يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Т. С. Люлька"', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 6 (2023); 85-93 ; Российский вестник перинатологии и педиатрии; Том 68, № 6 (2023); 85-93 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1910/1439; Palamar J.J., Su M.K., Hoffman R.S. Characteristics of novel psychoactive substance exposures reported to New York City Poison Center, 2011–2014. Am J Drug Alcohol Abuse 2016; 42(1): 39–47. DOI:10.3109/00952990.2015.1106551; Wood K.E. Exposure to bath salts and synthetic tetrahydrocannabinol from 2009 to 2012 in the United States. J Pediatr 2013; 163(1): 213–216. DOI:10.1016/j.jpeds.2012.12.056; Ebrahim S.H., Gfroerer J. Pregnancy-related substance use in the United States during 1996–1998. Obstet Gynecol 2003; 101(2): 374–379. DOI:10.1016/s0029–7844(02)02588–7; Greenfield S.F., Manwani S.G., Nargiso J.E. Epidemiology of substance use disorders in women. Obstet Gynecol Clin North Am 2003; 30(3): 413–446. DOI:10.1016/s0889–8545(03)00072-x; Chang J.C., Holland C.L., Tarr J.A., Rubio D., Rodriguez K.L., Kraemer K.L. et al. Perinatal Illicit Drug and Marijuana Use. Am J Health Promot 2017; 31(1): 35–42. DOI:10.4278/ajhp.141215-QUAL-625; Gómez-Ruiz L.M., Marchei E., Rotolo M.C., Brunetti P., Mannocchi G., Acosta-López A. et al. Prevalence of Licit and Illicit Drugs Use during Pregnancy in Mexican Women. Pharmaceuticals (Basel) 2022; 15(3): 382. DOI:10.3390/ph15030382; Gunn J.K., Rosales C.B., Center K.E., Nuñez A., Gibson S.J., Christ C., Ehiri J.E. Prenatal exposure to cannabis and maternal and child health outcomes: a systematic review and meta-analysis. BMJ Open. 2016; 6(4): e009986. DOI:10.1136/bmjopen-2015–009986; Marchand G., Masoud A.T., Govindan M., Ware K., King A., Ruther S. et al. Birth Outcomes of Neonates Exposed to Marijuana in Utero: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5(1): e2145653. DOI:10.1001/jamanetworkopen.2021.45653; Reece A.S., Hulse G.K. Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci Rep 2021; 11(1): 13892. DOI:10.1038/s41598–021–93411–5; Kalix P. A constituent of khat leaves with amphetamine-like releasing properties. Eur J Pharmacol 1980; 68(2): 213–215. DOI:10.1016/0014–2999(80)90326-x; Hadlock G.C., Webb K.M., McFadden L.M., Chu P.W., Ellis J.D., Allen S.C. et al. 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 2011; 339(2): 530–536. DOI:10.1124/jpet.111.184119; Pehek E.A., Schechter M.D., Yamamoto B.K. Effects of cathinone and amphetamine on the neurochemistry of dopamine in vivo. Neuropharmacology 1990; 29(12): 1171–1176. DOI:10.1016/0028–3908(90)90041-o; den Hollander B., Sundström M., Pelander A., Ojanperä I., Mervaala E., Korpi E.R., Kankuri E. Keto amphetamine toxicity-focus on the redox reactivity of the cathinone designer drug mephedrone. Toxicol Sci 2014; 141(1): 120–131. DOI:10.1093/toxsci/kfu108; López-Arnau R., Martínez-Clemente J., Rodrigo T., Pubill D., Camarasa J., Escubedo E. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicol Appl Pharmacol 2015; 286(1): 27–35. DOI:10.1016/j.taap.2015.03.015; Buzhdygan T.P., Rodrigues C.R., McGary H.M., Khan J.A., Andrews A.M., Rawls S.M., Ramirez S.H. The psychoactive drug of abuse mephedrone differentially disrupts blood-brain barrier properties. J Neuroinflammation 2021; 18(1): 63. DOI:10.1186/s12974–021–02116-z; Martínez-Clemente J., López-Arnau R., Abad S., Pubill D., Escubedo E., Camarasa J. Dose and time-dependent selective neurotoxicity induced by mephedrone in mice. PLoS One 2014; 9(6): e99002. DOI:10.1371/journal.pone.0099002; Tarkowski P., Jankowski K., Budzyńska B., Biała G., Boguszewska-Czubara