdez A.R., Juárez-Vázquez C.I., Wence-Chavez L.I., Barros-Núñez P., Gallegos-Arreola M.P., Flores- Martínez S.E., Morán-Moguel M.C., Sánchez-Corona J. TCF7L2 and CCND1 polymorphisms and its association with colorectal cancer in Mexican patients. Cell Mol. Biol. 2016;62(11):13-20. DOI 10.14715/cmb/2016.62.11.3.; Saxena R., Gianniny L., Burtt N.P., Lyssenko V., Giuducci C., Sjögren M., Florez J.C., Almgren P., Isomaa B., Orho-Melander M., Lindblad U., Daly M.J., Tuomi T., Hirschhorn J.N., Ardlie K.G., Groop L.C., Altshuler D. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes. 2006;55(10):2890-2895. DOI 10.2337/db06-0381.; Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., Boutin P., Vincent D., Belisle A., Hadjadj S., Balkau B., Heude B., Charpentier G., Hudson T.J., Montpetit A., Pshezhetsky A.V., Prentki M., Posner B.I., Balding D.J., Meyre D., Polychronakos C., Froguel P. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881-885. DOI 10.1038/nature05616.; Smetanina S.A. Molecular-genetic and hormonal-metabolic associations among women of the Russian population of reproductive age with obesity and early menarche. Meditsinskaya Nauka i Obrazovaniye Urala = Medical Science and Education in Ural. 2015; 2(1):126-129. (in Russian); Tabikhanova L.E., Osipova L.P., Voronina E.N., Bragin A.O., Filipenko M.L. Polymorphism of lipid exchange genes in some populations of South and East Siberia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(8):1011-1019. DOI 10.18699/VJ19.578.; The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422): 56-65. DOI 10.1038/nature11632.; Timpson N.J., Lindgren C.M., Weedon M.N., Randall J., Ouwehand W.H., Strachan D.P., Rayner N.W., Walker M., Hitman G.A., Doney A.S., Palmer C.N., Morris A.D., Hattersley A.T., Zeggini E., Frayling T.M., McCarthy M.I. Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes. 2009;58(2):505-510. DOI 10.2337/db08-0906.; Trifonova E.A., Popovich A.A., Bocharova A.V., Vagaitseva K.V., Stepanov V.A. The role of natural selection in the formation of the genetic structure of populations by SNP markers in association with body mass index and obesity. Mol. Biol. 2020;54(3):349-360. DOI 10.1134/S0026893320030176.; Tsyretorova S.S., Bardymova T.P., Protasov K.V., Donirova O.S., Mistyakov M.V. Ethnic features of diabetes mellitus and coronary heart disease. Sibirskiy Meditsinskiy Zhurnal (Irkutsk) = Siberian Medical Journal (Irkutsk). 2015;136(5):15-21. (in Russian); Vikulova O.K., Zheleznyakova A.V., Lebedeva N.O., Nikitin A.G., Nosikov V.V., Shestakova M.V. Genetic factors in the development of kidney chronic disease in patients with diabetes mellitus. Russ. J. Genet. 2017;53(4):420-432. DOI 10.1134/S1022795417030140.; Xi B., Takeuchi F., Meirhaeghe A., Kato N., Chambers J.C., Morris A.P., Cho Y.S., Zhang W., Mohlke K.L., Kooner J.S., Shu X.O., Pan H., Tai E.S., Pan H., Wu J.Y., Zhou D., Chandak G.R., DIAGRAM Consortium, AGEN-T2D Consortium, SAT2D Consortium. Associations of genetic variants in/near body mass index-associated genes with type 2 diabetes: a systematic meta-analysis. Clin. Endocrinol. (Oxf .). 2014;81(5):702-710. DOI 10.1111/cen.12428.; Zhang M., Tang M., Fang Y., Cui H., Chen S., Li J., Xiong H., Lu J., Gu D., Zhang B. Cumulative evidence for relationships between multiple variants in the VTI1A and TCF7L2 genes and cancer incidence. Int. J. Cancer. 2018;142(3):498-513. DOI 10.1002/ijc.31074.; https://vavilov.elpub.ru/jour/article/view/3295

  10. 10
    Academic Journal

    المساهمون: The study was funded by the Russian Science Foundation, project № 22-25-20032, The Core Facility «Medical genomics», Tomsk NRMC., Исследование выполнено при финансовой поддержке РНФ, проект № 22-25-20032, Оборудование ЦКП «Медицинская геномика» Томского НИМЦ.

