يعرض 1 - 20 نتائج من 23 نتيجة بحث عن '"Ю. Б. Басок"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 26, № 2 (2024); 94-104 ; Вестник трансплантологии и искусственных органов; Том 26, № 2 (2024); 94-104 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1772/1615; Shapiro AM, Pokrywczynska AM, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017; 13 (5): 268–277. doi:10.1038/nrendo.2016.178.; Cayabyab F, Nih LR, Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front Endocrinol (Lausanne). 2021; 12: 732431. doi:10.3389/fendo.2021.732431.; Reid L, Faye Baxter F, Forbes S. Effects of islet transplantation on microvascular and macrovascular complications in type 1 diabetes. Diabet Med. 2021; 38 (7): e14570. doi:10.1111/dme.14570.; Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel). 2022; 11 (6): 1038. doi:10.3390/antiox11061038.; Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue Eng Part B Rev. 2014; 20 (5): 455–467. doi:10.1089/ten.TEB.2013.0462.; Mirmalek-Sani S-H, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013; 34 (22): 5488–5495. doi:10.1016/j.biomaterials.2013.03.054.; Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A et al. Lung-derived microscaffolds facilitate diabetes reversal after mouse and human intraperitoneal islet transplantation. PLoS One. 2016; 11 (5): e0156053. doi:10.1371/journal.pone.0156053.; Damodaran G, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med. 2018; 12 (5): 1230–1237; doi:10.1002/term.2655.; Lim LY, Ding SSL, Muthukumaran P, Teoh SH, Koh Y, Teo AKK. Tissue engineering of decellularized pancreas scaffolds for regenerative medicine in diabetes. Acta Biomater. 2023; 157: 49–66. doi:10.1016/j.actbio.2022.11.032.; Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M et al. 3d Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: In Vitro and In Vivo Study. Biomed Res Int. 2015; 2015: 432645. doi:10.1155/2015/432645.; Goh S-K, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G et al. Perfusion-Decellularized Pancreas As A Natural 3d Scaffold For Pancreatic Tissue And Whole Organ Engineering. Biomaterials. 2013; 34 (28): 6760– 6772. doi:10.1016/J.Biomaterials.2013.05.066.; Sabetkish S, Kajbafzadeh AM. The Most Ideal Pancreas Extracellular Matrix as a Platform for Pancreas Bioengineering: Decellularization/Recellularization Protocols. Adv Exp Med Biol. 2021; 1345: 61–70. doi:10.1007/9783-030-82735-9_6.; Biomimetics of Extracellular Matrices for Cell and Tissue Engineered Medical Products / Eds. Victor I. Sevastianov and Yulia B. Basok. – Newcastle upon Tyne, UK: Cambridge Scholars Publishing, 2023; 339.; Sevastianov VI, Ponomareva AS, Baranova NV, Kirsanova LA, Basok YuB, Nemets EA et al. Decellularization of Human Pancreatic Fragments with Pronounced Signs of Structural Changes. Int J Mol Sci. 2023; 24 (1): 119. doi:10.3390/ijms24010119.28.; Napierala H, Hillebrandt K-H, Haep N, Tang P, Tintemann M, Gassner J et al. Engineering an endocrine neopancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci Rep. 2017 Feb 2; 7: 41777. doi:10.1038/srep41777.; Скалецкая ГН, Скалецкий НН, Кирсанова ЛА, Бубенцова ГН, Волкова ЕА, Севастьянов ВИ. Экспериментальная имплантация тканеинженерной конструкции поджелудочной железы. Вестник трансплантологии и искусственных органов. 2019; 21 (2): 104–111. doi:10.15825/1995-1191-2019-2-104-111.; Пономарева АС, Баранова НВ, Никольская АО, Кирсанова ЛА, Онищенко НА, Гоникова ЗЗ и др. Внутрибрюшинное введение клеточно-инженерной конструкции поджелудочной железы крысам с экспериментальным сахарным диабетом (предварительные результаты). Вестник трансплантологии и искусственных органов. 2023; 25 (2): 107–117.; Smink AM, de Vos P. Therapeutic strategies for modulating the extracellular matrix to improve pancreatic islet function and survival after transplantation. Curr Diab Rep. 2018; 18 (7): 39. doi:10.1007/s11892-018-1014-4.; https://journal.transpl.ru/vtio/article/view/1772

  2. 2
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 26, № 2 (2024); 119-125 ; Вестник трансплантологии и искусственных органов; Том 26, № 2 (2024); 119-125 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1763/1617; https://journal.transpl.ru/vtio/article/downloadSuppFile/1763/1539; Lenzen S. Animal models of human type 1 diabetes for evaluating combination therapies and successful translation to the patient with type 1 diabetes. Diabetes Metab Res Rev. 2017; 33 (7). doi:10.1002/dmrr.2915.; Athmuri DN, Shiekh PA. Experimental diabetic animal models to study diabetes and diabetic complications. Methods X. 2023 Nov 4; 11: 102474. doi:10.1016/j.mex.2023.102474.; Pandey S, Chmelir T, Chottova Dvorakova M. Animal Models in Diabetic Research-History, Presence, and Future Perspectives. Biomedicines. 2023 Oct 20; 11 (10): 2852. doi:10.3390/biomedicines11102852. PMID: 37893225.; Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a Non-Obese, Diabetic Strain of Mice. Jikken Dobutsu. 1980; 29: 1–13.; Rothbauer M, Rosser JM, Zirath H, Ertl P. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol. 2019; 55: 81–86. doi:10.1016/j.copbio.2018.08.009].; Furman BL, Candasamy M, Bhattamisra SK, Veettil SK. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. J Ethnopharmacol. 2020; 247: 112264. doi:10.1016/j.jep.2019.112264.; Pandey S, Dvorakova MC. Future Perspective of Diabetic Animal Models. Endocr Metab Immune Disord Drug Targets. 2020; 20 (1): 25–38. doi:10.2174/1871530319666190626143832.; Kottaisamy CPD, Raj DS, Prasanth Kumar V, Sankaran U. Experimental animal models for diabetes and its related complications – a review. Lab Anim Res. 2021; 37 (1): 23. doi:10.1186/s42826-021-00101-4.; Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic action of streptozotocin. Cancer Chemother Rep. Part 1. 1963; 29: 91–98.; Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: Relationship of dose to metabolic response. J Clin Invest. 1969; 48: 2129–2139. doi:10.1172/JCI106180.; Скалецкая ГН, Скалецкий НН, Волкова ЕА, Се вастьянов ВИ. Стрептозотоциновая модель стабильного сахарного диабета. Вестник трансплантологии и искусственных органов. 2018; 20 (4): 83–88. doi:10.115825/1995-1191-2018-4-83-88.; Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: New model of diabetes mellitus. Science. 1976; 193 (4251): 415–417. doi:10.1126/science.180605.; Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc. 2021 Apr; 1 (4): e78. doi:10.1002/cpz1.78.; https://journal.transpl.ru/vtio/article/view/1763

  3. 3
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 26, № 2 (2024); 145-155 ; Вестник трансплантологии и искусственных органов; Том 26, № 2 (2024); 145-155 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1789/1620; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1610; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1611; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1612; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1613; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1614; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1615; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1616; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1617; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1618; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1619; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1620; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1621; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1622; Das D, Noh I. Overviews of Biomimetic Medical Materials. Adv Exp Med Biol. 2018; 1064: 3–24. doi:10.1007/978-981-13-0445-3_1.; Weekes A, Bartnikowski N, Pinto N, Jenkins J, Meinert C, Klein TJ. Biofabrication of small diameter tissueengineered vascular grafts. Acta Biomater. 2022 Jan 15; 138: 92–111. doi:10.1016/j.actbio.2021.11.012.; Wesolowski SA, Fries CC, Karlson KE, De Bakey M, Sawyer PN. Porosity: primary determinant of ultimate fate of synthetic vascular grafts. Surgery. 1961; 50: 91–96.; Лебедев ЛВ, Плотник ЛЛ, Смирнов АД. Протезы кровеносных сосудов. Л.: Медицина, 1981; 192.; Guan G, Yu C, Fang X, Guidoin R, King MW, Wang H, Wang L. Exploration into practical significance of integral water permeability of textile vascular grafts. J Appl Biomater Funct Mater. 2021; 22808000211014007. doi:10.1177/22808000211014007.; Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol. 2019; 7: 166. doi:10.3389/fbioe.2019.00166.; Fortin W, Bouchet M, Therasse E, Maire M, Héon H, Ajji A et al. Negative In Vivo Results Despite Promising In Vitro Data With a Coated Compliant Electrospun Polyurethane Vascular Graft. J Surg Res. 2022; 279: 491– 504. doi:10.1016/j.jss.2022.05.032.; Huang F, Sun L, Zheng J. In vitro and in vivo characterization of a silk fibroin-coated polyester vascular prosthesis. Artif Organs. 2008; 12: 932–941. doi:10.1111/j.15251594.2008.00655.x.; Lee JH, Kim WG, Kim SS, Lee JH, Lee HB. Development and characterization of an alginate-impregnated polyester vascular graft. J Biomed Mater Res. 1997; 36: 200–208. doi:10.1002/(sici)1097-4636(199708)36:23.0.co;2-o.; Lisman A, Butruk B, Wasiak I, Ciach T. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis. J Biomater Appl. 2014; 28: 1386–1396. doi:10.1177/0885328213509676.; Madhavan K, Elliott WH, Bonani W, Monnet E, Tan W. Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. J Biomed Mater Res B Appl Biomater. 2013; 101: 506–519. doi:10.1002/jbm.b.32851.; Немец ЕА, Панкина АП, Сургученко ВА, Севастьянов ВИ. Биостабильность и цитотоксичность медицинских изделий на основе сшитых биополимеров. Вестник трансплантологии и искусственных органов. 2018; 20 (1): 79–85.; Глушкова ТВ, Овчаренко ЕА, Рогулина НВ, Клышников КЮ, Кудрявцева ЮА, Барбараш ЛС. Дисфункции эпоксиобработанных биопротезов клапанов сердц а. Кардиология. 2019; 59 (10): 49–59.; Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002; 54: 13–36. doi:10.1016/s0169-409x(01)00240-x.; Новикова СП, Салохединова РР, Лосева СВ, Николашина ЛН, Левкина АЮ. Анализ физико-механических и структурных характеристик протезов кровеносных сосудов. Грудная и сердечно-сосудистая хирургия. 2012; 54 (4): 27–33.; Попова ИВ, Степанова АО, Сергеевичев ДС, Акулов АЕ, Захарова ИС, Покушалов АА и др. Сравнительное исследование трех типов протезов, изготовленных методом электроспиннинга, в эксперименте in vitro и in vivo. Патология кровообращения и кардиохирургия. 2015; 19 (4): 63–71.; Chen X, Yao Y, Liu S, Hu Q. An integrated strategy for designing and fabricating triple-layer vascular graft with oriented microgrooves to promote endothelialization. J Biomater Appl. 2021; 36: 297–310. doi:10.1177/08853282211001006.; Huang R, Gao X, Wang J, Chen H, Tong C, Tan Y, Tan Z. Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning. Ann Biomed Eng. 2018; 46 (9): 1254–1266. doi:10.1007/s10439-0182065-z.; Liu K, Wang N, Wang W, Shi L, Li H, Guo F et al. A bioinspired high strength three-layer nanofiber vascular graft with structure guided cell growth. J Mater Chem B. 2017; 5 (20): 3758–3764. doi:10.1039/c7tb00465f.; Nemets EA, Surguchenko VA, Belov VYu, Xajrullina AI, Sevastyanov VI. Porous Tubular Scaffolds for Tissue Engineering Structures of Small Diameter Blood Vessels. Inorganic Materials: Applied Research. 2023; 14: 400– 407. doi:10.1134/S2075113323020338.; Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro: ГОСТ ISO 109935-2023. М.: Российский институт стандартизации, 2023.; Blache U, Guerrero J, Güven S, Klar AS, Scherberich A. Microvascular networks and models: in vitro formation. W. Holnthoner, A. Banfi, J. Kirkpatrick, H. Redleds. Vascularization for tissue engineering and regenerative medicine. Reference series in biomedical engineering. Springer, Cham. 2021: 345–383. doi:10.1007/978-3319-54586-8.; Григорьев АМ, Басок ЮБ, Кириллова АД, Сургученко ВА, Шмерко НП, Кулакова ВК и др. Криогенноструктурированный гидрогель на основе желатина как резорбируемая макропористая матрица для биомедицинских технологий. Вестник трансплантологии и искусственных органов. 2022; 24 (2): 83–93. doi:10.15825/1995-1191-2022-2-83-93.; Rampersad SN. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 2012; 12: 12347– 12360. doi:10.3390/s120912347.; Wang Z, Liu S, Guidoin R, Kodama M. Polyurethane vascular grafts with thorough porosity: does an internal or an external membrane wrapping improve their in vivo blood compatibility and biofunctionality? Artif Cells Blood Substit Immobil Biotechnol. 2004; 32 (3): 463– 484. doi:10.1081/bio-200027524.; Tara S, Kurobe H, Rocco KA, Maxfield MW, Best CA, Yi T et al. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(Llactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis. 2014; 237 (2): 684–691. doi:10.1016/j.atherosclerosis.2014.09.030.; https://journal.transpl.ru/vtio/article/view/1789

  4. 4
    Academic Journal

    المساهمون: Исследование выполнено за счет гранта Российского научного фонда № 21-15-00251, https://rscf.ru/project/21-15-00251/.