A. Potential pro-oxidative effects of single dose of mephedrone in vital organs of mice. Pharmacol Rep 2018; 70(6): 1097–1104. DOI:10.1016/j.pharep.2018.05.010; Naseri G., Fazel A., Golalipour M.J., Haghir H., Sadeghian H., Mojarrad M. et al. Exposure to mephedrone during gestation increases the risk of stillbirth and induces hippocampal neurotoxicity in mice offspring. Neurotoxicol Teratol 2018; 67: 10–17. DOI:10.1016/j.ntt.2018.03.001; Adám A., Gerecsei L.I., Lepesi N., Csillag A. Apoptotic effects of the ‘designer drug’ methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain. Neurotoxicology 2014; 44: 231–236. DOI:10.1016/j.neuro.2014.07.004; Yang Z., Klionsky D.J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22(2): 124–131. DOI:10.1016/j.ceb.2009.11.014; Yang Z.J., Chee C.E., Huang S., Sinicrope F. Autophagy modulation for cancer therapy. Cancer Biol Ther 2011; 11(2): 169–176. DOI:10.4161/cbt.11.2.14663; Valente M.J., Amaral C., Correia-da-Silva G., Duarte J.A., Bastos M.L., Carvalho F. et al. Methylone and MDPV activate autophagy in human dopaminergic SH-SY5Y cells: a new insight into the context of β-keto amphetamines-related neurotoxicity. Arch Toxicol 2017; 91(11): 3663–3676. DOI:10.1007/s00204–017–1984-z; Matsunaga T., Morikawa Y., Kamata K., Shibata A., Miyazono H., Sasajima Y. et al. α-Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology 2017; 386: 93–102. DOI:10.1016/j.tox.2017.05.017; Siedlecka-Kroplewska K., Wrońska A., Stasiłojć G., Kmieć Z. The Designer Drug 3-Fluoromethcathinone Induces Oxidative Stress and Activates Autophagy in HT22 Neuronal Cells. Neurotox Res 2018; 34: 388–400. DOI:10.1007/S12640– 018–9898-Y; Angoa-Pérez M., Kane M.J., Francescutti D.M., Sykes K.E., Shah M.M., Mohammed A.M. et al. Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 2012; 120(6): 1097–1107. DOI:10.1111/j.1471–4159.2011.07632. x; Marusich J.A., Gay E.A., Stewart D.A., Blough B.E. Sex differences in inflammatory cytokine levels following synthetic cathinone self-administration in rats. Neurotoxicology 2022; 88: 65–78. DOI:10.1016/j.neuro.2021.11.002; Kim O.H., Jeon K.O., Jang E.Y. Alpha-pyrrolidinopentiothiophenone (α-PVT) activates the TLR-NF-κB-MAPK signaling pathway and proinflammatory cytokine production and induces behavioral sensitization in mice. Pharmacol Biochem Behav 2022; 221: 173484. DOI:10.1016/j.pbb.2022.173484; Pichini S., Rotolo M.C., García J., Girona N., Leal L., García-Algar O., Pacifici R. Neonatal withdrawal syndrome after chronic maternal consumption of 4-methylethcathinone. Forensic Sci Int 2014; 245: e33–е35. DOI:10.1016/j.forsciint.2014.10.027; Adamowicz P., Hydzik P. Fetal death associated with the use of 3,4-MDPHP and α-PHP. Clin Toxicol (Phila) 2019; 57(2): 112–116. DOI:10.1080/15563650.2018.1502443; Grapp M., Kaufmann C., Ebbecke M. Toxicological investigation of forensic cases related to the designer drug 3,4-methylenedioxypyrovalerone (MDPV): Detection, quantification and studies on human metabolism by GC-MS. Forensic Sci Int 2017; 273: 1–9. DOI:10.1016/j.forsciint.2017.01.021; https://www.ped-perinatology.ru/jour/article/view/1910

  2. 2
