يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Т. А. Родина"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Drug development & registration; Том 13, № 2 (2024); 171-180 ; Разработка и регистрация лекарственных средств; Том 13, № 2 (2024); 171-180 ; 2658-5049 ; 2305-2066

    وصف الملف: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1802/1268; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1802/2235; De la Torre B. G., Albericio F. Peptide Therapeutics 2.0. Molecules. 2020;25(10):2293. DOI:10.3390/molecules25102293.; Torchilin V. Intracellular delivery of protein and peptide therapeutics. Drug Discovery Today: Technologies. 2008;5(2–3):e95–e103. DOI:10.1016/j.ddtec.2009.01.002.; Al Shaer D., Al Musaimi O., Albericio F., de la Torre B. G. 2018 FDA Tides Harvest. Pharmaceuticals. 2019;12(2):52. DOI:10.3390/ph12020052.; Al Shaer D., Al Musaimi O., Albericio F., de la Torre B. G. 2019 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals. 2020;13(3):40. DOI:10.3390/ph13030040.; Al Musaimi O., Al Shaer D., Albericio F., de la Torre B. G. 2020 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals. 2021;14(2):145. DOI:10.3390/ph14020145.; Al Shaer D., Al Musaimi O., Albericio F., de la Torre B. G. 2021 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals. 2022;15(2):222. DOI:10.3390/ph15020222.; Al Musaimi O., Al Shaer D., Albericio F., de la Torre B. G. 2022 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals. 2023;16(3):336. DOI:10.3390/ph16030336.; Kaspar A. A., Reichert J. M. Future directions for peptide therapeutics development. Drug Discovery Today. 2013;18(17–18):807–817. DOI:10.1016/j.drudis.2013.05.011.; Apostolopoulos V., Bojarska J., Chai T.-T., Elnagdy S., Kaczmarek K., Matsoukas J., New R., Parang K., Paredes Lopez O., Parhiz H., Perera C. O., Pickholz M., Remko M., Saviano M., Skwarczynski M., Tang Y., Wolf W. M., Yoshiya T., Zabrocki J., Zielenkiewicz P., AlKhazindar M., Barriga V., Kelaidonis K., Mousavinezhad Sarasia E., Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules. 2021;26(2):430. DOI:10.3390/molecules26020430.; Ewles M., Goodwin L. Bioanalytical approaches to analyzing peptides and proteins by LC-MS/MS. Bioanalysis. 2011;3(12):1379–1397. DOI:10.4155/bio.11.112.; Rauh M. LC-MS/MS for protein and peptide quantification in clinical chemistry. Journal of Chromatography B. 2012;883–884:59–67. DOI:10.1016/j.jchromb.2011.09.030.; Fisher E. N., Melnikov E. S., Gegeckori V., Potoldykova N. V., Enikeev D. V., Pavlenko K. A., Agatonovic-Kustrin S., Morton D. W., Ramenskaya G. V. Development and Validation of an LC-MS/MS Method for Simultaneous Determination of Short Peptide-Based Drugs in Human Blood Plasma. Molecules. 2022;27(22):7831. DOI:10.3390/molecules27227831.; Ding J.-S., Peng W.-X., Zhang Z.-H., Li H.-D., Jiang X.-H. Determination of octreotide in human plasma by HPLC-MS with solid-phase extraction and study on the relative bioavailability of domestic and imported octreotide injections. Yao Xue Xue Bao. 2004;39(7):542–545.; Sauter M., Uhl P., Burhenne J., Haefeli W. E. Application of triple quadrupole tandem mass spectrometry to the bioanalysis of collision-induced dissociation-resistant cyclic peptides – Ultra-sensitive quantification of the somatostatin-analog pasireotide utilizing UHPLC-MS/MS. Journal of Pharmaceutical and Biomedical Analysis. 