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 25, № 4 (2023); 121-129 ; Вестник трансплантологии и искусственных органов; Том 25, № 4 (2023); 121-129 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1693/1547; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1444; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1445; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1446; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1447; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1448; Каратеев АЕ, Лила АМ. Остеоартрит: современная клиническая концепция и некоторые перспективные терапевтические подходы. Научно-практическая ревматология. 2018; 56 (1): 70–81. doi:10.14412/1995-4484-2018-70-81.; Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. The Lancet. 2019; 393 (10182): 1745–1759. doi:10.1016/s01406736(19)30417-9. PMID: 31034380.; Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee osteoarthritis: epidemiology, pathogenesis, and mesenchymal stem cells: what else is new? An Update. Int J Mol Sci. 2023; 24 (7): 6405. doi:10.3390/ijms24076405. PMID: 37047377.; Hsueh MF, Önnerfjord P, Kraus VB. Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol. 2014; 39: 56–66. doi:10.1016/j.matbio.2014.08.012. PMID: 25179675.; Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020; 2020: 8293921. doi:10.1155/2020/8293921. PMID: 32189997.; Aaron RK, Racine J, Dyke JP. Contribution of circulatory disturbances in subchondral bone to the pathophysiology of osteoarthritis. Curr Rheumatol Rep. 2017; 19 (8): 49. doi:10.1007/s11926-017-0660-x. PMID: 28718064.; Sanchez C, Bay-Jensen AC, Pap T, Dvir-Ginzberg M, Quasnichka H, Barrett-Jolley R et al. Chondrocyte secretome: a source of novel insights and exploratory biomarkers of osteoarthritis. Osteoarthritis Cartilage. 2017; 25 (8): 1199–1209. doi:10.1016/j.joca.2017.02.797. PMID: 28232143.; Севастьянов ВИ, Духина ГА, Григорьев АМ, Перова НВ, Кирсанова ЛА, Скалецкий НН и др. Функциональная эффективность биомедицинского клеточного продукта для регенерации суставного хряща (экспериментальная модель остеоартроза). Вестник трансплантологии и искусственных органов. 2015; 17 (1): 86–96. doi:10.15825/1995-1191-2015-1-86-96.; Shariatzadeh M, Song J, Wilson S. The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis. Cell Tissue Res. 2019; 378 (3): 399–410. doi:10.1007/s00441-019-03069-9. PMID: 31309317.; Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. Nature Reviews Rheumatology. 2015; 12 (2): 92–101. doi:10.1038/nrrheum.2015.135. PMID: 26439406.; Урясьев ОМ, Заигрова НК. Остеоартрит: патогенез, диагностика, лечение. Земский врач. 2016; 1–2 (29– 30): 27–35.; Loo SJQ, Wong NK. Advantages and challenges of stem cell therapy for osteoarthritis (review). Biomed Rep. 2021; 15 (2): 67. doi:10.3892/br.2021.1443. PMID: 34155451.; Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003; 48 (12): 3464–3474. doi:10.1002/art.11365. PMID: 14673997.; Garay-Mendoza D, Villarreal-Martínez L, Garza-Bedolla A, Pérez-Garza DM, Acosta-Olivo C, Vilchez-Cava zos F et al. The effect of intra-articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritis. Int J Rheum Dis. 2018; 21 (1): 140–147. doi:10.1111/1756-185X.13139. PMID: 28752679.; Desancé M, Contentin R, Bertoni L, Gomez-Leduc T, Branly T, Jacquet S et al. chondrogenic differentiation of defined equine mesenchymal stem cells derived from umbilical cord blood for use in cartilage repair therapy. Int J Mol Sci. 2018; 19 (2): 537. doi:10.3390/ijms19020537. PMID: 29439436.; Галушко ЕА, Большакова ТЮ, Виноградова ИБ, Иванова ОН, Лесняк ОМ, Меньшикова ЛВ и др. Структура ревматических заболеваний среди взрослого населения России по данным эпидемиологического исследования (предварительные результаты). Научно-практическая ревматология. 2009; 47 (1): 11–17. doi:10.14412/1995-4484-2009136.; De Bari C, Roelofs AJ. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol. 2018; 40: 74–80. doi:10.1016/j.coph.2018.03.009. PMID: 29625333.; Басок ЮБ, Григорьев АМ, Кирсанова ЛА, Кириллова АД, Суббот АМ, Цветкова АВ и др. Сравнительное исследование хондрогенеза мезенхимальных стромальных клеток жировой ткани человека при культивировании на коллагенсодержащих носителях в условиях in vitro. Вестник трансплантологии и искусственных органов. 2021; 23 (3): 90–100. doi:10.15825/1995-1191-2021-3-90-100.; Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000; 97 (25): 13625–13630. doi:10.1073/pnas.240309797. PMID: 11087820.; Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J et al. Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol. 2011; 272 (1): 33–38. doi:10.1016/j.cellimm.2011.09.010. PMID: 22004796.; Marmotti A, Mattia S, Castoldi F, Barbero A, Mangiavini L, Bonasia DE et al. Allogeneic umbilical cord-derived mesenchymal stem cells as a potential source for cartilage and bone regeneration: an in vitro study. Stem Cells Int. 2017; 2017: 1732094. doi:10.1155/2017/1732094. PMID: 29358953.; Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cellfree therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017; 18 (9): 1852. doi:10.3390/ijms18091852. PMID: 28841158.; Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. 2010; 12: 87–117. doi:10.1146/annurev-bioeng-070909-105309. PMID: 20415588.; Maguire G. Stem cell therapy without the cells. Commun Integr Biol. 2013; 6 (6): e26631. doi:10.4161/cib.26631. PMID: 24567776.; Mancuso P, Raman S, Glynn A, Barry F, Murphy JM. Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome. Front Bioeng Biotechnol. 2019; 7: 9. doi:10.3389/fbioe.2019.00009. PMID: 30761298.; Gunawardena TNA, Rahman MT, Abdullah BJJ, Kasim NHA. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med. 2019; 13 (4): 569–586. doi:10.1002/term.2806. PMID: 30644175.; Tsvetkova AV, Vakhrushev IV, Basok YuB, Grigor’ev AM, Kirsanova LA, Lupatov AYu et al. Chondrogeneic potential of MSC from different sources in spheroid culture. Bull Exp Biol Med. 2021; 170 (4): 528–536. doi:10.1007/s10517-021-05101-x. PMID: 33725253.; Sevastianov VI, Basok YuB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474. PMID: 36478378.; Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317. doi:10.1080/14653240600855905. PMID: 16923606.; Rosochowicz MA, Lach MS, Richter M, Suchorska WM, Trzeciak T. Conditioned medium – is it an undervalued lab waste with the potential for osteoarthritis management? Stem Cell Rev Rep. 2023; 19 (5): 1185–1213. doi:10.1007/s12015-023-10517-1. PMID: 36790694.; Gangadaran P, Oh EJ, Rajendran RL, Oh JM, Kim HM, Kwak S et al. Three-dimensional culture conditioned bone marrow MSC secretome accelerates wound healing in a burn injury mouse model. Biochem Biophys Res Commun. 2023; 673: 87–95. doi:10.1016/j.bbrc.2023.05.088. PMID: 37364390.; Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab. 2008; 28 (1): 90–98. doi:10.1038/sj.jcbfm.9600509. PMID: 17519976.; Wu KC, Chang YH, Liu HW, Ding DC. Transplanting human umbilical cord mesenchymal stem cells and hyaluronate hydrogel repairs cartilage of osteoarthritis in the minipig model. Tzu Chi Med J. 2019; 31 (1): 11–19. doi:10.4103/tcmj.tcmj_87_18. PMID: 30692826.; Nowzari F, Zare M, Tanideh N, Meimandi-Parizi A, Kavousi S, Saneian SM et al. Comparing the healing properties of intra-articular injection of human dental pulp stem cells and cell-free-secretome on induced knee osteoarthritis in male rats. Tissue Cell. 2023; 82: 102055. doi:10.1016/j.tice.2023.102055. PMID: 36948080.; https://journal.transpl.ru/vtio/article/view/1693

  5. 5
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 25, № 4 (2023); 109-120 ; Вестник трансплантологии и искусственных органов; Том 25, № 4 (2023); 109-120 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1696/1546; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1449; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1450; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1451; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1452; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1453; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1454; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1455; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1456; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1457; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1458; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1459; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1460; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1461; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1462; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1463; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1464; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1465; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1466; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1467; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1468; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1469; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1470; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1471; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1472; https://journal.transpl.ru/vtio/article/downloadSuppFile/1696/1473; Трансплантология и искусственные органы: учебник / Под ред. акад. РАН С.В. Готье. М.: Лаборатория знаний, 2018; 319 с.: ил.; Yamamoto T, Randriantsilefisoa R, Sprecher CM, D’Este M. Fabrication of collagen-hyaluronic acid cryogels by directional freezing mimicking cartilage arcadelike structure. Biomolecules. 2022 Dec 3; 12 (12): 1809. doi:10.3390/biom12121809.; Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver tissue engineering as an emerging alternative for liver disease treatment. Tissue Eng Part B Rev. 2020 Apr; 26 (2): 145–163. doi:10.1089/ten.teb.2019.0233.; Zhang L, Guan Z, Ye JS, Yin YF, Stoltz JF, de Isla N. Research progress in liver tissue engineering. Biomed Mater Eng. 2017; 28 (s1): S113–S119. doi:10.3233/BME171632.; Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A. 2009 Apr; 15 (4): 913–921. doi:10.1089/ten.tea.2008.0109.; Daly AC, Kelly DJ. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials. 2019 Mar; 197: 194–206. doi:10.1016/j.biomaterials.2018.12.028.; Schwab A, Hélary C, Richards RG, Alini M, Eglin D, D’Este M. Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment. Mater Today Bio. 2020 Jun 1; 7: 100058. doi:10.1016/j.mtbio.2020.100058.; Лозинский ВИ. Новое семейство макропористых и сверхмакропористых материалов биотехнологического назначения – полимерные криогели. Известия РАН. Серия химическая. 2008; (5): 996–1014. doi:10.1007/s11172-008-0131-7.; Lozinsky VI. Cryostructuring of polymer systems. 50.† Cryogels and cryotropic gel-formation: terms and definitions. Gels. 2018; 4 (3): 77. doi:10.3390/gels4030077.; Henderson TMA, Ladewig K, Haylock DN, McLean KM, O’Connor AJ. Cryogels for biomedical applications. J Mater Chem B. 2013; 1 (21): 2682–2695. doi:10.1039/c3tb20280a.; Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ et al. Latest advances in cryogel technology for biomedical applications. Adv Ther. 2019; 2 (4): 1800114. doi:10.1002/adtp.201800114.; Lozinsky VI. Cryostructuring of polymeric systems. 55. Retrospective view on the more than 40-years studies performed in the A.N. Nesmeyanov Institute of Organoelement Compounds with respect of the cryostructuring processes in polymeric systems. Gels. 2020; 6 (3): 29. doi:10.3390/gels6030029.; Shiekh PA, Andrabi SV, Singh A, Majumder S, Kumar A. Designing cryogels through cryostructuring of polymeric matrices for biomedical applications. Eur Polym J. 2021; 144; 110234. doi:10.1016/j.eurpolymj.2020.110234.; Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent advances in macroporous hydrogels for cell behavior and tissue engineering. Gels. 2022 Sep 21; 8 (10): 606. doi:10.3390/gels8100606.; Omidian H, Chowdhury SD, Babanejad N. Cryogels: advancing biomaterials for transformative biomedical applications. Pharmaceutics. 2023 Jun 27; 15 (7): 1836. doi:10.3390/pharmaceutics15071836.; Lozinsky VI, Okay O. Basic principles of cryotropic gelation. Adv Polym Sci. 2014; 263: 49–102. doi:10.1007/978-3-319-05846-7_2.; Севастьянов ВИ, Григорьев АМ, Басок ЮБ, Кирсанова ЛА, Василец ВН, Малкова АП и др. Биосовместимые и матриксные свойства полилактидных губок. Вестник трансплантологии и искусственных органов. 2018; 20 (2): 82–90. https://doi.org/10.15825/1995-1191-2018-2-82-90.; Bhaskar B, Rao PS, Kasoju N, Nagarjuna V, Baadhe RR (Eds.). Biomaterials in Tissue Engineering and Regenerative Medicine. From Basic Concepts to State of the Art Approaches. Springer Nature Singapore Pte Ltd., 2021; 1039. https://doi.org/10.1007/978-981-16-0002-9.; Sevastianov VI, Basok YB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA et al. A Comparison of the Capacity of Mesenchymal Stromal Cells for Cartilage Regeneration Depending on Collagen-Based Injectable Biomimetic Scaffold Type. Life (Basel). 2021 Jul 27; 11 (8): 756. doi:10.3390/life11080756.; Севастьянов ВИ, Перова НВ. Биополимерный гетерогенный гидрогель Сферо®ГЕЛЬ – инъекционный биодеградируемый имплантат для заместительной и регенеративной медицины. Практическая медицина. 2014; 8 (84): 120–126.; DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, Christman KL. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS ONE. 2010; 5 (9): e13039. doi:10.1371/journal.pone.0013039.; Лозинский ВИ, Кулакова ВК, Колосова ОЮ, Басок ЮБ, Григорьев АМ, Перова НВ, Севастьянов ВИ. Биополимерный материал для клеточно-инженерных и/или тканеинженерных конструкций и способ его получения. Пат. РФ № 2774947 (2021); Б.И. № 18 (2022).; Григорьев АМ, Басок ЮБ, Кириллова АД, Сургученко ВА, Шмерко НП, Кулакова ВК и др. Криогенно-структурированный гидрогель на основе желатина как резорбируемая макропористая матрица для биомедицинских технологий. Вестник трансплантологии и искусственных органов. 2022; 24 (2): 83–93. https://doi.org/10.15825/1995-1191-2022-2-83-93.; Lozinsky VI, Kulakova VK, Grigoriev AM, Podorozhko EA, Kirsanova LA, Kirillova AD et al. Cryostructuring of polymeric systems: 63. Synthesis of two chemically tanned gelatin-based cryostructurates and evaluation of their potential as scaffolds for culturing of mammalian cells. Gels. 2022 Oct 28; 8 (11): 695. doi:10.3390/gels8110695.; Novikov I, Subbot A, Turenok A, Mayanskiy N, Chebotar I. A rapid method of whole cell sample preparation for scanning electron microscopy using neodymium chloride. Micron. 2019; 124: 102687. doi:10.1016/j.micron.2019.102687.; Межгосударственный стандарт ГОСТ ISO 109935-2011 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro».; https://journal.transpl.ru/vtio/article/view/1696

  6. 6
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 25, № 3 (2023); 87-96 ; Вестник трансплантологии и искусственных органов; Том 25, № 3 (2023); 87-96 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1669/1512; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1382; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1383; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1384; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1385; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1386; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1387; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1388; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1389; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1390; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1391; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1392; Протезы кровеносных сосудов. Общие технические требования. Методы испытаний: ГОСТ 31514-2012. Дата введения 01.01.2015. М.: Стандартинформ, 2015.; Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev. 2011; 63: 209–220.; Новикова СП, Салохединова РР, Лосева СВ, Николашина ЛН, Левкина АЮ. Анализ физико-механических и структурных характеристик протезов кровеносных сосудов. Грудная и сердечно-сосудистая хирургия. 2012; 54: 27–33.; Wesolowski SA, Fries CC, Karlson KE, De Bakey M, Sawyer PN. Porosity: primary determinant of ultimate fate of synthetic vascular grafts. Surgery. 1961; 50: 91–96.; Лебедев ЛВ, Плотник ЛЛ, Смирнов АД. Протезы кровеносных сосудов. Л.: Медицина, 1981; 192.; Guan G, Yu C, Fang X, Guidoin R, King MW, Wang H, Wang L. Exploration into practical significance of integral water permeability of textile vascular grafts. J Appl Biomater Funct Mater. 2021; 19: 22808000211014007. doi:10.1177/22808000211014007.; Yates SG, Barros D’Sa AA, Berger K, Fernandez LG, Wood SJ, Rittenhouse EA et al. The preclotting of porous arterial prostheses. Ann Surg. 1978; 188: 611–622.; Joseph J, Domenico Bruno V, Sulaiman N, Ward A, Johnson TW, Baby HM et al. A novel small diameter nanotextile arterial graft is associated with surgical feasibility and safety and increased transmural endothelial ingrowth in pig. J Nanobiotechnology. 2022; 20: 71. doi:10.1186/s12951-022-01268-1.; Hisagi M, Nishimura T, Ono M, Gojo S, Nawata K, Kyo S. New pre-clotting method for fibrin glue in a nonsealed graft used in an LVAD: the KYO method. J Artif Organs. 2010; 13: 174–177. doi:10.1007/s10047-010- 0504-1.; Weadock KS, Goggins JA. Vascular graft sealants. J Long Term Eff Med Implants. 1993; 3: 207–22.; Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol. 2019; 7: 166. doi:10.3389/fbioe.2019.00166.; Zdrahala RJ. Small caliber vascular grafts. Part I: state of the art. J Biomater Appl. 1996; 10: 309–329. doi:10.1177/088532829601000402.; Drury JK, Ashton TR, Cunningham JD, Maini R, Pollock JG. Experimental and clinical experience with a gelatin impregnated Dacron prosthesis. Ann Vasc Surg. 1987; 1: 542–547.; Fortin W, Bouchet M, Therasse E, Maire M, Héon H, Ajji A et al. Negative In Vivo Results Despite Promising In vitro Data With a Coated Compliant Electrospun Polyurethane Vascular Graft. J Surg Res. 2022; 279: 491– 504. doi:10.1016/j.jss.2022.05.032.; Huang F, Sun L, Zheng J. In vitro and in vivo characterization of a silk fibroin-coated polyester vascular prosthesis. Artif Organs. 2008; 12: 932–941. doi:10.1111/j.1525- 1594.2008.00655.x.; Lee JH, Kim WG, Kim SS, Lee JH, Lee HB. Development and characterization of an alginate-impregnated polyester vascular graft. J Biomed Mater Res. 1997; 36: 200–208. doi:10.1002/(sici)1097-4636(199708)36:23.0.co;2-o.; Lisman A, Butruk B, Wasiak I, Ciach T. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis. J Biomater Appl. 2014; 28: 1386–1396. doi:10.1177/0885328213509676.; Madhavan K, Elliott WH, Bonani W, Monnet E, Tan W. Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. J Biomed Mater Res B Appl Biomater. 2013; 101: 506–519. doi:10.1002/jbm.b.32851.; Немец ЕА, Панкина АП, Сургученко ВА, Севастьянов ВИ. Биостабильность и цитотоксичность медицинских изделий на основе сшитых биополимеров. Вестник трансплантологии и искусственных органов. 2018; 20 (1): 79–85. doi:10.15825/1995-1191-2018-1-79-85.; Глушкова ТВ, Овчаренко ЕА, Рогулина НВ, Клышников КЮ, Кудрявцева ЮА, Барбараш ЛС. Дисфункции эпоксиобработанных биопротезов клапанов сердца. Кардиология. 2019; 59 (10): 49–59. doi:10.18087/cardio.2019.10.n327.; Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002; 54: 13–36. doi:10.1016/s0169-409x(01)00240-x.; Chernonosova VS, Laktionov PP. Structural Aspects of Electrospun Scaffolds Intended for Prosthetics of Blood Vessels. Polymers (Basel). 2022; 14: 1698. doi:10.3390/polym14091698.; Fioretta ES, Simonet M, Smits AI, Baaijens FP, Bouten CV. Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromolecules. 2014; 15: 821–829. doi:10.1021/bm4016418.; Azimi B, Nourpanah P, Rabiee M, Arbab SJ. Poly (ε-caprolactone) Fiber: An Overview. Engineered Fibers Fabrics. 2014; 9: 74–90. doi:10.1177/155892501400900309.; Reid JA, McDonald A, Callanan A. Electrospun fibre diameter and its effects on vascular smooth muscle cells. J Mater Sci Mater Med. 2021; 32: 131. doi:10.1007/s10856-021-06605-8.; Nemets EA, Surguchenko VA, Belov VYu, Xajrullina AI, Sevastyanov VI. Porous Tubular Scaffolds for Tissue Engineering Structures of Small Diameter Blood Vessels. Inorganic Materials: Applied Research. 2023; 14: 400– 407. doi:10.1134/S2075113323020338.; Лебедев АВ, Бойко АИ. Зависимость прочности сваренных кровеносных сосудов от диаметра, толщины и модуля Юнга стенки. Биомедицинская инженерия и электроника. 2014; 2: 54–61.; https://journal.transpl.ru/vtio/article/view/1669

  7. 7
    Academic Journal

    المساهمون: Исследование выполнено за счет гранта Российского научного фонда № 21-15-00251, https://rscf.ru/ project/21-15-00251/.

