يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Т. П. Казубская"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was supported by the Scientific Research Program for 2023–2025 No. FGFU-2023-0001., Работа выполнена при поддержке Программы научных исследований 2023–2025 № FGFU-2023-0001.

    المصدر: Fine Chemical Technologies; Vol 19, No 3 (2024); 232-239 ; Тонкие химические технологии; Vol 19, No 3 (2024); 232-239 ; 2686-7575 ; 2410-6593

    وصف الملف: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2087/2028; https://www.finechem-mirea.ru/jour/article/view/2087/2029; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2087/1232; Araghi M., Mannani R., Heidarnejad Maleki A., Hamidi A., Rostami S., Safa S.H., Faramarzi F., Khorasani S., Alimohammadi M., Tahmasebi S., Akhavan-Sigari R. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int. 2023;23(1):162. https://doi.org/10.1186/s12935-023-02990-y; Sarhadi V.K., Armengol G. Molecular Biomarkers in Cancer. Biomolecules. 2022;12(8):1021. https://doi.org/10.3390/biom12081021; Li Y. Modern epigenetics methods in biological research. Methods. 2021;187:104–113. https://doi.org/10.1016/j.ymeth.2020.06.022; Eshkoor S.A., Ghodsian N., Akhtari-Zavare M. MicroRNAs influence and longevity. Egypt. J. Med. Hum. Genet. 2022;23(1):105. https://doi.org/10.1186/s43042-022-00316-7; Логинов В.И., Рыков С.В., Фридман М.В., Брага Э.А. Метилирование генов микроРНК и онкогенез. Биохимия. 2015;80(2):184–203. https://doi.org/10.1134/S0006297915020029; Liao J., Shen J., Leng Q., Qin M., Zhan M., Jiang F. MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC). Thorac. Cancer. 2020;11(3):762–768. https://doi.org/10.1111/1759-7714.13337; Brierley J.D., Gospodarowicz M.K., Wittekind C. (Eds.). TNM Classification of Malignant Tumours. 8th ed. John Wiley & Sons; 2017. 272 p.; World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. https://doi.org/10.1001/jama.2013.281053; Логинов В.И., Бурдённый А.М., Филиппова Е.А., Пронина И.В., Лукина С.С., Казубская Т.П., Карпухин А.В., Ходырев Д.С., Брага Э.А. Аберрантное метилирование 21 гена микроРНК при раке молочной железы: наборы генов, связанных с показателями прогрессии, и система маркеров для прогноза лимфогенного метастазирования. Бюллетень экспериментальной биологии и медицины. 2021;172(7):81–86. https://doi.org/10.47056/0365-9615-2021-172-7-81-86; Loginov V.I., Pronina I.V., Burdennyy A.M., Filippova E.A., Kazubskaya T.P., Kushlinsky D.N., Utkin D.O., Khodyrev D.S., Kushlinskii N.E., Dmitriev A.A., Braga E.A. Novel miRNA genes deregulated by aberrant methylation in ovarian carcinoma are involved in metastasis. Gene. 2018;662:28–36. https://doi.org/10.1016/j.gene.2018.04.005; Клочихина Е.С., Шершов В.Е., Кузнецова В.Е., Лапа С.А., Чудинов А.В. Особенности оптимизации мультипраймерной ПЦР для выявления возбудителей инфекционной пневмонии человека. Тонкие химические технологии. 2021;16(3): 225–231. https://doi.org/10.32362/2410-6593-2021-16-3-225-231; Pronina I.V., Loginov V.I., Burdennyy A.M., Fridman M.V., Senchenko V.N., Kazubskaya T.P., Kushlinskii N.E., Dmitriev A.A., Braga E.A. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene. 2017;604:1–8. https://doi.org/10.1016/j.gene.2016.12.018; Shanehbandi D., Asadi M., Seyedrezazadeh E., Zafari V., Shekari N., Akbari M., Rahbarnia L., Zarredar H. MicroRNABased Biomarkers in Lung Cancer: Recent Advances and Potential Applications. Curr. Mol. Med. 2023;23(7):648–667. https://doi.org/10.2174/2772432817666220520085719; Xu L., Huang X., Lou Y., Xie W., Zhao H. Regulation of apoptosis, autophagy and ferroptosis by non-coding RNAs in metastatic non-small cell lung cancer (Review). Exp. Ther. Med. 2022;23(5):352. https://doi.org/10.3892/etm.2022.11279; https://www.finechem-mirea.ru/jour/article/view/2087

  2. 2
    Academic Journal

    المساهمون: The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».