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Pediatric pharmacology; Том 20, № 6 (2023); 546–556 ; Педиатрическая фармакология; Том 20, № 6 (2023); 546–556 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2376/1546; Palamar JJ, Su MK, Hoffman RS. Characteristics of novel psychoactive substance exposures reported to New York City Poison Center, 2011–2014. Am J Drug Alcohol Abuse. 2016;42(1):39–47. doi: https://doi.org/10.3109/00952990.2015.1106551; Wood KE. Exposure to bath salts and synthetic tetrahydrocannabinol from 2009 to 2012 in the United States. J Pediatr. 2013;163(1):213–216. doi: https://doi.org/10.1016/j.jpeds.2012.12.056; Ebrahim SH, Gfroerer J. Pregnancy-related substance use in the United States during 1996-1998. Obstet Gynecol. 2003;101(2):374–379. doi: https://doi.org/10.1016/s0029-7844(02)02588-7; Greenfield SF, Manwani SG, Nargiso JE. Epidemiology of substance use disorders in women. Obstet Gynecol Clin North Am. 2003;30(3):413–446. doi: https://doi.org/10.1016/s0889-8545(03)00072-x; Chang JC, Holland CL, Tarr JA, et al. Perinatal Illicit Drug and Marijuana Use. Am J Health Promot. 2017;31(1):35–42. doi: https://doi.org/10.4278/ajhp.141215-QUAL-625; Gómez-Ruiz LM, Marchei E, Rotolo MC, et al. Prevalence of Licit and Illicit Drugs Use during Pregnancy in Mexican Women. Pharmaceuticals (Basel). 2022;15(3):382. doi: https://doi.org/10.3390/ph15030382; Gunn JK, Rosales CB, Center KE, et al. Prenatal exposure to cannabis and maternal and child health outcomes: a systematic review and meta-analysis. BMJ Open. 2016;6(4):e009986. doi: https://doi.org/10.1136/bmjopen-2015-009986; Marchand G, Masoud AT, Govindan M, et al. Birth Outcomes of Neonates Exposed to Marijuana in Utero: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(1):e2145653. doi: https://doi.org/10.1001/jamanetworkopen.2021.45653; Reece AS, Hulse GK. Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci Rep. 2021;11(1):13892. doi: https://doi.org/10.1038/s41598-021-93411-5; Kalix P. A constituent of khat leaves with amphetamine-like releasing properties. Eur J Pharmacol. 1980;68(2):213–215. doi: https://doi.org/10.1016/0014-2999(80)90326-x; den Hollander B, Sundström M, Pelander A, et al. Keto amphetamine toxicity-focus on the redox reactivity of the cathinone designer drug mephedrone. Toxicol Sci. 2014;141(1):120–131. doi: https://doi.org/10.1093/toxsci/kfu108; López-Arnau R, Martínez-Clemente J, Rodrigo T, et al. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicol Appl Pharmacol. 2015;286(1):27–35. doi: https://doi.org/10.1016/j.taap.2015.03.015; Buzhdygan TP, Rodrigues CR, McGary HM, et al. The psychoactive drug of abuse mephedrone differentially disrupts bloodbrain barrier properties. J Neuroinflammation. 2021;18(1):63. doi: https://doi.org/10.1186/s12974-021-02116-z; Martínez-Clemente J, López-Arnau R, Abad S, et al. Dose and time-dependent selective neurotoxicity induced by mephedrone in mice. PLoS One. 2014;9(6):e99002. doi: https://doi.org/10.1371/journal.pone.0099002; Tarkowski P, Jankowski K, Budzyńska B, et al. Potential prooxidative effects of single dose of mephedrone in vital organs of mice. Pharmacol Rep. 2018;70(6):1097–1104. doi: https://doi.org/10.1016/j.pharep.2018.05.010; Siedlecka-Kroplewska K, Szczerba A, Lipinska A, et al. 3-Fluoromethcathinone, a structural analog of mephedrone, inhibits growth and induces cell cycle arrest in HT22 mouse hippocampal cells. J Physiol Pharmacol. 2014;65(2):241–246; Naseri G, Fazel A, Golalipour MJ, et al. Exposure to mephedrone during gestation increases the risk of stillbirth and induces hippocampal neurotoxicity in mice offspring. Neurotoxicol Teratol. 2018;67:10–17. doi: https://doi.org/10.1016/j.ntt.2018.03.001; Adám A, Gerecsei LI, Lepesi N, Csillag A. Apoptotic effects of the ‘designer drug’ methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain. Neurotoxicology. 