-
1Academic Journal
المصدر: Экономика региона, Vol 20, Iss 4 (2024)
مصطلحات موضوعية: предпринимательская экосистемаосистема, приграничье, региональная экосистема, предпринимательская активность, устойчивость, приграничье, региональная экосистема, предпринимательская активность, устойчивость, Regional economics. Space in economics, HT388
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: И.А. Белан, Л.П. Россеева, Н.П. Блохина, Я.В. Мухина, Ю.П. Григорьев, И.В. Пахотина, Л.В. Мешкова, Н.В. Трубачеева, В.К. Шумный, Л.А. Першина
المصدر: Письма в Вавиловский журнал генетики и селекции, Vol 10, Iss 3, Pp 158-165 (2024)
مصطلحات موضوعية: пшеница мягкая яровая, дг-линия, селекция, сорт, устойчивость, урожайность, качество зерна, Genetics, QH426-470
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Ольга Сергеевна Тарасова
المصدر: Экономика, профессия, бизнес, Iss 3, Pp 114-122 (2024)
مصطلحات موضوعية: региональные экономические системы, устойчивость, устойчивое развитие, индексы и индикаторы устойчивого развития, esg-показатели, рэнкинги, экологическая подсистема, Commerce, HF1-6182, Finance, HG1-9999, Economics as a science, HB71-74
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Павел Павлович Федоров
المصدر: Конденсированные среды и межфазные границы, Vol 26, Iss 4 (2024)
مصطلحات موضوعية: фазовые диаграммы, устойчивость, спинодаль, архитектура спинодального распада, Chemistry, QD1-999
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: Андрей Евгеньевич Копылов
المصدر: University Therapeutic Journal, Vol 6, Iss 3 (2024)
مصطلحات موضوعية: катаракта, саркопеническое ожирение, жизнестойкость, пожилые, устойчивость, Medicine
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Игорь Васильевич Зуб
المصدر: Физическая культура. Спорт. Туризм. Двигательная рекреация, Vol 9, Iss 4 (2024)
مصطلحات موضوعية: морское многоборье, профессионально важные качества, статокинетическая устойчивость, вестибулярная устойчивость, монотонноустойчивость., Recreation. Leisure, GV1-1860
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Андрей Николаевич Камлюк
المصدر: Вестник Университета гражданской защиты МЧС Беларуси, Vol 8, Iss 3, Pp 276-288 (2024)
مصطلحات موضوعية: пена, диаметр пузырька, скорость выдувания пузырьков, скорость взбивания пузырьков, кратность, устойчивость, дисперсность, газосодержание, эжектор, сетка, ороситель, Crisis management. Emergency management. Inflation, HD49-49.5
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Юлай Киньябаевич Акчулпанов
المصدر: Экономика, профессия, бизнес, Iss 2, Pp 5-10 (2024)
مصطلحات موضوعية: инвестиции, устойчивое развитие, рост, перспективы, экологичность, устойчивость, стабильность, Commerce, HF1-6182, Finance, HG1-9999, Economics as a science, HB71-74
وصف الملف: electronic resource
-
9Academic Journal
المصدر: Недвижимость: экономика, управление, Iss 3 (2024)
مصطلحات موضوعية: индивидуальное жилищное строительство (ИЖС), эскроу счета, планирование, государственное регулирование, зеленые стандарты, экологическая устойчивость и энергоэффективность, Real estate business, HD1361-1395.5
وصف الملف: electronic resource
-
10Academic Journal
المصدر: Экономика региона, Vol 20, Iss 2 (2024)
مصطلحات موضوعية: миграция, миграционная связанность, устойчивость миграции, локализация населения, Арктика, регионы России, миграция, миграционная связанность, устойчивость миграции, локализация населения, Арктика, Regional economics. Space in economics, HT388
وصف الملف: electronic resource
-
11Academic Journal
المؤلفون: Р. И. Довнар
المصدر: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 22, Iss 2, Pp 137-146 (2024)
مصطلحات موضوعية: антибактериальные препараты, множественная лекарственная устойчивость, инфекции мягких тканей, бактерии, хирургическая раневая инфекция, Medicine
وصف الملف: electronic resource
-
12Academic Journal
المصدر: Исследование проблем экономики и финансов, Iss 2 (2024)
مصطلحات موضوعية: технологический процесс, социо-эколого-экономическая система, устойчивость, окружающая среда, система управления, индикаторы, Economics as a science, HB71-74
وصف الملف: electronic resource
-
13Academic Journal
المؤلفون: Victor Viktorovich Panin
المصدر: Недвижимость: экономика, управление, Iss 2 (2024)
مصطلحات موضوعية: коррупция, экологическая безопасность, экологические риски, экологическая устойчивость строительства, экологическая преступность, управление строительством, Real estate business, HD1361-1395.5
وصف الملف: electronic resource
-
14Academic Journal
المصدر: Вестник Университета гражданской защиты МЧС Беларуси, Vol 8, Iss 1, Pp 5-20 (2024)
مصطلحات موضوعية: композиционные коррозионностойкие покрытия, наноструктурированные материалы, электрохимическое осаждение защитных пленок, модифицированные электролиты меднения, оксидная фаза, коррозионная устойчивость, Crisis management. Emergency management. Inflation, HD49-49.5
وصف الملف: electronic resource
-
15Academic Journal
المصدر: Информатика и автоматизация, Vol 23, Iss 1, Pp 226-258 (2024)
مصطلحات موضوعية: функциональная устойчивость, критичность, система связи, система управления, сложная техническая система, профиль функционирования системы, функции, задачи, регламент, Electronic computers. Computer science, QA75.5-76.95
وصف الملف: electronic resource
-
16Academic Journal
المؤلفون: V. V. Gostev, O. S. Kalinogorskaya, O. S. Sulian, P. S. Chulkova, J. V. Sopova, M. E. Velizhanina, V. Yu. Pleshkov, V. A. Ageevets, S. V. Sidorenko
المصدر: Антибиотики и Химиотерапия, Vol 68, Iss 9-10, Pp 25-33 (2024)
مصطلحات موضوعية: staphylococcus aureus, гентамицин, устойчивость, селекция, мелкоколониевые варианты, мутации, биосинтез менахинона, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: Viktor O. Oguy, Elena A. Sazonova, Evgeniy V. Bykov
المصدر: Журнал медико-биологических исследований, Vol 11, Iss 4, Pp 398-407 (2023)
مصطلحات موضوعية: виброакустический массаж, функция равновесия, статокинетическая устойчивость, поющие чаши, вибромассаж, стабилометрия, Sports medicine, RC1200-1245, Biology (General), QH301-705.5
وصف الملف: electronic resource
-
18Academic Journal
المؤلفون: Попова Олеся Сергеевна, ФГБОУ ВО «Кубанский государственный университет физической культуры, спорта и туризма», Olesia S. Popova,
FSBEI of HE "Kuban State University of Physical Culture, Sport and Tourism" المصدر: Modern educational process: psychological and pedagogical support, educational strategies; ; Современный образовательный процесс: психолого-педагогическое сопровождение, воспитательные стратегии
مصطلحات موضوعية: стрессоустойчивость, психологическая устойчивость, устойчивость личности студентов, реабилитационная деятельность
وصف الملف: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-92-9; https://phsreda.com/e-articles/10658/Action10658-114076.pdf; Евсеев С.П. Теория и организация адаптивной физической культуры: учебник / С.П. Евсеев. – М.: Спорт, 2016. – 616 с. ISBN 978-5-906839-42-8. EDN WGRUDV; Казакова О.А. Психо-эмоциональная устойчивость у будущих специалистов социальной работы / О.А. Казакова // Вестник Самарского государственного университета: Гуманитарная серия. – 2008. – №5/1 (64). – С. 119–126. EDN: OOLKRN; Хребина С.В. Проблема развития психологической устойчивости личности у будущих психологов служебной сферы деятельности / С.В. Хребина, Р.М. Зверева, М.И. Байчорова // Вестник Университета Российского инновационного образования. – 2024. – №1. – С. 9–21. EDN: ZXMEUG. DOI 10.24412/2949-4524-2024-1-9-22; Хусаинова С.В. Концепция психологической устойчивости обучающегося в учебно-профессиональной деятельности / С.В. Хусаинова // Казанский педагогический журнал. – 2018. – №5 (130). – С. 219–223. EDN: YTERPV; https://phsreda.com/article/114076/discussion_platform
-
19Academic Journal
المؤلفون: L. Ya. Plotnikova, V. V. Knaub, Л. Я. Плотникова, В. В. Кнауб
المساهمون: The work was supported by Russian Science Foundation (project 22-24-20067), https://rscf.ru/project/22-24-20067.
المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 5 (2024); 536-553 ; Вавиловский журнал генетики и селекции; Том 28, № 5 (2024); 536-553 ; 2500-3259 ; 10.18699/vjgb-24-52
مصطلحات موضوعية: длительная устойчивость, tertiary gene pool, Thinopyrum, Agropyron, introgression, resistance for disease and abiotic stresses, nonhost resistance, durable resistance, третичный генофонд, интрогрессия, устойчивость к болезням и абиотическим стрессам, устойчивость нехозяев
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4235/1860; Ali N., Mujeeb-Kazi A. Food production: global challenges to mitigate climate change. In: Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. 2021;1-13. DOI 10.1007/978-3-030-59577-7_1; Ali S., Rodriguez-Algaba J., Thach T., Sørensen C.K., Hansen J.G., Lassen P., Nazari K., Hodson D.P., Justesen A.F., Hovmøller M.S. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front. Plant Sci. 2017;8:1057. DOI 10.3389/fpls.2017.01057; Alisaac E., Mahlein A.-K. Fusarium head blight on wheat: biology, modern detection and diagnosis and integrated disease management. Toxins. 2023;15(3):192. DOI 10.3390/toxins15030192; Antonovics J., Alexander H.M. The concept of fitness in plant-fungal pathogen systems. In: Leonard K.J., Fry W.E. (Eds.) Plant Disease Epidemiology. New York: McGraw-Hill, 1989;2:185-214; Aravindh R., Sivasamy M., Ganesamurthy K., Jayaprakash P., Gopalakrishnan C., Geetha M., Nisha R., Shajitha P., Peter J., Sindhu P.A., Vikas V.K. Marker assisted stacking/pyramiding of stem rust, leaf rust and powdery mildew disease resistance genes (Sr2/ Lr27/Yr30, Sr24/Lr24 and Sr36/Pm6) for durable resistance in wheat (Triticum aestivum L.). Electron. J. Plant Breed. 2020;11(3):907-991. DOI 10.37992/2020.1103.148; Arora S., Steuernagel B., Gaurav K., Chandramohan S., Long Y., Matny O., Johnson R., Enk J., Periyannan S., Singh N., … Bentley A.R., Ayliffe M., Olson E., Xu S.S., Steffenson B.J., Lagudah E., Wulff B.B.H. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019; 37(2):139-143. DOI 10.1038/s41587-018-0007-9; Babkenova S.A., Babkenov A.T., Pakholkova E.V., Kanafin B.K. Pathogenic complexity of Septoria spot disease of wheat in northern Kazakhstan. Plant Sci. Today. 2020;7(4):601-606. DOI 10.14719/pst.2020.7.4.798; Bajgain P., Zhang X., Jungers J.M., DeHaan L.R., Heim B., Sheaf-fer C.C., Wyse D.L., Anderson J.A. ‘MN-Clearwater’, the first food-grade intermediate wheatgrass (Kernza perennial grain) cultivar. J. Plant Regist. 2020;14(3):288-297. DOI 10.1002/plr2.20042; Baker L., Grewal S., Yang C., Hubbart-Edwards S., Scholefield D., Ashling S., Burridge A., Przewieslik-Allen A., Wilkinson P., King I., King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theor. Appl. Genet. 2020;133(7): 2213-2226. DOI 10.1007/s00122-020-03591-3; Baranova O., Solyanikova V., Kyrova E., Konkova E., Gaponov S., Sergeev V., Shevchenko S., Mal’chikov P., Dolzhenko D., Bespalova L., Ablova I., Tarhov A., Vasilova N., Askhadullin D., Askhadullin D., Sibikeev S.N. Evaluation of resistance to stem rust and identification of Sr genes in Russian spring and winter wheat cultivars in the Volga region. Agriculture. 2023;13(3):635. DOI 10.3390/agriculture13030635; Bhardwaj S.C., Prashar M., Kumar M., Jain S.K., Datta D. Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis. 2005;89(12):1360. DOI 10.1094/PD-89-1360A; Bhavani S., Hodson D.P., Huerta-Espino J., Randhawa M.S., Singh R.P. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Front. Agric. Sci. Eng. 2019;6(3):210-224. DOI 10.15302/J-FASE-2019268; Brar G.S., Fetch T., McCallum B.D., Hucl P.J., Kutcher H.R. Virulence dynamics and breeding for resistance to stripe, stem, and leaf rust in Canada since 2000. Plant Dis. 2019;103(12):2981-2995. DOI 10.1094/PDIS-04-19-0866-FE; Carmona M.A., Ferrazini M., Barreto D.E. Tan spot of wheat caused by Drechslera tritici-repentis: detection, transmission, and control in wheat seed. Cereal Res. Commun. 2006;34(2-3):1043-1049. DOI 10.1556/CRC.34.2006.2-3.236; Ceoloni C., Kuzmanović L., Forte P., Gennaro A., Bitti A. Targeted exploitation of gene pools of alien Triticeae species for sustainable and multi-faceted improvement of the durum wheat crop. Crop Pasture Sci. 2014;65(1):96-111. DOI 10.1071/CP13335; Ceoloni C., Forte P., Kuzmanović L., Tundo S., Moscetti I., De Vita P., Virili M.E., D’Ovidio R. Cytogenetic mapping of a major locus for resistance to Fusarium headblight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. Theor. Appl. Genet. 2017;130(10):2005-2024. DOI 10.1007/s00122-017-2939-8; Chen C., Han Y., Xiao H., Zou B., Wu D., Sha L., Yang C., Liu S., Cheng Y., Wang Y., Kang H., Fan X., Zhou Y., Zhang T., Zhang H. Chromosome-specific painting in Thinopyrum species using bulked oligonucleotides. Theor. Appl. Genet. 2023;136(8):177. DOI 10.1007/s00122-023-04423-w; Chen Q., Conner R.L., Laroche A. Identification of the parental chromosomes of the wheat–alien amphiploid agrotana by genomic in situ hybridization. Genome. 1995;38(6):1163-1169. DOI 10.1139/g95-154; Chen Q., Conner R.L., Laroche A., Thomas J.B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome. 1998;41(4):580-586. DOI 10.1139/g98-055; Chen S., Huang Z., Dai Y., Qin Y., Zhang L., Gao Y., Chen J. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One. 2013;8(6):e65122. DOI 10.1371/journal.pone.0065122; Chen X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 2005;27:314-337. DOI 10.1080/07060660509507230; Colmer T.D., Flowers T.J., Munns R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006;57(5):1059-1078. DOI 10.1093/jxb/erj124; Curtis T., Halford N.G. The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014;164(3):354-372. DOI 10.1111/aab.12108; Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenco A.N., Zubanova Y.S., Mikov D.S. Introgression of common wheat lines with genetic material of Agropyron glaucum. Russ. J. Genet. Appl. Res. 2016;6(1):54-61. DOI 10.1134/S2079059716010056; FAO Report. The impact of disasters and crises on agriculture and food security. Rome: FAO, 2021. DOI 10.4060/cb3673en; Fedak G., Chen Q., Conner R.L., Laroche A., Petroski R., Arm-strong K.W. Characterization of wheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome. 2000;43(4):712-719. DOI 10.1139/g00-027; Fisenko A.V., Kuzmina N.P. Remote hybridization of wheat in winter hardiness selection. Agrarnaya Rossiya = Agricultural Russia. 