يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Т. В. Борисова"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: YSC CMP “Study of the genetic structure and burden of hereditary pathology of the populations of the Republic of Sakha (Yakutia)”, Ministry of Science and Education of the Russian Federation (FSRG-2023-0003)., Работа выполнена в рамках Государственного задания Министерства науки и высшего образования РФ (FSRG-20230003) и НИР ЯНЦ КМП «Изучение генетической структуры и груза наследственной патологии в популяциях Республики Саха (Якутия)».

    المصدر: Medical Genetics; Том 23, № 7 (2024); 42-50 ; Медицинская генетика; Том 23, № 7 (2024); 42-50 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2508/1805; Han S., Zhang D., Guo Y. et al. Prevalence and Characteristics of STRC Gene Mutations (DFNB16): A Systematic Review and MetaAnalysis. Front Genet. 2021 Sep 21;12:707845. doi:10.3389/fgene.2021.707845.; Sloan-Heggen C.M., Bierer A.O, Shearer A.E. et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet. 2016 Apr;135(4):441-450. doi:10.1007/s00439016-1648-8.; Plevova P., Paprskarova M., Tvrda P. et al. STRC Deletion is a Frequent Cause of Slight to Moderate Congenital Hearing Impairment in the Czech Republic. Otol Neurotol. 2017 Dec;38(10):e393-e400. doi:10.1097/MAO.0000000000001571.; Back D., Shehata-Dieler W., Vona B. et al. Phenotypic Characterization of DFNB16-associated Hearing Loss. Otol Neurotol. 2019 Jan;40(1):e48-e55. doi:10.1097/MAO.0000000000002059.; Čada Z., Šafka Brožková D., Balatková Z. et al. Moderate sensorineural hearing loss is typical for DFNB16 caused by various types of mutations affecting the STRC gene. Eur Arch Otorhinolaryngol. 2019 Dec;276(12):3353-3358. doi:10.1007/s00405-019-05649-5.; Shatokhina O., Galeeva N., Stepanova A., Markova T. et al. Spectrum of Genes for Non-GJB2-Related Non-Syndromic Hearing Loss in the Russian Population Revealed by a Targeted Deafness Gene Panel. Int. J. Mol. Sci. 2022, 23, 15748. https://doi.org/10.3390/ijms232415748; Verpy E., Masmoudi S., Zwaenepoel I. et al. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nature Genet. 2001 29: 345-349.; Hildebrand M.S., Avenarius M.R., Smith R.J.H. CATSPER-Related Male Infertility – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY. 2009 Dec 3 [updated 2017 Mar 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024.; Francey L.J., Conlin L.K., Kadesch H.E. et al. Genome-wide SNP genotyping identifies the Stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A. 2012 Feb;158A(2):298-308. doi:10.1002/ajmg.a.34391.; Abbasi W., French C.E., Rockowitz S. et al. Evaluation of copy number variants for genetic hearing loss: a review of current approaches and recent findings. Hum Genet. 2022 Apr;141(3-4):387-400. doi:10.1007/s00439-021-02365-1.; Butz M., McDonald A., Lundquist P.A. et al. Development and Validation of a Next-Generation Sequencing Panel for Syndromic and Nonsyndromic Hearing Loss. J Appl Lab Med. 2020 May 1;5(3):467479. doi:10.1093/jalm/jfaa021.; Gabrielaite M., Torp M.H., Rasmussen M.S. et al. A Comparison of Tools for Copy-Number Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data. Cancers (Basel). 2021 Dec 14;13(24):6283. doi:10.3390/cancers13246283.; Rentas S., Abou Tayoun A. Utility of droplet digital PCR and NGSbased CNV clinical assays in hearing loss diagnostics: current status and future prospects. Expert Rev Mol Diagn. 2021 Feb;21(2):213221. doi:10.1080/14737159.2021.1887731.; Vona B., Hofrichter M.A., Neuner C. et al. DFNB16 is a frequent cause of congenital hearing impairment: implementation of STRC mutation analysis in routine diagnostics. Clin Genet. 