2021;194:113728. DOI:10.1016/j.jpba.2020.113728.; Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. DOI:10.1016/j.peptides.2015.04.012.; Chen Y., Liang Y., Lv R., Xia N., Xue T., Zhao S. An immunological determination of somatostatin in pharmaceutical by sandwich ELISA based on IgY and polyclonal antibody. Microchemical Journal. 2019;145:532–538. DOI:10.1016/j.microc.2018.11.019.; Oh H. S., Choi M., Lee T. S., An Y., Park E. J., Kim T. H., Shin S., Shin B. S. Pharmacokinetics and brain distribution of the therapeutic peptide liraglutide by a novel LC-MS/MS analysis. Journal of Analytical Science and Technology. 2023;14(1):19. DOI:10.1186/s40543-023-00382-5.; Malm-Erjefält M., Bjørnsdottir I., Vanggaard J., Helleberg H., Larsen U., Oosterhuis B., van Lier J. J., Zdravkovic M., Olsen A. K. Metabolism and Excretion of the Once-Daily Human Glucagon-Like Peptide-1 Analog Liraglutide in Healthy Male Subjects and Its In Vitro Degradation by Dipeptidyl Peptidase IV and Neutral Endopeptidase. Drug Metabolism and Disposition. 2010;38(11):1944–1953. DOI:10.1124/dmd.110.034066.; De Souza I. D., Queiroz M. E. C. Advances in sample preparation and HPLC–MS/MS methods for determining amyloid-β peptide in biological samples: a review. Analytical and Bioanalytical Chemistry. 2023;415(18):4003–4021. DOI:10.1007/s00216-023-04631-9.; Hamman J. H., Enslin G. M., Kotzé A. F. Oral Delivery of Peptide Drugs. BioDrugs. 2005;19(3):165–177. DOI:10.2165/00063030-200519030-00003.; Le Maux S., Nongonierma A. B., FitzGerald R. J. Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chemistry. 2015;173:847–854. DOI:10.1016/j.foodchem.2014.10.104.; Doulou E., Kalomiraki M., Parla A., Thermos K., Chaniotakis N. A., Panderi I. Hydrophilic Interaction Liquid Chromatography Coupled with Fluorescence Detection (HILIC-FL) for the Quantitation of Octreotide in Injection Forms. Analytica. 2021;2(4):121–129. DOI:10.3390/analytica2040012.; Kang L., Weng N., Jian W. LC-MS bioanalysis of intact proteins and peptides. Biomedical Chromatography. 2020;34(1): e4633. DOI:10.1002/bmc.4633.; Böttger R., Hoffmann R., Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLOS ONE. 2017;12(6):e0178943. DOI:10.1371/journal.pone.0178943.; Powell M. F. Chapter 30. Peptide Stability in Drug Development: in vitro Peptide Degradation in Plasma and Serum. Annual Reports in Medicinal Chemistry. 1993;28:285–294.; Zee B. M., Garcia B. A. Discovery of lysine post-translational modifications through mass spectrometric detection. Essays in Biochemistry. 2012;52:147–63. DOI:10.1042/bse0520147.; Lin S., Garcia B. A. Examining Histone Posttranslational Modification Patterns by High-Resolution Mass Spectrometry. Methods in Enzymology. 2012;512:3–28. DOI:10.1016/B978-0-12-391940-3.00001-9.; Bonaldi T., Imhof A., Regula J. T. A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications. Proteomics. 2004;4(5):1382–1396. DOI:10.1002/pmic.200300743.; https://www.pharmjournal.ru/jour/article/view/1802