    المصدر: Medical Genetics; Том 22, № 11 (2023); 47-57 ; Медицинская генетика; Том 22, № 11 (2023); 47-57 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2374/1753; Pellegriti G., Frasca F., Regalbuto C., et al. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013;2013:965212. doi:10.1155/2013/965212.; Vigneri R., Malandrino P., Vigneri P. The changing epidemiology of thyroid cancer: why is incidence increasing? Curr Opin Oncol. 2015;27(1):1-7. doi:10.1097/CCO.0000000000000148.; Cooper D.S., Doherty G.M., Haugen B.R., et al. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–214.; Pacini F., Castagna M.G., Brilli L., Pentheroudakis G., ESMO Guidelines Working Group. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(Suppl.7):vii110–9.; Kebebew E., Greenspan F.S., Clark O.H., et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103(7):1330-5.; Wendler J., Kroiss M., Gast K., et al. Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: results of a multicenter study in Germany. Eur J Endocrinol. 2016;175(6):521-529.; Bongiovanni M., Spitale A., Faquin W.C., et al. The Bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta Cytol. 2012;56(4):333-339. doi:10.1159/000339959.; Panebianco F., Nikitski A.V., Nikiforova M.N., et al. Characterization of thyroid cancer driven by known and novel ALK fusions. Endocr Relat Cancer. 2019;26(11):803-814. doi:10.1530/ERC-190325.; Doebele R.C., Drilon A., Paz-Ares L., et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020;21:271-282; National Comprehensive Cancer Network. Thyroid Carcinoma (Version 1.2023). http://www.nccn.org/professionals/physician_gls/pdf/bone.pdf.; Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014; 159(3):676690.; Zehir A., Benayed R., Shah R.H., et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine. 2017; 23(6): 703–713.; Rivera M., Ricarte-Filho J., Knauf J., et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol. 2010; 23(9):1191–200.; Armstrong M.J., Yang H., Yip L., Ohori N.P., et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014; 24:1369–74.; Nikiforova M.N., Biddinger P.W., Caudill C.M., et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002; 26(8):1016-23.; Ohori N.P., Wolfe J., Hodak S.P., et al. “Colloid-rich” follicular neoplasm/suspicious for follicular neoplasm thyroid fine-needle aspiration specimens: cytologic, histologic, and molecular basis for considering an alternate view. Cancer Cytopathol. 2013; 121(12):718-28.; Landa I., Ibrahimpasic T., Boucai L., et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016; 126(3):1052-66.; Michuda J., Park B.H., Cummings A.L., et al. Use of clinical RNA-sequencing in the detection of actionable fusions compared to DNA-sequencing alone. Journal of Clinical Oncology 2022; 40:16(suppl): 3077.; Marchiò C., Scaltriti M., Ladanyi M., et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol. 2019;30(9):1417-1427. doi:10.1093/annonc/mdz204.; https://www.medgen-journal.ru/jour/article/view/2374

  3. 3
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 8, № 4 (2021); 95-102 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 8, № 4 (2021); 95-102 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/777/703; Schreibman I.R., Baker M., Amos C., McGarrity T.J. The hamartomatous polyposis syndromes: a clinical and molecular review. Am J Gastroenterol. 2005;100(2):476–90. doi:10.1111/j.1572-0241.2005.40237.x. PMID:15667510.; Hemminki A., Markie D., Tomlinson I., Avizienyte E., Roth S., Loukola A., Bignell G., Warren W., Aminoff M., Höglund P., Järvinen H., Kristo P., Pelin K., Ridanpää M., Salovaara R., Toro T., Bodmer W., Olschwang S., Olsen A.S., Stratton M.R., de la Chapelle A., Aaltonen L.A. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature. 