2020;5:3-8. DOI 10.30906/1999-5636-2020-5-3-8 (in Russian); Fones H., Gurr S. The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet. Biol. 2015;79:3-7. DOI 10.1016/j.fgb.2015.04.004; Frailie T.B., Innes R.W. Engineering healthy crops: molecular strategies for enhancing the plant immune system. Curr. Opin. Biotechnol. 2021;70:151-157. DOI 10.1016/j.copbio.2021.04.006; Friebe B., Jiang J., Knott D.R., Gill B.S. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 1994;34(2): 400-404. DOI 10.2135/cropsci1994.0011183X003400020018x; Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations resistance to diseases and pest: current status. Euphytica. 1996;91:59-87. DOI 10.1007/BF00035277; Friebe B., Raupp W.J., Gill B.S. Wheat alien translocation lines. Ann. Wheat Newslett. 2000;46:198-202; Friebe B., Zhang P., Linc G., Gill B.S. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet. Genome Res. 2005;109(1-3):293-297. DOI 10.1159/000082412; Gao P., Zhou Y., Gebrewahid T.W., Zhang P., Yan X., Li X., Yao Z., Li Z., Liu D. Identification of known leaf rust resistance genes in common wheat cultivars from Sichuan province in China. Crop Protect. 2019;115:122-129. DOI 10.1016/j.cropro.2018.09.012; Gill B.S., Friebe B., Wilson D.L., Cox T.S. Registration of KS93WGRC27 wheat streak mosaic virus-resistant T4DL·4Ai#2S wheat germplasm. Crop Sci. 1995;35(4):1236-1237. DOI 10.2135/cropsci1995.0011183X003500040100x; Goncharov N.P. Scientific support to plant breeding and seed production in Siberia in the XXI century. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(4): 448-459. DOI 10.18699/VJ21.050; Gorham J., Forster B.P., Budrewicz E., Wyn J.R.G., Miller T.E., Law C.N. Salt tolerance in the Triticeae: solute accumulation and distribution in an amphidiploid derived from Triticum aestivum cv. Chinese Spring and Thinopyrum bessarabicum. J. Exp. Bot. 1986;37(10):1435-1449. DOI 10.1093/jxb/37.10.1435; Gultyaeva E., Shaydayuk E., Gannibal P. Leaf rust resistance genes in wheat cultivars registered in Russia and their influence on adaptation processes in pathogen populations. Agriculture. 2021;11(4): 319. DOI 10.3390/agriculture11040319; Gultyaeva E., Shaydayuk E., Kosman E. Virulence diversity of Puccinia striiformis f. sp. tritici in common wheat in Russian regions in 2019–2021. Agriculture. 2022;12(11):1957. DOI 10.3390/agriculture12111957; Gultyaeva E., Gannibal P., Shaydayuk E. Long-term studies of wheat leaf rust in the north-western region of Russia. Agriculture. 2023; 13(2):255. DOI 10.3390/agriculture13020255; Guo J., Yu X., Yin H., Liu G., Li A., Wang H., Kong L. Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Syst. Evol. 2016;302:1301-1309. DOI 10.1007/s00606-016-1332-4; Guo X., Huang Y., Wang J., Fu S., Wang C., Wang M., Zhou C., Hu X., Wang T., Yang W., Han F. Development and cytological characterization of wheat–Thinopyrum intermedium translocation lines with novel stripe rust resistance gene. Front. Plant Sci. 2023;14:1135321. DOI 10.3389/fpls.2023.1135321; Han H., Ma X., Wang Z., Qi K., Yang W., Liu W., Zhang J., Zhou S., Lu Y., Yang X., Li X., Li L. Chromosome 5P of Agropyron cristatum induces chromosomal translocation by disturbing homologous chromosome pairing in a common wheat background. Crop J. 2023;11(1):228-237. DOI 10.1016/j.cj.2022.06.002; Hang A., Bockelman H.E., Burton C.S. Cytological and seed morphological investigation of 250 accessions from the W.J. Sando collection. Agronomy Society of America, Crop Science Society of America, Soil Science Society of America meeting, November 6−10, 2005. Salt Lake City, Utah, 2005; Hao M., Zhang L., Ning S., Huang L., Yuan Z., Wu B., Yan Z., Dai S., Jiang B., Zheng Y., Liu D. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 2020;11: 252. DOI 10.3389/fpls.2020.00252; Hassani H.S., King I.P., Reader S.M., Caligari P.D.S., Miller T.E. Can tritipyrum, a new salt tolerant potential amphiploid, be a successful cereal like triticale? J. Agric. Sci. Technol. 2000;2(3):177-195; He F., Wang Y.H., Bao Y.G., Ma Y.X., Wang X., Li X.F., Wang X. Chromosomal constitutions of five wheat-Elytrigia elongata partial amphiploids as revealed by GISH, multicolor GISH and FISH. Comp. Cyogen. 2017;11(3):525-540. DOI 10.3897/CompCytogen.v11i3.11883; He R.L., Chang Z.J., Yang Z.J., Yuan Z.Y., Zhan H.X., Zhang X.J., Liu J.X. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor. Appl. Genet. 2009;118(6):1173-1180. DOI 10.1007/s00122-009-0971-z; Hohmann U., Badaeva K., Busch W., Friebe B., Gill B.S. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome. 1996;39(2):336-347. DOI 10.1139/g96-044; Hou L., Jia J., Zhang X., Li X., Yang Z., Ma J., Guo H., Zhan H., Qiao L., Chang Z. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis. 2016;100(8):1717-1724. DOI 10.1094/PDIS-05-15-0555-RE; Huang Q., Li X., Chen W., Xiang Z., Zhong S., Chang Z., Zhang M., Zhang H.Y., Tan F.Q., Ren Z.L., Luo P.G. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor. Appl. Genet. 2014;127(4):843-853. DOI 10.1007/s00122-014-2261-7; Huerta-Espino J., Singh R.P. First report on virulence in wheat with leaf rust resistance gene Lr19 in Mexico. Plant Dis. 1994;78:640. DOI 10.1094/PD-78-0640C; Jiang B., Liu T., Li H., Han H., Li L., Zhang J., Yang X., Zhou S., Li X., Liu W. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front. Plant Sci. 2018;9:817. DOI 10.3389/fpls.2018.00817; Jin Y., Szabo L.J., Pretorius Z.A., Singh R.P., Ward R., Fetch T., Jr. Detection of virulence to resistance gene Sr24 with in race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2008;92(6):923-926. DOI 10.1094/PDIS-92-6-0923; Johnson R. Genetic background of durable resistance. In: Lamberti F., Waller J.M., Vander Graaff N.A. (Eds.) Durable Resistance in Crops. New York: Plenum Press, 1983;152-163; Knott D.R. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can. J. Genet. Cytol. 1968;10(3):695-696. DOI 10.1139/g68-087; Kocheshkova A.A., Kroupin P.Y., Bazhenov M.S., Karlov G.I., Pochtovyy A.A., Upelniek V.P., Belov V.I., Divashuk M.G. Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids. PLoS One. 2017;12(11): e0188049. DOI 10.1371/journal.pone.0188049; Kolmer J. Leaf rust of wheat: pathogen biology, variation and host resistance. Forests. 2013;4(1):70-84. DOI 10.3390/f4010070; Kolmer J.A., Jin Y., Long D.L. Wheat leaf and stem rust in the United States. Aust. J. Agric. Res. 2007;58(6):631-638. DOI 10.1071/AR07057; Kosová K., Vítámvás P., Urban M.O., Kholová J., Prášil I.T. Breeding for enhanced drought resistance in barley and wheat – drought-associated traits, genetic resources and their potential utilization in breeding programmes. Czech J. Gen. Pl. Breed. 2014;50(4):247-261. DOI 10.17221/118/2014-CJGPB; Kroupin P.Y., Kuznetsova V.M., Nikitina E.A., Martirosyan Y.T., Karlov G.I., Divashuk M.G. Development of new cytogenetic markers for Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C. Wang. Comp. Cytogenet. 2019;13(3):231-243. DOI 10.3897/CompCytogen.v13i3.36112; Kumar A., Choudhary A., Kaur H., Mehta S. A walk towards wild grasses to unlock the clandestine of gene pools for wheat improvement: a review. Plant Stress. 2022;3:100048. DOI 10.1016/j.stress.2021.100048; Kuzmanović L., Ruggeri R., Virili M.E., Rossini F., Ceoloni C. Effects of Thinopyrum ponticum chromosome segments transferred into durum wheat on yield components and related morpho-physiological traits in Mediterranean rain-fed conditions. Field Crops Res. 2016; 186:86-98. DOI 10.1016/j.fcr.2015.11.007; Kuzmanović L., Rossini F., Ruggeri R., Pagnotta M.A., Ceoloni C. Engineered durum wheat germplasm with multiple alien introgressions: agronomic and quality performance agronomy. Agronomy. 2020;10(4):486. DOI 10.3390/agronomy10040486; Lammer D., Cai X.W., Li H., Arterburn M., Chatelain J., Greco A., Lyon S., Gollnick M., Murrar T.D., Jones S.S. Utilization of Thynopyrum spp. in breeding winter wheat for disease resistance, stress tolerance, and perennial habit. In: Increasing Wheat Production in Central Asia through Science and International Cooperation. Proc. 1st Central Asian Wheat Conf. Almaty, Kazakhstan, 10–13 June, 2003. Almaty, 2005;147-151; Lang T., La S., Li B., Yu Z., Chen Q., Li J., Yang E., Li G., Yang Z. Precise identification of wheat-Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome. 2018;61(3):177-185. DOI 10.1139/gen-2017-0229; Leonova I.N. Influence of alien genetic material on the manifestation of agronomically important traits of common wheat (T. aestivum L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):321-328. DOI 10.18699/VJ18.367 (in Russian); Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics. 2009;36(9):557-565. DOI 10.1016/S1673-8527(08)60147-2; Li H., Boshoff W.H.P., Pretorius Z.A., Zheng Q., Li B., Li Z. Establishment of wheat-Thinopyrum ponticum translocation lines with resistance to Puccinia graminis f. sp. tritici Ug99. J. Genet. Genom. 2019;46(8):405-407. DOI 10.1016/j.jgg.2019.07.005; Li M.Z., Wang Y.Z., Liu X.J., Li X.F., Wang H.G., Bao Y.G. Molecular cytogenetic identification of a novel wheat–Th. ponticum 1Js (1B) substitution line resistant to powdery mildew and leaf rust. Front. Plant Sci. 2021;12:727734. DOI 10.3389/fpls.2021.727734; Li M.Z., Yuan Y.Y., Ni F., Li X.F., Wang H.G., Bao Y.G. Characterization of two wheat-Thinopyrum ponticum introgression lines with pyramiding resistance to powdery mildew. Front. Plant Sci. 2022; 13:943669. DOI 10.3389/fpls.2022.943669; Li W., Zhang Q., Wang S., Langham M.A., Singh D., Bowden R.L., Xu S.S. Development and characterization of wheat–sea wheatgrass (Thinopyrum junceiforme) amphiploids for biotic stress resistance and abiotic stress tolerance. Theor. Appl. Gen. 2019;132(1):163-175. DOI 10.1007/s00122-018-3205-4; Li X., Jiang X., Chen X., Song J., Ren C., Xiao Y., Gao X., Ru Z. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance. PLoS One. 2017;12(9):e0184462. DOI 10.1371/journal.pone.0184462; Li Z.S., Li B., Tong Y.P. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J. Genet. Genomics. 2008;35(8):451-456. DOI 10.1016/S1673-8527; (08)60062-4 Liu J., Chang Z., Zhang X., Yang Z., Li X., Jia J., Zhan H., Guo H., Wang J. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor. Appl. Genet. 2013;126(1):265-274. DOI 10.1007/s00122-012-1979-3; Liu L.Q., Luo Q.L., Li H.W., Li B., Li Z.S., Zheng Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor. Appl. Genet. 2018;131(11):2359-2370. DOI 10.1007/s00122-018-3158-7; Liu W., Jin Y., Rouse M., Friebe B., Gill B., Pumphrey M.O. Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor. Appl. Genet. 2011a;122(8):1537-1545. DOI 10.1007/s00122-011-1553-4; Liu W., Rouse M., Friebe B., Jin Y., Gill B., Pumphrey M.O. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 2011b;19(5):669-682. DOI 10.1007/s10577-011-9226-3; Liu W., Danilova T.V., Rouse M.N., Bowden R.L., Friebe B., Gill B.S., Pumphrey M.O. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor. Appl. Genet. 2013;126(5):1167-1177. DOI 10.1007/s00122-013-2044-6; Liu X., Ao K., Yao J., Zhang Y., Li X. Engineering plant disease resistance against biotrophic pathogens. Curr. Opin. Plant Biol. 2021;60: 101987. DOI 10.1016/j.pbi.2020.101987; Luo P., Hu X., Chang Z., Zhang M., Zhang H., Ren Z. A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Phytoprotection. 2009a;90(2): 57-63. DOI 10.7202/044023ar; Luo P.G., Luo H.Y., Chang Z.J., Zhang H.Y., Zhang M., Ren Z.L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 2009b;118(6):1059-1064. DOI 10.1007/s00122-009-0962-0; Ma F.F., Xu Y.F., Ma Z.Q., Li L.H., An D.G. Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol. Breed. 