  2. 2
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of publicly funded research project No. 056-00001-22-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022400082-4), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00001-22-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022400082-4)

    المصدر: Safety and Risk of Pharmacotherapy; Том 10, № 2 (2022); 139-150 ; Безопасность и риск фармакотерапии; Том 10, № 2 (2022); 139-150 ; 2619-1164 ; 2312-7821

    وصف الملف: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/251/548; https://www.risksafety.ru/jour/article/downloadSuppFile/251/260; van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734– 44. https://doi.org/10.1128/AAC.01568-12; King DW, Smith MA. Proliferative responses observed following vancomycin treatment in renal proximal tubule epithelial cells. Toxicol In Vitro. 2004;18(6):797– 803. https://doi.org/10.1016/j.tiv.2004.03.013; Elyasi S, Khalili H, Hatamkhani S, Dashti- Khavidaki S. Prevention of vancomycin induced nephrotoxicity: a review of preclinical data. Eur J Clin Pharmacol. 2013;69(4):747–54. https://doi.org/10.1007/s00228-012-1406-3; Ponce D, Zorzenon CDPF, Dos Santos NY, Teixeira UA, Balbi AL. Acute kidney injury in intensive care unit patients: a prospective study on incidence, risk factors and mortality. Rev Bras Ter Intensiva. 2011;23(3):321–6. https://doi.org/10.1590/S0103-507X2011000300010; Iwamoto T, Kagawa Y, Kojima M. Clinical efficacy of therapeutic drug monitoring in patients receiving vancomycin. Biol Pharm Bull. 2003;26(6):876–9. https://doi.org/10.1248/bpb.26.876; Al-Dorzi HM, Eissa AT, Al-Harbi SA, Aldabbagh T, Khan RM, Arabi YM. Antibiotic dosing errors in critically ill patients with severe sepsis or septic shock. In: 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15–18 March 2016. Crit Care. 2016;20(Suppl 2):94. https://doi.org/10.1186/s13054-016-1208-6; Wong-Beringer A, Joo J, Tse E, Beringer P. Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents. 2011;37(2):95–101. https://doi.org/10.1016/j.ijantimicag.2010.10.013; Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol. 2012;68(9):1243–55. https://doi.org/10.1007/s00228-012-1259-9; Shen WC, Chiang YC, Chen HY, Chen TH, Yu FL, Tang CH, Sue YM. Nephrotoxicity of vancomycin in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Nephrology (Carlton). 2011;16(8):697–703. https://doi.org/10.1111/j.1440-1797.2011.01488.x; Hall RG, Giuliano CA, Haase KK, Hazlewood KA, Frei CR, Forcade NA, et al. Empiric guideline-recommended weight-based vancomycin dosing and mortality in methicillin-resistant Staphylococcus aureus bacteremia: a retrospective cohort study. BMC Infect Dis. 2012;12(104):1–5. https://doi.org/10.1186/1471-2334-12-104; Rybak MJ, Lomaestro BM, Rotscahfer JC, Moellering RC, Craig WA, Billeter M, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2009;49(3):325–7. https://doi.org/10.1086/600877; Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 2006;166(19):2138–44. https://doi.org/10.1001/archinte.166.19.2138; Murphy JE, Gillespie DE, Bateman CV. Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters. Am J Health Syst Pharm. 2006;63(23):2365–70. https://doi.org/10.2146/ajhp060047; Bosso JA, Nappi J, Rudisill C, Wellein M, Bookstaver PB, Swindler J, Mauldin PD. Relationship between vancomycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrob Agents Chemother. 2011;55(12):5475–9. https://doi.org/10.1128/AAC.00168-11; Kalil AC, Murthy MH, Hermsen ED, Neto FK, Sun J, Rupp ME. Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: a systematic review and meta-analysis. Crit Care Med. 2010;38(9):1802–8. https://doi.org/10.1097/CCM.0b013e3181eb3b96; Jeffres MN, Isakow W, Doherty JA, Micek ST, Kollef MH. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29(6):1107–15. https://doi.org/10.1016/j.clinthera.2007.06.014; Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can’t get there from here. Clin Infect Dis. 2011;52(8):969–74. https://doi.org/10.1093/cid/cir078; Костицына МА, Загородникова КА, Ряснянский ВЮ, Мурзина АА. Вариабельность концентраций ванкомицина у пациентов с сохранной функцией почек и с почечной недостаточностью при его применении в рутинной клинической практике. Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2016;8(4):67–74.; Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49(4):507–14. https://doi.org/10.1086/600884; Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis. 2011;52(8):975–81. https://doi.org/10.1093/cid/cir124; Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM, O’Sullivan MV, et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2013;57(4):1654–63. https://doi.org/10.1128/AAC.01485-12; Holubar M, Meng L, Deresinski S. Bacteremia due to methicillin-resistant Staphylococcus aureus: new therapeutic approaches. Infect Dis Clin North Am. 2016;30(2):491–507. https://doi.org/10.1016/j.idc.2016.02.009; Álvarez R, López Cortés LE, Molina J, Cisneros JM, Pachón J. Optimizing the clinical use of vancomycin. Antimicrob Agents Chemother. 2016;60(5):2601–9. https://doi.org/10.1128/AAC.03147-14; Jeffres MN. The whole price of vancomycin: toxicities, troughs, and time. Drugs. 2017;77(11):1143–54. https://doi.org/10.1007/s40265-017-0764-7; https://www.risksafety.ru/jour/article/view/251

  3. 3
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022400082-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022400082-4).