1998;391(6663):184–7. doi:10.1038/34432. PMID:9428765.; Altamish M., Dahiya R., Singh A.K., Mishra A., Aljabali A.A.A., Satija S., Mehta M., Dureja H., Prasher P., Negi P., Kapoor D.N., Goyal R., Tambuwala M.M., Chellappan D.K., Dua K., Gupta G. Role of the Serine/Threonine Kinase 11 (STK11) or Liver Kinase B1 (LKB1) Gene in Peutz–Jeghers Syndrome. Crit Rev Eukaryot Gene Expr. 2020;30(3):245–52. doi:10.1615/CritRevEukaryotGeneExpr.2020033451. PMID:32749111.; Aretz S., Stienen D., Uhlhaas S., Loff S., Back W., Pagenstecher C., McLeod D.R., Graham G.E., Mangold E., Santer R., Propping P., Friedl W. High proportion of large genomic STK11 deletions in Peutz–Jeghers syndrome. Hum Mutat. 2005;26(6):513–9. doi:10.1002/humu.20253. PMID:16287113.; Zhao H.M., Yang Y.J., Duan J.Q., Ouyang H.J., Liu L., Yi L.C., Xiao Z.H., Zheng Y., Peng L., Attard T.M., Li D.Y., You J.Y. Clinical and Genetic Study of Children With Peutz–Jeghers Syndrome Identifies a High Frequency of STK11 De Novo Mutation. J Pediatr Gastroenterol Nutr. 2019;68(2):199–206. doi:10.1097/MPG.0000000000002166. PMID:30334930.; Wagner A., Aretz S., Auranen A., Bruno M.J., Cavestro G.M., Crosbie E.J., Goverde A., Jelsig A.M., Latchford A., Leerdam M.E.V., Lepisto A., Puzzono M., Winship I., Zuber V., Möslein G. The Management of Peutz–Jeghers Syndrome: European Hereditary Tumour Group (EHTG) Guideline. J Clin Med. 2021;10(3):473. doi:10.3390/jcm10030473. PMID:33513864.; Tomlinson I.P., Houlston R.S. Peutz–Jeghers syndrome. J Med Genet. 1997;34(12):1007–11. doi:10.1136/jmg.34.12.1007. PMID:9429144.; Aaltonen L.A., Jarvinen H., Gruber S.B., Billaud M., Jass J.R. Tumours of the small intestine: Peutz–Jeghers syndrome. In World Health Organization Classification of Tumours: Pathology and Genetics. Tumours of the Digestive System. IARC Press: Lyon, France, 2000.; Beggs A.D., Latchford A.R., Vasen H.F., Moslein G., Alonso A., Aretz S., Bertario L., Blanco I., Bülow S., Burn J., Capella G., Colas C., Friedl W., Møller P., Hes F.J., Järvinen H., Mecklin J.P., Nagengast F.M., Parc Y., Phillips R.K., Hyer W., Ponz de Leon M., Renkonen-Sinisalo L., Sampson J.R., Stormorken A., Tejpar S., Thomas H.J., Wijnen J.T., Clark S.K., Hodgson S.V. Peutz–Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59(7):975–86. doi:10.1136/gut.2009.198499. PMID:20581245.; McGarrity T.J., Amos C. Peutz–Jeghers syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci. 2006;63(18):2135–44. doi:10.1007/s00018-006-6080-0. PMID:16952058.; Traboulsi E.I., Maumenee I.H. Periocular pigmentation in the Peutz–Jeghers syndrome. Am J Ophthalmol. 1986;102(1):126–7. doi:10.1016/0002-9394(86)90229-1. PMID:3728618.; Jeghers H., McKusick V.A., Katz K.H. Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic signifi cance. N Engl J Med. 1949;241(26):1031–6. doi:10.1056/NEJM194912292412601. PMID:15398245.; Цветкова Г.М., Мордовцева В.В., Вавилов А.М., Мордовцев В.Н. Патоморфология болезней кожи: Руководство для врачей. М.: Медицина, 2003. С. 320.; Sarkozy A., Conti E., Digilio M.C., Marino B., Morini E., Pacileo G., Wilson M., Calabrò R., Pizzuti A., Dallapiccola B. Clinical and molecular analysis of 30 patients with multiple lentigines LEOPARD syndrome. J Med Genet. 2004;41(5):e68. doi:10.1136/jmg.2003.013466. PMID:15121796.; Lampe A.K., Hampton P.J., Woodford-Richens K., Tomlinson I., Lawrence C.M., Douglas F.S. Laugier–Hunziker syndrome: an important differential diagnosis for Peutz–Jeghers syndrome. J Med Genet. 2003;40(6):e77. doi:10.1136/jmg.40.6.e77. PMID:12807976.; Kopacova M., Tacheci I., Rejchrt S., Bures J. Peutz–Jeghers syndrome: diagnostic and therapeutic approach. World J Gastroenterol. 2009;15(43):5397–408. doi:10.3748/wjg.15.5397. PMID:19916169.; Goldstein S.A., Hoffenberg E.J. Peutz–Jeghers syndrome in childhood: need for updated recommendations? J Pediatr Gastroenterol Nutr. 2013;56(2):191–5. doi:10.1097/MPG.0b013e318271643c. PMID:23325439.; Hinds R., Philp C., Hyer W., Fell J.M. Complications of childhood Peutz–Jeghers syndrome: implications for pediatric screening. J Pediatr Gastroenterol Nutr. 2004;39(2):219–20. doi:10.1097/00005176-200408000-00027. PMID:15269641.; van Lier M.G., Mathus-Vliegen E.M., Wagner A., van Leerdam M.E., Kuipers E.J. High cumulative risk of intussusception in patients with Peutz–Jeghers syndrome: time to update surveillance guidelines? Am J Gastroenterol. 