2018;38:91. DOI 10.1007/s11032-018-0837-7158; Martynov S.P., Dobrotvorskaya T.V., Krupnov V.A. Genealogical analysis of the use of two wheatgrass (Agropyron) species in common wheat (Triticum aestivum L.) breeding for disease resistance. Russ. J. Genet. 2016;52(2):154-163. DOI 10.1134/S1022795416020071; McDonald B.A., Stukenbrock E.H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016; 371(1709):20160026. DOI 10.1098/rstb.2016.0026; McIntosh R.A., Wellings C.R., Park R.F. (Eds.) Wheat Rusts. An Atlas of Resistance Genes. Springer Dordrecht, 1995. DOI 10.1071/9780643101463; McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of gene symbols for wheat: 2018 Supplement. Ann. Wheat Newslett. 2018;64:73-93; Melotto M., Zhang L., Oblessuc P.R., He S.Y. Stomatal defense a decade later. Plant Physiol. 2017;174(2):561-571. DOI 10.1104/pp.16.01853; Meshkova L.V., Rosseeva L.P., Korenyuk E.A., Belan I.A. Dynamics of distribution of the wheat leaf rust pathotypes virulent to the cultivars with Lr9 gene in Omsk region. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2012;46(6):397-400 (in Russian); Mo Q., Wang C.Y., Chen C.H., Wang Y.J., Zhang H., Liu X.L., Ji W.Q. Molecular cytogenetic identification of a wheat Thinopyrum ponticum substitution line with stripe rust resistance. Cereal Res. Com-mun. 2017;45(4):564-573. DOI 10.1556/0806.45.2017.037; Niks R.E. How specific is non-hypersensitive host and nonhost resistance of barley to rust and mildew fungi? J. Integr. Agric. 2014; 13(2):244-254. DOI 10.1016/S2095-3119(13)60648-6; Niu Z., Klindworth D.L., Yu G., Friessen T.L., Chao S., Jin Y., Cai X., Ohm J.-B., Rasmussen J.B., Xu S.S. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor. Appl. Genet. 2014;127(4):969-980. DOI 10.1007/s00122-014-2272-4; O’Driscoll A., Kildea S., Doohan F., Spink J., Mullins E. The wheat–Septoria conflict: a new front opening up? Trends Plant Sci. 2014; 19(9):602-610. DOI 10.1016/j.tplants.2014.04.011; Ohm H.W., Anderson J.M., Sharma H.C., Ayala L., Thompson N., Uphaus J.J. Registration of yellow dwarf viruses resistant wheat germplasm line P961341. Crop Sci. 2005;45(2):805-806. DOI 10.2135/cropsci2005.0805; Oliver R.E., Xu S.S., Stack R.W., Friesen T.L., Jin Y., Cai X. Molecular cytogenetic characterization of four partial wheat–Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. Theor. Appl. Genet. 2006;112(8):1473-1479. DOI 10.1007/s00122-006-0250-1; Park R.F., Bariana H.S., Wellings C.R., Wallwork H. Detection and occurrence of a new pathotype of Puccinia triticina with virulence for Lr24 in Australia. Aust. J. Agric. Res. 2002;53(9):1069-1076. DOI 10.1071/AR02018; Pathotype Tracker – Where is Ug99? 2023. Available at: https://rusttracker.cimmyt.org/?page_id=22; Patpour M., Hovmøller M.S., Rodriguez-Algaba J., Randazzo B., Villegas D., Shamanin V.P., Berlin A., Flath K., Czembor P., Hanzalova A., Sliková S., Skolotneva E.S., Jin Y., Szabo L., Meyer K.J.G., Valade R., Thach T., Hansen J.G., Justesen A.F. Wheat stem rust back in Europe: diversity, prevalence and impact on host resistance. Front. Plant Sci. 2022;13:882440. DOI 10.3389/fpls.2022.882440; Peng Y., Wersch R., Zhang Y. Convergent and divergent signaling in pamp-triggered immunity and effector-triggered immunity. Mol. Plant Microbe Interact. 2018;31(4):403-409. DOI 10.1094/MPMI-06-17-0145-CR; Peto F.H. Hybridization of Triticum and Agropyron. II. Cytology of the male parents and F1 generation. Can. J. Res. 1936;14(5):203-214. DOI 10.1139/cjr36c-017; Phuke R.M., He X., Juliana P., Bishnoi S.K., Singh G.P., Kabir M.R., Roy K.K., Joshi A.K., Singh R.P., Singh P.K. Association mapping of seedling resistance to tan spot (Pyrenophora tritici¬repentis Race 1) in CIMMYT and South Asian wheat germplasm. Front. Plant Sci. 2020;11:1309. DOI 10.3389/fpls.2020.01309; Plotnikova L.Ya. Influence of the surface features and physiological reactions of non-host species on the development of cellular structures of rust fungi. Tsitologiya = Cytology. 2008;50(5):439-446 (in Russian); Plotnikova L.Ya. The involvement of reactive oxygen species in defense of wheat lines with the genes introgressed from Agropyron species contributing the resistance against brown rust. Russ. J. Plant Physiol. 2009;56(2):181-189. DOI 10.1134/S102144370902006X; Plotnikova L.Ya., Aidosova A.T., Rispekova A.N., Myasnikov A.Yu. Introgressive lines of common wheat with genes of wheat grass Agropyron elongatum resistant to leaf diseases in the South West Siberia. Vestnik OmGAU = OmskSAU Bull. 2014;4(16):3-7 (in Russian); Plotnikova L.Ya., Meshkova L.V., Gultyaeva E.I., Mitrofanova O.P., Lapochkina I.F. A tendency towards leaf rust resistance decrease in common wheat introgression lines with genetic material from Aegilops speltoides Tausch. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(5):560-567. DOI 10.18699/VJ18.395 (in Russian); Plotnikova L.Ya., Sagendykova A.T., Ignatyeva E.Y. Defence of bread wheat with the tall wheatgrass genes while accelerating the physiological specialization of the causative agent of stem rust. Vestnik OmGAU = OmskSAU Bull. 2021;4:35-44. DOI 10.48136/2222-0364_2021_4_35 (in Russian); Plotnikova L.Ya., Pozherukova V., Knaub V., Kashuba Y. What was the reason for the durable effect of Sr31 against wheat stem rust? Agriculture. 2022;12(12):2116. DOI 10.3390/agriculture12122116; Plotnikova L.Ya., Knaub V., Pozherukova V. Nonhost resistance of Thinopyrum ponticum to Puccinia graminis f. sp. tritici and the effects of the Sr24, Sr25, and Sr26 genes introgressed to wheat. Int. J. Plant Biol. 2023a;14(2):435-457. DOI 10.3390/ijpb14020034; Plotnikova L.Ya., Sagendykova A., Pozherukova V. The use of genetic material of tall wheatgrass to protect common wheat from Septoria blotch in Western Siberia. Agriculture. 2023b;13(1):203. DOI 10.3390/agriculture13010203; Plotnikova L.Ya., Sagendykova A.T., Kuzmina S.P. Drought resistance of introgressive spring common wheat lines with genetic material of tall wheatgrass. Proceedings on Applied Botany, Genetics and Breeding. 