    المصدر: Safety and Risk of Pharmacotherapy; Том 9, № 4 (2021); 209-215 ; Безопасность и риск фармакотерапии; Том 9, № 4 (2021); 209-215 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2021-9-4

    وصف الملف: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/243/405; https://www.risksafety.ru/jour/article/downloadSuppFile/243/217; Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14(4):217–30. https://doi.org/10.1038/nrneph.2017.184; Демченкова ЕЮ, Городецкая ГИ, Мазеркина ИА, Журавлева МВ, Казаков АС, Городецкий МВ и др. Актуальные вопросы выявления и мониторинга нежелательных реакций при применении цефалоспориновых антибиотиков. Безопасность и риск фармакотерапии. 2021;9(1):34–42. https://doi.org/10.30895/2312-7821-2021-9-1-34-42; Awdishu L, Mehta RL. The 6R’s of drug induced nephrotoxicity. BMC Nephrol. 2017;18(1):124. https://doi.org/10.1186/s12882-017-0536-3; Pazhayattil GS, Shirali AC. Drug-induced impairment of renal function. Int J Nephrol Renovasc Dis. 2014;7:457–68. https://doi.org/10.2147/ijnrd.s39747; Журавлева МВ, Кукес ВГ, Прокофьев АБ, Сереброва СЮ, Городецкая ГИ, Бердникова НГ. Рациональное применение НПВП — баланс эффективности и безопасности (обзор литературы). Международный журнал прикладных и фундаментальных исследований. 2016;(6–4):687–96.; Тарловская ЕИ, Михайлова ЮВ. Хроническая сердечная недостаточность и частота приема нестероидных противовоспалительных средств: возможные риски по данным локального регистра. Российский кардиологический журнал. 2020;25(1):59–64. https://doi.org/10.15829/1560-4071-2020-1-3677; Harirforoosh S, Asghar W, Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci. 2013;16(5):821–47. https://doi.org/10.18433/j3vw2f; Bomback AS, Markowitz GS. Increased prevalence of acute interstitial nephritis: more disease or simply more detection? Nephrol Dial Transplant. 2013;28(1):16–8. https://doi.org/10.1093/ndt/gfs318; Khalil MAM, Khalil MSUD, Khamis SSA, Alam S, Daiwajna RG, Rajput AS, et al. Pros and cons of aspirin prophylaxis for prevention of cardiovascular events in kidney transplantation and review of evidence. Adv Prev Med. 2019;2019:6139253. https://doi.org/10.1155/2019/6139253; Qu B, He Y, Wu L, Lu H, Wu H, Li M. Is there a cardiovascular protective effect of aspirin in chronic kidney disease patients? A systematic review and meta-analysis. Int Urol Nephrol. 2020;52(2):315–24. https://doi.org/10.1007/s11255-019-02350-8; Рафальский ВВ, Крикова АВ, Павлюченкова НА. Низкодозовый аспирин: разнообразие лекарственных форм. Кардиоваскулярная терапия и профилактика. 2017;16(4):68–75. https://doi.org/10.15829/1728-8800-2017-4-68-75; Халиков РМ, Маликова АШ, Бадретдинова РБ. Воздействие молекул ацетилсалициловой кислоты на ферментативную активность циклооксигеназы. Инновационная наука. 2016;(4–5):68–70.; Мазеркина ИА, Евтеев ВА, Прокофьев АБ, Муслимова ОВ, Демченкова ЕЮ. Экспериментальные модели клеточных линий для скрининга нефротоксичности. Ведомости Научного центра экспертизы средств медицинского применения. 2021;11(3):160–6. https://doi.org/10.30895/1991-2919-2021-11-160-166; Дударева ЛА, Батюшин ММ. Хронический тубулоинтерстициальный нефрит, индуцированный приемом нестероидных противовоспалительных препаратов: эпидемиологические особенности и возможности ранней диагностики. Нефрология. 2013;17(5):22–6.; Nderitu P, Doos L, Jones PW, Davies SJ, Kadam UT. Non-steroidal anti-inflammatory drugs and chronic kidney disease progression: a systematic review. Fam Pract. 2013;30(3):247–55. https://doi.org/10.1093/fampra/cms086; Needs CJ, Brooks PM. Clinical pharmacokinetics of the salicylates. Clin Pharmacokinet. 1985;10(2):164–77. https://doi.org/10.2165/00003088-198510020-00004; Benedek IH, Joshi AS, Pieniaszek HJ, King SY, Kornhauser DM. Variability in the pharmacokinetics and pharmacodynamics of low dose aspirin in healthy male volunteers. J Clin Pharmacol. 1995;35(12):1181–6. https://doi.org/10.1002/j.1552-4604.1995.tb04044.x; Dei Cas M, Rizzo J, Scavone M, Femia E, Podda GM, Bossi E, et al. In-vitro and in-vivo metabolism of different aspirin formulations studied by a validated liquid chromatography tandem mass spectrometry method. Sci Rep. 2021;11(1):10370. https://doi.org/10.1038/s41598-021-89671-w; Zamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity: critical review of the clinical practice. Clin Exp Pharmacol Physiol. 2019;46(4):292–301. https://doi.org/10.1111/1440-1681.13066; https://www.risksafety.ru/jour/article/view/243