    المصدر: Siberian journal of oncology; Том 21, № 4 (2022); 72-79 ; Сибирский онкологический журнал; Том 21, № 4 (2022); 72-79 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-4

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2235/1009; Gifoni A.C.L.V.C., Gifoni M.A.C., Wotroba C.M., Palmero E.I., Costa E.L.V., Dos Santos W., Achatz M.I. Hereditary Breast Cancer in the Brazilian State of Ceará (The CHANCE Cohort): Higher-Than-Expected Prevalence of Recurrent Germline Pathogenic Variants. Front Oncol. 2022; 12. doi:10.3389/fonc.2022.932957.; Plon S.E., Eccles D.M., Easton D., Foulkes W.D., Genuardi M., Greenblatt M.S., Hogervorst F.B., Hoogerbrugge N., Spurdle A.B., Tavtigian S.V.; IARC Unclassified Genetic Variants Working Group. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008; 29(11): 1282–91. doi:10.1002/humu.20880.; Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5): 405–24. doi:10.1038/gim.2015.30.; Kononova S., Vinokurova D., Barashkov N.A., Semenova A., Sofronova S., Oksana S., Tatiana D., Struchkov V., Burtseva T., Romanova A., Fedorova S. The attitude of young people in the city of Yakutsk to DNA-testing. Int J Circumpolar Health. 2021; 80(1). doi:10.1080/22423982.2021.1973697.; Kirillina M.P., Loskutova K.S., Lushnikova E.L., Nepomnyashchikh L.M. Expression of molecular biological markers in breast cancer under conditions of the Sakha Republic (Yakutia). Bull Exp Biol Med. 2014; 157(5): 623–7. doi:10.1007/s10517-014-2630-x.; Писарева Л.Ф., Одинцова И.Н., Иванов П.М., Николаева Т.И. Особенности заболеваемости раком молочной железы коренного и пришлого населения Республики Саха (Якутия). Сибирский онкологический журнал. 2007; (3): 69–72.; Eccles D.M. Hereditary cancer: guidelines in clinical practice. Breast and ovarian cancer genetics. Ann Oncol. 2004; 15(4): 133–8. doi:10.1093/annonc/mdh917.; Slatko B.E., Gardner A.F., Ausubel F.M. Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018; 122(1): 59. doi:10.1002/cpmb.59.; Van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., Jordan T., Shakir K., Roazen D., Thibault J., Banks E., Garimella, K.V., Altshuler D., Gabriel S., DePristo M.A. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline, Curr Protoc Bioinformatics. 2013; 43(1110): 11.10.1–11.10.33. doi:10.1002/0471250953.bi1110s43.; DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., McKenna A., Fennell T.J., Kernytsky A.M., Sivachenko A.Y., Cibulskis K., Gabriel S.B., Altshuler D., Daly M.J. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics. 2011; 43(5): 491–8. doi:10.1038/ng.806.; McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9): 1297–303. doi:10.1101/gr.107524.110.; Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4): 248–9. doi:10.1038/nmeth0410-248.; Schwarz J.M., Cooper D.N., Schuelke M., Seelow D. Mutation-Taster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014; 11(4): 361–2. doi:10.1038/nmeth.2890.; Kumar P., Henikoff S., Ng P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009; 4(7): 1073–81. doi:10.1038/nprot.2009.86.; Richards C.S., Bale S., Bellissimo D.B., Das S., Grody W.W., Hegde M.R., Lyon E., Ward B.E.; Molecular Subcommittee of the ACMG Laboratory Quality Assurance Committee. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med. 2008; 10(4): 294–300. doi:10.1097/GIM.0b013e31816b5cae.; Hofstatter E.W., Domchek S.M., Miron A., Garber J., Wang M., Componeschi K., Boghossian L., Miron P.L., Nathanson K.L., Tung N. PALB2 mutations in familial breast and pancreatic cancer. Fam Cancer. 2011; 10(2): 225–31. doi:10.1007/s10689-011-9426-1.; Tischkowitz M.D., Sabbaghian N., Hamel N., Borgida A., Rosner C., Taherian N., Srivastava A., Holter S., Rothenmund H., Ghadirian P., Foulkes W.D., Gallinger S. Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology. 2009; 137(3): 1183–6. doi:10.1053/j.gastro.2009.06.055.; Jones S., Hruban R.H., Kamiyama M., Borges M., Zhang X., Parsons D.W., Lin J.C., Palmisano E., Brune K., Jaffee E.M., Iacobuzio-Donahue C.A., Maitra A., Parmigiani G., Kern S.E., Velculescu V.E., Kinzler K.W., Vogelstein B., Eshleman J.R., Goggins M., Klein A.P. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009; 324(5924): 217. doi:10.1126/science.1171202.; Slater E.P., Langer P., Niemczyk E., Strauch K., Butler J., Habbe N., Neoptolemos J.P., Greenhalf W., Bartsch D.K. PALB2 mutations in European familial pancreatic cancer families. Clin Genet. 2010; 78(5): 490–4. doi:10.1111/j.1399-0004.2010.01425.x.; Hanenberg H., Andreassen P.R. PALB2 (partner and localizer of BRCA2). Atlas Genet Cytogenet Oncol Haematol. 2018; 22(12): 484–90. doi:10.4267/2042/69016.; Practice Bulletin No 182: Hereditary Breast and Ovarian Cancer Syndrome. Obstet Gynecol. 2017; 130(3): 110–26. doi:10.1097/AOG.0000000000002296.; Grellety T., Peyraud F., Sevenet N., Tredan O., Dohollou N., Barouk-Simonet E., Kind M., Longy M., Blay J.Y., Italiano A. Dramatic response to PARP inhibition in a PALB2-mutated breast cancer: moving beyond BRCA. Ann Oncol. 2020; 31(6): 822–3. doi:10.1016/j.annonc.2020.03.283.; https://www.siboncoj.ru/jour/article/view/2235