2014;44:231–236. doi: https://doi.org/10.1016/j.neuro.2014.07.004; Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–131. doi: https://doi.org/10.1016/j.ceb.2009.11.014; Yang ZJ, Chee CE, Huang S, Sinicrope F. Autophagy modulation for cancer therapy. Cancer Biol Ther. 2011;11(2):169–176. doi: https://doi.org/10.4161/cbt.11.2.14663; Valente MJ, Amaral C, Correia-da-Silva G, et al. Methylone and MDPV activate autophagy in human dopaminergic SH-SY5Y cells: a new insight into the context of β-keto amphetamines-related neurotoxicity. Arch Toxicol. 2017;91(11):3663–3676. doi: https://doi.org/10.1007/s00204-017-1984-z; Matsunaga T, Morikawa Y, Kamata K, et al. α-Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology. 2017;386:93–102. doi: https://doi.org/10.1016/j.tox.2017.05.017; Siedlecka-Kroplewska K, Wrońska A, Stasiłojć G, et al. The Designer Drug 3-Fluoromethcathinone Induces Oxidative Stress and Activates Autophagy in HT22 Neuronal Cells. Neurotox Res. 2018;34(3):388–400. doi: https://doi.org/10.1007/s12640-018-9898-y; Angoa-Pérez M, Kane MJ, Francescutti DM, et al. Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem. 2012;120(6):1097–1107. doi: https://doi.org/10.1111/j.1471-4159.2011.07632.x; Marusich JA, Gay EA, Stewart DA, Blough BE. Sex differences in inflammatory cytokine levels following synthetic cathinone self-administration in rats. Neurotoxicology. 2022;88:65–78. doi: https://doi.org/10.1016/j.neuro.2021.11.002; Kim OH, Jeon KO, Jang EY. Alpha-pyrrolidinopentiothiophenone (α-PVT) activates the TLR-NF-κB-MAPK signaling pathway and proinflammatory cytokine production and induces behavioral sensitization in mice. Pharmacol Biochem Behav. 2022;221:173484. doi: https://doi.org/10.1016/j.pbb.2022.173484; Pichini S, Rotolo MC, García J, et al. Neonatal withdrawal syndrome after chronic maternal consumption of 4-methylethcathinone. Forensic Sci Int. 2014;245:e33–e35. doi: https://doi.org/10.1016/j.forsciint.2014.10.027; Adamowicz P, Hydzik P. Fetal death associated with the use of 3,4-MDPHP and α-PHP. Clin Toxicol (Phila). 2019;57(2):112–116. doi: https://doi.org/10.1080/15563650.2018.1502443; Grapp M, Kaufmann C, Ebbecke M. Toxicological investigation of forensic cases related to the designer drug 3,4-methylenedioxypyrovalerone (MDPV): Detection, quantification and studies on human metabolism by GC-MS. Forensic Sci Int. 2017;273:1–9. doi: https://doi.org/10.1016/j.forsciint.2017.01.021; Adamowicz P, Gil D, Skulska A, Tokarczyk B. Analysis of MDPV in blood--determination and interpretation. J Anal Toxicol. 2013;37(5):308–312. doi: https://doi.org/10.1093/jat/bkt025; Kalapos MP. 3,4-methylene-dioxy-pyrovalerone (MDPV) epidemic? Orv Hetil. 2011;152(50):2010–2019. doi: https://doi.org/10.1556/OH.2011.29259; Strange LG, Kochelek K, Keasling R, et al. The pharmacokinetic profile of synthetic cathinones in a pregnancy model. Neurotoxicol Teratol. 2017;63:9–13. doi: https://doi.org/10.1016/j.ntt.2017.08.001; Stewart JL, Meeker JE. Fetal and infant deaths associated with maternal methamphetamine abuse. J Anal Toxicol. 1997;21(6):515–517. doi: https://doi.org/10.1093/jat/21.6.515; https://www.pedpharma.ru/jour/article/view/2376

  3. 3
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 20 (2023); 180-188 ; Медицинский Совет; № 20 (2023); 180-188 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7916/7015; Zhang HP, Sun YL, Wang YF, Yazici D, Azkur D, Ogulur I et al. Recent developments in the immunopathology of COVID-19. Allergy. 2023;78(2):369–388. https://doi.org/10.1111/all.15593.; Щербак СГ, Голота АС, Камилова ТА, Вологжанин ДА, Макаренко СВ. Неврологические проявления у пациентов с новой коронавирусной инфекцией COVID-19. Физическая и реабилитационная медицина, медицинская реабилитация. 2022;4(3):154–180. https://doi.org/10.36425/rehab109952.; Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS et al. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020;11:1648. https://doi.org/10.3389/fimmu.2020.01648.; Cornelius LP, Elango N, Jeyaram VK. Clinico-Etiological Factors, Neuroimaging Characteristics and Outcome in Pediatric Cerebral Venous Sinus Thrombosis. Ann Indian Acad Neurol. 2021;24(6):901–907. https://doi.org/10.4103/aian.AIAN_221_21.; Fraser R, Orta-Resendiz A, Dockrell D, Müller-Trutwin M, Mazein A. Severe COVID-19 versus multisystem inflammatory syndrome: comparing two critical outcomes of SARS-CoV-2 infection. Eur Respir Rev. 2023;32(167):220197. https://doi.org/10.1183/16000617.0197-2022.; Silvestri P, Clemente A, Spalice A, Febbo A, Matera L, Accardo F et al. Case Report: Cerebral Venous Sinus Thrombosis in a Young Child With SARS-CoV-2 Infection: The Italian Experience. Front Neurol. 2022;13:861345. https://doi.org/10.3389/fneur.2022.861345.; Ng JJ, Choong AMTL. Thromboembolic events in patients with SARS-CoV-2. J Vasc Surg. 2020;72(2):760–761. https://doi.org/10.1016/j.jvs.2020.04.488.; Rubio Atienza Y, Torrejón Rodríguez L, Marco Hernández A, Tomás Vila M. Venous sinus thrombosis in pediatrics. Case series of a tertiary hospital. Andes Pediatr. 2021;92(3):389–394. https://doi.org/10.32641/andespediatr.v92i3.3344.; Grigore I, Miron I, Gavrilovici C, Lupu VV, Antal DC, Schreiner TG et al. SARS-CoV-2 Possible Etiology of Cerebral Venous Thrombosis in a Teenager: Case Report and Review of Literature. Viruses. 2023;15(2):405. https://doi.org/10.3390/v15020405.; Zaffanello M, Piacentini G, Nosetti L, Ganzarolli S, Franchini M. Thrombotic risk in children with COVID-19 infection: A systematic review of the literature. Thromb Res. 2021;205:92–98. https://doi.org/10.1016/j.thromres.2021.07.011.; Мазанкова ЛН, Самитова ЭР, Османов ИМ, Афуков ИИ, Акимкин ВГ, Анцупова МА и др. COVID-19 и коморбидная патология у детей. Вопросы практической педиатрии. 2022;17(1):16–23. https://doi.org/10.20953/1817-7646-2022-1-16-23.; Cachón-Zagalaz J, Sánchez-Zafra M, Sanabrias-Moreno D, González-Valero G, Lara-Sánchez AJ, Zagalaz-Sánchez ML. Systematic Review of the Literature About the Effects of the COVID-19 Pandemic on the Lives of School Children. Front Psychol. 2020;11:569348. https://doi.org/10.3389/fpsyg.2020.569348.; Tu TM, Yi SJ, Koh JS, Saffari SE, Hoe RHM, Chen GJ et al. Incidence of Cerebral Venous Thrombosis Following SARS-CoV-2 Infection vs mRNA SARS-CoV-2 Vaccination in Singapore. JAMA Netw Open. 2022;5(3):e222940. https://doi.org/10.1001/jamanetworkopen.2022.2940.; Сафина ДР, Гисматуллина ЭИ, Есин РГ. Церебральные венозные тромбозы, ассоциированные с COVID-19. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(9):128–131. https://doi.org/10.17116/jnevro2022122091128.; Tisdale AK, Dinkin M, Chwalisz BK. Afferent and Efferent NeuroOphthalmic Complications of Coronavirus Disease 19. J Neuroophthalmol. 2021;41(2):154–165. https://doi.org/10.1097/WNO.0000000000001276.; Feizi M, Isen DR, Tavakoli M. Neuro-ophthalmic Manifestations of Coronavirus Disease 2019 and Its Vaccination: A Narrative Review. J Ophthalmic Vis Res. 2023;18(1):113–122. https://doi.org/10.18502/jovr.v18i1.12731.; Sen M, Honavar SG, Sharma N, Sachdev MS. COVID-19 and Eye: A Review of Ophthalmic Manifestations of COVID-19. Indian J Ophthalmol. 2021;69(3):488–509. https://doi.org/10.4103/ijo.IJO_297_21.; Kar YD, Özdemir ZC, Çarman KB, Yarar C, Tekin N, Bör Ö. Cerebral sinovenous thrombosis in children: clinical presentation, locations, and acquired and inherited prothrombotic risk factors. Turk J Pediatr. 2021;63(6):1028–1037. https://doi.org/10.24953/turkjped.2021.06.011.; Colmenero I, Santonja C, Alonso-Riaño M, Noguera-Morel L, Hernández- Martín A, Andina D et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br J Dermatol. 