  4. 4
    Academic Journal

    المصدر: Pharmacogenetics and Pharmacogenomics; № 2 (2019); 13-15 ; Фармакогенетика и фармакогеномика; № 2 (2019); 13-15 ; 2588-0527 ; 2686-8849

    مصطلحات موضوعية: ген SLCO1B1, эналаприл, ген CES1

    وصف الملف: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/122/122; Tarkiainen EK, Tornio A, Holmberg MT et al. Effect of carboxylesterase 1 c.428G > A single nucleotide variation on the pharmacokinetics of quinapril and enalapril. Br J Clin Pharmacol. 2015;80(5):1131–1138. DOI:10.1111/bcp.12667; Mukae S, Itoh S, Aoki S, Iwata T, Nishio K, Sato R, Katagiri T. Association of polymorphisms of the renin-angiotensin system and bradykinin B2 receptor with ACE-inhibitor-related cough. J Hum Hypertens. 2002;16(12):857–863.; Luo JQ, He FZ, Wang ZM, et al. SLCO1B1 Variants and Angiotensin Converting Enzyme Inhibitor (Enalapril)-Induced Cough: a Pharmacogenetic Study. Sci Rep. 2015;5:17253. DOI:10.1038/srep17253; Родина Т.А., Мельников Е.С., Белков С.А., и др. Экспресс-методика определения эналаприла и его основного метаболита эналаприлата в сыворотке крови человека методом ВЭЖХ-МС/МС // Разработка и регистрация лекарственных средств. –2016. – № 4. – С. 184–189. [Rodina T.A., Melnikov E.S., Belkov S.A., et al. Express method for determination of enalapril and enalaprilat in human serum by HPLC-MS/MS. Drug development & registration. 2016;(4):184–189. (In Russ).]; Журавлева М.В., Прокофьев А.Б., Дмитриев А.И., и др. Особенности фармакокинетики эналаприла у больных артериальной гипертензией в зависимости от скорости клубочковой фильтрации // CardioСоматика. 2019;10(3):37–41. [Zhuravleva MV, Prokofiev AB, Dmitriev AI, et al. Pharmacokinetics of enalapril in patients with arterial hypertension depending on the glomerular filtration rate. Cardiosomatics. 2019;10(3):37–41. (In Russ).] DOI:10.26442/22217185.2019.3.190409; https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/122

  5. 5
    Academic Journal

    المصدر: Regulatory Research and Medicine Evaluation; № 1 (2015); 16-20 ; Регуляторные исследования и экспертиза лекарственных средств; № 1 (2015); 16-20 ; 2619-1172 ; 1991-2919 ; undefined