2015;87(1):4955. doi:10.1111/cge.12332.; D’haene B., Vandesompele J., Hellemans J. Accurate and objective copy number profiling using real-time quantitative PCR. Methods. 2010 Apr;50(4):262-70. doi:10.1016/j.ymeth.2009.12.007.; Barashkov N.A., Pshennikova V.G., Posukh O.L. et al. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic). PLoS One. 2016 May 25;11(5):e0156300. doi:10.1371/journal.pone.0156300.; Пшенникова В.Г., Барашков Н.А., Соловьев А.В. и др. Поиск мутаций в генах GJB6 (Сх30) и GJB3 (Сх31) у глухих пациентов с моноаллельными мутациями гена GJB2 (Сх26) в Якутии. Генетика. 2017;53(6):705-715. DOI 10.7868/S0016675817030109.; Романов Г.П., Барашков Н.А., Терютин Ф.М. и др. Брачная структура, репродуктивные параметры и мутации гена GJB2 (СX26) у глухих людей в Якутии. Генетика. 2018;54(5):547-555. DOI 10.7868/S0016675818050053.; Marková S.P., Brožková D.Š., Laššuthová P. et al. STRC Gene Mutations, Mainly Large Deletions, are a Very Important Cause of Early-Onset Hereditary Hearing Loss in the Czech Population. Genet Test Mol Biomarkers. 2018 Feb;22(2):127-134. doi:10.1089/gtmb.2017.0155.; Миронович ОЛ. Генетическая гетерогенность несиндромальной и имитирующей ее синдромальной тугоухости: специальность 03.02.07 «Генетика»: диссертация на соискание ученой степени кандидата медицинских наук. 2019:141.; Shearer A.E., Kolbe D.L., Azaiez H. et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med. 2014 May 22;6(5):37. doi:10.1186/gm554.; Monani U.R., Lorson C.L., Parsons D.W. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999 Jul;8(7):1177-83. doi:10.1093/hmg/8.7.1177.

  2. 2
    Academic Journal

    المساهمون: This work was supported by research work of the YSC CMP “Study of the genetic structure and burden of hereditary pathology in the populations of the Republic of Sakha (Yakutia)” and the Ministry of Science and Higher Education of the Russian Federation (FSRG-2023-0003)., Работа выполнена в рамках НИР ЯНЦ КМП «Изучение генетической структуры и груза наследственной патологии в популяциях Республики Саха (Якутия) и Государственного задания Министерства науки и высшего образования РФ (FSRG-2023-0003).

    المصدر: Medical Genetics; Том 22, № 7 (2023); 51-60 ; Медицинская генетика; Том 22, № 7 (2023); 51-60 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2328/1729; Baldwin C.t., Weiss S., Farrer L.A., et al. Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Hum. Mol. Genet. 1995; 4: 1637–1642. https://doi.org/10.1093/hmg/4.9.1637.; Everett L.A., Glaser B., Beck J.C., et al. Pendred Syndrome Is Caused by Pathogenic variants in a Putative Sulphate transporter Gene (PDS). Nat. Genet. 1997; 17: 411–422. https://doi.org/10.1038/ng1297-411.; Abe S., Usami S., Hoover D.M., et al. Fluctuating sensorineural hearing loss associated with enlarged vestibular aqueduct maps to 7q31, the region containing the Pendred gene. Am. J. Med. Genet. 1999; 82: 322–328.; Li X.C., Everett L.A., Lalwani A.K., et al. A pathogenic variant in PDS causes non-syndromic recessive deafness. Nat. Genet. 1998; 18: 215–217. https://doi.org/10.1038/ng0398-215.; Usami S., Abe S., Weston M.D., et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS pathogenic variants. Hum. Genet. 1999; 104: 188–192. doi:10.1007/s004390050933.; Campbell C., Cucci R.A., Prasad S., et al. Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel pathogenic variants and possible genotype-phenotype correlations. Hum. Mutat. 