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 25, № 3 (2023); 76-86 ; Вестник трансплантологии и искусственных органов; Том 25, № 3 (2023); 76-86 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1616/1511; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1295; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1296; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1297; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1298; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1299; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1326; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1327; Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Annals of Biomedical Engineering. 2020; 48 (7): 2132–2153. doi:10.1007/s10439-019-02408-9. PMID: 31741227.; Jambar Nooshin B, Tayebi T, Babajani A, Khani MM, Niknejad H. Effects of different perfusing routes through the portal vein, hepatic vein, and biliary duct on whole rat liver decellularization. Cell journal. 2023; 25 (1): 35–44. doi:10.22074/cellj.2022.557600.1081. PMID: 36680482.; Hsu CY, Chi PL, Chen HY, Ou SH, Chou KJ, Fang HC et al. Kidney bioengineering by using decellularized kidney scaffold and renal progenitor cells. Tissue and Cell. 2022; 74: 101699. doi:10.1016/j.tice.2021.101699. PMID: 34891081.; Tang-Quan KR, Mehta NA, Sampaio LC, Taylor DA. Whole cardiac tissue bioscaffolds. Advances in Experimental Medicine and Biology. 2018; 1098: 85–114. doi:10.1007/978-3-319-97421-7_5. PMID: 30238367.; Bölükbas DA, De Santis MM, Alsafadi HN, Doryab A, Wagner DE. The preparation of decellularized mouse lung matrix scaffolds for analysis of lung regenerative cell potential. Methods in Molecular Biology. 2019; 1940: 275–295. doi:10.1007/978-1-4939-9086-3_20. PMID: 30788833.; Berger C, Bjørlykke Y, Hahn L, Mühlemann M, Kress S, Walles H et al. Matrix decoded – a pancreatic extracellular matrix with organ specific cues guiding human ipsc differentiation. Biomaterials. 2020; 244: 119766. doi:10.1016/j.biomaterials.2020.119766. PMID: 32199284.; Khajavi M, Hashemi M, Kalalinia F. Recent advances in optimization of liver decellularization procedures used for liver regeneration. Life Sciences. 2021; 281: 119801. doi:10.1016/j.lfs.2021.119801. PMID: 34229008.; Sevastianov VI, Ponomareva AS, Baranova NV, Kirsanova LA, Basok YB, Nemets EA et al. Decellularization of human pancreatic fragments with pronounced signs of structural changes. International Journal of Molecular Sciences. 2023; 24 (1): 119. doi:10.3390/ijms24010119. PMID: 36613557.; Qian H, He L, Ye Z, Wei Z, Ao J. Decellularized matrix for repairing intervertebral disc degeneration: fabrication methods, applications and animal models. Materials Today Bio. 2022; 18: 100523. doi:10.1016/j.mtbio.2022.100523. PMID: 36590980.; Басок ЮБ, Кириллова АД, Григорьев АМ, Кирсанова ЛА, Немец ЕА, Севастьянов ВИ. Получение микродисперсного тканеспецифического децеллюляризованного матрикса из суставного хряща свиньи. Перспективные материалы. 2020; 5: 51–60. doi:10.30791/1028-978x-2020-5-51-60.; Немец ЕА, Лажко АЭ, Басок ЮБ, Кирсанова ЛА, Кириллова АД, Севастьянов ВИ. Особенности получения тканеспецифического матрикса из децеллюляризованного хряща свиньи. Сверхкритические флюиды: теория и практика. 2020; 15 (2): 3–13. doi:10.34984/SCFTP.2020.15.2.001.; Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015; 84: 25–34. doi:10.1016/j.ymeth.2015.03.005. PMID: 25791470.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057. PMID: 21296410.; Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. BioMed Research International. 2017; 2017: 9831534. doi:10.1155/2017/9831534. PMID: 28540307.; Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. Journal of Biological Chemistry. 1988; 263 (26): 12927–12932. doi:10.1016/s0021-9258(18)37650-6. PMID: 2458338.; Maurer P, Hohenester E. Structural and functional aspects of calcium binding in extracellular matrix proteins. Matrix Biology. 1997; 15 (8–9): 569–580. doi:10.1016/S0945-053X(97)90033-0. PMID: 9138289.; Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK et al. Optimization of amniotic membrane (am) denuding for tissue engineering. Tissue Engineering – Part C: Methods. 2008; 14 (4): 371–381. doi:10.1089/ten.tec.2008.0315. PMID: 18821842.; Schenke-Layland K, Vasilevski O, Opitz F, König K, Riemann I, Halbhuber KJ et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. Journal of Structural Biology. 2003; 143 (3): 201–208. doi:10.1016/j.jsb.2003.08.002. PMID: 14572475.; Waldrop FS, Puchtler H, Meloan SN, Younker TD. Histochemical investigations of different types of collagen. Acta histochemica Supplementband. 1980; 21: 21–31. PMID: 6808564.; Lin CH, Kao YC, Ma H, Tsay RY. An investigation on the correlation between the mechanical property change and the alterations in composition and microstructure of a porcine vascular tissue underwent trypsin-based decellularization treatment. Journal of the Mechanical Behavior of Biomedical Materials. 2018; 86: 199–207. doi:10.1016/j.jmbbm.2018.06.029. PMID: 29986294.; Grauss RW, Hazekamp MG, Oppenhuizen F, Van Munsteren CJ, Gittenberger-De Groot AC, DeRuiter MC. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. European Journal of Cardio-thoracic Surgery. 2005; 27 (4): 566–571. doi:10.1016/j.ejcts.2004.12.052. PMID: 15784352.; Merna N, Robertson C, La A, George SC. Optical imaging predicts mechanical properties during decellularization of cardiac tissue. Tissue Engineering – Part C: Methods. 2013; 19 (10): 802–809. doi:10.1089/ten.tec.2012.0720. PMID: 23469868.; Giraldo-Gomez DM, García-López SJ, Tamay-de-Dios L, Sánchez-Sánchez R, Villalba-Caloca J, Sotres-Vega A et al. Fast cyclical-decellularized trachea as a natural 3d scaffold for organ engineering. Materials Science and Engineering C. 2019; 105: 110142. doi:10.1016/j.msec.2019.110142. PMID: 31546345.; Rahman S, Griffin M, Naik A, Szarko M, Butler PEM. Optimising the decellularization of human elastic cartilage with trypsin for future use in ear reconstruction. Scientific Reports. 2018; 8 (1): 3097. doi:10.1038/s41598-018-20592-x. PMID: 29449572.; Vernice NA, Berri N, Bender RJ, Dong X, Spector JA. Production of a low-cost, off-the-shelf, decellularized cartilage xenograft for tissue regeneration. Annals of Plastic Surgery. 2022; 88 (3): S296–S301. doi:10.1097/SAP.0000000000003185. PMID: 35513335.; Дмитриева ЕГ, Хацко СЛ, Якимов АА. Способ гистологической окраски артерий сердца. Сибирский научный медицинский журнал. 2022; 42 (3): 47–51. doi:10.18699/SSMJ20220305.; Gilbert T, Sellaro T, Badylak S. Decellularization of tissues and organs. Biomaterials. 2006; 27 (19): 3675– 3683. doi:10.1016/j.biomaterials.2006.02.014. PMID: 16519932.; Sevastianov VI, Basok YB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. Journal of Biomedical Materials Research – Part A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474. PMID: 36478378.; Семенычева ЛЛ, Егорихина МН, Часова ВО, Валетова НБ, Митин АВ, Кузнецова ЮЛ. Эффективность протеаз панкреатина и трипсина при ферментативном гидролизе коллагена. Вестник ЮУрГУ. Серия «Химия». 2020; 12 (1): 66–75. doi:10.14529/chem200108.; Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor’ev AM, Kirsanova LA, Lupatov AY et al. Chondrogeneic potential of msc from different sources in spheroid culture. Bulletin of Experimental Biology and Medicine. 2021; 170 (4): 528–536. doi:10.1007/s10517-021-05101-x. PMID: 33725253.; Ghassemi T, Saghatoleslami N, Mahdavi-Shahri N, Matin MM, Gheshlaghi R, Moradi A. A comparison study of different decellularization treatments on bovine articular cartilage. Journal of Tissue Engineering and Regenerative Medicine. 2019; 13 (10): 1861–1871. doi:10.1002/term.2936. PMID: 31314950.; Lin S, He Y, Tao M, Wang A, Ao Q. Fabrication and evaluation of an optimized xenogenic decellularized costal cartilage graft: preclinical studies of a novel biocompatible prosthesis for rhinoplasty. Regenerative Biomaterials. 2021; 8 (6): rbab052. doi:10.1093/rb/rbab052.; Giraldo-Gomez DM, Leon-Mancilla B, Del Prado-Audelo ML, Sotres-Vega A, Villalba-Caloca J, Garciadiego-Cazares D et al. Trypsin as enhancement in cyclical tracheal decellularization: morphological and biophysical characterization. Materials Science and Engineering C. 2016. doi:10.1016/j.msec.2015.10.094. PMID: 26652450.; Perea-Gil I, Uriarte JJ, Prat-Vidal C, Gálvez-Montón C, Roura S, Llucià-Valldeperas A et al. In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization. American Journal of Translational Research. 2015; 7 (3): 558–573. PMID: 26045895.; Басок ЮБ, Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины в лечении дефектов хрящевой ткани суставов. Вестник трансплантологии и искусственных органов. 2016; 18 (4): 102–122. doi:10.15825/1995-1191- 2016-4-102-122.; Sevastianov VI, Basok YuB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA et al. A comparison of the capacity of mesenchymal stromal cells for cartilage regeneration depending on collagen-based injectable biomimetic scaffold type. Life. 2021; 11 (8): 756. doi:10.3390/life11080756.; https://journal.transpl.ru/vtio/article/view/1616

  8. 8
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 25, № 2 (2023); 107-117 ; Вестник трансплантологии и искусственных органов; Том 25, № 2 (2023); 107-117 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1625/1475; https://journal.transpl.ru/vtio/article/downloadSuppFile/1625/1305; https://journal.transpl.ru/vtio/article/downloadSuppFile/1625/1306; Fiorina P, Shapiro AM, Ricordi C, Secchi A. The clinical impact of islet transplantation. Am J Transplant. 2008; 8: 1990–1997.; Shapiro AM, Lakey RT, Ryan EA, Korbutt GS, Toth E, Warnock GL et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000; 343 (4): 230–238. doi:10.1056/NEJM200007273430401.; Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R, Bellin MD et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016; 39 (7): 1230–1240. doi:10.2337/dc15-1988.; Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care. 2012; 35 (7): 1436–1445. https://doi.org/10.2337/dc12-0063.; Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005; 54: 2060–2069. https://doi.org/10.2337/diabetes.54.7.2060.; Gerber PA, Lehmann R. Islet transplantation in type I diabetes mellitus. Diabetologe. 2015; 11 (7): 545–552.; Vantyghem MC, de Koning EJP, Pattou F, Rickels MR. Advances in beta-cell replacement therapy for the treatment of type 1 diabetes. Lancet. 2019; 394 (10205): 1274–1285.; Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants. 2022; 11: 1038. https://doi.org/10.3390/antiox11061038.; Korsgren O, Nilsson B, Berne C, Felldin M, Foss A, Kallen R et al. Current status of clinical islet transplantation. Transplantation. 2005; 79: 1289–1293. doi:10.1097/01.tp.0000157273.60147.7c.; Shapiro AM, Gallant HL, Hao EG, Lakey JR, McCready T, Rajotte RV et al. The portal immunosuppressive storm: relevance to islet transplantation. Ther Drug Monit. 2005; 27 (1): 35–37. doi:10.1097/00007691200502000-00008.; Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes. 1999; 48 (10): 1907–1914. doi:10.2337/diabetes.48.10.1907.; Kumar N, Joisher H, Ganguly A. Polymeric scaffolds for pancreatic tissue engineering: a review. Rev Diabet Stud. 2018; 14 (4): 334–353.; Riopel M, Wang К. Collagen matrix support of pancreatic islet survival and function. Frontiers in Bioscience. 2014; 19: 77–90. doi:10.2741/4196.; Lemos NE, de Almeida Brondani L, Dieter C, Rheinheimer J, Bouças AP, Bauermann Leitão C et al. Use of additives, scaffolds and extracellular matrix components for improvement of human pancreatic islet outcomes in vitro: A systematic review. Islets. 2017; 9 (5): 73–86. doi:10.1080/19382014.2017.1335842.; Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, Orlando G. Extracellular matrix scaffold technology for bioartificial pancreas engineering: state of the art and future challenges. J Diab Sci Technol. 2014; 8 (1): 159–169. doi:10.1177/1932296813519558.; Gazia C, Gaffley M, Asthana A. Scaffolds for pancreatic tissue engineering. Handbook of Tissue Engineering Scaffolds: Volume Two. 2019; 765–786. doi:10.1016/B978-0-08-102561-1.00032-4.; Fisher SA, Tam RY, Shoichet MS. Tissue mimetics: engineered hydrogel matrices provide biomimetic environments for cell growth. Tissue Engineering. 2014; 20 (5–6): 895–898. doi:10.1089/ten.tea.2013.0765.; Coronel M, Stabler C. Engineering a local microenvironment for pancreatic islet replacement. Curr Opin Biotechnol. 2013; 24 (5): 900–908. doi:10.1016/j.copbio.2013.05.004.; Buitinga M, Assen F, Hanegraff M. Micro-fabricated scaffolds lead to efficient remission of diabetes in mice. Biomaterials. 2017; 135: 10–22.; Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A et al. Lung-derived microscaffolds facilitate diabetes reversal after mouse and human intraperitoneal islet transplantation. PLoS One. 2016; 11 (5): e0156053. doi:10.1371/journal.pone.0156053.; Szebeni GJ, Tancos Z, Feher LZ, Alfoldi R, Kobolak J, Dinnyes A, Puskas LG. Real architecture for 3D Tissue (RAFT) culture system improves viability and maintains insulin and glucagon production of mouse pancreatic islet cells. Cytotechnology. 2017; 69 (2): 359–369. doi:10.1007/s10616-017-0067-6.; Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue engineering. 2014; 20 (5): 455–467.; Damodaran G, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med. 2018; 12 (5): 1230–1237. doi:10.1002/term.2655.; Mendibil U, Ruiz­Hernandez R, Retegi­Carrion S, Garcia­Urquia N, Olalde­Graells B, Abarrategi A. Tissuespecific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020; 21: 5447. doi:10.3390/ijms21155447.; Rana D, Zreigat H, Benkirane­Jessel N, Ramakrishna S, Ramalingam M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med. 2017; 11 (4): 942–965. doi:10.1002/term.2061.; Shirakigawa N, Ijima H. Decellularized tissue engineering. Advances in Biomaterials for Biomedical Applications. Springer Nature Singapore Pte Ltd. 2017; 66: 185–226. doi:10.1007/978-981-10-3328-5_5.; Sevastianov VI, Basok YuB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474.; Sevastianov VI, Ponomareva AS, Baranova NV, Kirsanova LA, Basok YuB, Nemets EA et al. Decellularization of Human Pancreatic Fragments with Pronounced Signs of Structural Changes. Int J Mol Sci. 2023; 24: 119. https://doi.org/10.3390/ijms24010119.; Mirmalek­Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M et al. Porcine pancreas extracellular matrix as a platform endocrine pancreas bioengineering. Biomaterials. 2013; 34 (22): 5488–5495. doi:10.1016/j.biomaterials.2013.03.054.; Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M et al. 3D culture of MIN-6 cells on decellularized pancreatic scaffold: in vitro and in vivo study. Biomed Res Int. 2015; 2015: 432645. doi:10.1155/2015/432645.; Sevastianov VI, Baranova NV, Kirsanova LA Ponomareva AS, Basok YuB, Nemets EA, Gautier SV. Comparative analysis of the influence of extracellular matrix biomimetics on the viability and insulin-producing function of isolated pancreatic islets. J Gene Engg Bio Res. 2021; 3 (2): 17–25. doi:10.33140/igerb.03.02.02.; Karaoz E, Genç ZS, Demircan PÇ, Aksoy A, Duruksu G. Protection of rat pancreatic islet function and viability by coculture with rat bone marrow-derived mesenchymal stem cells. Cell Death Dis. 2010; 1: e36. doi:10.1038/cddis.2010.14.; Великий ДА, Закирьянов АР, Клименко ЕД, Онищенко НА, Поздняков ОМ. Патент на изобретение «Способ моделирования сахарного диабета I типа у крыс» от 27.09.2010.; Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины. Вестник трансплантологии и искусственных органов. 2014; 16 (3): 93–108. doi:10.15825/1995-1191-2014-3-93-108.; https://journal.transpl.ru/vtio/article/view/1625