2011;106(5):940–5. doi:10.1038/ajg.2010.473.; Hearle N., Schumacher V., Menko F.H., Olschwang S., Boardman L.A., Gille J.J., Keller J.J., Westerman A.M., Scott R.J., Lim W., Trimbath J.D., Giardiello F.M., Gruber S.B., Offerhaus G.J., de Rooij F.W., Wilson J.H., Hansmann A., Möslein G., Royer-Pokora B., Vogel T., Phillips R.K., Spigelman A.D., Houlston R.S. Frequency and spectrum of cancers in the Peutz–Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15. doi:10.1158/1078-0432.CCR-06-0083. PMID:16707622.; van Lier M.G., Westerman A.M., Wagner A., Looman C.W., Wilson J.H., de Rooij F.W., Lemmens V.E., Kuipers E.J., Mathus-Vliegen E.M., van Leerdam M.E. High cancer risk and increased mortality in patients with Peutz–Jeghers syndrome. Gut. 2011;60(2):141–7. doi:10.1136/gut.2010.223750. PMID:21205875.; Giardiello F.M., Brensinger J.D., Tersmette A.C., Goodman S.N., Petersen G.M., Booker S.V., Cruz-Correa M., Offerhaus J.A. Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53. doi:10.1053/gast.2000.20228. PMID:11113065.; Boardman L.A., Pittelkow M.R., Couch F.J., Schaid D.J., McDonnell S.K., Burgart L.J., Ahlquist D.A., Carney J.A., Schwartz D.I., Thibodeau S.N., Hartmann L.C. Association of Peutz–Jeghers-like mucocutaneous pigmentation with breast and gynecologic carcinomas in women. Medicine (Baltimore). 2000;79(5):293–8. doi:10.1097/00005792-200009000-00002. PMID:11039077.; Zheng Z., Xu R., Yin J., Cai J., Chen G.Y., Zhang J., Zhang Z.T. Malignant tumors associated with Peutz–Jeghers syndrome: Five cases from a single surgical unit. World J Clin Cases. 2020;8(2):264–75. doi:10.12998/wjcc.v8.i2.264. PMID:32047774.; Ylikorkala A., Avizienyte E., Tomlinson I.P., Tiainen M., Roth S., Loukola A., Hemminki A., Johansson M., Sistonen P., Markie D., Neale K., Phillips R., Zauber P., Twama T., Sampson J., Järvinen H., Mäkelä T.P., Aaltonen L.A. Mutations and impaired function of LKB1 in familial and non-familial Peutz–Jeghers syndrome and a sporadic testicular cancer. Hum Mol Genet. 1999;8(1):45–51. doi:10.1093/hmg/8.1.45. PMID:9887330.; Amos C.I., Keitheri-Cheteri M.B., Sabripour M., Wei C., McGarrity T.J., Seldin M.F., Nations L., Lynch P.M., Fidder H.H., Friedman E., Frazier M.L. Genotype-phenotype correlations in Peutz–Jeghers syndrome. J Med Genet. 2004;41(5):327–33. doi:10.1136/jmg.2003.010900. PMID:15121768.; McKay V., Cairns D., Gokhale D., Mountford R., Greenhalgh L. First report of somatic mosaicism for mutations in STK11 in four patients with Peutz–Jeghers syndrome. Fam Cancer. 2016;15(1):57–61. doi:10.1007/s10689-015-9839-3.; Latchford A., Cohen S., Auth M., Scaillon M., Viala J., Daniels R., Talbotec C., Attard T., Durno C., Hyer W. Management of Peutz–Jeghers Syndrome in Children and Adolescents: A Position Paper From the ESPGHAN Polyposis Working Group. J Pediatr Gastroenterol Nutr. 2019;68(3):442–52. doi:10.1097/MPG.0000000000002248. PMID:30585892.; Stratakis C.A., Kirschner L.S., Carney J.A. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041–6. doi:10.1210/jcem.86.9.7903. PMID:11549623.; https://journal.nodgo.org/jour/article/view/777

  4. 4
    Academic Journal