2001; 17: 403–411. https://doi.org/10.1002/humu.1116.; Valvassori G.E., Clemis J.D. the large vestibular aqueduct syndrome. Laryngoscope 1978; 88: 723–728. https://doi.org/10.1002/lary.1978.88.5.723.; Jackler R.K., Luxford W.M., House W.F. Congenital Malformations of the Inner Ear: A Classification Based on Embryogenesis. Laryngoscope 1987; 97: 2–14. https://doi.org/10.1002/lary.5540971301.; Sennaroglu L., Saatci I. A New Classification for Cochleovestibular Malformations. Laryngoscope 2002; 112: 2230–2241. https://doi.org/10.1097/00005537-200212000-00019.; Sennaroğlu L., Bajin M.D. Classification and Current Management of Inner Ear Malformations. Balkan Med. J. 2017; 34: 397–411. https://doi.org/10.4274/balkanmedj.2017.0367.; Pendred V. Deaf-mutism and goitre. The Lancet. 1896; 148: 532. https://doi.org/10.1016/S0140-6736(01)74403-0; Fraser G.R. Association of congenital deafness with goitre (pendred’s syndrome): a study of 207 families. Ann. Hum. Genet. 1965; 28: 201– 249. https://doi.org/10.1111/j.1469-1809.1964.tb00479.x; Royaux I.E., Suzuki K., Mori A., et al. Pendrin, the Protein Encoded by the Pendred Syndrome Gene (PDS), Is an Apical Porter of Iodide in the thyroid and Is Regulated by thyroglobulin in FRtL-5 Cells. Endocrinology. 2000; 141: 839–845. https://doi.org/10.1210/endo.141.2.7303.; Royaux I.E., Wall S.M., Karniski L.P., et al. Pendrin, Encoded by the Pendred Syndrome Gene, Resides in the Apical Region of Renal Intercalated Cells and Mediates Bicarbonate Secretion. Proc. Natl. Acad. Sci. USA 2001; 98: 4221–4226. https://doi.org/10.1073/pnas.071516798.; Scott D.A., Wang R., Kreman t.M., et al. the Pendred Syndrome Gene Encodes a Chloride-Iodide transport Protein. Nat. Genet. 1999; 21: 440–443. https://doi.org/10.1038/7783.; Scott D.A., Karniski L.P. Human Pendrin Expressed in Xenopus Laevis Oocytes Mediates Chloride/Formate Exchange. Am. J. Physiol. Cell Physiol. 2000; 278: 207–211. https://doi.org/10.1152/ajpcell.2000.278.1.C207.; Soleimani M. Molecular physiology of the renal chloride-formate exchanger. Curr. Opin. Nephrol. Hypertens. 2001; 10: 677–683. https://doi.org/10.1097/00041552-200109000-00020.; Pedemonte N., Caci E., Sondo E., et al. thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 2007; 178: 5144– 5153. https://doi.org/10.4049/jimmunol.178.8.5144; Dossena S., Bernardinelli E., Sharma A.K., et al. the Pendrin Polypeptide. In the Role of Pendrin in Health and Disease. Springer: Cham. 2017; 187–220. https://doi.org/10.1007/978-3-319-43287-8_11.; Циркин В.И., Трухина С.И., Трухин А.Н. Нейрофизиология: физиология сенсорных систем: учебник для вузов. Москва: Издательство Юрайт, 2020: 459 с.; Wangemann P. the role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 2011; 28: 527–534. https://doi.org/10.1159/000335113; Griffith A.J., Wangemann P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res 2011; 281: 11– 17. https://doi.org/10.1016/j.heares.2011.05.009; Park H.-J., Shaukat S., Liu X.-Z., et al. Origins and Frequencies of SLC26A4 (PDS) Pathogenic variants in East and South Asians: Global Implications for the Epidemiology of Deafness. J. Med. Genet. 2003; 40: 242–248. https://doi.org/10.1136/jmg.40.4.242.; tsukamoto K., Suzuki H., Harada D. et al. Distribution and frequencies of PDS (SLC26A4) pathogenic variants in Pendred Syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: A unique spectrum of pathogenic variants in Japanese. Eur. J. Hum. Genet. 2003; 11: 916–922. https://doi.org/10.1038/sj.ejhg.5201073.; Blons H., Feldmann D., Duval V., et al. Screening of SLC26A4 (PDS) gene in Pendred’s syndrome: A large spectrum of pathogenic variants in France and phenotypic heterogeneity. Clin. Genet. 2004; 66: 333–340. https://doi.org/10.1111/j.1399-0004.2004.00296.x.; Hutchin t., Coy N.N., Conlon H., et al. Assessment of the genetic causes of recessive childhood non-syndromic deafness in the UK— Implications for genetic testing. Clin. Genet. 