  9. 9
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 25, № 2 (2023); 82-98 ; Вестник трансплантологии и искусственных органов; Том 25, № 2 (2023); 82-98 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1626/1473; https://journal.transpl.ru/vtio/article/downloadSuppFile/1626/1307; https://journal.transpl.ru/vtio/article/downloadSuppFile/1626/1308; Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины. Вестник трансплантологии и искусственных органов. 2014; 16 (3): 93–108. doi:10.15825/1995-1191-2014-3-93-108.; Мелешина АВ, Быстрова АС, Роговая ОС, Воротеляк ЕА, Васильев АВ, Загайнова ЕВ. Тканеинженерные конструкты кожи и использование стволовых клеток для создания кожных эквивалентов. Современные технологии в медицине. 2017; 9 (1): 198–220. doi:10.17691/stm2017.9.1.24.; Фоминых ЕМ, Митрофанов НВ, Живцов ОП, Стручков АА, Зубрицкий ВФ, Лебедева ЮН и др. Трансплантация тканевых эквивалентов в лечении некоторых повреждений кожи. Вестник трансплантологии и искусственных органов. 2020; 22 (1): 165–173. doi:10.15825/19952020-1-165-173.; Севастьянов ВИ, Григорьев АМ, Басок ЮБ, Кирсанова ЛА, Василец НВ, Малкова АП и др. Биосовместимые и матриксные свойства полилактидных губок. Вестник трансплантологии и искусственных органов. 2018; 20 (2): 82–90. doi:10.15825/1995-1191-2018-2-82-90.; Liu H, Gong Y, Zhang K, Ke S, Wang Y, Wang J, Wang H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels. 2023; 9 (3): 195. doi:10.3390/gels9030195.; Басок ЮБ, Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины в лечении дефектов хрящевой ткани суставов. Вестник трансплантологии и искусственных органов. 2016; 18 (4): 102–122. doi:10.15825/1995-1191-2016-4-102-122.; Sevastianov VI, Basok YB, Grigor’ev AM, Kirsanova LA, Vasilets VN. Formation of tissue-engineered construct of human cartilage tissue in a flow-through bioreactor. Bulletin of Experimental Biology and Medicine. 2017; 164: 269–273. doi:10.1007/s10517-017-3971-z.; Севастьянов ВИ, Басок ЮБ, Григорьев АМ, Кирсанова ЛА, Василец НВ. Перфузионный биореактор для создания тканеинженерных конструкций. Медицинская техника. 2017; 303 (3): 9–11.; Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Annals of Biomedical Engineering. 2014; 42 (7): 1517–1527. doi:10.1007/s10439-013-0963-7. PMID: 24402648.; Bakhtyar N, Jeschke MG, Mainville L, Herer E, AminiNik S. Acellular gelatinous material of human umbilical cord enhances wound healing: a candidate remedy for deficient wound healing. Frontiers in Physiology. 2017; 8: 200. doi:10.3389/fphys.2017.00200. PMID: 28421003.; Gupta P, Chaudhuri GR, Janani G, Agarwala M, Ghosh D, Nandi SK, Mandal BB. Functionalized silk vascular grafts with decellularized human Wharton’s jelly improves remodeling via immunomodulation in rabbit jugular vein. Advanced Healthcare Materials. 2021; 10 (19): e2100750. doi:10.1002/adhm.202100750. PMID: 34378360.; Калюжная ЛИ, Чернов ВЕ, Фрумкина АС, Чеботарев СВ, Земляной ДА, Товпеко ДВ, Косулин АВ. Изготовление тканеинженерного бесклеточного матрикса пуповины человека. Вестник Российской военно­медицинской академии. 2020; 69 (1): 124–130. doi:10.17816/brmma25980.; Sobolewski K, Małkowski A, Bańkowski E, Jaworski S. Wharton’s jelly as a reservoir of peptide growth factors. Placenta. 2005; 26 (10): 747–752. doi:10.1016/j.placenta.2004.10.008. PMID: 16226124.; Gupta A, El­Amin SF, Levy HJ, Sze­Tu R, Ibim SE, Maffulli N. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications. Journal of Orthopaedic Surgery. 2020; 15. doi:10.1186/s13018-020-15537. PMID: 32054483.; Fayon A, Helle D, Francius G. Characterization of an innovative biomaterial derived from human Wharton’s jelly as a new promising coating for tissue engineering applications. Frontiers in Bioengineering and Biotechnology. 2022; 10: 884069. doi:10.3389/fbioe.2022.884069. PMID: 35769101.; Dubus M, Scomazzon L, Chevrier J, Ledouble C, Baldit A, Braux J et al. Antibacterial and immunomodulatory properties of acellular Wharton’s jelly matrix. Biomedicines. 2022; 10 (2): 227. doi:10.3390/biomedicines10020227. PMID: 35203437.; Dubus M, Scomazzon L, Chevrier J, Montanede A, Baldit A, Terryn C et al. Decellularization of Wharton’s jelly increases its bioactivity and antibacterial properties. Frontiers in Bioengineering and Biotechnology. 2022; 10: 828424. doi:10.3389/fbioe.2022.828424. PMID: 35360386.; Ramzan F, Ekram S, Frazier T, Salim A, Mohiuddin OA, Khan I. Decellularized human umbilical tissue derived hydrogels promote proliferation and chondrogenic differentiation of mesenchymal stem cells. Bioengineering. 2022; 9: 239. doi:10.3390/bioengineering9060239.; Kehtari M, Beiki B, Zeynali B. Decellularized Wharton’s jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. Journal of Cellular Biochemistry. 2019; 120 (4): 6683–6697. doi:10.1002/jcb.27965. PMID: 30417406.; Kočí Z, Výborný K, Dubišová J. Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue Engineering Part C Methods. 2017; 23 (6): 333–345. doi:10.1089/ten.TEC.2017.0089. PMID: 28471271.; Lu J­H, Hsia K, Su CK, Pan YH, Ma H, Chiou SH, Lin CH. A novel dressingcomposed of adipose stem cells and decellularized Wharton’s jelly facilitatedwound healing and relieved lymphedema by enhancing angiogenesis and lymphangiogenesis in a rat model. Journal of functional biomaterials. 2023; 14 (2): 104. doi:10.3390/jfb14020104. PMID: 36826903.; Beiki B, Zeynali B, Seyedjafari E. Fabrication of a three dimensional spongy scaffold using human Wharton’s jelly derived extra cellular matrix for wound healing. Materials Science and Engineering C­Materials for Biological Applications. 2017; 78: 627–638. doi:10.1016/j.msec.2017.04.074. PMID: 28576031.; Bullard JD, Lei J, Lim JJ, Massee M, Fallon AM, Koob TJ. Evaluation of dehydrated human umbilical cord biological properties for wound care and soft tissue healing. Journal of Biomedical Materials Research Part B Applied Biomaterials. 2019; 107 (4): 1035–1046. doi:10.1002/jbm.b.34196. PMID: 30199609.; Li D, Chiu G, Lipe B, Hopkins RA, Lillis J, Ashton JM et al. Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Advances. 2019; 3 (7): 1011–1026. doi:10.1182/ bloodadvances.2018019315. PMID: 30940636.; Penolazzi L, Pozzobon M, Bergamin LS, D’Agostino S, Francescato R, Bonaccorsi G et al. Extracellular matrix from decellularized Wharton’s jelly improves the behavior of cells from degenerated intervertebral disc. Frontiers in Bioengineering and Biotechnology. 2020; 8: 262. doi:10.3389/fbioe.2020.00262. PMID: 32292779.; Jadalannagari S, Converse G, McFall C, Buse E, Filla M, Villar MT et al. Decellularized Wharton’s jelly from human umbilical cord as a novel 3d scaffolding material for tissue engineering applications. PLoS One. 2017; 12 (2): e0172098. doi:10.1371/journal.pone.0172098. PMID: 28222169.; PLOS ONE Staff. Correction: Decellularized Wharton’s Jelly from human umbilical cord as a novel 3D scaffolding material for tissue engineering applications. PLoS One. 2017 Mar 7; 12 (3): e0173827. doi:10.1371/journal.pone.0173827. Erratum for: PLoS One. 2017 Feb 21; 12 (2): e0172098. PMID: 28267774.; Jalili Z, Emamgolizadeh B, Abbaszadeh H, Jalili S, Derakhshani M, Yousefi M et al. Effect of replacement of Wharton acellular jelly with fbs on the expression of megakaryocyte linear markers in hematopoietic stem cells CD34. Asian Pacific Journal of Cancer Prevention. 2022; 23 (10): 3281–3286. doi:10.31557/APJCP.2022.23.10.3281. PMID: 36308350.; Talebi M, Nozad Charoudeh H, Movassaghpour Akbari AA, Baradaran B, Kazemi T. Acellular Wharton’s jelly, potentials in t-cell subtypes differentiation, activation and proliferation. Advanced Pharmaceutical Bulletin. 2020; 10 (4): 617–622. doi:10.34172/apb.2020.074. PMID: 33072540.; Dan P, Velot É, Francius G, Menu P, Decot V. Humanderived extracellular matrix from Wharton’s jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomaterialia. 2017; 48: 227–237. doi:10.1016/j.actbio.2016.10.018. PMID: 27769940.; Basiri A, Farokhi M, Azami M, Ebrahimi­Barough S, Mohamadnia A, Rashtbar M et al. A silk fibroin/decellularized extract of Wharton’s jelly hydrogel intended for cartilage tissue engineering. Progress in Biomaterials. 2019; 8 (1): 31–42. doi:10.1007/s40204-019-0108-7. PMID: 30706299.; Azarbarz N, Khorsandi L, Nejaddehbashi F, Neisi N, Nejad DB. Decellularized Wharton’s jelly scaffold enhances differentiation of mesenchymal stem cells to insulin-secreting cells. Tissue Cell. 2022; 79: 101938. doi:10.1016/j.tice.2022.101938. PMID: 36152380.; Xiao T, Guo W, Chen M, Hao C, Gao S, Huang J et al. Fabrication and In Vitro study of tissue-engineered cartilage scaffold derived from Wharton’s jelly extracellular matrix. BioMed Research International. 2017; 2017: 5839071. doi:10.1155/2017/5839071. PMID: 29214173.; Foltz KM, Neto AE, Francisco JC, Simeoni RB, Miggiolaro AFRDS, do Nascimento TG et al. Decellularized Wharton jelly implants do not trigger collagen and cartilaginous tissue production in tracheal injury in rabbits. Life (Basel). 2022; 12 (7): 942. doi:10.3390/ life12070942. PMID: 35888031.; Yuan Z, Cao F, Gao C, Yang Z, Guo Q, Wang Y. Decellularized human umbilical cord Wharton jelly scaffold improves tendon regeneration in a rabbit rotator cuff tendon defect model. The American Journal of Sports Medicine. 2022; 50 (2): 371–383. doi:10.1177/03635465211055722. PMID: 34739346.; Mann LK, Won JH, Trenton NJ, Garnett J, Snowise S, Fletcher SA et al. Cryopreserved human umbilical cord versus acellular dermal matrix patches for in utero fetal spina bifida repair in a pregnant rat model. Journal of neurosurgery. Spine. 2019; 32 (2): 321–331. doi:10.3171/2019.7.SPINE19468. PMID: 31675701.; Converse GL, Li D, Buse EE, Hopkins RA, Aljitawi OS. Wharton’s jelly matrix decellularization for tissue engineering applications. Methods in Molecular Biology. 2018; 1577: 25–33. doi:10.1007/7651_2017_61. PMID: 28786033.; Výborný K, Vallová J, Kočí Z, Kekulová K, Jiráková K, Jendelová P et al. Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair. Scientific Reports. 2019; 9 (1): 10674. doi:10.1038/s41598-019-47059-x. PMID: 31337821.; Болгарчук ОО, Калюжная ЛИ, Чернов ВЕ, Чеботарев СВ, Симанов АГ, Чернуцкий АМ. Оптимизация процедуры децеллюляризации соединительной ткани пуповины человека для создания тканеинженерного раневого покрытия. Известия Российской военно­медицинской академии. 2020; 39 (S3-1): 13–18.; Кондратенко АА, Калюжная ЛИ, Соколова МО, Чернов ВЕ. Сохранность важнейших структурных компонентов пуповины человека после децеллюляризации как этапа изготовления высокорегенеративного раневого покрытия. Биотехнология. 2021; 37 (5): 61–65. doi:10.21519/0234-2758-2021-37-5-61-65.; Чеботарев СВ, Калюжная ЛИ, Хоминец ВВ, Чернов ВЕ, Фрумкина АС, Земляной ДА и др. Регенеративные эффекты гидрогеля из биоматериала пуповины человека в восстановлении повреждений суставного хряща. Клиническая и экспериментальная хирургия. Журнал имени академика Б.В. Петровского. 2020; 8 (4): 119–125. doi:10.33029/2308-1198-2020-84-119-125.; Кондратенко АА, Товпеко ДВ, Калюжная ЛИ. Биологические эффекты бесклеточного тканеинженерного продукта из пуповины человека. Патогенез. 2022; 20 (4): 53–62. doi:10.25557/23100435.2022.04.53-62.; Калюжная ЛИ, Чеботарев СВ. Гидрогель из пуповины человека в лечении дефектов суставногохряща в эксперименте. Известия Российской военно­медицинской академии. 2020; 39 (S3-1): 37–40.; Калюжная ЛИ, Хоминец ВВ, Чеботарев СВ, Харкевич ОН, Кудяшев АЛ, Чернов ВЕ и др. Применение биоматериала из пуповины человека для восстановления повреждений суставного хряща. Профилактическая и клиническая медицина. 2019; 4 (73): 45–52.; Кондратенко АА, Калюжная­Земляная ЛИ, Товпеко ДВ, Шевелева ВС, Глушаков РИ. Биологические и функциональные свойства лиофилизированных форм тканеинженерных матриксов из пуповины человека. Вестник трансплантологии и искусственных органов. 2023; 25 (1): 113–122. doi:10.15825/1995-1191-2023-1-113-122.; Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003; 24 (24): 4353– 4364. doi:10.1016/s0142-9612(03)00339-9. PMID: 12922148.; Немец ЕА, Лажко АЭ, Григорьев АМ, Басок ЮБ, Кириллова АД, Севастьянов ВИ. Биосовместимые и функциональные свойства тканеспецифической мелкодисперсной 3D-матрицы из децеллюляризованного хряща свиньи. Вестник трансплантологии и искусственных органов. 2022; 24 (4): 73–84. doi:10.15825/1995-1191-2022-4-73-84.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057. PMID: 21296410.; Simsa R, Padma AM, Heher P, Hellström M, Teuschl A, Jenndahl L et al. Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One. 2018; 13 (12): e0209269. doi:10.1371/journal.pone.0209269. PMID: 30557395.; Sevastianov VI, Basok YuB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. Journal of Biomedical Materials Research A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474. PMID: 36478378.; Kirillova AD, Basok YuB, Lazhko AE, Grigoryev AM, Kirsanova LA, Nemets EA, Sevastianov VI. Creating a tissue-specific microdispersed matrix from a decellularized porcine liver. Inorganic Materials: Applied Research. 2021; 12 (3): 812–819. doi:10.1134/S2075113321030199.; Целуйко СС, Малюк ЕА, Корнеева ЛС, Красавина НП. Морфофункциональная характеристика дермы кожи и ее изменения при старении (обзор литературы). Бюллетень физиологии и патологии дыхания. 2016; 60. doi:10.12737/20130.; Басок ЮБ, Кириллова АД, Григорьев АМ, Кирсанова ЛА, Немец ЕА, Севастьянов ВИ. Получение микродисперсного тканеспецифического децеллюляризованного матрикса из суставного хряща свиньи. Перспективные материалы. 2020; 5: 51–60. doi:10.30791/1028-978x-2020-5-51-60.; Потекаев НН, Фриго НВ, Петерсен ЕВ. Искусственная кожа: виды, области применения. Клиническая дерматология и венерология. 2017; 6: 7–15. doi:10.17116/klinderma20171667-15.; Cramer MC, Badylak SF. Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Annals of Biomedical Engineering. 2020; 48 (7): 2132–2153. doi:10.1007/s10439-019-02408-9. PMID: 31741227.; Galili U. Acceleration of wound healing by α-gal nanoparticles interacting with the natural anti-Gal antibody. Journal of Immunology Research. 2015; 2015: 589648. doi:10.1155/2015/589648. PMID: 25922849.; Dziki JL, Huleihel L, Scarritt ME, Badylak SF. Extracellular matrix bioscaffolds as immunomodulatory biomaterials. Tissue Engineering Part A. 2017; 23 (19–20): 1152–1159. doi:10.1089/ten.TEA.2016.0538. PMID: 28457179.; Sicari BM, Johnson SA, Siu BF, Crapo PM, Daly KA, Jiang H et al. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials. 2012; 33 (22): 5524–5533. doi:10.1016/j.biomaterials.2012.04.017. PMID: 22575834.; Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ et al. Matrix-bound nanovesicles within ECM bioscaffolds. Science Advances. 2016; 2 (6): e1600502. doi:10.1126/sciadv.1600502. PMID: 27386584.; Delgado LM, Bayon Y, Pandit A, Zeugolis DI. To crosslink or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Engineering Part B Reviews. 2015; 21 (3): 298–313. doi:10.1089/ten.TEB.2014.0290. PMID: 25517923.; Roy A, Mantay M, Brannan C, Griffiths S. Placental Tissues as Biomaterials in Regenerative Medicine. BioMed Research International. 2022; 2022: 6751456. doi:10.1155/2022/6751456. PMID: 35496035.; Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing update. Birth Defects Research Part C Embryo Today Reviews. 2012; 96 (3): 237–247. doi:10.1002/bdrc.21018. PMID: 23109319.; Yannas IV. Similarities and differences between induced organ regeneration in adults and early foetal regeneration. Journal of the Royal Society Interface. 2005; 2 (5): 403–417. doi:10.1098/rsif.2005.0062. PMID: 16849201.; Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta. 1997; 18 (1): 53–64. doi:10.1016/s0143-4004(97)90071-0. PMID: 9032810.; Franc S, Rousseau JC, Garrone R, van der Rest M, Moradi­Améli M. Microfibrillar composition of umbilical cord matrix: characterization of fibrillin, collagen VI and intact collagen V. Placenta. 1998; 19 (1): 95–104. doi:10.1016/s0143-4004(98)90104-7. PMID: 9481791.; Калюжная ЛИ, Соколова МО, Чернов ВЕ, Земляной ДА, Чеботарев СВ, Чалисова НИ и др. Влияние бесклеточного матрикса пуповины человека на динамику роста и жизнеспособность культивируемых клеток человека и животных ex vivo. Гены и клетки. 2021; 3: 72–79. doi:10.23868/202110010.; https://trialsearch.who.int/Trial2.aspx?TrialID=IRCT 20210612051545N3 [Internet]. World Health Organization: International Clinical Trials Registry Platform (ICTRP). [updated 2022 November 21; cited 2023 April 03]. Available from: https://trialsearch.who.int/Trial2.as px?TrialID=IRCT20210612051545N3.; https://trialsearch.who.int/Trial2.aspx?TrialID=IRCT 20210612051545N2 [Internet]. World Health Organization: International Clinical Trials Registry Platform (ICTRP). [updated 2022 November 21; cited 2023 April 03]. Available from: https://trialsearch.who.int/Trial2.as px?TrialID=IRCT20210612051545N2.; https://journal.transpl.ru/vtio/article/view/1626