    المصدر: Medical Genetics; Том 20, № 5 (2021); 48-54 ; Медицинская генетика; Том 20, № 5 (2021); 48-54 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1912/1492; Sanabria A., Kowalski L.P., Shah J.P., et al. Growing incidence of thyroid carcinoma in recent years: Factors underlying overdiagnosis. Head Neck 2018;40:855-66. doi:10.1002/hed.25029; Haugen B.R., Alexander E.K., Bible K.C., et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. doi:10.1089/thy.2015.0020; Cibas E.S., Ali S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341-1346. doi:10.1089/thy.2017.0500; Rogers W.A., Craig W.L., Entwistle V.A. Ethical issues raised by thyroid cancer overdiagnosis: A matter for public health?. Bioethics. 2017;31(8):590-598. doi:10.1111/bioe.12383; Rahman S.T., McLeod D.S.A., Pandeya N., et al. Understanding Pathways to the Diagnosis of Thyroid Cancer: Are There Ways We Can Reduce Over-Diagnosis?. Thyroid. 2019;29(3):341-348. doi:10.1089/thy.2018.0570; Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-690. doi:10.1016/j.cell.2014.09.050; Kasaian K., Wiseman S.M., Walker B.A. et al. The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy. BMC Cancer. 2015;15:984. Published 2015 Dec 18. doi:10.1186/s12885-015-1955-9; Kunstman J.W., Juhlin C.C., Goh G., et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318-2329. doi:10.1093/hmg/ddu749; Landa I., Ibrahimpasic T., Boucai L., et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052-1066. doi:10.1172/JCI85271; Swierniak M., Pfeifer A., Stokowy T., et al. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol Cell Endocrinol. 2016;433:130-137. doi:10.1016/j.mce.2016.06.007; Yoo S.K., Lee S., Kim S.J., et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016;12(8):e1006239. Published 2016 Aug 5. doi:10.1371/journal.pgen.1006239; Pozdeyev N., Gay L.M., Sokol E.S., et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin Cancer Res. 2018;24(13):3059-3068. doi:10.1158/1078-0432.CCR-18-0373; Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26: 589-595.; Van der Auwera G.A., Carneiro M.O., Hartl C., et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi:10.1002/0471250953.bi1110s43; Boeva V., Popova T., Lienard M., et al. Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data. Bioinformatics. 2014;30(24):3443-3450. doi:10.1093/bioinformatics/btu436; Li M.M., Datto M., Duncavage E.J., et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4-23. doi:10.1016/j.jmoldx.2016.10.002; Paschke R., Cantara S., Crescenzi A., et al. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur Thyroid J. 2017;6(3):115-129. doi:10.1159/000468519; Melo M., da Rocha A.G., Vinagre J., et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 2014;99:E754-65. doi:10.1210/jc.2013-3734; Bournaud C., Descotes F., Decaussin-Petrucci M., et al. TERT promoter mutations identify a high-risk group in metastasis-free advanced thyroid carcinoma. Eur J Cancer. 2019;108:41-49. doi:10.1016/j.ejca.2018.12.003; Karunamurthy A., Panebianco F., Hsiao S.J., et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295-301. doi:10.1530/ERC-16-0043; https://www.medgen-journal.ru/jour/article/view/1912

  5. 5
    Academic Journal

    المساهمون: Работа выполнена при поддержке Российского Научного Фонда – Проект №14 15 00654.

    المصدر: Malignant tumours; Том 8, № 1 (2018); 5-11 ; Злокачественные опухоли; Том 8, № 1 (2018); 5-11 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/490/359; Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015. Vol. 65 (2). P. 87–108. doi:10.3322/caac. 21262.; Состояние онкологической помощи населению России в 2016 году / Под ред. Каприна А.Д., Старинского В.В., Петровой Г.В. Москва, 2017. С. 116. [Sostoyanie onkologicheskoy pomoshchi naseleniyu Rossii v 2016 godu. Eds. Kaprin A.D., Starinskiy V.V., Petrova G.V. Moscow, 2017. P. 116 (In Russ.)].; Tang X., Tang J., Liu X., Zeng L., Cheng C., Luo Y. et. al. Downregulation of miR-129-2 by promoter hypermethylation regulates breast cancer cell proliferation and apoptosis. Oncol. Rep. 2016. Vol. 35 (5). P. 2963–2969. doi:10.3892/or. 2016.4647.; Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005. Vol. 120 (1). P. 15-20. doi:10.1016/j. cell. 2004.12.035.; Логинов В.И., Рыков С.В., Фридман М.В., Брага Э.А. Метилирование генов микроРНК и онкогенез // Биохимия. 