2020;183(4):729–737. https://doi.org/10.1111/bjd.19327.; Beslow LA, Linds AB, Fox CK, Kossorotoff M, Zuñiga Zambrano YC, Hernández-Chávez M et al. Pediatric Ischemic Stroke: An Infrequent Complication of SARS-CoV-2. Ann Neurol. 2021;89(4):657–665. https://doi.org/10.1002/ana.25991.; Демьяновская ЕГ, Крыжановский СМ, Васильев АС, Шмырев ВИ. Неврологические аспекты COVID-19. Тактика ведения пациентов неврологом с учетом эпидемиологической ситуации. Лечащий врач. 2021;(2):54–60. https://doi.org/10.26295/OS.2021.63.96.011.; Lang P, Eichholz T, Bakchoul T, Streiter M, Petrasch M, Bösmüller H et al. Defibrotide for the Treatment of Pediatric Inflammatory Multisystem Syndrome Temporally Associated With Severe Acute Respiratory Syndrome Coronavirus 2 Infection in 2 Pediatric Patients. J Pediatric Infect Dis Soc. 2020;9(5):622–625. https://doi.org/10.1093/jpids/piaa117.; Turbin RE, Wawrzusin PJ, Sakla NM, Traba CM, Wong KG, Mirani N et al. Orbital cellulitis, sinusitis and intracranial abnormalities in two adolescents with COVID-19. Orbit. 2020;39(4):305–310. https://doi.org/10.1080/01676830.2020.1768560.; Anvekar P, Lohana P, Kalaiger AM, Ali SR, Galinde RS. The Unfamiliar Case of COVID-19 Induced Cerebral Venous Sinus Thrombosis in a Pediatric Patient. Cureus. 2021;13(8):e17209. https://doi.org/10.7759/cureus.17209.; Гомелля МВ, Татаринова АВ, Крупская ТС, Рычкова ЛВ. Особенности нарушений системы гемостаза при COVID-19 у детей (обзор литературы). Acta Biomedica Scientifica. 2021;6(3):142–153. https://doi.org/10.29413/ABS.2021-6.3.15.; Фурсова ЛА, Костенич ЛИ. Церебральные инсульты при коронавирусной инфекции COVID-19. Медицинские новости. 2021;(9):47–53. Режим доступа: https://elibrary.ru/ilnyhl.; Whitworth H, Sartain SE, Kumar R, Armstrong K, Ballester L, Betensky M et al. Rate of thrombosis in children and adolescents hospitalized with COVID-19 or MIS-C. Blood. 2021;138(2):190–198. https://doi.org/10.1182/blood.2020010218.; Essajee F, Solomons R, Goussard P, Van Toorn R. Child with tuberculous meningitis and COVID-19 coinfection complicated by extensive cerebral sinus venous thrombosis. BMJ Case Rep. 2020;13(9):e238597. https://doi.org/10.1136/bcr-2020-238597.; Trapani S, Rubino C, Lasagni D, Pegoraro F, Resti M, Simonini G, Indolfi G. Thromboembolic complications in children with COVID-19 and MIS-C: A narrative review. Front Pediatr. 2022;10:944743. https://doi.org/10.3389/fped.2022.944743.; Nappi F, Avtaar Singh SS. Endothelial Dysfunction in SARS-CoV-2 Infection. Biomedicines. 2022;10(3):654. https://doi.org/10.3390/biomedicines10030654.; Higashikuni Y, Liu W, Obana T, Sata M. Pathogenic Basis of Thromboinflammation and Endothelial Injury in COVID-19: Current Findings and Therapeutic Implications. Int J Mol Sci. 2021;22(21):12081. https://doi.org/10.3390/ijms222112081.; Jha NK, Ojha S, Jha SK, Dureja H, Singh SK, Shukla SD et al. Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations. J Mol Neurosci. 2021;71(11):2192–2209. https://doi.org/10.1007/s12031-020-01767-6.; Sébire G, Tabarki B, Saunders DE, Leroy I, Liesner R, Saint-Martin C et al. Cerebral venous sinus thrombosis in children: risk factors, presentation, diagnosis and outcome. Brain. 2005;128(Pt 3):477–489. https://doi.org/10.1093/brain/awh412.; Siegler JE, Dasgupta S, Abdalkader M, Penckofer M, Yaghi S, Nguyen TN. Cerebrovascular Disease in COVID-19. Viruses. 2023;15(7):1598. https://doi.org/10.3390/v15071598.; Baldini T, Asioli GM, Romoli M, Carvalho Dias M, Schulte EC, Hauer L et al. Cerebral venous thrombosis and severe acute respiratory syndrome coronavirus-2 infection: A systematic review and meta-analysis. Eur J Neurol. 