    وصف الملف: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/21/5; Гусев Е.Н., Белоусов Ю.Б., Гехт А.Б., Бондарева И.Б., Соколов А.В., Тищенкова И.Ф. Лечение эпилепсии: Рациональное дозирование антиконвульсантов. СПб: Речь; 2000.; Карлов В.А. Терапия нервных болезней. М.: Медицина; 2004.; Кукес В.Г., Берри Д., ред. Терапевтический лекарственный мониторинг: инструмент персонализированной медицины. Методические рекомендации. М.: Международная ассоциация клинических фармакологов и фармацевтов; 2013.; Мегдятов Р.С. Невралгия тройничного нерва. М.: Медицина; 1999.; Кукес В.Г., ред. Персонализированная медицина: Клинико-фармакологические аспекты. М.: Международная ассоциация клинических фармакологов и фармацевтов; 2014.; Степанченко А.В., Гречко В.Е., Нейматов Э.М. Краниальные нервы в норме и при патологии. М.:МНПИ; 2001.; Кукес В.Г., ред. Справочник лекарственных средств, которые метаболизируются в организме человека. М.: Международная ассоциация клинических фармакологов и фармацевтов; 2013.; Холодов Л.Е., Яковлев В.П. Клиническая фармакокинетика. М.: Медицина; 1985.; Pienimäki P., Hartikainen A.L., Arvela P., Partanen T., Herva R., Pelkonen O., Vähäkangas K. Carbamazepine and its metabolites in human perfused placenta and in maternal and cord blood. Epilepsia 1995; 36(3): 241-8.; Larry A. Applied Clinical Pharmacokinetics. McGraw-Hill; 2008.; Hung C.C., Chang W.L., Ho J.L., Tai J.J., Hsieh T.J., Huang H.C., Hsieh Y.W., Liou H.H. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics 2012 Jan; 13(2): 159-69.; Serralheiro A., Alves G., Fortuna A., Rocha M., Falcão A. First HPLC-UV method for rapid and simultaneous quantification of phenobarbital, primidone, phenytoin, carbamazepine, carbamazepine-10,11-epoxide, 10,11-trans-dihydroxy-10,11-dihydrocarbamazepine, lamotrigine, oxcarbazepine and licarbazepine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2013; Apr 15: 925.; Sato J., Saitoh T., Notani K., Fukuda H., Kaneyama K., Segami N. Diagnostic significance of carbamazepine and trigger zones in trigeminal neuralgia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004; PMID 14716252.; Guo-qiang Chen, Xiao-song Wang, Lin Wang, Jia-ping Zheng. Arterial compression of nerve is the primary cause of trigeminal neuralgia. Neurol Sci. 2014; 35(1): 61-66.; Кукес В.Г., Грачев С.В., Сычев Д.А. и др. Метаболизм лекарственных средств. Научные основы персонализированной медицины. М.: ГЭОТАР-Медиа; 2008.; USP Drug Information. Volume I: Drug Information for the Health Care Professional.24th ed. Bethesda: Greenwood Village Co; 2004.; Patsalos P.N., Berry D.J., Bourgeois B.F., Cloyd J.C., Glauser T.A., Johannessen S.I., Leppik I.E., Tomson T., Perucca E. Antiepileptic drugs-best practice guidelines for therapeutic drug monitoring: a position paper by the subcommision on therapeutic drug monitoring, ILAE commission on therapeutic strategies. Epilepsia 2008; (49): 1239-76.; Rambeck B., May T.W., Jürgens M.U., Blankenhorn V., Jürges U., Korn-Merker E., Sälke-Kellermann A. Comparison of phenytoin and carbamazepine serum concentrations measured by high-performance liquid chromatography, the standard TDx assay, the enzyme multiplied immunoassay technique, and a new patient-side immunoassay cartridge system. Ther Drug Monit. 1994; (16): 608-12.; Sanchez A., Garcia R., Abadin J.A., Duran J.A. Determination of free serum carbamazepine by protein precipitation with sulphosalicylic acid. Pharm Pharmacol Commun. 1999; (5): 435-438.; Lanças F.M., Sozza M.A., Queiroz M.E. Simultaneous plasma lamotrigine analysis with carbamazepine, carbamazepine-10,11-epoxide, primidone, phenytoin, phenobarbital, and PEMA by micellar electrokinetic capillary chromatography (MECC). J Anal Toxicol 2003; (27): 304-308.; Romanyshyn L.A., Wichmann J.K., Kucharczyk N., Shumaker R.C., Ward D., Sofia R.D. Simultaneous determination of felbamate, primidone, Phenobarbital, carbamazepine, two carbamazepine metabolites, phenytoin and one phenytoin metabolite in human plasma by high-performance liquid chromatography. Ther Drug Monit. 1994; (16): 90-99.; Bhatti M.M., Hanson G.D., Schultz L. Simultaneous determination of phenytoin, carbamazepine, and 10,11-carbamazepine epoxide in human serum by high-performance liquid chromatography with ultra-violet detection. J карбамазепин-10,11-эпоксида, что существенно повышает эффективность и безопасность проведения рациональной фармакотерапии с применением препарата карбамазепина, в частности при НТН.; Queiroz M.E., Silva S.M., Carvalho D., Lancas F.M. Determination of lamotrigine simultaneously with carbamazepine, carbamazepine epoxide, phenytoin, Phenobarbital, and primidone in human plasma by SPME-GC-TSD. J Chromatogr Sci. 2002; 40: 219-23.; Yoshida T., Imai K., Motohashi S., Hamano S., Sato M. Simultaneous determination of zonisamide, carbamazepine and carbamazepine-10,11-epoxide in infant serum by high-performance liquid chromatography. J Pharm Biomed Anal. 2006; (41): 1386-90.; Oh E., Ban E., Woo JS., Kim CK. Analysis of carbamazepine and its active metabolite, carbamazepine-10,11-epoxide, in human plasma using high-performance liquid chromatography. Anal Bioanal Chem. 2006; (386): 1931-36.; Leite C.E., Petersen G.O., Lunardelli A., Thiesen F.V. A high-performance liquid chromatography method for the determination of carbamazepine and car-bamazepine-10,11-epoxide and its comparison with chemiluminescent immunoassay. Clin Chem Lab Med. 2009; (47): 458-63.; Breton H., Cociglio M., Bressolle F., Peyriere H., Blayac J.P., Hillaire-Buys D. Liquid chromatography-electrospray mass spectrometry determination of carbamazepine, oxcarbazepine and eight of their metabolites in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; (828): 80-90.; Subramanian M., Birnbaum A.K., Remmel R.P. High-speed simultaneous determination of nine antiepileptic drugs using liquid chromatography-mass spectrometry. Ther Drug Monit. 2008; (30): 347-56.; Vuckovic D., de Lannoy I., Gien B., et al. Yang Y., Musteata F.M., Shirey R., Sidisky L., Pawliszyn J. In vivo solid-phase microextration for single rodent pharmacokinetics studies of carbamazepine and carbamazepine-10, 11-epoxide in mice.; https://www.vedomostincesmp.ru/jour/article/view/21; undefined