  10. 10
    Academic Journal

    المساهمون: Исследование выполнено за счет гранта Российского научного фонда (проект № 21-15-00251)

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 24, № 4 (2022); 73-84 ; Вестник трансплантологии и искусственных органов; Том 24, № 4 (2022); 73-84 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1553/1390; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1192; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1193; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1194; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1195; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1196; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1197; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1199; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1200; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1201; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1202; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1203; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1204; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1205; Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel). 2021; 13 (7): 1105. doi:10.3390/polym13071105.; Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N et al. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater. 2017; 105 (2): 431–459. doi:10.1002/jbm.b.33547.; Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018; 12: 3117–3145. doi:10.2147/DDDT.S165440.; Vasilets VN, Surguchenko VA, Ponomareva AS, Nemetz EA, Sevastianov VI, Bae JW et al. Effects of surface properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on adhesion and proliferation of mouse fibroblasts. Macromolecular Research. 2015; 23: 205–213. doi 10.1007/s13233-015-3025-1.; Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014; 1840 (8): 2506–2519. doi:10.1016/j.bbagen.2014.01.010.; Paulo Zambon J, Atala A, Yoo JJ. Methods to generate tissue-derived constructs for regenerative medicine applications. Methods. 2020; 171: 3–10. doi:10.1016/j.ymeth.2019.09.016.; Gupta SK, Mishra NC, Dhasmana A. Decellularization methods for scaffold fabrication. Methods Mol Biol. 2018; 1577: 1–10. doi:10.1007/7651_2017_34.; Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng. 2020; 48 (7): 2132–2153. doi:10.1007/s10439-019-02408-9.; Philips C, Campos F, Roosens A, Sánchez-Quevedo MDC, Declercq H, Carriel V. Qualitative and quantitative evaluation of a novel detergent-based method for decellularization of peripheral nerves. Ann Biomed Eng. 2018; 46 (11): 1921–1937. doi:10.1007/s10439-018-2082-y.; Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissuespecific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020; 21 (15): 5447. doi:10.3390/ijms21155447.; Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int. 2017; 2017: 9831534. doi:10.1155/2017/9831534.; Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci. 2018; 19 (12): 4117. doi:10.3390/ijms19124117.; Sevastianov VI, Basok YB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA et al. A comparison of the capacity of mesenchymal stromal cells for cartilage regeneration depending on collagen-based injectable biomimetic scaffold type. Life. 2021; 11 (8): 756. doi:10.3390/life11080756.; Song C, Luo Y, Liu Y, Li S, Xi Z, Zhao L et al. Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers (Basel). 2020; 12 (4): 780. doi:10.3390/polym12040780.; Gil-Ramírez A, Rosmark O, Spégel P, Swärd K, Westergren-Thorsson G, Larsson-Callerfelt A.K et al. Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Reports. 2020; 10 (1): 4031. doi:10.1038/s41598-020-60827-4.; Алексеев ЕС, Алентьев АЮ, Белова АС, Богдан ВИ, Богдан ТВ, Быстрова АВ и др. Сверхкритические флюиды в химии. Успехи химии. 2020; 89 (12): 1337–1427.; Разгонова МП, Захаренко АМ, Сергиевич АА, Каленик ТК, Голохваст КС. Сверхкритические флюиды: теория, этапы становления, современное применение: учебное пособие. СПб.: Лань, 2019; 192.; Nemets EA, Malkova AP, Dukhina GA, Lazhko AE, Basok YB, Kirillova AD et al. Effect of supercritical carbon dioxide on the in vivo biocompatible and resorptive properties of tissue-specific scaffolds from decellularized pig liver fragments. Inorganic Materials: Applied Research. 2022; 13: 413–420. doi:10.1134/S2075113322020319.; Ingrosso F, Ruiz-López MF. Modeling solvation in supercritical CO2. Chemphyschem. 2017; 18: 2560–2572. doi:10.1002/cphc.201700434.; Sevastianov VI, Nemets EA, Lazhko AE, Basok YuB, Kirsanova LA, Kirillova AD. Application of supercritical fluids for complete decellularization of porcine cartilage. Journal of Physics: Conference Series. XV International Russian Chinese Symposium «New Materials and Technologies». 2019; 1347 (1): 012081. doi:10.1088/1742-6596/1347/1/012081.; Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 2018; 67: 270–281. doi:10.1016/j.actbio.2017.11.046.; Nemets EA, Lazhko AE, Basok YuB, Kirsanova LA, Kirillova AD, Sevastianov VI. Preparation of tissue-specific matrix from decellularized porcine cartilage. Russian Journal of Physical Chemistry B. 2020; 14: 1245–1251. doi:10.1134/S1990793120080059.; Huang Z, Godkin O, Schulze-Tanzil G. The challenge in using mesenchymal stromal cells for recellularization of decellularized cartilage. Stem Cell Rev Rep. 2017 Feb; 13 (1): 50–67. doi:10.1007/s12015-016-9699-8.; ГОСТ ISO 10993-6. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 6. Исследование местного действия после имплантации.; Basok YB, Kirillova AD, Grigoryev AM, Kirsanova LA, Nemets EA, Sevastianov VI. Fabrication of microdispersed tissue-specific decellularized matrix from porcine articular cartilage. Inorganic Materials: Applied Research. 2020; 11 (5): 1153–1159. doi:10.1134/S2075113320050044.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32: 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; https://journal.transpl.ru/vtio/article/view/1553

  11. 11
    Academic Journal

    المساهمون: Работы, проводимые в части получения образцов криогенно­структурированного гидрогеля на основе желатина, выполнены при частичном финансировании Министерства науки и образования РФ.

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 24, № 2 (2022); 83-93 ; Вестник трансплантологии и искусственных органов; Том 24, № 2 (2022); 83-93 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1500/1313; https://journal.transpl.ru/vtio/article/view/1500/1374; https://journal.transpl.ru/vtio/article/downloadSuppFile/1500/1030; https://journal.transpl.ru/vtio/article/downloadSuppFile/1500/1031; https://journal.transpl.ru/vtio/article/downloadSuppFile/1500/1032; https://journal.transpl.ru/vtio/article/downloadSuppFile/1500/1033; https://journal.transpl.ru/vtio/article/downloadSuppFile/1500/1034; https://journal.transpl.ru/vtio/article/downloadSuppFile/1500/1035; https://journal.transpl.ru/vtio/article/downloadSuppFile/1500/1036; Трансплантология и искусственные органы: учебник / Под ред. акад. РАН СВ Готье. М.: Лаборатория знаний, 2018. 319 с.: ил.; Biomaterials in Tissue Engineering and Regenerative Medicine. From Basic Concepts to State of the Art Approaches. B Bhaskar, PS Rao, N Kasoju, V Nagarjuna, RR Baadhe (Eds.). Springer Nature Singapore Pte Ltd.; 2021. 1039 p. ISBN 978-981-16-0001-2. doi 10.1007/978-981-16-0002-9.; Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021; 6 (1): 122. https://doi.org/10.1038/s41392-021-00512-8.; Dong C, Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers (Basel). 2016; 8 (2): 42. doi:10.3390/polym8020042.; Sevastianov VI, Basok YB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA et al. A Comparison of the Capacity of Mesenchymal Stromal Cells for Cartilage Regeneration Depending on Collagen-Based Injectable Biomimetic Scaffold Type. Life (Basel). 2021; 11 (8):756. doi:10.3390/life11080756. PMID: 34440500; PM-CID: PMC8400656.; Chang CH, Liu HC, Lin CC, Chou CH, Lin FH. Gelatinchondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials. 2003 Nov; 24(26): 4853–4858. doi:10.1016/s0142-9612(03)00383-1. PMID: 14530082.; Yin B, Ma P, Chen J, Wang H, Wu G, Li B et al. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration. Int J Mol Sci. 2016; 17 (4): 575. doi:10.3390/ijms17040575. PMID: 27092492; PMCID: PMC4849031.; Echave MC, Saenz del Burgo L, Pedraz JL, Orive G. Gelatin as Biomaterial for Tissue Engineering. Curr Pharm Des. 2017; 23 (24): 3567–3584. doi:10.2174/0929867324666170511123101. PMID: 28494717.; Kao HH, Kuo CY, Chen KS, Chen JP. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration. Int J Mol Sci. 2019 Sep 12; 20 (18): 4527. doi:10.3390/ijms20184527. PMID: 31547444; PMCID: PMC6770111.; Nemets EA, Belov VYu, Ilina TS, Surguchenko VA, Pankina AP, Sevastyanov VI Composite porous tubular biopolymer matrix of small diameter. Inorganic Materials: Applied Research 2019; 10 (2): 365–372. https://doi.org/10.1134/S207511331902031X.; Zhao P, Wang J, Li Y, Wang X, Chen C, Liu G. Microfluidic Technology for the Production of Well-Ordered Porous Polymer Scaffolds. Polymers (Basel). 2020; 12 (9): 1863. doi:10.3390/polym12091863. PMID: 32825098; PMCID: PMC7564514.; Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008; 60 (2): 243–262. doi:10.1016/j.addr.2007.08.027. PMID: 17976858; PMCID: PMC2230638.; Lutzweiler G, Ndreu Halili A, Engin Vrana N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics. 2020; 12 (7): 602. doi:10.3390/pharmaceutics12070602. PMID: 32610440; PMCID: PMC7407612.; Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009; 5 (2): 670–679. doi:10.1016/j.actbio.2008.09.020.; Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010; 31 (3): 461–466. doi:10.1016/j.biomaterials.2009.09.063.; Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q et al. Fabrication and surface modification of macroporous poly(Llactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res. 2002; 62 (3): 438–446. doi:10.1002/jbm.10318.; Harley BA, Kim HD, Zaman MH, Yannas IV, Lauffenburger DA, Gibson LJ. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J. 2008; 95 (8): 4013–4024. doi:10.1529/biophysj.107.122598.; Wartenberg A, Weisser J, Schnabelrauch M. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules. 2021; 26 (18): 5597. doi:10.3390/molecules26185597.; Jones LO, Williams L, Boam T, Kalmet M, Oguike C, Hatton FL. Cryogels: recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing. Beilstein J Org Chem. 2021; 17: 2553–2569. doi:10.3762/bjoc.17.171.; He Y, Wang C, Wang C, Xiao Y, Lin W. An Overview on Collagen and Gelatin-Based Cryogels: Fabrication, Classification, Properties and Biomedical Applications. Polymers (Basel). 2021; 13 (14): 2299. doi:10.3390/polym13142299.; Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels. 2021; 7 (3): 79. doi:10.3390/gels7030079.; Lozinsky VI. Cryostructuring of polymer systems. 50. Cryogels and cryotropic gel-formation: terms and definitions. Gels. 2018; 4 (3): 77. doi:10.3390/gels4030077.; Lozinsky VI, Okay O. Basic principles of cryotropic gelation. Adv Polym Sci. 2014; 263: 49–101. doi:10.1007/978-3-319-05846-7_2.; Лозинский ВИ, Кулакова ВК, Петренко АЮ, Петренко ЮА, Ершов АГ, Суханов ЮВ. Композиция для формирования макропористого носителя, используемого при трехмерном культивировании клеток животных или человека, и способ получения указанного носителя. Пат. РФ № 2594427 (2015); Б.И. № 23 (2016).; Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor’ev AM, Kirsanova LA, Lupatov AY et al. Chondrogeneic Potential of MSC from Different Sources in Spheroid Culture. Bull Exp Biol Med. 2021; 170 (4): 528–536. doi:10.1007/s10517-021-05101-x. PMID: 33725253.; Севастьянов ВИ, Перова НВ. Биополимерный гетерогенный гидрогель Сферо ® ГЕЛЬ – инъекционный биодеградируемый имплантат для заместительной и регенеративной медицины. Практическая медицина. 2014; 8 (84): 120–126.; Urrutia DN, Caviedes P, Mardones R, Minguell JJ, Vega-Letter AM, Jofre CM. Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies. PLoS One. 2019; 14(3): e0213032. doi:10.1371/journal.pone.0213032.; Giannasi C, Niada S, Della Morte E, Casati S, Orioli M, Gualerzi A et al. Towards Secretome Standardization: Identifying Key Ingredients of MSC-Derived Therapeutic Cocktail. Stem Cells Int. 2021; 2021: 3086122. doi:10.1155/2021/3086122.; Фрешни РЯ. Культура животных клеток: практическое руководство. М.: БИНОМ, 2010. 691.; Chuang CH, Lin RZ, Tien HW, Chu YC, Li YC, MeleroMartin JM, et.al. Enzymatic regulation of functional vascular networks using gelatin hydrogels. Acta Biomater. 2015; 19: 85–99. doi:10.1016/j.actbio.2015.02.024. PMID: 25749296; PMCID: PMC4589259.; Blache U, Guerrero J, Güven S, Klar AS, Scherberich A. Microvascular networks and models: in vitro formation. In: W. Holnthoner, A. Banfi, J. Kirkpatrick, H. Redl, eds. Vascularization for tissue engineering and regenerative medicine. Reference series in biomedical engineering. Springer, Cham. 2021: 345–383. https://doi.org/10.1007/978-3-319-54586-8.; https://journal.transpl.ru/vtio/article/view/1500