2021;28(10):3478–3490. https://doi.org/10.1111/ene.14727.; Ghatasheh G, Al Dhanhani H, Goyal A, Noureddin MB, Al Awaad D, Peerwani Z. COVID-19-Related Giant Coronary Aneurysms in an Infant with Multisystem Inflammatory Disorder in Children: The First Case Report from the United Arab Emirates and the Arab Region. Case Rep Infect Dis. 2021:8872412. https://doi.org/10.1155/2021/8872412.; Odièvre MH, de Marcellus C, Ducou Le Pointe H, Allali S, Romain AS, Youn J et al. Dramatic improvement after tocilizumab of severe COVID-19 in a child with sickle cell disease and acute chest syndrome. Am J Hematol. 2020;95(8):E192–E194. https://doi.org/10.1002/ajh.25855.; Dolhnikoff M, Ferreira Ferranti J, de Almeida Monteiro RA, Duarte-Neto AN, Soares Gomes-Gouvêa M, Viu Degaspare N et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020;4(10):790–794. https://doi.org/10.1016/S2352-4642(20)30257-1.; Minen F, Hands C, Mustafa MR, Pienaar A, Lillie J. Thrombophilia in Pediatric Patients with Multisystem Inflammatory Syndrome in Children Secondary to Coronavirus Disease 2019 Supported on Extracorporeal Membrane Oxygenation. ASAIO J. 2021;67(1):7–11. https://doi.org/10.1097/MAT.0000000000001270.; Kenchappa Y, Hegde S, Kumar P, Lalitha AV, Bukelo M. Caught Off Guard with COVID-19 Bowel Gangrene: A Case Report. Indian J Crit Care Med. 2020;24(12):1269–1271. https://doi.org/10.5005/jp-journals-10071-23681.; Hussain Z, Wangmo R, Gonbo S. Deep Vein Thrombosis After Trivial Blunt Trauma at High Altitude in a SARS-CoV-2 Positive Child: Complication of the Hypercoagulable State. Indian Pediatr. 2020;57(12):1182–1183. https://doi.org/10.1007/s13312-020-2077-2.; Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020;383(4):334–346. https://doi.org/10.1056/NEJMoa2021680.; Karimi M, Bozorgi H, Zarei T, Bordbar M, Amanati A, Safaei A, De Sanctis V. Antithrombotic prophylaxis in children and adolescents, patients with SARS-CoV-2 (COVID-19) infection: A practical guidance for clinicians. Acta Biomed. 2020;91(4):e2020170. https://doi.org/10.23750/abm.v91i4.10720.; Goldenberg NA, Sochet A, Albisetti M, Biss T, Bonduel M, Jaffray J et al. Consensus-based clinical recommendations and research priorities for anticoagulant thromboprophylaxis in children hospitalized for COVID-19-related illness. J Thromb Haemost. 2020;18(11):3099–3105. https://doi.org/10.1111/jth.15073.; Iturbe Hernández T, de Miguel Olmeda R, Cornudella Lacasa R, Gutiérrez Martín M. Reflexiones sobre la pauta con heparinas de bajo peso molecular más idónea para la profilaxis antitrombótica en artroplastia de cadera y rodilla. An Med Interna. 2001;18(1):45–46. Available at: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-71992001000100012.; Макацария АД, Слуханчук ЕВ, Бицадзе ВО, Хизроева ДХ, Третьякова МВ, Шкода АС и др. Тромботический шторм, нарушения гемостаза и тромбовоспаление в условиях COVID-19. Акушерство, гинекология и репродукция. 2021;15(5):499–514. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.247.; Ali RA, Gandhi AA, Meng H, Yalavarthi S, Vreede AP, Estes SK et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat Commun. 2019;10(1):1916. https://doi.org/10.1038/s41467-019-09801-x.; Liu X, Li Z, Liu S, Sun J, Chen Z, Jiang M et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm Sin B. 2020;10(7):1205–1215. https://doi.org/10.1016/j.apsb.2020.04.008.; DiNicolantonio JJ, Barroso-Aranda J. Harnessing adenosine A2A receptors as a strategy for suppressing the lung inflammation and thrombotic complications of COVID-19: Potential of pentoxifylline and dipyridamole. Med Hypotheses. 