  11. 11
    Academic Journal

    المصدر: Medical Genetics; Том 21, № 10 (2022); 69-74 ; Медицинская генетика; Том 21, № 10 (2022); 69-74 ; 2073-7998

    مصطلحات موضوعية: якуты, EXT1, EXT2, exostosin, Yakuts, экзостозин

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2176/1643; Krooth R., Macklin M., Hilbish T. Diaphysial aclasis (multiple exostoses) in Guam. American journal of medical genetics. 1961; 13: 340-347.; Philippe C., Porter D. E., Emerton M. E. et al. Mutation screening of the EXT1 and EXT2 genes in patients with hereditary multiple exostoses. Genet. 1997; 61: 520-528.; Tian C., Yan R., Wen S. et al. A Splice Mutation and mRNA Decay of EXT2 Provoke Hereditary Multiple Exostoses. PLOS One 2014; 9: 1-9.; Komura S., Matsumoto K., Hirakawa A. et al. Natural History and Characteristics of Hand Exostoses in Multiple Hereditary Exostoses. Journal of Hand Surgery. 2021; 46: 815.e1-815.e12.; Чеснокова Г.Г. Изучение структурных аномалий и точковых мутаций генов ЕХТ1 и ЕХТ2 при множественной экзостозной хондродисплазии и спорадических злокачественных новообразованиях: специальность 03.00.15 «Генетика»: автореферат дис. … кандидата биологических наук: Москва: Мед. генет. науч. центр РАМН, 1999. 24 с.; Яковлева А.Е., Петухова Д.А., Голикова П.И., Гуринова Е.Е., Данилова А.Л., Сухомясова А.Л., Максимова Н.Р. Случай множественной экзостозной хондродисплазии в якутской семье, обусловленной редкой мутацией в гене EXT2. Медицинская генетика. 2019;18(12):25-33. https://doi.org/10.25557/2073-7998.2019.12.25-33; Yakovleva A., Danilova A., Petukhova D. et al. Molecular Genetic Study of Multiple Hereditary Exostoses in the ЕХТ2 Gene. Advances in Health Sciences Research. 2021; 42: 251-255.; https://www.medgen-journal.ru/jour/article/view/2176