2005; 68: 506–512. doi:10.1111/j.1399-0004.2005.00539.x.; Pryor S.P., Demmler G.J., Madeo A.C., et al. Investigation of the Role of Congenital Cytomegalovirus Infection in the Etiology of Enlarged Vestibular Aqueducts. Arch. Otolaryngol. Head Neck Surg. 2005; 131: 388–392. https://doi.org/10.1001/archotol.131.5.388.; Albert S., Blons H., Jonard L., et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur. J. Hum. Genet. 2006; 14: 773–779. doi:10.1038/sj.ejhg.5201611.; Guo Y.F., Liu X.W., Guan J., et al. GJB2, SLC26A4 and mitochondrial DNA A1555G pathogenic variants in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol. 2008; 128: 297–303. doi:10.1080/00016480701767382.; Pourová R., Janousek P., Jurovcík M., et al. Spectrum and frequency of SLC26A4 pathogenic variants among Czech patients with early hearing loss with and without Enlarged Vestibular Aqueduct (EVA). Ann. Hum. Genet. 2010; 74: 299–307. doi:10.1111/j.1469-1809.2010.00581.x.; Pang X., Chai Y., Chen P., et al. Mono-allelic pathogenic variants of SLC26A4 is over-presented in deaf patients with non-syndromic enlarged vestibular aqueduct. Int. J. Pediatr. Otorhinolaryngol. 2015; 79: 1351–1353. doi:10.1016/j.ijporl.2015.06.009.; Chai Y., Huang Z., tao Z., et al. Molecular etiology of hearing impairment associated with nonsyndromic enlarged vestibular aqueduct in East China. Am. J. Med. Genet. Part A 2013; 161: 2226–2233. doi:10.1002/ajmg.a.36068.; Miyagawa M., Nishio S.Y., Usami S. Deafness Gene Study Consortium. Pathogenic variant spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 pathogenic variants in the Japanese: A large cohort study. J. Hum. Genet. 2014; 5: 262– 268. https://doi.org/10.1038/jhg.2014.12.; Wu C.C., Yeh t.H., Chen P.J., et al. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia: a unique spectrum of mutations in taiwan, including a frequent founder mutation. Laryngoscope. 2005; 115: 1060-1064. doi:10.1097/01.MLG.0000163339.61909.D0.; tsukada K., Nishio S.Y., Hattori M., et al. Ethnic-specific spectrum of GJB2 and SLC26A4 pathogenic variants: their origin and a literature review. Ann. Otol. Rhinol. Laryngol. 2015; 124 (Suppl. 1): 61–76. https://doi.org/10.1177/0003489415575060.; Erdenechuluun J., Lin Y.-H., Ganbat K., et al. Unique spectra of deafness-associated pathogenic variants in Mongolians provide in-sights into the genetic relationships among Eurasian populations. PLoS ONE. 2018; 13: e0209797. doi:10.1371/journal.pone.0209797.; Xiang Y.B., tang S.H., Li H.Z., et al. Pathogenic variant analysis of common deafness-causing genes among 506 patients with nonsyndromic hearing loss from Wenzhou city, China. Int. J. Pediatr. Otorhinolaryngol. 2019; 122: 185–190. doi:10.1016/j.ijporl.2019.04.024.; Koohiyan M. A systematic review of SLC26A4 pathogenic variants causing hearing loss in the Iranian population. Int. J. Pediatr. Otorhinolaryngol. 2019; 125: 1–5. doi:10.1016/j.ijporl.2019.06.012.; Han J.J., Nguyen P.D., Oh D.Y., et al. Elucidation of the unique pathogenic variant spectrum of severe hearing loss in a Vietnamese pediatric population. Sci. Rep. 2019; 9(1): 1604. doi:10.1038/s41598-018-38245-4.; Zhang M., Han Y., Zhang F., et al. Pathogenic variant spectrum and hotspots of the common deafness genes in 314 patients with nonsyndromic hearing loss in Heze area, China. Acta Otolaryngol. 2019; 139: 612–617. doi:10.1080/00016489.2019.1609699.; tian Y., Xu H., Liu D., et al. Increased diagnosis of enlarged vestibular aqueduct by multiplex PCR enrichment and next-generation sequencing of the SLC26A4 gene. Mol. Genet. Genom. Med. 2021; 9 (8): e1734. doi:10.1002/mgg3.1734.; Roesch S., Rasp G., Sarikas A., et al. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol. Res. 2021; 11(3): 423-442. doi:10.3390/audiolres11030040.; Honda K., Griffith A.J. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum. Genet. 2022; 141(3-4): 455-464. https://doi.org/10.1007/s00439-021-02311-1.; Yang t., Vidarsson H., Rodrigo-Blomqvist S., et al. transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J. Hum. Genet. 2007: 80: 1055–1063. https://doi.org/10.1086/518314.; Yang t., Gurrola J.G., Wu H., et al. Pathogenic variants of KCNJ10 together with pathogenic variants of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am. J. Hum. Genet. 2009; 84(5): 651–657. doi:10.1016/j.ajhg.2009.04.014.; Wu C.C., Lu Y.C., Chen P.J., et al. Phenotypic analyses and pathogenic variant screening of the SLC26A4 and FOXI1 genes in 101 taiwanese families with bilateral nonsyndromic enlarged vestibular aqueduct (DFNB4) or Pendred syndrome. Audiol. Neurootol. 2010; 15: 57–66. https://doi.org/10.1159/000231567.; Chen K., Wang X., Sun L., et al. Screening of SLC26A4, FOXI1, KCNJ10, and GJB2 in bilateral deafness patients with inner ear malformation. Otolaryngol. Head Neck Surg. 2012; 146: 972–978. https://doi.org/10.1177/0194599812439670.; Pique L.M., Brennan M., Davidson C.J., et al. Pathogenic variant analysis of the SLC26A4, FOXI1 and KCNJ10 genes in individuals with congenital hearing loss. PeerJ 2014; 2: e384. https://doi.org/10.7717/peerj.384.; Landa P., Differ A.-M., Rajput K., et al. Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in pendred syndrome/enlarged vestibular aqueducts. BMC Med Genet. 2013; 14: 85. https://doi.org/10.1186/1471-2350-14-85; Klarov L.A., Pshennikova V.G., Romanov G.P., et al. Analysis of SLC26A4, FOXI1, and KCNJ10 Gene Variants in Patients with Incomplete Partition of the Cochlea and Enlarged Vestibular Aqueduct (EVA) Anomalies. International Journal of Molecular Sciences. 2022; 23(23): 15372. https://doi.org/10.3390/ijms232315372; Danilchenko V.Y., Zytsar M.V., Maslova E.A., et al. Insight into the Natural History of Pathogenic Variant c.919-2A>G in the SLC26A4 Gene Involved in Hearing Loss: the Evidence for Its Common Or igin in Southern Siberia (Russia). Genes. 2023, 14: 928. https://doi.org/10.3390/genes14040928; Li M., Nishio S.-Y., Naruse C., et al. Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nat. Commun. 2020; 11: 1343. https://doi.org/10.1038/s41467-020-15198-9; Pryor S.P., Madeo A.C., Reynolds J.C., et al. SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J Med Genet 2005; 42: 159–165. https://doi.org/10.1136/jmg.2004.024208; Azaiez H., Yang t., Prasad S., et al. Genotype-phenotype correlations for SLC26A4-related deafness. Hum Genet. 2007; 122: 451– 457. https://doi.org/10.1007/s00439-007-0415-2; Choi B.Y., Madeo A.C., King K.A., et al. Segregation of enlarged vestibular aqueducts in families with non-diagnostic SLC26A4 genotypes. J Med Genet. 2009; 46: 856–861. https://doi.org/10.1136/ jmg.2009.067892; Chattaraj P., Munjal t., Honda K., et al. A common SLC26A4-linked haplotype underlying non-syndromic hearing loss with enlargement of the vestibular aqueduct. J. Med. Genet. 2017; 10: 665–673. https://doi.org/10.1136/jmedgenet-2017-104721.; Reardon W., Coffey R., Chowdhury t., et al. Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. J. Med. Genet. 1999; 36: 595–598. https://doi.org/10.1136/jmg.36.8.595; Madeo A.C., Manichaikul A., Reynolds J.C., et al. Evaluation of the thyroid in patients with hearing loss and enlarged vestibular aqueducts. Arch. Otolaryngol. Head. Neck. Surg. 2009; 135: 670–676. https://doi.org/10.1001/archoto.2009.66; Ladsous M., Vlaeminck-Guillem V., Dumur V., et al. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid. 2014; 24: 639–648.https://doi.org/10.1089/thy.2013.0164; Soh L.M., Druce M., Grossman A.B., et al. Evaluation of genotype-phenotype relationships in patients referred for endocrine assessment in suspected Pendred syndrome. Eur. J. Endocrinol. 2015; 172:217–226. https://doi.org/10.1530/eje-14-0679; Lee H.J., Jung J., Shin J.W., et al. Correlation between genotype and phenotype in patients with bi-allelic SLC26A4 mutations. Clin. Genet. 2014; 86(3): 270–275. doi:10.1111/cge.12273.; Zhao J., Yuan Y., Huang S., et al. KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects. PLoS ONE 2014; 9(11): e108134. doi:10.1371/journal.pone.0108134.; Danilchenko V.Y., Zytsar M.V., Maslova E.A., et al. Different Rates of the SLC26A4-Related Hearing Loss in two Indigenous Peoples of Southern Siberia (Russia). Diagnostics 2021; 11: 2378. doi.org/10.3390/diagnostics11122378.; tesolin P., Fiorino S., Lenarduzzi S., et al. Pendred Syndrome, or Not Pendred Syndrome? that Is the Question. Genes. 2021; 12(10): 1569. https://doi.org/10.3390/genes12101569; Bałdyga N., Oziębło D., Gan N., et al. the Genetic Background of Hearing Loss in Patients with EVA and Cochlear Malformation. Genes 2023; 14(2): 335. https://doi.org/10.3390/genes14020335; Smits J.J., de Bruijn S.E., Lanting C.P., et al. Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant. Hum. Genet. 2022; 141: 465–484. doi:10.1007/s00439-021-02336-6.; Chao J.R., Chattaraj P., Munjal t. et al. SLC26A4-linked CEVA haplotype correlates with phenotype in patients with enlargement of the vestibular aqueduct. BMC Med Genet 2019; 20 (1): 118. https://doi.org/10.1186/s12881-019-0853-4; https://www.medgen-journal.ru/jour/article/view/2328

  3. 3
    Academic Journal

    المساهمون: This work was supported Ministry of Science and Higher Education of the Russian Federation (FSRG-2023-0003) and YSC CMP project “Study of the genetic structure and burden of hereditary pathology in the populations of the Republic of Sakha (Yakutia)”., Работа выполнена в рамках Государственного задания Министерства науки и высшего образования РФ (FSRG-2023-0003) и НИР ЯНЦ КМП «Изучение генетической структуры и груза наследственной патологии в популяциях Республики Саха (Якутия)».

    المصدر: Medical Genetics; Том 22, № 8 (2023); 3-12 ; Медицинская генетика; Том 22, № 8 (2023); 3-12 ; 2073-7998

    مصطلحات موضوعية: Бурятия, mtDNA, MT-RNR1, m.1555A>G, Buryatia, мтДНК

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2329/1730; Morton C.C., Nance W.E. Newborn hearing screening – a silent revolution. N Engl J Med. 2006; 354(20):2151-64. doi:10.1056/NEJMra050700.; Del Castillo F.J., Del Castillo I. DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front Mol Neurosci. 2017; 10:428. doi:10.3389/fnmol.2017.00428.; Del Castillo I., Morín M., Domínguez-Ruiz M., Moreno-Pelayo M.A. Genetic etiology of non-syndromic hearing loss in Europe. Hum Genet. 2022; 141(3-4):683-696. doi:10.1007/s00439-021-02425-6.; Smith R.J., Bale J.F., White K.R. Sensorineural hearing loss in children. Lancet. 2005; 365: 879–890. https://doi.org/10.1016/S0140-6736(05)71047-3; Lott M.T., Leipzig, J.N., Derbeneva, O. et al. mtDNA variation and analysis using MITOMAP and MITOMASTER. Current Protocols in Bioinformatics. 2013; 1(123):1.23.1-26. URL: http://www.mitomap.org; Prezant T.R., Agapian J.V., Bohlman M.C. et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet. 1993; 4(3):289-94. doi:10.1038/ng0793-289.; Fischel-Ghodsian N., Prezant T.R., Bu X., Oztas S. Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am J Otolaryngol. 