  12. 12
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 24, № 2 (2022); 119-124 ; Вестник трансплантологии и искусственных органов; Том 24, № 2 (2022); 119-124 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1488/1317; https://journal.transpl.ru/vtio/article/view/1488/1378; Варпаховская И. Новые системы доставки лекарственных средств. Ремедиум. 1999; 2: 62–70.; Лосенкова СО. Трансдермальные терапевтические системы. Экспериментальная и клиническая фармакология. 2008; 71 (6): 54–57. doi:10.30906/0869-2092-2008-71-6-54-57.; Pro-palliativ.ru [Internet]. Савва Н. Фентанил и фентаниловый пластырь в паллиативной практике детского обезболивания [опубликовано 31 августа 2018]. Доступно: https://pro-palliativ.ru/blog/fentanil-i-fentanilovyj-plastyr-v-palliativnoj-praktike-detskogo-obezbolivaniya.; Севастьянов ВИ, Саломатина ЛА, Кузнецова ЕГ, Серегина МВ, Басок ЮБ. Трансдермальная лекарственная форма ацизола – антидота угарного газа. Перспективные материалы. 2008; 6: 55–59.; Кузнецова ЕГ, Курылева ОМ, Саломатина ЛА, Севастьянов ВИ. Экспериментальное исследование диффузии иммуномодулятора Галавит ® в модельной системе. Разработка и регистрация лекарственных средств. 2020; 9 (1): 92–97. doi:10.33380/2305-2066-2020-9-1-92-97.; El Maghrabya GM, Barryc BW, Williamsd AC. Liposomes and skin: From drug delivery to model membranes. European journal of pharmaceutical sciences. 2008; 34: 203–222. doi:10.1016/j.ejps.2008.05.002.; Кузнецова ЕГ, Курылева ОМ, Саломатина ЛА, Курсаков СВ, Гоникова ЗЗ, Никольская АО, Севастьянов ВИ. Сравнительный анализ фармакокинетических параметров трансдермального и внутримышечного введений препарата Галавит® . Вестник трансплантологии и искусственных органов. 2021; 23 (2): 114–121. doi:10.15825/1995-1191-2021-2-114-121.; Vidal.ru [Internet]. Галавит ® (Galavit): инструкция по применению. Справочник лекарственных средств Vidal. Доступно: https://www.vidal.ru/drugs/galavit__44378.; Vidal.ru [Internet]. Ацизол ® (Acyzol): инструкция по применению. Справочник лекарственных средств Vidal. Доступно: https://www.vidal.ru/drugs/acyzol__28650.; https://journal.transpl.ru/vtio/article/view/1488

  13. 13
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 23, № 2 (2021); 104-113 ; Вестник трансплантологии и искусственных органов; Том 23, № 2 (2021); 104-113 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1301/1112; https://journal.transpl.ru/vtio/article/view/1301/1213; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/755; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/756; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/757; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/758; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/759; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/760; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/761; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/762; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/763; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/764; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/765; Сургученко ВА. Матриксы для тканевой инженерии и гибридных органов. Биосовместимые материалы: учебное пособие / Под ред. В.И. Севастьянова, М.П. Кирпичникова. М.: МИА, 2011. Часть II: 199– 228.; Sevastianov VI, Basok YB, Grigor’ev AM, Kirsanova LA, Vasilets VN. Formation of tissue-engineered construct of human cartilage tissue in a flow-through bioreactor. Bull Exp Biol Med. 2017; 164 (2): 269–273. doi:10.1007/s10517-017-3971-z.; Goissis G, Suzigan S, Parreira DR, Maniglia JV, Braile DM, Raymundo S. Preparation and characterization of collagen-elastin matrices from blood vessels intended as small diameter vascular grafts. Artif Organs. 2000; 24: 217–223. doi:10.1046/j.1525-1594.2000.06537.x. PMID: 10759645.; Busra MFM, Lokanathan Y. Recent development in the fabrication of collagen scaffolds for tissue engineering applications: A review. Curr Pharm Biotechnol. 2019; 20 (12): 992–1003. doi:10.2174/1389201020666190731121016. PMID: 31364511.; Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018; 107 (Pt A): 678–688. doi:10.1016/j.ijbiomac.2017.08.184.; Kawecki M, Łabuś W, Klama-Baryla A, Kitala D, Kraut M, Glik J et al. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix’ scaffolds and their role in regenerative medicine. J Biomed Mater Res B Appl Biomater. 2018; 106 (2): 909–923. doi:10.1002/jbm.b.33865. PMID: 28194860.; Rose JB, Pacelli S, Haj AJE, Dua HS, Hopkinson A, White LJ et al. Gelatin-based materials in ocular tissue engineering. Materials (Basel). 2014; 7 (4): 3106–3135. doi:10.3390/ma7043106. PMID: 28788609.; Nemets EA, Pankina AP, Sevastianov VI. Comparative analysis of methods for increasing of biostability of collagen films. Inorganic Materials: Applied Research. 2017; 5: 718–722.; Umashankar PR, Arun T, Kumari TV. Short duration gluteraldehyde cross linking of decellularized bovine pericardium improves biological response. J Biomed Mater Res. 2011; 97 (3): 311–320. doi:10.1002/jbm.a.33061. PMID: 21448995.; Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014; 1840 (8): 2506–2519. doi:10.1016/j.bbagen.2014.01.010. PMID: 24418517.; Sun Y, Wang TL, Toh WS, Pei M. The role of laminins in cartilaginous tissues: from development to regeneration. Eur Cell Mater. 2017; 34: 40–54. doi:10.22203/eCM.v034a0.; Shirakigawa N, Ijima H. Decellularized tissue engineering. Advanced Structured Materials. 2017; 66: 185– 226. doi:10.1007/978-981-10-3328-5_5.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057. PMID: 21296410.; Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: From processing techniques to applications. Biomed Res Int. 2017; 2017: 9831534. doi:10.1155/2017/9831534. PMID: 28540307.; Готье СВ, Севастьянов ВИ, Шагидулин МЮ, Немец ЕА, Басок ЮБ. Тканеспецифический матрикс для тканевой инженерии паренхиматозного органа и способ его получения. Патент на изобретение RU 2693432 C2, 02.07.2019.; Kawasaki T, Kirita Y, Kami D, Kitani T, Ozaki C, Itakura Y et al. Novel detergent for whole organ tissue engineering. J Biomed Mater Res A. 2015; 103 (10): 3364– 3373. doi:10.1002/jbm.a.35474. PMID: 25850947.; Song C, Luo Y, Liu Y, Li S, Xi Z, Zhao L et al. Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers (Basel). 2020; 12 (4): 780. doi:10.3390/polym12040780. PMID: 32252222.; Немец ЕА, Белов ВЮ, Ильина ТС, Сургученко ВА, Панкина АП, Севастьянов ВИ. Композитный пористый трубчатый биополимерный матрикс малого диаметра. Перспективные материалы. 2018; 9: 49– 59. doi:10.30791/1028-978X-2018-9-49-59.; White LJ, Hutter V, Tai H, Howdle SM, Shakesheff KM. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater. 2012; 8 (1): 61–71. doi:10.1016/j.actbio.2011.07.032. PMID: 21855663.; Antons J, Marascio MG, Aeberhard P, Weissenberger G, Hirt-Burri N, Applegate LA et al. Decellularised tissues obtained by a CO2-philic detergent and supercritical CO2. Eur Cell Mater. 2018, 36: 81–95. doi:10.22203/eCM.v036a07. PMID: 30178445.; Casali DM, Handleton RM, Shazly T, Matthews MA. A novel supercritical CO2-based decellularization method for maintaining scaffold hydration and mechanical properties. J Supercrit Fluids. 2018; 131: 72–81. doi:10.1016/j.supflu.2017.07.021.; Huang YH, Tseng FW, Chang WH, Peng IC, Hsieh DJ, Wu SW et al. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater. 2017; 58: 238–243. doi:10.1016/j.actbio.2017.05.060. PMID: 28579539.; Gil-Ramírez A, Rosmark O, Spégel P, Swärd K, Westergren-Thorsson G, Larsson-Callerfelt AK et al. Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Rep. 2020; 10 (1): 4031. doi:10.1038/s41598-020-60827-4. PMID: 32132596.; Разгонова МП, Захаренко АМ, Сергиевич АА, Каленик ТК, Голохваст КС. Сверхкритические флюиды: теория, этапы становления, современное применение: учебное пособие. СПб.: Лань, 2019. 192 с.; Алексеев ЕС, Алентьев АЮ, Белова АС, Богдан ВИ и др. Сверхкритические флюиды в химии. Успехи химии. 2020; 89: 1337–1427. doi:10.1070/RCR4932.; Попов ВК. Имплантаты в заместительной и регенеративной медицине костных тканей. Биосовместимые материалы (учебное пособие). Под ред. В.И. Севастьянова, М.П. Кирпичникова. М.: МИА, 2011. Часть II: 271–294.; Ingrosso F, Ruiz-López MF. Modeling Solvation in Supercritical CO2. Chemphyschem. 2017; 18: 2560–2572. doi:10.1002/cphc.201700434.; Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 2018; 67: 270–281. doi:10.1016/j.actbio.2017.11.046. PMID: 29223704.; ГОСТ ISO 10993-5-2011 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследования на цитотоксичность: методы in vitro».; Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater. 2018; 74: 56–73. doi:10.1016/j.actbio.2018.04.048. PMID: 29702288.; https://journal.transpl.ru/vtio/article/view/1301

  14. 14
    Academic Journal

    المساهمون: Работа выполнена в рамках Программы фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021 - 2030 годы) Тема №5

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 23, № 3 (2021); 148-161 ; Вестник трансплантологии и искусственных органов; Том 23, № 3 (2021); 148-161 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1383/1166; https://journal.transpl.ru/vtio/article/view/1383/1256; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/867; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/868; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/869; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/870; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/871; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/872; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/873; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/874; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/875; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/876; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/877; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/878; https://journal.transpl.ru/vtio/article/downloadSuppFile/1383/879; Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969; 43: 506–520. doi:10.1083/jcb.43.3.506. PMID: 4900611.; Guguen-Guillouzo C, Campion JP, Brissot P, Glaise D, Launois B, Bourel M et al. High yield preparation of isolated human adult hepatocytes by enzymatic perfusion of the liver. Cell Biol Int Rep. 1982; 6: 625–628. doi:10.1016/0309-1651(82)90187-4. PMID: 6286153.; Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014; 15: 605–618. doi:10.1016/j.stem.2014.09.008. PMID: 25312494.; Afshari A, Shamdani S, Uzan G, Azarpira N. Different approaches for transformation of mesenchymal stem cells into hepatocyte-like cells. Stem Cell Res Ther. 2020; 11: 54. doi:10.1186/s13287-020-1555-8. PMID: 32033595.; Kholodenko IV, Kholodenko RV, Manukyan GV, Lupatov AY, Yarygin KN. Isolation of Induced Pluripotent Cells from Stromal Liver Cells of Patients with Alcoholic Cirrhosis. Bull Exp Biol Med. 2017; 163: 535–541. doi:10.1007/s10517-017-3845-4. PMID: 28853085.; Lim KT, Lee SC, Gao Y, Kim KP, Song G, An SY et al. Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming. Cell Rep. 2016; 15: 814–829. doi:10.1016/j.celrep.2016.03.071. PMID: 27149847.; Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med. 2020; 52: 213–226. doi:10.1038/s12276-020-0383-3. PMID: 32080339.; Katsuda T, Kawamata M, Hagiwara K, Takahashi RU, Yamamoto Y, Camargo FD et al. Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity. Cell Stem Cell. 2017; 20: 41–55. doi:10.1016/j.stem.2016.10.007. PMID: 27840021.; Wu H, Zhou X, Fu GB, He ZY, Wu HP, You P et al. Reversible transition between hepatocytes and liver progenitors for in vitro hepatocyte expansion. Cell Res. 2017; 27: 709–712. doi:10.1038/cr.2017.47. PMID: 28374751.; Fu GB, Huang WJ, Zeng M, Zhou X, Wu HP, Liu CC et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res. 2019; 29: 8–22. doi:10.1038/s41422-018-0103-x. PMID: 30361550.; Kim Y, Kang K, Lee SB, Seo D, Yoon S, Kim SJ et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol. 2019; 70: 97–107. doi:10.1016/j.jhep.2018.09.007. PMID: 30240598.; Hee Hong D, Lee C, Kim Y, Lee SB, Han SC, Kim SJ et al. Generation of Hepatic Progenitor Cells from the Primary Hepatocytes of Nonhuman Primates Using Small Molecules. Tissue Eng Regen Med. 2021; 18: 305–313. doi:10.1007/s13770-020-00327-8. PMID: 33591557.; Kholodenko IV, Kalinovsky DV, Svirshchevskaya EV, Doronin II, Konovalova MV, Kibardin AV et al. Multimerization through Pegylation Improves Pharmacokinetic Properties of scFv Fragments of GD2-Specific Antibodies. Molecules. 2019; 24: 3835. doi:10.3390/molecules24213835. PMID: 31653037; Zhang S, Lin YH, Tarlow B, Zhu H. The origins and functions of hepatic polyploidy. Cell Cycle. 2019; 18: 1302– 1315. doi:10.1080/15384101.2019.1618123. PMID: 31096847.; Katsuda T, Hosaka K, Matsuzaki J, Usuba W, PrietoVila M, Yamaguchi T et al. Transcriptomic Dissection of Hepatocyte Heterogeneity: Linking Ploidy, Zonation, and Stem/Progenitor Cell Characteristics. Cell Mol Gastroenterol Hepatol. 2020; 9: 161–183. doi:10.1016/j.jcmgh.2019.08.011. PMID: 31493546.; Togarrati PP, Dinglasan N, Desai S, Ryan WR, Muench MO. CD29 is highly expressed on epithelial, myoepithelial, and mesenchymal stromal cells of human salivary glands. Oral Dis. 2018; 24: 561–572. doi:10.1111/odi.12812. PMID: 29197149.; Kholodenko IV, Kurbatov LK, Kholodenko RV, Manukyan GV, Yarygin KN. Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells. 2019; 8: 1127. doi:10.3390/cells8101127. PMID: 31546729.; Zou W, Zhao J, Li Y, Wang Z, Yan H, Liu Y et al. Rat Bone Marrow-Derived Mesenchymal Stem Cells Promote the Migration and Invasion of Colorectal Cancer Stem Cells. Onco Targets Ther. 2020; 13: 6617–6628. doi:10.2147/OTT.S249353.; Terry C, Hughes RD, Mitry RR, Lehec SC, Dhawan A. Cryopreservation-induced nonattachment of human hepatocytes: role of adhesion molecules. Cell Transplant. 2007; 16: 639–647. doi:10.3727/000000007783465000. PMID: 17912955.; Turner RA, Mendel G, Wauthier E, Barbier C, Reid LM. Hyaluronan-supplemented buffers preserve adhesion mechanisms facilitating cryopreservation of human hepatic stem/progenitor cells. Cell Transplant. 2012; 21: 2257–2266. doi:10.3727/096368912X637000. PMID: 22472355.; Masuzaki R, Ray KC, Roland J, Zent R, Lee YA, Karp SJ. Integrin β1 Establishes Liver Microstructure and Modulates Transforming Growth Factor β during Liver Development and Regeneration. Am J Pathol. 2021; 191: 309–319. doi:10.1016/j.ajpath.2020.10.011. PMID: 33159885.; Sasaki K, Murakami T, Kawasaki M, Takahashi M. The cell cycle associated change of the Ki-67 reactive nuclear antigen expression. J Cell Physiol. 1987; 133: 579–584. doi:10.1002/jcp.1041330321. PMID: 3121642.; Chougule P. Sumitran-Holgersson S. Cytokeratins of the liver and intestine epithelial cells during development and disease. in: Hamilton G. Cytokeratins – Tools in Oncology. InTech, 2012; 118–158.; Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA. Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest Liver Physiol. 2006; 291: G45–54. doi:10.1152/ajpgi.00465.2005. PMID: 16769813.; Walesky C, Apte U. Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and cancer. Gene Expr. 2015; 16: 101–108. doi:10.3727/105221615X14181438 356292. PMID: 25700366.; Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol. 2001; 21: 1393–1403. doi:10.1128/MCB.21.4.1393-1403.2001. PMID: 11158324.; Inoue Y, Yu AM, Inoue J, Gonzalez FJ. Hepatocyte nuclear factor 4 alpha is a central regulator of bile acid conjugation. Journal of Biological Chemistry. 2004; 279: 2480–2489. doi:10.1074/jbc.M311015200. PMID: 14583614.; Inoue Y, Peters LL, Yim SH, Inoue J, Gonzalez FJ. Role of hepatocyte nuclear factor 4 alpha in control of blood coagulation factor gene expression. Journal of Molecular Medicine – Jmm. 2006; 84: 334–344. doi:10.1007/s00109-005-0013-5. PMID: 16389552.; Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development. 2015; 142: 2094–2108. doi:10.1242/dev.114215. PMID: 26081571.; Li K, Zhang H, Wang Y, Wang Y, Feng M. Differential expression of HNF4alpha isoforms in liver stem cells and hepatocytes. J Cell Biochem. 2006; 99: 558–564. doi:10.1002/jcb.20939. PMID: 16639723.; Khamzina L, Borgeat P. Correlation of alpha-fetoprotein expression in normal hepatocytes during development with tyrosine phosphorylation and insulin receptor expression. Mol Biol Cell. 1998; 9: 1093–1105. doi:10.1091/mbc.9.5.1093. PMID: 9571242.; Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004; 39: 1477–1487. doi:10.1002/hep.20214. PMID: 15185286.; Giri S, Acikgöz A, Bader A. Isolation and Expansion of Hepatic Stem-like Cells from a Healthy Rat Liver and their Efficient Hepatic Differentiation of under Welldefined Vivo Hepatic like Microenvironment in a Multiwell Bioreactor. J Clin Exp Hepatol. 2015; 5: 107–122. doi:10.1016/j.jceh.2015.03.003. PMID: 26155038.; https://journal.transpl.ru/vtio/article/view/1383