2015. Том 80. Вып. 2. С. 184–203 [Loginov V. I., Rykov S.V., Fridman M.V., Braga E.A. Metilirovanie genov mikroRNK i onkogenez. Biokhimiya. 2015. Vol. 80. Iss. 2. P. 184–203 (In. Russ.)].; Zhang B., Pan X., Cobb G.P., Anderson T.A. MicroRNAs as oncogenes and tumor suppressors. Dev. Bio. 2007. Vol. 302 (1). P. 1–12. doi:10.5772/54701.; Рябчиков Д.А., Казубская Т.П., Воротников И.К., Логинов В.И., Бурденый А.М., Чхиквадзе Н.В. и др. Метилирование ряда генов хромосомы 3 (3р) у больных раком молочной железы // Сборник научных работ III Петербургского международного онкологического форума «Белые ночи 2017». 2017. C. 104а–104. [Ryabchikov D.A., Kazubskaya T.P., Vorotnikov I.K., Loginov V. I., Burdenyj A.M., CHkhikvadze N. V. et al. Metilirovanie ryada genov khromosomy 3 (3r) u bol’nykh rakom molochnoj zhelezy. Sbornik nauchnykh rabot III Peterburgskogo mezhdunarodnogo onkologicheskogo foruma “Belye nochi 2017”. 2017. P. 104a–104 (In Russ.)].; Рябчиков Д.А., Челышева Д.С., Логинов В.И., Бурденый А.М., Пронина И.В., Брага Э.А. и др. Аберрантное метилирование ряда генов хромосомы 3 (3р), включающееся в патогенез рака молочной железы // Молекулярная диагностика. 2017. C. 195–196. [Ryabchikov D.A., Chelysheva D.S., Loginov V.I., Burdenyj A.M., Pronina I.V., Braga E.A. et al. Aberrantnoe metilirovanie ryada genov khromosomy 3 (3r), vklyuchayushcheesya v patogenez raka molochnoj zhelezy. Molekulyarnaya diagnostika. 2017. P. 195–196 (In Russ.)].; Tahiri A., Leivonen S.K., Luders T., Steinfeld I., Aure M.R., Geisler J. et al. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. Carcinogenesis. 2014. Vol. 35 (1). P. 76-85. doi:10.1093/carcin/bgt333.; Chen X., Hu H., Guan X., Xiong G., Wang Y., Wang K. et al. CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int. J. Cancer. 2012. Vol. 130. P. 1607-1613. PMID: 21547903.; Gao Y., Feng B., Han S., Lu L., Chen Y., Chu X. et al. MicroRNA-129 in Human Cancers: from Tumorigenesis to Clinical Treatment. Cell Physiol. Biochem. 2016. Vol. 39 (6). P. 2186–2202. doi:10.1159/000447913.; Pronina I.V., Loginov V. I., Burdennyy A.M., Fridman M.V., Kazubskaya T.P., Dmitriev A.A., Braga E.A. Expression and DNA methylation alterations of seven cancer-associated 3p genes and their predicted regulator miRNAs (miR-129–2, miR-9-1) in breast and ovarian cancers. Gene. 2016. Vol. 576. P. 483–491. doi:10.1016/j.gene.2015.10.059.; Kapsimali M., Kloosterman W.P., de Bruijn E., Rosa F., Plasterk R., Wilson S. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 2007. Vol. 8 (8). P. R173. doi:10.1186/gb-2007-8-8-r173.; Roese-Koerner B., Stappert L., Berger T., Braun N.C., Veltel M., Jungverdorben J. et al. Reciprocal Regulation between Bifunctional miR-9/9 (*) and its Transcriptional Modulator Notch in Human Neural Stem Cell Self-Renewal and Differentiation. Stem Cell Reports. 2016. Vol. 7 (2). P. 207–219. doi:10.1016/j. stemcr. 2016.06.008.; Barbano R., Pasculli B., Rendina M., Fontana A., Fusilli C., Copetti M. Stepwise analysis of MIR9 loci identifies miR-9-5p to be involved in Oestrogen regulated pathways in breast cancer patients. Sci. Rep. 2017. Vol. 7. P. 45283. doi:10.1038/srep45283.; Lujambio A., Calin G.A., Villanueva A., Ropero S., Sanchez-Cespedes M., Blanco D. et al. A microRNA DNA methylation signature for human cancer metastasis // Proc. Natl. Acad.Sci. USA. 2008. Vol. 105. P. 13556-13561. doi:10.1073/pnas. 0803055105. Epub 2008 Sep 3.; Gwak J.M., Kim H. J., Kim E. J., Chung Y. R, Yun S. et al. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res. Treat. 2014. Vol. 147 (1). P. 39–49. doi:10.1007/s10549-014-3069-5. Epub 2014 Aug 3. doi:10.1007/s10549-014-3069-5. Epub 2014 Aug 3.; Suzuki H., Maruyama R., Yamamoto E., Kai M. DNA methylation and microRNA dysregulation in cancer. Molecular Oncology 2012. Vol. 6 (2). P. 567–578. doi:10.1016/j. molonc. 