1993;14(6):399-403. doi:10.1016/0196-0709(93)90113-l.; Fischel-Ghodsian N., Prezant T.R., Chaltraw W.E., Wendt K.A., Nelson R.A., Arnos K.S., Falk R.E. Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity. Am J Otolaryngol. 1997;18(3):173-8. doi:10.1016/s0196-0709(97)90078-8.; Estivill X., Govea N., Barceló E. et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet. 1998; 62(1):27-35. doi:10.1086/301676.; Hobbie S.N., Bruell C.M., Akshay S. et al. Mitochondrial deafness alleles confer misreading of the genetic code. Proc Natl Acad Sci USA. 2008; 105(9):3244-9. doi:10.1073/pnas.0707265105.; Hutchin T., Haworth I., Higashi K. et al. A molecular basis for human hypersensitivity to aminoglycoside antibiotics. Nucleic Acids Res. 1993; 21(18):4174-9. doi:10.1093/nar/21.18.4174.; Guan M.X., Fischel-Ghodsian N., Attardi G. Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation. Hum Mol Genet. 1996 ;5(7):963-71. doi:10.1093/hmg/5.7.963.; Hamasaki K., Rando R.R. Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness. Biochemistry. 1997; 36(40):12323-8. doi:10.1021/bi970962r.; Greber B.J., Bieri P., Leibundgut M. et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science. 2015; 348(6232):303-8. doi:10.1126/science.aaa3872.; Rovcanin B., Jancic J., Samardzic J. et al. In silico model of mtDNA mutations effect on secondary and 3D structure of mitochondrial rRNA and tRNA in Leber’s hereditary optic neuropathy. Exp Eye Res. 2020; 201:108277. doi:10.1016/j.exer.2020.108277.; Kalapala S.K., Hobbie S.N., Böttger E.C., Shcherbakov D. Mutation K42R in ribosomal protein S12 does not affect susceptibility of Mycobacterium smegmatis 16S rRNA A-site mutants to 2-deoxystreptamines. PLoS One. 2010; 5(8):e11960. doi:10.1371/journal.pone.0011960.; O’Sullivan M., Rutland P., Lucas D. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss. Hum Mol Genet. 2015; 24(4):1036-44. doi:10.1093/hmg/ddu518.; Пшенникова В.Г., Терютин Ф.М., Барашков Н.А., и др. Клинико-аудиологический и генеалогический анализ случаев нарушения слуха в Республике Бурятия. Якутский медицинский журнал. 2020.; 4:44-49.; Pshennikova V.G., Teryutin F.M., Cherdonova A.M. et al. The GJB2 (Cx26) Gene Variants in Patients with Hearing Impairment in the Baikal Lake Region (Russia). Genes. 2023; 14: 1001. https://doi.org/10.3390/genes14051001.; Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi:10.1186/1471-2105-13-134.; Данильченко В.Ю. Анализ генетического контроля наследственной потери слуха в популяциях ряда регионов Сибири: Автореферат диссертации на соискание ученой степени кандидата биологических наук. – Новосибирск, 2022.; Пшенникова В.Г., Терютин Ф.М., Романов Г.П. и др. Локальный очаг накопления митохондриальной формы потери слуха в Эвено-Бытантайском районе Якутии. Якутский медицинский журнал. 2022. 4(80): 91-95. DOI 10.25789/YMJ.2022.80.24.; Журавский С.Г. Сенсоневральная тугоухость: молекулярно-генетические, структурные и лечебно-профилактические аспекты (клинико-экспериментальное исследование): диссертация на соискание ученой степени доктора медицинских наук. – Санкт-Петербург, 2006.; Джемилева Л.У., Посух О.Л., Тазетдинов А.М. и др. Анализ генов 12S rRNA и tRNASer(UCN) мтДНК у больных несиндромальной сенсоневральной тугоухостью/глухотой из различных регионов России. Генетика. 2009. 7(45):982-991.; Романов Г.П., Барашков Н.А., Терютин Ф.М. и др. Частота мутации M.1555A>G гена MT-RNR1 митохондриальной ДНК у индивидуумов с нарушениями слуха в Якутии. Якутский медицинский журнал. 2017; 3(59):49-51.; Abe S., Usami S., Shinkawa H. et al. Phylogenetic analysis of mitochondrial DNA in Japanese pedigrees of sensorineural hearing loss associated with the A1555G mutation. Eur J Hum Genet. 