  12. 12
    Academic Journal

    المصدر: Medical Genetics; Том 21, № 2 (2022); 3-14 ; Медицинская генетика; Том 21, № 2 (2022); 3-14 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2041/1549; Benjamin J,. Ebstein R.P., Belmaker R.H. Personality genetics. Isr. J. Psychiatry Relat. Sci. 2002; 39(4):271-279.; Caspi A., Roberts B.W., Shiner R.L. Personality development: stability and change. Annu. Rev. Psychol. 2005;56:453-484.doi:10.1146/annurev.psych.55.090902.141913; Srivastava S., John O.P. Gosling S.D., Potter J. Development of personality in early and middle adulthood: set like plaster or persistent change? J. Pers. Soc. Psychol. 2003;84(5):1041-1053. doi:10.1037/0022-3514.84.5.1041; Белокоскова С.Г., Цигунов С.Г. Вазопрессин в механизмах реализаций реакций на стресс и модуляции эмоций. Обзоры по клинической фармакологии и лекарственной терапии. 2018;16(3):5-12. doi:10.17816/RCF1635-12; Yirmiya N., Rosenberg C., Levi S. et al. Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol. Psychiatry. 2006;11(5):488-494. doi:10.1038/sj.mp.4001812; Meyer-Lindenberg A., Kolachana B., Gold B. et al. Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol. Psychiatry. 2009; 14:968-975. doi:10.1038/mp.2008.54; Tansey K.E., Hill M.J., Cochrane L.E. et al. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism. Mol.Autism. 2011; 2(1):3. doi:10.1186/2040-2392-2-3; Казанцева А.В., Кутлумбетова Ю.Ю., Малых С.Б. и др. Ассоциация полиморфных маркеров генов аргинин-вазопрессиновых рецепторов (AVPR1A и AVPR1B) с чертами личности. Генетика. 2014;50(3):341-352.; Yang S.Y., Kim S.A., Hur G.M. et al. Replicative genetic association study between functional polymorphisms in AVPR1A and social behavior scales of autism spectrum disorder in the Korean population. Molecular Autism. 2017; 8:44. doi:10.1186/s13229-017-0161-9; Kazantseva A., Davydova Y, Enikeeva R. et al. AVPR1A main effect and OXTR-by-enviroment interplay in individual differences in depression level. Heliyon. 2020;6(10): e05240. doi:10.1016/j.heliyon.2020.e05240.; Zhang Y., Zhu D., Zhang P. et al. Neural mechanisms of AVPR1A RS3-RS1 haplotypes that impact verbal learning and memory. Neuroimage. 2020;222:117283. doi:10.1016/j.neuroimage.2020.117283; Bachner-Melman R., Dina C., Zohar A.H. et al. AVPR1A and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet. 2005;1(3):394-403. doi:10.1371/journal.pgen.0010042; Ukkola L.T., Onkamo P., Raijas P. et al. Musical aptitude is associated with AVPR1A-haplotypes. PLoS ONE. 2009;4(5): e5534. doi:10.1371/journal.pone.0005534; Staes N., Koski S.E., Helsen P. et al. Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation. Horm Behav. 2015;75:84-90. doi:10.1016/j.yhbeh.2015.08.006; Mulholland M.M., Navabpour S.V., Mareno M.C. et al. AVPR1A variation is linked to gray matter covariation in the social brain network of chimpanzees. Genes Brain Behav. 2020;19(4):e12631. doi:10.1111/gbb.12631; Aluja A., García L.F., García Ó., Blanco E. Testosterone and disinhibited personality in healthy males. Physiol Behav. 2016;164:227-232. doi:10.1016/j.physbeh.2016.06.007; Van den Akker A.L., Briley D.A., Grotzinger A.D. et al. Adolescent Big Five personality and pubertal development: pubertal hormone concentrations and self-reported pubertal status. Dev Psychol. 2021;57(1):60-72. doi:10.1037/dev0001135; Vaeroy H., Schneider F., Fetissov S.O. Neurobiology of aggressive behavior-role of autoantibodies reactive with stress-related peptide hormones. Front Psychiatry. 2019;10:872. doi:10.3389/fpsyt.2019.00872; Федорова С.А. Генетические портреты народов Республики Саха (Якутия): анализ линий митохондриальной ДНК и Y-хромосомы. Якутск: Изд. ЯНЦ СО РАН. 2008; 235 с.; Fedorova S.A., Reidla M., Metspalu E. et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC evolutionary biology. 