2012.07.007.; Yu f., Jiao Y., Zhu Y., Wang Y., Zhu J. et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. Journal of Biological Chemistry. 2012. Vol. 287 (1). P. 465–473. doi:10.1074/jbc.M111.280768.; He Y., Cui Y., Wang W., Gu J., Guo S., Ma K. et al. Hypomethylation of the hsa-miR-191 locus causes high expression of hsamir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia. 2011. Vol. 13. P. 841–853. doi:10.1593/neo.11698.; Toyota M., Suzuki H., Sasaki Y., Maruyama R., Imai K., Shinomura Y., Tokino T. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008. Vol. 68. P. 4123–4132. doi:10.1158/0008-5472.CAN-08-0325.; Kalimutho M., Di Cecilia S., Del Vecchio Blanco G., Roviello F., Sileri F., Cretella M. et al. Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br. J. Cancer. 2011. Vol. 104. P. 1770–1778. doi:10.1038/bjc.2011.82.; https://www.malignanttumors.org/jour/article/view/490

  6. 6
    Academic Journal

    المصدر: Cancer Urology; Том 13, № 3 (2017); 27-33 ; Онкоурология; Том 13, № 3 (2017); 27-33 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2017-13-3

    وصف الملف: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/696/702; https://oncourology.abvpress.ru/oncur/article/view/696/757; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/696/474; Vasudev N. S., Selby P. J., Banks R. E. Renal cancer biomarkers: the promise of personalized care. BMC Med 2012;10:112. DOI:10.1186/1741-7015-10-112. PMID: 23016578.; Cairns P. Renal cell carcinoma. Cancer Biomark 2011;9(1–6):461–73. DOI:10.3233/CBM- 2011–0176. PMID: 22112490.; Rydzanicz M., Wrzesinski T., Bluyssen H. A., Wesoly J. Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett 2013;341(2):111–26. DOI:10.1016/j.canlet.2013.08.006. PMID: 23933176.; Randall J. M., Millard F., Kurzrock R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art. Cancer Metastasis Rev 2014;33(4):1109–24. DOI:10.1007/s10555-014-9533-1. PMID: 25365943.; Каприн А. Д., Старинский В. В., Петрова Г. В. Состояние онкологической помощи населению России в 2015 году. М.: МНИОИ им. П. А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России, 2016. 236 с. [Kaprin A. D., Starinskiy V. V., Petrova G. V. State of oncological care in Russia in 2015. Moscow: MNIOI im. P. A. Gertsena – filial FGBU “NMIRTS” Minzdrava Rossii, 2016. 236 p. (In Russ.)].; Jones P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13(7):484–92. DOI:10.1038/nrg3230. PMID: 22641018.; Vrba L., Muñoz-Rodríguez J. L., Stampfer M. R., Futscher B. W. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One 2013;8(1):e54398. DOI:10.1371/journal.pone.0054398. PMID: 23342147.; Kunej T., Godnic I., Ferdin J. et al. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 2011;717(1–2):77–84. DOI:10.1016/j.mrfmmm.2011.03.008. PMID: 21420983.; Piletič K., Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol 2016;90(10):2405–19. DOI:10.1007/s00204-016-1815-7. PMID: 27557899.; Baylin S. B., Jones P. A. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 2016;8(9):a019505. DOI:10.1101/cshperspect.a019505. PMID: 27194046.; Рыков С. В., Ходырев Д. С., Пронина И. В. и др. Новые гены микроРНК, подверженные метилированию в опухолях легкого. Генетика 2013;49(7):896–901. [Rykov S. V., Khodyrev D. S., Pronina I. V. et al. Novel miRNA genes methylated in lung tumors. Genetika = Genetics 2013;49(7):896–901. (In Russ.)]. DOI:10.7868/S0016675813070114.; Логинов В. И., Бурденный А. М., Пронина И. В. и др. Идентификация новых генов микроРНК, гиперметилированных при раке молочной железы. Молекулярная биология 2016;50(5): 797–802. [Loginov V. I., Burdennyy A. M., Pronina I. V. et al. Novel miRNA genes hypermethylated in breast cancer. Molekulyarnaya biologiya = Molecular Biology 2016;50(5):797–802. (In Russ.)]