2023c;184(2):38-50. DOI 10.30901/2227-8834-2023-2-38-50; Pototskaya I.V., Shamanin V.P., Aydarov A.N., Morgounov A.I. The use of wheatgrass (Thinopyrum intermedium) in breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(5):413-421. DOI 10.18699/VJGB-22-51 (in Russian); Pugliese J.Y., Culman S.W., Sprunger C.D. Harvesting forage of the perennial grain crop Kernza (Thinopyrum intermedium) increases root biomass and soil nitrogen cycling. Plant Soil. 2019;437(2):241-254. DOI 10.1007/s11104-019-03974-6; Qi Z.J., Du P., Qian B.L., Zhuang L., Chen H., Chen T., Shen J., Guo J., Feng Y., Pei Z. Characterization of a wheat–Thinopyrum bessarabicum (T2JS-2BS·2BL) translocation line. Theor. Appl. Genet. 2010; 121(3):589-597. DOI 10.1007/s00122-010-1332-7; Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Yu., Stasyuk A.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat T.M.L., Syukov V.V., Karlov G.I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of gene conferring resistance to fungal diseases. Euphytica. 2015;204:91-101. DOI 10.1007/s10681-014-1344-5; Savari S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3(3):430-439. DOI 10.1038/s41559-018-0793-y; Sears E.R. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Broohaven Sympos. Biol. 1956;9:1-21; Sears E.R. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 1976;10:31-51. DOI 10.1146/annurev.ge.10.120176.000335; Sears E.R. Analysis of wheat-Agropyron recombinant chromosomes. In: Proceedings of the 8th Eucarpia Congress, Madrid, Spain, 23– 25 May 1977. 1978;63-72; Sepsi A., Molnar I., Szalay D., Molnar-Lang M. Characterization of a leaf rust resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor. Appl. Genet. 2008;116(6):825-834. DOI 10.1007/s00122-008-0716-4; Shamanin V.P., Salina E., Wanyera R., Zelenskiy Y., Olivera P., Morgunov A. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica. 2016;212:287-296. DOI 10.1007/s10681-016-1769-0; Shi Q., Guo X., Su H., Zhang Y., Hu Z., Zhang J., Han F. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. Plant J. 2023;113(3):536-545. DOI 10.1111/tpj.16066; Sibikeev S.N., Markelova T.S., Baukenova E.A., Druzhin A.E. Likely threat of the spread of race Ug99 of Puccinia graminis f. sp. tritici on wheat in Southeastern Russia. Russ. Agric. Sci. 2016; 42(2):145-148. DOI 10.3103/S1068367416020154; Sibikeev S.N., Badaeva E.D., Gultyaeva E.I., Druzhin A.E., Shishkina A.A., Dragovich A.Y., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ. J. Genet. 2017;53(3):314-324. DOI 10.1134/S1022795417030115; Sibikeev S.N., Baranova O.A., Druzhin A.E. A prebreeding study of introgression spring bread wheat lines carrying combinations of stem rust resistance genes, Sr22+Sr25 and Sr35+Sr25. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(7):713-722. DOI 10.18699/VJ21.081; Singh D. Development and Characterization of Wheat-Thinopyrum Junceiforme chromosome addition lines. Thesis. South Dakota State Univ., 2019 https://openprairie.sdstate.edu/etd/3368; Singh R.P., Hodson D.P., Jin Y., Ldaaguh E.S., Ayliffe M.A., Bhavani S., Rouse M.N., Pretorius Z.A., Szabo L.J., Huerta-Espino J., Basnet B.R., Lan C., Hovmøller M.S. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology. 2015;105(7):872-884. DOI 10.1094/PHYTO-01-15-0030-FI; Singh R.P., Singh P.K., Rutkoski J., Hodson D.P., He X., Jørgensen L.N., Hovmøller M.S., Huerta-Espino J. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 2016;54:303-322. DOI 10.1146/annurev-phyto-080615-095835; Skolotneva E.S., Kelbin V.N., Morgunov A.I., Boiko N.I., Shamanin V.P., Salina E.A. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Biol. Bull. Rev. 2023;13(1): S114-S122. DOI 10.1134/S2079086423070125; Smith D.C. Intergeneric hybridization of Triticum and other grasses, principally Agropyron. J. Hered. 1943;34(7):219-224. DOI 10.1093/oxfordjournals.jhered.a105291; Smith E.L., Schlehuber A.M., Young H.C., Edwards L.H. Registration of Agent wheat. (Reg. No. 471). Crop Sci. 1968;8(4):511-512. DOI 10.2135/cropsci1968.0011183X000800040039x; Sun S.C. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron. Sin. 1981;7(1): 51-58; Tadesse Y., Chala A., Kassa B. Yield loss due to Septoria tritici blotch (Septoria tritici) of bread wheat (Triticum aestivum L.) in the central highlands of Ethiopia. J. Biol. Agric. Healthc. 2020;10(10):1-7. DOI 10.7176/JBAH/10-10-01; Toropova E.Yu., Kazakova O.A., Piskarev V.V. Septoria blotch epidemic process on spring wheat varieties. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020; 24(2):139-148. DOI 10.18699/VJ20.609; Tsitsin N.V. Problems of distant hybridization. In: Problems of Distant Hybridization. Moscow: Kolos Publ., 1979;5-20 (in Russian); Tsvelev N.N. Grasses of the Soviet Union (Russian translations series, 8). Abingdon, UK: Routledge, 1984 Upelniek V.P., Belov V.I., Ivanova L.P., Dolgova S.P., Demidov A.S. Heritage of academician N.V. Tsitsin: state-of-the-art and potential of the collection of intermediate wheat × couch grass hybrids. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(3):667-674 (in Russian); Wang H.W., Sun S.L., Ge W.Y., Zhao L.F., Hou B.Q., Wang K., Lyu Z.F., Chen L.Y., Xu S.S., Guo J., … Li A.F., Xu S.S., Bai G.H., Nevo E., Gao C.X., Ohm H., Kong L.R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science. 2020;368(6493):eaba5435. DOI 10.1126/science.aba5435; Wang L., Shi Q., Su H., Wang Y., Sha L., Fan X., Kang H., Zhang H., Zhou Y. St2-80: a new FISH marker for St genome and genome analysis in Triticeae. Genome. 2017;60(7):553-563. DOI 10.1139/gen-2016-0228; Wang R.R.-C. Agropyron and Psathyrostachys. In: Kole C. (Ed.) Wild Crop Relatives: Genomic and Breeding Resources. Berlin, Heidelberg: Springer, 2011;77-108. DOI 10.1007/978-3-642-14228-4_2; Wang S., Wang C., Feng X., Zhao J., Deng P., Wang Y., Zhang H., Liu X., Li T., Chen C., Wang B., Ji W. Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat-Thinopyrum intermedium and wheat-Thinopyrum ponticum substitution lines. BMC Plant Biol. 2022; 22(1):111. DOI 10.1186/s12870-022-03496-x; Wang Y.Z., Cao Q., Zhang J.J., Wang S.W., Chen C.H., Wang C.Y., Zhang H., Wang Y., Ji W. Cytogenetic analysis and molecular marker development for a new wheat–Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Front. Plant Sci. 2020;11:1282. DOI 10.3389/fpls.2020.01282; Wells D.G., Kota R.S., Sandhu H.S., Gardner W.A.S., Finney K.F. Registration of one disomic substitution line and five translocation lines of winter wheat germ plasm resistant to wheat streak mosaic virus. Crop Sci. 1982;22(6):1277-1278. DOI 10.2135/cropsci1982.0011183X002200060083x; Wu X., Zang C., Zhang Y., Xu Y., Wang S., Li T., Gao L. Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China. J. Integr. Agric. 2023;22(6):1740-1749. DOI 10.1016/j.jia.2022.08.125; Wulff B.B.H., Moscou M.J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci. 2014;5: 692. DOI 10.3389/fpls.2014.00692; Xu S., Jiang B., Han H., Ji X., Zhang J., Zhou S., Yang X., Li X., Li L., Liu W. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in a wheat background. J. Integr Agr. 2023; 22(1):52-62. DOI 10.1016/j.jia.2022.08.094; Xu X., Yuan D., Li D., Gao Y., Wang Z., Liu Y., Wang S., Xuan Y., Zhao H., Li T., Wu Y. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers. PeerJ. 2018;6: e4882. DOI 10.7717/peerj.4882; Yang G., Boshoff W., Li H., Pretorius Z., Luo Q., Li B., Li Z., Zheng Q. Chromosomal composition analysis and molecular marker development for the novel Ug99‐resistant wheat–Thinopyrum ponticum translocation line WTT34. Theor. Appl. Genet. 2021;134(5):1587-1599. DOI 10.1007/s00122‐021‐03796‐0; Yang G., Deng P., Ji W., Fu S., Li H., Li B., Li Z., Zheng Q. Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. Front. Plant Sci. 2023;14: 1131205. DOI 10.3389/fpls.2023.1131205; Yang Z., Mu Y., Wang Y., He F., Shi L., Fang Z., Zhang J., Zhang Q., Geng G., Zhang S. Characterization of a novel TtLEA2 gene from Tritipyrum and its transformation in wheat to enhance salt tolerance. Front. Plant Sci. 2022;13:830848. DOI 10.3389/fpls.2022.830848; Yin X., Shang X., Pang B., Song J., Cao S., Li J., Zhang X. Molecular mapping of two novel stripe rust resistant genes YrTp1 and YrTp2 in A-3 derived from Triticum aestivum × Thinopyrum ponticum. Agric. Sci. China. 2006;5(7):483-490. DOI 10.1016/S1671-2927(06)60081-3; Zeng W., He S.Y. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol. 2010;153(3):1188-1198. DOI 10.1104/pp.110.157016; Zhan H.X., Li G.R., Zhang X.J., Li X., Guo H.J., Gong W.P., Jia J., Qiao L., Ren Y., Yang Z., Chang Z. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PloS One. 2014;9:e113455. DOI 10.1371/journal.pone.0113455; Zhan H., Zhang X., Li G., Pan Z., Hu J., Li X., Qiao L., Jia J., Guo H., Chang Z., Yang Z. Molecular characterization of a new wheat–Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int. J. Mol. Sci. 2015;16(1):2162-2173. DOI 10.3390/ijms16012162; Zhan J., McDonald B.A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 2013;51:131-153. DOI 10.1146/annurev-phyto-082712-102302; Zhang J., Hewitt T.C., Boshoff W.H.P., Dundas I., Upadhyaya N., Li J., Patpour M., Chandramohan S., Pretorius Z.A., Hovmøller M., Schnippenkoetter W., Park R.F., Mago R., Periyannan S., Bhatt D., Hoxha S., Chakraborty S., Luo M., Dodds P., Steuernagel B., Wulff B.B.H., Ayliffe M., McIntosh R.A., Zhang P., Lagudah E.S. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat. Commun. 2021;12:3378. DOI 10.1038/s41467-021-23738-0; Zhang R.Q., Xiong C.X., Mu H.Q., Yao R.N., Meng X.R., Kong L.N., Xing L., Wu J., Feng Y., Cao A. Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J. 2020;9(4):882-888. DOI 10.1016/j.cj.2020.09.012; Zhang W., Lukaszewski A.J., Kolmer J., Soria M.A., Goyal S., Dubcovsky J. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor. Appl. Genet. 2005;111(3):573-582. DOI 10.1007/s00122-005-2048-y; Zhang X., Dong Y., Wang R.R.C. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome. 1996;39(6):1062-1071. DOI 10.1139/g96-133; Zhang X., Shen X., Hao Y., Cai J., Ohm H.W., Kong L. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor. Appl. Genet. 2011;122(2):263-270. DOI 10.1007/s00122-010-1441-3; Zhang Z., Song L., Han H., Zhou S., Zhang J., Yang X., Li X., Liu W., Li L. Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int. J. Mol. Sci. 2017;18(11):2403. DOI 10.3390/ijms18112403; Zheng Q., Klindworth D.L., Friesen T.L., Liu A., Li Z., Zhong S., Jin Y., Xu S.S. Characterization of Thinopyrum species for wheat stem rust resistance and ploidy level. Crop Sci. 2014а;54(6):2663-2672. DOI 10.2135/CROPSCI2014.02.0093; Zheng Q., Lv Z., Niu Z., Li B., Li H., Xu S.S., Han F., Li Z. Molecular cytogenetic characterization and stem rust resistance of five wheat–Thinopyrum ponticum partial amphiploids. J. Genet. Genomics. 2014b;41(11):591-599. DOI 10.1016/j.jgg.2014.06.003; Zheng X., Tang C., Han R., Zhao J., Qiao L., Zhang S., Qiao L., Ge C., Zheng J., Liu C. Identification, characterization, and evaluation of novel stripe rust resistant wheat–Thinopyrum intermedium chromosome translocation lines. Plant Dis. Publ. 2020;104(3):875-881. DOI 10.1094/PDIS-01-19-0001-RE; Zhu Z., Hao Y., Mergoum M., Bai G., Humphreys G., Cloutier S., Xia X., He Z. Breeding wheat for resistance to Fusarium head blight in the global north: China, USA, and Canada. Crop J. 2019;7(6): 730-738. DOI 10.1016/j.cj.2019.06.003; https://vavilov.elpub.ru/jour/article/view/4235
-
20Academic Journal
المؤلفون: A. A. Starshinova, E. N. Belyaeva, I. V. Kudryavtsev, A. A. Rubinstein, L. P. Churilov, H. Ling, M. Zhuang, D. A. Kudlay, А. А. Старшинова, Е. Н. Беляева, И. В. Кудрявцев, А. А. Рубинштейн, Л. П. Чурилов, Х. Линг, М. Чжуан, Д. А. Кудлай
المساهمون: The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of a scientific project under agreement No. 075-15-2024-631., Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках научного проекта по соглашению № 075-15-2024-631.