2013; 13:127. doi:10.1186/1471-2148-13-127; Morley A.P., Narayanan M., Mines R. et al. AVPR1A and SLC6A4 polymorphisms in choral singers and non-musicians: A Gene Association Study. PLoS ONE. 2012;7(2): e31763. doi:10.1371/journal.pone.0031763; Алмаев Н.А., Островская Л.Д. Адаптация опросника темперамента и характера Р. Клонинджера на русскоязычной выборке. Психологический журнал. 2005;26(6):77-86.; Bielsky I.F., Hu S.B., Szegda K.L. et al. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology. 2004;29(3):483-493. doi:10.1038/sj.npp.1300360; Inoue-Murayama M., Yokoyama C., Yamanashi Y. et al.Common marmoset (Callithrix jacchus) personality, subjective well-being, hair cortisol level and AVPR1a, OPRM1, and DAT genotypes. Sci Rep. 2018;8(1):10255. doi:10.1038/s41598-018-28112-7; Nishina K., Takagishi H., Takahashi H. et al. Association of Polymorphism of Arginine-Vasopressin Receptor 1A (AVPR1a) Gene With Trust and Reciprocity. Front Hum Neurosci. 2019;13:230. doi:10.3389/fnhum.2019.00230; Brunner J., Keck M.E., Landgraf R. et al. Vasopressin in CSF and plasma in depressed suicide attempters: preliminary results. Eur. Neuropsychopharmacol. 2002;12(5):489-494. doi:10.1016/s0924-977x(02)00071-8; de Winter R.F., van Hemert A.M., Derijk R.H. et al. Anxiousretarded depression: relation with plasma vasopressin and cortisol. Neuropsychopharmacology. 2003;28(1):140-147. doi:10.1038/sj.npp.1300002; Piskunov A., Fusté A., Teryaeva N. et al. The hypothalamic-pituitary-thyroid axis and personality in a sample of healthy subjects. Psychoneuroendocrinology. 2018;87:181-187. doi:10.1016/j.psyneuen.2017.10.023; Arqué J.M., Segura R., Torrubia R. Correlation of thyroxine and thyroid-stimulating hormone with personality measurements: a study in psychosomatic patients and healthy subjects. Neuropsychobiology. 1987;18(3):127-33. doi:10.1159/000118406; Rawal R., Teumer A., Völzke H. et al. Meta-analysis of two genome-wide association studies identifies four genetic loci associated with thyroid function. Hum Mol Genet. 2012;21(14):3275-3282. doi:10.1093/hmg/dds136; Marcisz C., Jonderko G., Kucharz E.J. Changes of plasma arginine-vasopressin level in patients with hyperthyroidism during treatment. Med Sci Monit. 2001;7(3):409-414.; Levie D., Korevaar T., Bath S.C. et al. Thyroid function in early pregnancy, child IQ, and autistic traits: a meta-analysis of individual participant data. J Clin Endocrinol Metab. 2018;103(8):2967-2979. doi:10.1210/jc.2018-00224; Aluja A., Torrubia R. Hostility-aggressiveness, sensation seeking, and sex hormones in men: re-exploring their relationship. Neuropsychobiology. 2004;50(1):P.102-107. doi:10.1159/000077947; Markianos M., Tripodianakis J., Istikoglou C. et al. Suicide attempt by jumping: a study of gonadal axis hormones in male suicide attempters versus men who fell by accident. Psychiatry Res. 2009;170(1):82-85. doi:10.1016/j.psychres.2008.08.001; Fischer S., Ehlert U., Amiel Castro R. Hormones of the hypothalamic-pituitary-gonadal (HPG) axis in male depressive disorders - A systematic review and meta-analysis. Front Neuroendocrinol. 2019; 55:100792. doi:10.1016/j.yfrne.2019.100792; Butovskaya M., Rostovtseva V., Butovskaya P. et al. Oxytocin receptor gene polymorphism (rs53576) and digit ratio associates with aggression: comparison in seven ethnic groups. J Physiol Anthropol. 2020;39(1):20. doi:10.1186/s40101-020-00232-y; Hampson E., Ellis C.L., Tenk C.M. On the relation between 2D:4D and sex-dimorphic personality traits. Arch Sex Behav. 2008;37(1):133-144. doi:10.1007/s10508-007-9263-3; https://www.medgen-journal.ru/jour/article/view/2041