  15. 15
    Academic Journal

    المساهمون: Исследование выполнено за счет гранта Российского научного фонда № 21-15-00251, https://rscf.ru/project/21-15-00251/.

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 23, № 3 (2021); 90-100 ; Вестник трансплантологии и искусственных органов; Том 23, № 3 (2021); 90-100 ; 2412-6160 ; 1995-1191

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1342/1160; https://journal.transpl.ru/vtio/article/view/1342/1250; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/821; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/822; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/823; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/824; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/825; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/826; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/827; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/828; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/840; https://journal.transpl.ru/vtio/article/downloadSuppFile/1342/841; Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol. 2019; 15 (9): 550–570. doi:10.1038/s41584-019-0255-1. PMID: 31296933.; Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther. 2016; 7 (1): 56. doi:10.1186/s13287-016-0314-3. PMID: 27089917.; Schneider S, Unger M, van Griensven M, Balmayor ER. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res. 2017; 22 (1): 17. doi:10.1186/s40001-017-0258-9. PMID: 28526089.; Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor’ev AM, Kirsanova LA, Lupatov AY et al. Chondrogeneic potential of MSC from different sources in spheroid culture. Bull Exp Biol Med. 2021; 170 (4): 528–536. doi:10.1007/s10517-021-05101-x. PMID: 33725253.; Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: A systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A. 2017; 105 (8): 2343–2354. doi:10.1002/jbm.a.36087. PMID: 28387995.; Wylie JD, Hartley MK, Kapron AL, Aoki SK, Maak TG. What is the effect of matrices on cartilage repair? Clin Orthop Relat Res. 2015; 473 (5): 1673–1682. doi:10.1007/s11999-015-4141-0. PMID: 25604876.; Севастьянов ВИ, Перова НВ. Биополимерный гетерогенный гидрогель Сферо®ГЕЛЬ – инъекционный биодеградируемый имплантат для заместительной и регенеративной медицины. Практическая медицина. 2014; 8 (84): 120–126.; Sevastianov VI, Basok YB, Grigor’ev AM, Kirsanova LA, Vasilets VN. Formation of tissue-engineered construct of human cartilage tissue in a flow-through bioreactor. Bull Exp Biol Med. 2017; 164 (2): 269–273. doi:10.1007/s10517-017-3971-z. PMID: 29177908.; Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng. 2020; 48 (7): 2132–2153. doi:10.1007/s10439-019-02408-9. PMID: 31741227.; Basok YuB, Kirillova AD, Grigoryev AM, Kirsanova LA, Nemets EA, and Sevastianov VI. Fabrication of microdispersed tissue-specific decellularized matrix from porcine articular cartilage. Inorganic Materials: Applied Research. 2020; 11 (5). 1153–1159.; Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater. 2018; 74: 56–73. doi:10.1016/j.actbio.2018.04.048. PMID: 29702288.; Pei M, Li JT, Shoukry M, Zhang Y. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater. 2011; 22: 333–343. doi:10.22203/ecm.v022a25. PMID: 22116651.; Севастьянов ВИ, Перова НВ, Басок ЮБ, Немец ЕА. Биомиметики внеклеточного матрикса в тканевой инженерии и регенеративной медицине для травматологии и ортопедии. Opinion Leader. 2020; 6 (35): 35–46.; Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor’ev AM, Kirsanova LA, Lupatov AY et al. Chondrogeneic Potential of MSC from Different Sources in Spheroid Culture. Bull Exp Biol Med. 170 (4): 528–536. doi:10.1007/s10517-021-05101-x. Epub 2021 Mar 16. PMID: 33725253.; Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317. doi:10.1080/14653240600855905. PMID: 16923606.; Novikov I, Subbot A, Turenok A, Mayanskiy N, Chebotar I. A rapid method of whole cell sample preparation for scanning electron microscopy using neodymium chloride. Micron. 2019; 124: 102687. doi:10.1016/j.micron.2019.102687. PMID: 31302532.; Иксанова АГ, Бондарь ОВ, Балакин КВ. Методы исследования цитотоксичности при скрининге лекарственных препаратов. Учебно-методическое пособие к практическим занятиям по курсу «Методы скрининга физиологически активных веществ». Казань: Казанский университет, 2016. 40.; Bourguignon LY, Singleton PA, Zhu H, Zhou B. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem. 2002; 277 (42): 39703–39712. doi:10.1074/jbc.M204320200. PMID: 12145287.; Responte DJ, Natoli RM, Athanasiou KA. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation. J R Soc Interface. 2012; 9 (77): 3564– 3573. doi:10.1098/rsif.2012.0399. PMID: 22809846.; Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997; 38 (2): 95–104. doi:10.1002/(sici)1097-4636(199722)38:23.0.co;2-b. PMID: 9178736.; Tiruvannamalai Annamalai R, Mertz DR, Daley EL, Stegemann JP. Collagen Type II enhances chondrogenic differentiation in agarose-based modular microtissues. Cytotherapy. 2016; 18 (2): 263–277. doi:10.1016/j.jcyt.2015.10.015. PMID: 26794716.; https://journal.transpl.ru/vtio/article/view/1342

  16. 16
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 22, № 4 (2020); 89-97 ; Вестник трансплантологии и искусственных органов; Том 22, № 4 (2020); 89-97 ; 2412-6160 ; 1995-1191 ; 10.15825/1995-1191-2020-4

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1269/1050; https://journal.transpl.ru/vtio/article/view/1269/1136; Salim MS, Issa AM, Farrag ARH, Gabr H. Decellularized liver bioscaffold: a histological and immunohistochemical comparison between normal, fibrotic and hepatocellular carcinoma. Clin Exp Hepatol. 2019; 5 (1): 35–47. doi:10.5114/ceh.2019.83155.; Acun A, Oganesyan R, Uygun BE. Liver bioengineering: promise, pitfalls, and hurdles to overcome. Curr Transplant Rep. 2019; 6 (2): 119–126. doi:10.1007/s40472-019-00236-3.; Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun. 2017; 2 (2): 131–141. doi:10.1002/hep4.1136.; Elchaninov A, Fatkhudinov T, Usman N, Arutyunyan I, Makarov A, Lokhonina A et al. Multipotent stromal cells stimulate liver regeneration by influencing the macrophage polarization in rat. World J Hepatol. 2018; 10 (2): 287–296. doi:10.4254/wjh.v10.i2.287.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; Uygun BE, Yarmush ML, Uygun K.Application of wholeorgan tissue engineering in hepatology. Nature Reviews Gastroenterology & Hepatology. 2012; 9 (12): 738–744. doi:10.1038/nrgastro.2012.140.; Rossi EA, Quintanilha LF, Nonaka CKV, Souza BSF. Advances in hepatic tissue bioengineering with decellularized liver bioscaffold. Stem Cells Int. 2019; 2019: 2693189. doi:10.1155/2019/2693189.; Ferng AS, Connell AM, Marsh KM, Qu N, Medina AO, Bajaj N et al. Acellular porcine heart matrices: whole organ decellularization with 3D-bioscaffold & vascular preservation. J Clin Transl Res. 2017; 3 (2): 260–270.; Figliuzzi M, Bonandrini B, Remuzzi A. Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater. 2017; 15 (4): e326–e333. doi:10.5301/jabfm.5000393.; Kuna VK, Kvarnström N, Elebring E, Holgersson SS. Isolation and decellularization of a whole porcine pancreas. J Vis Exp. 2018; (140): 58302. doi:10.3791/58302. PMID: 30371658.; Daryabari SS, Kajbafzadeh AM, Fendereski K, Ghorbani F, Dehnavi M, Rostami M et al. Development of an efficient perfusion-based protocol for whole-organ decellularization of the ovine uterus as a human-sized model and in vivo application of the bioscaffolds. J Assist Reprod Genet. 2019; 36 (6): 1211–1223. doi:10.1007/s10815-019-01463-4.; Готье СВ, Севастьянов ВИ, Шагидулин МЮ, Немец ЕА, Басок ЮБ. Тканеспецифический матрикс для тканевой инженерии паренхиматозного органа и способ его получения. Патент на изобретение RU 2693432 C2, 02.07.2019.; Шумаков ВИ, Онищенко НА. Биологические резервы клеток костного мозга и коррекция органных дисфункций: [монография]. М.: Лавр, 2009. 307.; Готье СВ, Шагидулин МЮ, Онищенко НА, Крашенинников МЕ, Никольская АО, Башкина ЛВ, Севастьянов ВИ. Способ лечения печеночной недостаточности. Патент на изобретение RU 2586952 C1, 10.06.2016.; Шагидулин МЮ, Онищенко НА, Крашенинников МЕ, Ильинский ИМ, Можейко НП, Шмерко НП и др. Выживание клеток печени, иммобилизированных на 3D-матриксах при моделировании печеночной недостаточности. Вестник трансплантологии и искусственных органов. 2011; 13 (3): 59–66. doi:10.15825/1995-1191-2011-3-59-66.; Никольская АО, Гоникова ЗЗ, Кирсанова ЛА, Шагидулин МЮ, Онищенко НА, Севастьянов ВИ. Способ моделирования тяжелого спонтанно необратимого повреждения печени. Патент на изобретение RU 2633296 C, 11.10.2017.; Шагидулин МЮ, Онищенко НА, Крашенинников МЕ, Никольская АО, Волкова ЕА, Ильинский ИМ и др. Влияние соотношения клеток печени и костного мозга в имплантируемых клеточно-инженерных конструкциях на эффективность восстановительных процессов в печени при хронической печеночной недостаточности. Вестник трансплантологии и искусственных органов. 2019; 21 (1): 122–134. doi:10.15825/1995-1191-2019-1-122-134.; Автандилов ГГ. Медицинская морфометрия. Руководство. М.: Медицина, 1990. 384.; Ishak K, Baptista A, Bianchi L, Callea F, Grootes J et al. Гистологическая оценка стадии и степени хронического гепатита. Клиническая гепатология. 2010; 2: 8–11.; https://journal.transpl.ru/vtio/article/view/1269

  17. 17
    Academic Journal

    المساهمون: Работа выполнена частично при финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-29-06012).