1998; 6(6):563-9. doi:10.1038/sj.ejhg.5200239.; Usami S., Abe S., Akita J. et al. Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet. 2000; 37(1):38-40. doi:10.1136/jmg.37.1.38.; Guo Y.F., Liu X.W., Xu B.C. et al. Analysis of a Large-Scale Screening of Mitochondrial DNA m.1555A>G Mutation in 2417 Deaf–Mute Students in Northwest of China. Genetic Testing and Molecular Biomarkers. 2010; 4(14):527-531.http://doi.org/10.1089/ gtmb.2010.0020; Erdenechuluun J., Lin Y.H., Ganbat K. et al. Unique spectra of deafness-associated mutations in Mongolians provide insights into the genetic relationships among Eurasian populations. PLoS One. 2018; 13(12):e0209797. doi:10.1371/journal.pone.0209797.; Elander J., Ullmark T., Ehrencrona H. et al. Extended genetic diagnostics for children with profound sensorineural hearing loss by implementing massive parallel sequencing. Diagnostic outcome, family experience and clinical implementation. Int J Pediatr Otorhinolaryngol. 2022; 159:111218. doi:10.1016/j.ijporl.2022.111218.; Gu P., Wang G., Gao X. et al. Clinical and molecular findings in a Chinese family with a de novo mitochondrial A1555G mutation. BMC Med Genomics. 2022; 15(1):121. doi:10.1186/s12920-022-01276-y.; Bravo O., Ballana E., Estivill X. Cochlear alterations in deaf and unaffected subjects carrying the deafness-associated A1555G mutation in the mitochondrial 12S rRNA gene. Biochem Biophys Res Commun. 2006; 344(2):511-6. doi:10.1016/j.bbrc.2006.03.143.; López-Bigas N., Rabionet R., Martinez E. et al. Mutations in the mitochondrial tRNA Ser(UCN) and in the GJB2 (connexin 26) gene are not modifiers of the age at onset or severity of hearing loss in Spanish patients with the 12S rRNA A1555G mutation. Am J Hum Genet. 2000; 66(4):1465-7. doi:10.1086/302870.; Gallo-Terán J., Morales-Angulo C., del Castillo I. et al. Incidencia de las mutaciones A1555G en el ADN mitocondrial y 35delG en el gen GJB2 (conexina 26) en familias con hipoacusia neurosensorial postlocutiva no sindrómica en Cantabria [Incidence of A1555G mutations in the mitochondrial DNA and 35delG in the GJB2 gene (connexin-26) in families with late onset non-syndromic sensorineural hearing loss from Cantabria]. Acta Otorrinolaringol Esp. 2002; 53(8):563-71. Spanish. doi:10.1016/s0001-6519(02)78349-0.; Gallo-Terán J., Arellano B., Morales-Angulo C. et al. Prevalencia de la mutación A1555G en el ADN mitocondrial en pacientes con patología auditiva o vestibular debida a la ototoxicidad de los aminoglucósidos [Prevalence of the A1555G mutation in the mitochondrial DNA in patients with cochlear or vestibular damage due to aminoglycoside-induced ototoxicity]. Acta Otorrinolaringol Esp. 2004; 55(5):212-7. Spanish. doi:10.1016/s0001-6519(04)78511-8.; Morales Angulo C., Gallo-Terán J., Señaris B. et al. Prevalencia de la mutación A1555G del gen MTRNR1 en pacientes con hipoacusia postlocutiva sin antecedentes familiares de sordera [Prevalence of the A1555G MTDNA mutation in sporadic hearing-impaired patients without known history of aminoglycoside treatment]. Acta Otorrinolaringol Esp. 2011; 62(2):83-6. Spanish. doi:10.1016/j.otorri.2010.08.003.; Torroni A., Cruciani F., Rengo C. et al. The A1555G mutation in the 12S rRNA gene of human mtDNA: recurrent origins and founder events in families affected by sensorineural deafness. Am J Hum Genet. 1999; 65(5):1349-58. doi:10.1086/302642.; https://www.medgen-journal.ru/jour/article/view/2329

  4. 4
    Academic Journal

    المصدر: Medical Genetics; Том 19, № 7 (2020); 105-106 ; Медицинская генетика; Том 19, № 7 (2020); 105-106 ; 2073-7998

    وصف الملف: application/pdf