  13. 13
  14. 14
    Academic Journal
  15. 15
    Conference
  16. 16
  17. 17
    Academic Journal

    المصدر: Medical Genetics; Том 20, № 6 (2021); 33-40 ; Медицинская генетика; Том 20, № 6 (2021); 33-40 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1941/1496; Краснопольская К. Д. Наследственные болезни обмена веществ. Справочное пособие для врачей. М.: РОО «Центр социальной адаптации и реабилитации детей «Фохат», 2005. 364 с.; Краснов М.В., Краснов В.М., Григорьева М.Н. и др. Мукополисахаридозы у детей. Практическая медицина. 2010; 6(45):38-40.; Семячкина А. Н. Мукополисахаридозы у детей: клиника, диагностика, лечение, социальная адаптация и профилактика. Медицинская генетика. 2005; 4(6): 264; Гуринова Е. Е., Максимова Н.Р.,Сухомясова А.Л. Клиническое описание редкого аутосомно-рецессивного синдрома у якутских детей. Якутский медицинский журнал. 2014; 2(46):12-14; Kondo H., Maksimova N., Otomo T., Kato H., Imai A., Asano Y., Kobayashi K., Nojima S., Nakaya A., Hamada Y., Irahara K., Gurinova E., Sukhomyasova A., Nogovicina A., Savvina M., Yoshimori T., Ozono K., Sakai N. Mutation in VPS33A affects metabolism of glycosaminoglycans: a new type of mucopolysaccharidosis with severe systemic symptoms. Hum Mol Genet. 2017 Jan 1;26(1):173-183. doi:10.1093/hmg/ddw377.; Dursun Ali, Yalnizoglu Dilek, Gerdane Omer F., et al. A probable new syndrome with the storage disease phenotype caused by the VPS33A gene mutation. Clinical Dysmorphology. 2017 26(1):1-12; Vasilev F., Sukhomyasova A., Otomo T. Mucopolysaccharidosis-Plus Syndrome. Int J Mol Sci. 2020;21(2):421. Published 2020 Jan 9. doi:10.3390/ijms21020421; https://www.medgen-journal.ru/jour/article/view/1941