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 22, № 3 (2020); 123-133 ; Вестник трансплантологии и искусственных органов; Том 22, № 3 (2020); 123-133 ; 2412-6160 ; 1995-1191 ; 10.15825/1995-1191-2020-3

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1235/1008; https://journal.transpl.ru/vtio/article/view/1235/1031; Croce S, Peloso A, Zoro T, Avanzini MA, Cobianchi L. A hepatic scaffold from decellularized liver tissue: food for thought. Biomolecules. 2019; 9 (12): 813. doi:10.3390/biom9120813. PMID: 31810291.; Yang W, Xia R, Zhang Y, Zhang H, Bai L. Decellularized liver scaffold for liver regeneration. Methods Mol Biol. 2018; 1577: 11–23. doi:10.1007/7651_2017_53. PMID: 28856614.; Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med. 2020; 14 (3): 521–538. doi:10.1002/term.3004. PMID: 31826325.; Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci. 2018; 19 (12): 4117. doi:10.3390/ijms19124117. PMID: 30567407.; Ahmed E, Saleh T, Yu L, Kwak HH, Kim BM, Park KM et al. Micro and ultrastructural changes monitoring during decellularization for the generation of a biocompatible liver. J Biosci Bioeng. 2019; 128 (2): 218–225. doi:10.1016/j.jbiosc.2019.02.007. PMID: 3090445.; Willemse J, Verstegen MMA, Vermeulen A, Schurink IJ, Roest HP, van der Laan LJW et al. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Mater Sci Eng C Mater Biol Appl. 2020; 108: 110200. doi:10.1016/j.msec.2019.110200. PMID: 31923991.; Butter A, Aliyev K, Hillebrandt KH, Raschzok N, Kluge M, Seiffert N et al. Evolution of graft morphology and function after recellularization of decellularized rat livers. J Tissue Eng Regen Med. 2018; 12 (2): e807–e816. doi:10.1002/term.2383. PMID: 27957815.; Naeem EM, Sajad D, Talaei-Khozani T, Khajeh S, Azarpira N, Alaei S et al. Decellularized liver transplant could be recellularized in rat partial hepatectomy model. J Biomed Mater Res A. 2019; 107 (11): 2576–2588. doi:10.1002/jbm.a.36763. PMID: 31361939.; Готье СВ, Севастьянов ВИ, Шагидулин МЮ, Немец ЕА, Басок ЮБ. Тканеспецифический матрикс для тканевой инженерии паренхиматозного органа и способ его получения. Патент на изобретение RU 2693432 C2, 02.07.2019.; Elchaninov A, Fatkhudinov T, Usman N, Arutyunyan I, Makarov A, Lokhonina A et al. Multipotent stromal cells stimulate liver regeneration by influencing the macrophage polarization in rat. World J Hepatol. 2018 Feb 27; 10 (2): 287–296.; Zhou Q, Li L, Li J. Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications. Liver Int. 2015 Mar; 35 (3): 687–694. doi:10.1111/liv.12581.; Shimoda H, Yagi H, Higashi H, Tajima K, Kuroda K, Abe Y et al. Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci Rep. 2019; 9 (1): 12543. doi:10.1038/s41598-019-48948-x. PMID: 31467359.; Donato MT, Tolosa L, Gómez-Lechón MJ. Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Methods Mol Biol. 2015; 1250: 77–93. doi:10.1007/978-1-4939-2074-7_5.; Sevastyanov VI, Basok YB, Grigoryev AM, Kirsanova LA, Vasilets VN. A perfusion bioreactor for making tissue-engineered constructs. Biomedical Engineering. 2017; 51 (3): 162–165.; ГОСТ ISO 10993-1-2011 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro». М.: Стандартинформ, 2014.; Novikov I, Subbot A, Turenok A, Mayanskiy N, Chebotar I. A rapid method of whole cell sample preparation for scanning electron microscopy using neodymium chloride. Micron. 2019; 124: 102687. doi:10.1016/j.micron.2019.102687. PMID: 31302532.; Zhang L, Guan Z, Ye J-S, Yin Y-F, Stoltz J-F, de Isla N. Research progress in liver tissue engineering. Biomed Mater Eng. 2017; 29 (s1): S113–S119.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; Nibourg GA, Hoekstra R, van der Hoeven TV, Ackermans MT, Hakvoort TB, van Gulik TM, Chamuleau RA. Increased hepatic functionality of the human hepatoma cell line HepaRG cultured in the AMC bioreactor. Int J Biochem Cell Biol. 2013 Aug; 45 (8): 1860–1868.; https://journal.transpl.ru/vtio/article/view/1235

  18. 18
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 21, № 4 (2019); 45-53 ; Вестник трансплантологии и искусственных органов; Том 21, № 4 (2019); 45-53 ; 2412-6160 ; 1995-1191 ; 10.15825/1995-1191-2019-4

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1107/864; https://journal.transpl.ru/vtio/article/view/1107/891; Kumar N, Joisher H, Ganguly A. Polymeric scaffolds for pancreatic tissue engineering: a review. Rev Diabet Stud. 2018 Winter; 14 (4): 334–353. doi:10.1900/RDS.2017.14.334.; Lemos NE, de Almeida Brondani L, Dieter C, Rheinheimer J, Boucas AP, BauermannLeitao C et al. Use of additives, scaffolds and extracellular matrix components for improvement of human pancreatic islet outcomes in vitro: a systematic review. Islets. 2017 Sep 3; 9 (5): 73–86. doi:10.1080/19382014.2017.1335842.; Llacua LA, Faas MM, de Vos P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia. 2018 Jun; 61 (6): 1261–1272. doi:10.1007/s00125-017-4524-8.; Stendahl JC, Kaufman DB, Stupp SI. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplantation. 2009; 18 (1): 1–12. doi:10.3727/096368909788237195.; Fisher SA, Tam RY, Shoichet MS. Tissue mimetics: engineered hydrogel matrices provide biomimetic environmentsfor cell growth. Tissue Engineering. 2014; Part A, 20 (5, 6): 895–898. doi:10.1089/ten.tea.2013.0765.; Coronel M, Stabler C. Engineering a local microenvironment for pancreatic islet replacement. Curr Opin Biotechnol. 2013; 24: 900–908. doi:10.1016/j.copbio.2013.05.004.; Jiang K, Chaimov D, Patel SN, Liang JP, Wiggins SC, Samojlik MM et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterial. 2019 Apr; 198: 37–48. doi:10.1016/j.biomaterials.2018.08.057.; Перова НВ, Севастьянов ВИ. Биополимерный гетерогенный гидрогель Сферо® ГЕЛЬ – инъекционный биодеградируемый имплант. Практическая медицина. 2014; 8 (84): 111–116.; Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A et al. Lung-derived microscaffolds facilitate diabetes reversal after mouse and human intraperitoneal islet transplantation. PLoS One. 2016 May 26; 11 (5): e0156053. doi:10.1371/journal.pone.0156053.; Szebeni GJ, Tancos Z, Feher LZ, Alfoldi R, Kobolak J, Dinnyes A, Puskas LG. Real architecture for 3D Tissue (RAFT) culture system improves viability and maintains insulin and glucagon production of mouse pancreatic islet cells. Cytotechnology. 2017; 69 (2): 359–369. doi:10.1007/s10616-017-0067-6.; Баранова НВ, Кирсанова ЛА, Бубенцова ГН, Севастьянов ВИ. Микрогетерогенный коллагенсодержащий гидрогель как матрикс для изолированных островков Лангерганса поджелудочной железы крысы. Гены и клетки. Материалы III Национального конгресса по регенеративной медицине. 2017; XII (3): 38–39.; Rana D, Zreigat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med. 2017 Apr; 11 (4): 942–965. doi:10.1002/term.2061.; Napierala H, Hillebrandt K-H, Haep N, Tang P, Tintemann M, Gassner J et al. Engineering an endocrine neopancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci Rep. 2017 Feb 2; 7: 41777. doi:10.1038/srep41777.; Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M et al. 3 D culture of MIN-6 cells on decellularized pancreatic scaffold: in vitro and in vivo study. Biomed Res Int. 2015; 2015: 432645. doi:10.1155/2015/432645.; Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012 Feb; 33 (6): 1771–1781. doi:10.1016/j.biomaterials.2011/10/054.; Smink AM, de Vos P. Therapeutic strategies for modulating the extracellular matrix to improve pancreatic islet function and survival after transplantation. Curr Diab Rep. 2018 May 19; 18 (7): 39. doi:10.1007/s11892-0181014-4.; Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, Orlando G. Extracellular matrix scaffold technology for bioartificial pancreas engineering: state of the art and future challenges. J Diab Sci Technol. 2014; 8 (1): 159–169. doi:10.1177/1932296813519558.; Mirmalek-Sani S-H, Orlando G, McQuilling J, Pareta R, Mack D, Salvatori M et al. Porcine pancreas extracellular matrix as a platform endocrine pancreas bioengineering. Biomaterials. 2013 July; 34 (22): 5488–5495. doi:10.1016/j.biomaterials.2013.03.054.; Севастьянов ВИ, Шагидулин МЮ, Скалецкий НН, Перова НВ, Довжик ИА, Готье СВ. Доклинические исследования безопасности и эффективности биомедицинских клеточных продуктов для регенерации суставного хряща, печени и поджелудочной железы. Методические рекомендации по проведению доклинических исследований биомедицинских клеточных продуктов. Под ред. ак. В.А. Ткачука. М., 2017: 187–255.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011 Apr; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; London NJ, Swift SM, Clayton HA. Isolation, culture and functional evaluation of islets of Langerhans. Diabetes Metab. 1998 Jun; 24 (3): 200–207. PMID: 9690051.; Pang X, Xue W, Feng X, Tian X, Teng Y, Ding X et al. Experimental studies onislets isolation, purification and function in rats. Int J Clin Exp Med. 2015 Nov 15; 8 (11): 20932–20938. PMID: 26885021.; Sigmundsson K, Ojala JRM, Ohmam MK, Osterholm AM, Moreno-Moral A, Domogatskaya A et al. Culturing functional pancreatic islets on 65-laminins and curative transplantation to diabetic mice. Matrix Biol. 2018 Sep; 70: 5–19. doi:10.1016/j.matbio.2018.03.018.; https://journal.transpl.ru/vtio/article/view/1107

  19. 19
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 22, № 1 (2020); 123-133 ; Вестник трансплантологии и искусственных органов; Том 22, № 1 (2020); 123-133 ; 2412-6160 ; 1995-1191 ; 10.15825/1995-1191-2020-1

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1153/915; https://journal.transpl.ru/vtio/article/view/1153/962; Сургученко ВА. Матриксы для тканевой инженерии и гибридных органов. Биосовместимые материалы (учебное пособие). Под ред. В.И. Севастьянова и М.П. Кирпичникова. М.: МИА, 2011. Часть II, глава 1: 199–226.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011 April; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Scientific Reports. 2018; 8: 10452. doi:10.1038/s41598-018-28857-1.; Stendahl JC, Kaufman DB, Stupp SI. Extracellular Matrix in Pancreatic Islets: Relevance to Scaffold Design and Transplantation. Cell Transplant. 2009; 18 (1): 1–12. doi:10.3727/096368909788237195.; Riopel M, Wang К. Collagen matrix support of pancreatic islet survival and function. Frontiers in Bioscience. 2014 Jan; 19: 77–90. doi:10.2741/4196.; Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, Orlando G. Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering: State of the Art and Future Challenges. Journal of Diabetes Science and Technology. 2014; 8 (1): 159–169. doi:10.1177/1932296813519558.; Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M et al. 3D Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: in vitro and in vivo Study. BioMed Research International. 2015 Nov: 1–8. http://dx.doi.org/10.1155/2015/432645.; Goh SK, Bertera S, Olsen P, Candiello J, Halfter W, Uechi G et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013; 34 (28): 6760–6772. doi:10.1016/j.biomaterials.2013.05.066.; Napierala H, Hillebrandt K-H, Haep N, Tang P, Tintemann M, Gassner J et al. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Scientific Reports. 2017; 7: 41777. doi:10.1038/srep41777.; Mirmalek-Sani S-H, Orlando G, McQuilling J, Pareta R, Mack D, Salvatori M et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013; 34 (22): 5488–5495. doi:10.1016/j.biomaterials.2013.03.054.; Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Fallas MEA et al. The human pancreas as a source of pro-tolerogenic extracellular matrix scaffold for a new generation bio-artificial endocrine pancreas. Ann Surg. 2016; 264 (1): 169–179. doi:10.1097/SLA.0000000000001364.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011. 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; Межгосударственный стандарт ГОСТ ISO 10993-5-2011 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro».; https://journal.transpl.ru/vtio/article/view/1153

  20. 20
    Academic Journal

    المساهمون: Russian Foundation for Basic Research, grant No. 16-29-07322., РФФИ, (грант №16-29-07322).

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 21, № 1 (2019); 101-112 ; Вестник трансплантологии и искусственных органов; Том 21, № 1 (2019); 101-112 ; 2412-6160 ; 1995-1191 ; 10.15825/1995-1191-2019-1

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/996/784; Caddeo S, Boffito M, Sartori S. Tissue Engineering Approaches in the Design of Healthy and Pathological in vitroTissue Models. Front Bioeng Biotechnol. 2017; 5: 40. doi:10.3389/fbioe.2017.00040.; Kristjánsson B, Honsawek S. Mesenchymal stem cells for cartilage regeneration in osteoarthritis. World J Orthop. 2017; 8 (9): 674–680. doi:10.5312/wjo.v8.i9.674.; Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: A systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A. 2017; 105 (8): 2343–2354. doi:10.1002/jbm.a.36087.; Surguchenko VA, Ponomareva AS, Kirsanova LA, Skaleckij NN, Sevastianov VI. The cell-engineered construct of cartilage on the basis of biopolymer hydrogel matrix and human adipose tissue-derived mesenchymal stromal cells (in vitrostudy). J Biomed Mater Res. Part A. 2015; 103A (2): 463–470. doi:10.1002/jbm.a.35197.; Shafiee A, Kabiri M, Langroudi L, Soleimani M, Ai J. Evaluation and comparison of the in vitrocharacteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. J Biomed Mater Res A. 2016; 104 (3): 600–610. doi:10.1002/jbm.a.35603.; Kohli N, Wright KT, Sammons RL, Jeys L, Snow M, Johnson WE. An in vitroComparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair. Cartilage. 2015; 6 (4): 252–263. doi:10.1177/1947603515589650.; Ullah M, Hamouda H, Stich S, Sittinger M, Ringe J. A reliable protocol for the isolation of viable, chondrogenically differentiated human mesenchymal stem cells from high-density pellet cultures. Biores Open Access. 2012; 1 (6): 297–305. doi:10.1089/biores.2012.0279.; Huang L, Yi L, Zhang C, He Y, Zhou L, Liu Y et al. Synergistic Effects of FGF-18 and TGF-β3 on the Chondrogenesis of Human Adipose-Derived Mesenchymal Stem Cells in the Pellet Culture. Stem Cells Int. 2018; 2018: 7139485. doi:10.1155/2018/7139485.; Babur BK, Ghanavi P, Levett P, Lott WB, Klein T, Cooper-White JJ et al. The interplay between chondrocyte redifferentiation pellet size and oxygen concentration. PLoS One. 2013; 8 (3): e58865. doi:10.1371/journal.pone.0058865.; Huang S, Song X, Li T, Xiao J, Chen Y, Gong X et al. Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation. Stem Cell Res Ther. 2017; 8 (1): 264. doi:10.1186/s13287-017-0719-7.; Fickert S, Gerwien P, Helmert B, Schattenberg T, Weckbach S, Kaszkin-Bettag M, Lehmann L. One-Year Clinical and Radiological Results of a Prospective, Investigator-Initiated Trial Examining a Novel, Purely Autologous 3-Dimensional Autologous Chondrocyte Transplantation Product in the Knee. Cartilage. 2012; 3 (1): 27–42. doi: doi:10.1177/1947603511417616.; Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317. doi:10.1080/14653240600855905.; Lewis MC, MacArthur BD, Tare RS, Oreffo RO, Please CP. Extracellular Matrix Deposition in Engineered Micromass Cartilage Pellet Cultures: Measurements and Modelling. PLoS One. 2016; 11 (2): e0147302. doi:10.1371/journal.pone.0147302.; Sevastianov VI, Basok YB, Grigor’ev AM, Kirsanova LA, Vasilets VN. Formation of Tissue-Engineered Construct of Human Cartilage Tissue in a Flow-Through Bioreactor. Bull Exp Biol Med. 2017; 164 (2): 269–273. doi:10.1007/s10517-017-3971-z.; Körsmeier K, Claßen T, Kamminga M, Rekowski J, Jäger M, Landgraeber S. Arthroscopic three-dimensional autologous chondrocyte transplantation using spheroids for the treatment of full-thickness cartilage defects of the hip joint. Knee Surg Sports Traumatol Arthrosc. 2016; 24 (6): 2032–2037. doi:10.1007/s00167-014-3293-x.; Shimizu M, Matsumoto T, Kikuta S, Ohtaki M, Kano K, Taniguchi H et al. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model. J Orthop Sci. 2018; 23 (4): 688–696. doi:10.1016/j.jos.2018.03.001.; Zajdel A, Kałucka M, Kokoszka-Mikołaj E, Wilczok A. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochim Pol. 2017; 64 (2): 365–369. doi:10.18388/abp.2016_1488.; White JL, Walker NJ, Hu JC, Borjesson D, Athanasiou KA. A comparison of bone marrow and cord blood mesenchymal stem cells for cartilage self-assembly. Tissue Eng Part A. 2018; 24 (15–16): 1262–1272. doi:10.1089/ten.TEA.2017.0424.; Westin CB, Trinca RB, Zuliani C, Coimbra IB, Moraes ÂM. Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin. Mater Sci Eng C Mater Biol Appl. 2017; 80: 594–602. doi:10.1016/j.msec.2017.07.005.; Fernandes TL, Shimomura K, Asperti A, Pinheiro CCG, Caetano HVA, Oliveira CRGCM et al. Development of a Novel Large Animal Model to Evaluate Human Dental Pulp Stem Cells for Articular Cartilage Treatment. Stem Cell Rev. 2018; 14 (5): 734–743. doi:10.1007/s12015-018-9820-2.; Вавилова ТП. Биохимия тканей и жидкостей полостей рта: учебное пособие. М.: ГЭОТАР Медиа, 2008: 208.; https://journal.transpl.ru/vtio/article/view/996