المصدر: Translational Medicine; Том 11, № 5 (2024); 398-406 ; Трансляционная медицина; Том 11, № 5 (2024); 398-406 ; 2410-5155 ; 2311-4495
مصطلحات موضوعية: эффективность лечения, drug-resistant tuberculosis, efficacy of treatment, MDR, tuberculosis, XDR, лекарственно-устойчивый туберкулез, МЛУ (множественная лекарственная устойчивость), туберкулез, ШЛУ (широкая лекарственная устойчивость)
وصف الملف: application/pdf
Relation: https://transmed.almazovcentre.ru/jour/article/view/992/587; WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-susceptible tuberculosis treatment. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.; Mitnick C, Khan U, Guglielmetti L, et al. SP01 Innovation to guide practice in MDR/RR-TB treatment: efficacy and safety results of the end TB trial. Presented at: Union World Conference on Lung Health. 2023 November 15. https://theunion.floq.live/event/worldconf2023/symposia?objectClass=timeslot&objectId=64ef5819e-0400915b209e22f&type=detail.; Global tuberculosis report 2023. Geneva: World Health Organization; 2023. Licence: CC BY-NC- SA 3.0 IGO, ISBN 978-92-4-008385-1.; Старшинова А.А., Вишневский Б.И., Гращенков А.С. и др. Принципы дифференциальной диагностики туберкулеза органов дыхания и других заболеваний легких: Учебное пособие. Красноярск: изд. АС-КИТ, 2024. 148 с.; Sabin S, Herbig A, Vågene ÅJ, et al. A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex. Genome Biol. 2020; 21, 201. DOI:10.1186/s13059-020-02112-1.; Masson M, Bereczki Z, Molnár E, et al. 7000 yearold tuberculosis cases from Hungary — Osteological and Biomolecular Evidence, Tuberculosis. 2015; 1:S13–7. DOI:10.1016/j.tube.2015.02.007.; Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium nto an Emended Genus Mycobacterium and Four Novel Genera. Front. Microbiol. 2018; 13: 9:67. DOI:10.3389/fmicb.2018.00067.; Wanger A, Chavez V, Huang RSP, et al. Mycobacterium tuberculosis complex comprises M. tuberculosis, M. bovis, M. bovis BCG, Mycobacterium africanum, among others. Microbiology and Molecular Diagnosis in Pathology. 2017; 75–117. DOI:10.1016/B978-0-12-805351-5.00006-5.; Damene H, Tahir D, Diels M, et al. Broad diversity of Mycobacterium tuberculosis complex strains isolated from humans and cattle in Northern Algeria suggests a zoonotic transmission cycle. PLoS Negl Trop Dis. 2020; 30:14:11: e0008894. DOI:10.1371/journal.pntd.0008894.; Godreuil S, Torrea G, Terru D, et al. First Molecular Epidemiology Study of Mycobacterium tuberculosis in Burkina Faso. J Clin Microbiol. 2007; 45:3: 921–927. DOI:10.1128/JCM.01918-06.; Mokrousov I, Chernyaeva E, Vyazovaya A, et al. Rapid Assay for Detection of the Epidemiologically Important Central Asian/Russian Strain of the Mycobacterium tuberculosis Beijing Genotype. J Clin Microbiol. 2018; 56:2: e01551–17. DOI:10.1128/JCM.01551-17.; Vyazovaya A, Gerasimova A, Mudarisova R, et al. Genetic Diversity and Primary Drug Resistance of Mycobacterium tuberculosis Beijing Genotype Strains in North-western Russia. Microorganisms. 2023; 11:2: 255. DOI:10.3390/microorganisms11020255.; Krajewski WW, Jones TA, Mowbray SL. Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights. PNAS, 2005; 102:30: 10499–10504. DOI:10.1073/pnas.0502248102.; Массино С.В. Основные этапы развития борьбы с туберкулезом в СССР. Руководство по туберкулезу / Под ред. А. И. Лапиной, С. В. Массино. М.: Медгиз. 1962; 4: 9–24.; Старшинова А.А., Павлова М.В., Яблонский П.К. и др. Эволюция фтизиатрии — это поиск новых методов и препаратов, эффективных при лечении туберкулеза. Практическая медицина. 2014; 7:83: 127–132.; Tuberculosis in the Russian Federation 2011 Analytical Review of Statistical Indicators Used in the Russian Federation and in the World. 2015; Moscow. 280 p.; Borisov SE, Filippov AV, Ivanova DA, et al. Efficacy and safety of chemotherapy regimens with bedaquiline in patients with respiratory tuberculosis: immediate and final results. Tuberculosis and Lung Diseases. 2019;97(5):28–42. (In Russ.) DOI:10.21292/2075-1230-2019-97-5-28-40.; WHO consolidated guidelines on tuberculosis: Module 3: diagnosis – rapid diagnostics for tuberculosis detection [Internet] 732. https://pubmed.ncbi.nlm.nih.gov/33999549/ (accessed on Aug 28, 2023); WHO. The Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance; WHO: Geneva, Switzerland, 2013; 57p.; Кудлай Д.А. Разработка и внедрение в клиническую практику нового фармакологического вещества из класса диарилхинолинов. Экспериментальная и клиническая фармакология. 2021; 84: 41–47. DOI:10.30906/0869-2092-2021-84-3-41-47.; WHO consolidated guidelines on tuberculosis. Module 5: management of tuberculosis in children and adolescents. Geneva: World Health Organization; 2022.; Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: A multicentre study. Eur. Respir. J. 2017; 49:5: 1700387. DOI:10.1183/13993003.00387-2017.; Старшинова А.А., ДовгалюкИ.Ф., Осипов Н.Н. и др. Эффективность применения бедаквилина в Российской Федерации: метаанализ с использованием модели со случайными эффектами. Туберкулез и болезни легких. 2023; 101:3: 52–61. DOI:10.58838/2075-1230-2023-101-3-52-61.; Yablonsky PK, Starshinova AA, Nazarenko MM, et al. Efficiency of new chemotherapy regimens in patients with extensive drug resistance of the pathogen. Bull. Mod. Clin. Med. 2022; 15: 67–75. DOI:10.20969/VSKM.2022.15(2).; Ставицкая Н.В., Фелькер И.Г., Жукова Е.М. и др. Многофакторный анализ результатов применения бедаквилина в терапии МЛУ/ ШЛУ-туберкулеза легких. Туберкулез и болезни легких. 2020; 98:7: 56–62. DOI:10.21292/2075-1230-2020-98-7-56-62.; https://transmed.almazovcentre.ru/jour/article/view/992