  18. 18
    Academic Journal

    المصدر: Medical Genetics; Том 20, № 6 (2021); 27-32 ; Медицинская генетика; Том 20, № 6 (2021); 27-32 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1940/1495; Möller H.J. Suicide, suicidality and suicide prevention in affective disorders. Acta Psychiatrica Scandinavica. 2003; 108(s418):73-80.; McKenna M. et al. Assessing the Burden of Disease in the United States Using Disability-Adjusted Life Years. American Journal of Preventive Medicine. 2005; 28(5): 415-423.; Alegria M. et al. Disparity in Depression Treatment Among Racial and Ethnic Minority Populations in the United States. Psychiatric Services. American Psychiatric Association Publishing. 2008; 59(11): 1264-1272.; González H.M. et al. The epidemiology of major depression and ethnicity in the United States. Journal of Psychiatric Research. 2010; 44(15): 1043-1051.; Williams E.D. et al. Depressive symptoms are doubled in older British South Asian and Black Caribbean people compared with Europeans: Associations with excess co-morbidity and socioeconomic disadvantage. Psychological Medicine. 2015; 45(9): 1861-1871.; Haverkamp G.L.G. et al. Psychological distress in the hospital setting: A comparison between native Dutch and immigrant patients. PLoS ONE. 2015; 10(6):e0130961. doi:10.1371/journal.pone.0130961.; Schouten R.W. et al. Ethnic Differences in the Association of Depressive Symptoms with Clinical Outcome in Dialysis Patients. Journal of Racial and Ethnic Health Disparities. 2019; 6(5): 990-1000.; Bigdeli T.B. et al. Genetic effects influencing risk for major depressive disorder in China and Europe. Translational Psychiatry. 2017; 7(3): e1074.; Sullivan P.F. et al. A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry. 2013; 18(4): 497-511.; Consortium C. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015; 523(7562): 588-591.; Sullivan P.F., Neale M.C., Kendler K.S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. American Journal of Psychiatry. 2000; 157(10): 1552-1562.; Eley T.C., Stevenson J. Exploring the Covariation between Anxiety and Depression Symptoms: A Genetic Analysis of the Effects of Age and Sex // Journal of Child Psychology and Psychiatry. 1999; 40(8): 1273-1282.; Muglia P. et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Molecular Psychiatry. 2010; 15(6): 589-601.; Millan M.J. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacology and Therapeutics. 2006; 110(2): 135-370.; Nestler E.J. et al. Neurobiology of depression. Neuron. 2002; 34(1): 13-25.; Lacerda-Pinheiro S.F. et al. Are there depression and anxiety genetic markers and mutations? A systematic review. Journal of Affective Disorders. 2014; 168: 387-398.; López-León S. et al. Meta-analyses of genetic studies on major depressive disorder. Molecular Psychiatry. 2008; 13(8): 772-785.; Saavedra K. et al. Epigenetic Modifications of Major Depressive Disorder. International Journal of Molecular Sciences. 2016; 17(8): 1279.; Hattori E. et al. Preliminary genome-wide association study of bipolar disorder in the Japanese population. American journal of medical genetics. Part B, Neuropsychiatric genetics. 2009; 150B(8): 1110-1117.; Kohli M.A. et al. The Neuronal Transporter Gene SLC6A15 Confers Risk to Major Depression. Neuron. 2011; 70(2): 252-265.; Kovanen L., Donner K., Partonen T. SIRT1 polymorphisms associate with seasonal weight variation, depressive disorders, and diastolic blood pressure in the general population. PLoS ONE. 2015$ 10(10): e0141001. doi:10.1371/journal.pone.0141001.; Hyde C.L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nature genetics. 2016; 48(9):1031-1036.; Wray N.R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics. 2018; 50(5): 668-681.; Tang W. et al. SIRT1 rs3758391 and Major Depressive Disorder: New Data and Meta-Analysis. Neuroscience Bulletin. 2018; 34(5): 863-866.; Zhu Z. et al. Shared genetics of asthma and mental health disorders: a large-scale genome-wide cross-trait analysis. European Respiratory Journal. 2019; 54(6): 1901507.; Aftanas L.I. et al. SIRT1 Allele Frequencies in Depressed Patients of European Descent in Russia. Frontiers in Genetics. 2019; 9, 686.; Leheste J.R., Torres G. Resveratrol: brain effects on SIRT1, GPR50 and photoperiodic signaling. Frontiers in Molecular Neuroscience. 2015; 8:61.; Liu W. et al. The depression GWAS risk allele predicts smaller cerebellar gray matter volume and reduced SIRT1 mRNA expression in Chinese population. Translational Psychiatry. 2019; 9(1):333.; Li C. et al. miR-138 increases depressive-like behaviors by targeting SIRT1 in hippocampus. Neuropsychiatric Disease and Treatment. 2020; 16: 949-957.; Luo X.-J., Zhang C. Down-Regulation of SIRT1 Gene Expression in Major Depressive Disorder. American Journal of Psychiatry. 2016; 173(10): 1046-1046.; Lin R. et al. Common variants in SIRT1 and human longevity in a Chinese population. BMC Medical Genetics. 2016; 17(1): 1-7.; Tagliari C.F. da S. et al. Investigation of SIRT1 gene variants in HIV-associated lipodystrophy and metabolic syndrome. Genetics and Molecular Biology. 2020; 43(1): 1-9.; Clarke T.-K. et al. Investigating shared aetiology between type 2 diabetes and major depressive disorder in a population based cohort. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2017; 174(3): 227-234.; https://www.medgen-journal.ru/jour/article/view/1940

  19. 19
    Academic Journal
  20. 20
    Academic Journal

    المصدر: Pharmacogenetics and Pharmacogenomics; № 1 (2019); 35-40 ; Фармакогенетика и фармакогеномика; № 1 (2019); 35-40 ; 2588-0527 ; 2686-8849