. DOI:10.7868/S0026898416050104.; Pronina I. V., Loginov V. I., Burdennyy A. M. et al. DNA methylation contributes to deregulation of 12 cancerassociated microRNAs and breast cancer progression. Gene 2017;604:1–8. DOI:10.1016/j.gene.2016.12.018. PMID: 27998789.; Логинов В. И., Рыков С. В., Фридман М. В., Брага Э. А. Метилирование генов микроРНК и онкогенез. Биохимия 2015;80(2):184–203. [Loginov V. I., Rykov S. V., Fridman M. V., Braga E. A. Methylation of miRNA genes and oncogenesis. Biokhimiya = Biochemistry 2015;80(2):184–203. (In Russ.)]. DOI:10.1134/S0006297915020029.; Береснева Е. В., Рыков С. В., Ходырев Д. С. и др. Профиль метилирования группы генов микроРНК при светлоклеточном почечно-клеточном раке; связь с прогрессией рака. Генетика 2013;49(3): 366–75. [Beresneva E. V., Rykov S. V., Khodyrev D. S. et al. Methylation profile of group of miRNA genes in clear cell renal cell carcinoma; involvement in cancer progression. Genetika = Genetics 2013;49(3):366–75. (In Russ.)]. DOI:10.1134/S1022795413030034. PMID: 23755536.; Береснева Е. В., Логинов В. И., Ходырев Д. С. и др. Гиперметилированные гены микроРНК как потенциальные маркеры светлоклеточного рака почки. Клиническая лабораторная диагностика 2017;62(1):13–8. [Beresneva E. V., Loginov V. I., Khodyrev D. S. et al. The hyper-methylated genes microRNA as potential markers of clear-cell carcinoma of kidney. Clinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics 2017;62(1):13–8. (In Russ.)]. DOI:10.18821/0869-2084-2017-62-1-13-18.; Sobin L. H., Gospodarowicz M. K., Wittekind Ch. International Union against Cancer. TNM classification of malignant tumours. 7th edn, 2009. Chichester, West Sussex, UK; Hoboken, NJ: Wiley-Blackwell, 2010. Pp. 332. Available at: https://www.ncbi.nlm.nih.gov/nlmcatalog/101511218.; Loginov V. I., Dmitriev A. A., Senchenko V. N. et al. Tumor suppressor function of the SEMA3B gene in human lung and renal cancers. PLos One 2015;10(5):e0123369. DOI:10.1371/journal.pone.0123369. PMID: 25961819.; Lee K. H., Lotterman C., Karikari C. et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 2009;9(3):293–301. DOI:10.1159/000186051. PMID: 19407485.; Yang C., Cai J., Wang Q. et al. Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol 2012;124(2):325–34. DOI:10.1016/j.ygyno.2011.10.013. PMID: 22005523.; Li H. P., Huang H. Y., Lai Y. R. et al. Silencing of miRNA-148a by hyper methylation activates the integrin-mediated signaling pathway in nasopharyngeal carcinoma. Oncotarget 2014;5(17):7610–24. DOI:10.18632/oncotarget.2282. PMID: 25277193.; Long X. R., He Y., Huang C., Li J. Micro-RNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in hepatocellular carcinogenesis. Int J Oncol 2014;44(6):1915–22. DOI:10.3892/ijo.2014.2373. PMID: 24714841.; Sun J., Song Y., Wang Z. et al. Clinical significance of promoter region hypermethylation of microRNA-148a in gastrointestinal cancers. Onco Targets Ther 2014;7:853–63. DOI:10.2147/OTT.S60888. PMID: 24920927.; Cao H., Liu Z., Wang R. et al. miR-148a suppresses human renal cell carcinoma malignancy by targeting AKT2. Oncol Rep 2017;37(1):147–54. DOI:10.3892/or.2016.5257. PMID: 27878305.; Kim E. A., Kim T. G., Sung E. G. et al. miR-148a increases the sensitivity to cisplatin by targeting Rab14 in renal cancer cells. Int J Oncol 2017;50(3):984–92. DOI:10.3892/ijo.2017.3851. PMID: 28098870.; Redova M., Poprach A., Nekvindova J. et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 2012;10:55. DOI:10.1186/1479-5876-10-55. PMID: 22440013.; Wang C., Hu J., Lu M. et al. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep 2015;5:7610. DOI:10.1038/srep07610. PMID: 25556603.; Yadav S., Khandelwal M., Seth A. et al. Serum microRNA expression profiling: potential diagnostic implications of a panel of serum microRNAs for clear cell renal cell cancer. Urology 2017;104:64–9. DOI:10.1016/j.urology.2017.03.013. PMID: 28336290.; Marconi L., Dabestani S., Lam T. B. et al. Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur Urol 2016;69:660–73. DOI:10.1016/j.eururo.2016.04.027. PMID: 27157997.; https://oncourology.abvpress.ru/oncur/article/view/696