2020;143:110051. https://doi.org/10.1016/j.mehy.2020.110051.; Sochet AA, Morrison JM, Jaffray J, Godiwala N, Wilson HP, Thornburg CD et al. Enoxaparin Thromboprophylaxis in Children Hospitalized for COVID-19: A Phase 2 Trial. Pediatrics. 2022;150(1):e2022056726. https://doi.org/10.1542/peds.2022-056726.; Blazkova J, Skalicky P, Bradac O, Benes V Jr. Cerebral venous sinus thrombosis in infant with COVID-19. Acta Neurochir (Wien). 2022;164(3):853–858. https://doi.org/10.1007/s00701-022-05116-x.; https://www.med-sovet.pro/jour/article/view/7916

  4. 4
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2022); 251-255 ; Медицинский Совет; № 6 (2022); 251-255 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6837/6165; Мескина Е.Р., Хадисова М.К. Инвазивная стрептококковая группы А инфекция у детей: обзор литературы и клинический случай синдрома токсического шока и осложненной внебольничной пневмонии у ребенка с пороком развития легкого. Альманах клинической медицины. 2018;46(2): 171–183. https://doi.org/10.18786/2072-0505-2018-46-2-171-183.; Spaulding A.R., Salgado-Pabón W., Kohler P.L., Horswill A.R., Leung D.Y., Schlievert P.M. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26(3):422–447. https://doi.org/10.1128/CMR.00104-12.; Proft T., Fraser J.D. Streptococcal Superantigens: Biological properties and potential role in disease. In: Ferretti J.J., Stevens D.L., Fischetti V.A. (eds.). Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center. 2016. Available at: https://pubmed.ncbi.nlm.nih.gov/26866236.; Stevens D.L., Bryant A.E. Severe Group A Streptococcal Infections. In: Ferretti J.J., Stevens D.L., Fischetti V.A. (eds.). Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center. 2016. Available at: https://pubmed.ncbi.nlm.nih.gov/26866227.; Краснова Е.И. Стрептококковая инфекция. Клинико-диагностические и лечебно-профилактические аспекты. Новосибирск: Сибмедиздат НГМУ; 2015. 160 с. Режим доступа: https://www.twirpx.club/file/2366884.; Chang K., Frankovich J., Cooperstock M., Cunningham M.W., Latimer M.E., Murphy T.K. et al. PANS Collaborative Consortium. Clinical evaluation of youth with pediatric acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS Consensus Conference. J Child Adolesc Psychopharmacol. 2015;25(1):3–13. https://doi.org/10.1089/cap.2014.0084.; Agyeman P.K.A., Schlapbach L.J., Giannoni E., Stocker M., Posfay-Barbe K.M., Heininger U. et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health. 2017;1(2):124–133. https://doi.org/10.1016/S2352-4642(17)30010-X.; Lin J.C., Spinella P.C., Fitzgerald J.C., Tucci M., Bush J.L., Nadkarni V.M. et al. Sepsis Prevalence, Outcomes, and Therapy Study Investigators. New or progressive multiple organ dysfunction syndrome in pediatric severe sepsis: a sepsis phenotype with higher morbidity and mortality. Pediatr Crit Care Med. 2017;18(1):8–16. https://doi.org/10.1097/PCC.0000000000000978.; Birch C., Gowardman J. Streptococcus pyogenes: a forgotten cause of severe community-acquired pneumonia. Anaesth Intensive Care. 2000;28(1):87–90. https://doi.org/10.1177/0310057X0002800117.; Bryant A.E., Bayer C.R., Aldape M.J., Stevens D.L. The roles of injury and nonsteroidal anti-inflammatory drugs in the development and outcomes of severe group A streptococcal soft tissue infections. Curr Opin Infect Dis. 2015;28(3):231–239. https://doi.org/10.1097/QCO.0000000000000160.; Белов Б.С. А-стрептококковая инфекция на рубеже веков. Научнопрактическая ревматология. 2002;40(1):29–34. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/883.; https://www.med-sovet.pro/jour/article/view/6837