    وصف الملف: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/146/146; Global tuberculosis report 2018. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.; Treatment of tuberculosis. World Heal. Organ. 2010.; Matsumoto T, Ohno M, Azuma J. Future of pharmacogenetics-based therapy for tuberculosis. Pharmacogenomics. 2014;15:601–607. DOI:10.2217/pgs.14.38; Wang P, Pradhan K, Zhong X, Ma X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B. 2016;6(5):384-392.; Cai Y, Yi JY, Zhou CH, Shen XZ. Pharmacogenetic Study of DrugMetabolising Enzyme Polymorphisms on the Risk of Anti-Tuberculosis Drug-Induced Liver Injury: A Meta-Analysis. PLoS One. 2012;7(10):1–8.; Zhang M, et al. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2018;84(12):2747–2760.; Mahto H, et al. Pharmacogenetic association between NAT2 gene polymorphisms and isoniazid induced hepatotoxicity: trial sequence metaanalysis as evidence. Biosci. Rep. 2018;39(1): BSR20180845.; Wang PY, Xie SY, Hao Q, et al. Jiang. NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: A meta-analysis. Int. J. Tuberc. Lung Dis. 2012;16(5):589–595.; Shi J, Xie M, Wang J, et al. Susceptibility of N-acetyltransferase 2 slow acetylators to antituberculosis drug-induced liver injury: a meta-analysis. Pharmacogenomics. 2015;16:2083–2097.; Donald PR, et al. The Influence of Human N-Acetyltransferase Genotype on the Early Bactericidal Activity of Isoniazid. Clin. Infect. Dis. Publushed by Oxford Univ. Press. 2004;39(10): 1425–1430.; Weiner M, et al. Low Isoniazid Concentrations and Outcome of Tuberculosis Treatment with Once-Weekly Isoniazid and Rifapentine. Am. J. Respir. Crit. Care Med. 2003;167:1341–1347.; Kinzig-schippers M, et al. Should We Use N-Acetyltransferase Type 2 Genotyping To Personalize Isoniazid Doses? Society. 2005;49(5):1733–1738.; Hasunuma T, Azuma J, Ohno M, et al. Dose-escalation study of isoniazid in healthy volunteers with the rapid acetylator genotype of arylamine N-acetyltransferase 2. Eur. J. Clin. Pharmacol. 2007;63(10):927–933.; Azuma J, Ohno M, Kubota R. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis : A randomized controlled trial for pharmacogenetics-based therapy. Pharmacogenetics. 2013; 1091–1101.; Zhu R, et al. The Pharmacogenetics of NAT2 Enzyme Maturation in Perinatally HIV Exposed Infants Receiving Isoniazid. J Clin Pharmacol. 2009;6(11):1249–1254.; Jagodziński J, et al. Correlation of N-Acetyltransferase 2 Genotype with Isoniazid Acetylation in Polish Tuberculosis Patients. Biomed Res. Int. 2013;2013(Figure 1):1–5.; Министерство здравоохранения Республики Саха (Якутия) ГБУ «Республиканский детский туберкулезный санаторий имени Т.П. Дмитриевой». Статистический отчет за 2018 год.; Diallo I, Vangenot C, Sanchez-mazas A, et al. Variation in NAT2 acetylation phenotypes is associated with differences in food-producing subsistence modes and ecoregions in Africa. BMC Evol. Biol. 2015;1–20.; Toure A, et al. Prevention of isoniazid toxicity by NAT2 genotyping in Senegalese tuberculosis patients. Toxicol. Reports. 2016;3:826–831.; Mortensen HM, et al. Characterization of genetic variation and natural selection at the arylamine N-acetyltransferase genes in global human populations. Pharmacogenomics. 2015;12(11):1545–1558.; Tang H, et al. Genetic Structure , Self-Identified Race. Ethnicity, and Confounding in Case-Control Association Studies. 2005;268–275.; Sabbagh A, Darlu P, Crouau-roy B, Poloni ES. Arylamine N-Acetyltransferase 2 (NAT2) Genetic Diversity and Traditional Subsistence: A Worldwide Population Survey. PLoS One. 2011; 6(4):e18507. DOI:10.1371/journal.pone.0018507; Hein DW. N-acetyltransferase 2 genetic polymorphism : effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene. 2006;2:1649–1658.; Kurose K, Sugiyama E, Saito Y. Population Differences in Major Functional Polymorphisms of Pharmacokinetics / pharmacodynamics-related Genes in Eastern Asians and Europeans : Implications in the Clinical Trials for Novel Drug Development. Drug metabolism and pharmacokinetics. 2012;27(1):1–18.; Gra O, et al. Microarray-Based Detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 Allele Frequencies in Native Russians. Genet. Test. Mol. Biomarkers. 2010;14(3):329–342.; https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/146