  6. 6
    Academic Journal

    المصدر: Regulatory Research and Medicine Evaluation; Том 7, № 4 (2017); 233-241 ; Регуляторные исследования и экспертиза лекарственных средств; Том 7, № 4 (2017); 233-241 ; 2619-1172 ; 1991-2919 ; undefined

    وصف الملف: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/146/145; Дедов ИИ, Шестакова МВ, Майоров АЮ, Викулова ОК, Галстян ГР, Кураева ТЛ и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Клинические рекомендации. Сахарный диабет 2017; 20(1S): 1-112.; Кукес ВГ, Сычев ДА, Андреев ДА, Архипов ВВ, Батищева ГА, Бердникова НГ и др. Клиническая фармакология. 5-е изд. М.: ГЭОТАР-Медиа; 2015.; Reaven GM. Role of insulin resistance in human disease: Banting lecture 1988. Diabetes 1988; 37(12): 1595-607.; Matschinsky F, Liang Y, Kesavan P, Wang L, Froguel P, Velho G, et al. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest. 1993; 3792(5): 2092-8.; Florez JC. The genetics of type 2 diabetes: a realistic appraisal. J Clin Endocrinol Metab. 2008; 3793(12): 4633-42.; Pearson ER, Donnelly LA, Kimber C, Whitley A, Doney AS, McCarthy MI, et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes 2007; 3756(8): 2178-82.; Шведова АМ. Фармакоэпидемиологическая и фармакоэкономическая оценка пероральной сахароснижающей терапии сахарного диабета 2-го типа в амбулаторной практике. Международный эндокринологический журнал 2007; 4(10). Available from: http://www.mif-ua.com/archive/article/2875.; Шестакова МВ. Реальная клиническая практика лечения сахарного диабета 2 типа в Российской Федерации по данным открытой проспективной наблюдательной программы «ДИА-КОНТРОЛЬ». Сахарный диабет 2011; (4): 75-80.; Ashcroft FM, Gribble FM. ATP-sensitive K+ channels and insulin secretion: their role in helht and disease. Diabetologia 1999; 3742(8): 903-19.; Недосугова ЛВ, Балаболкин МИ. Алгоритм лечения сахарного диабета 2 типа. М.: МедЭкспертПресс; 2008.; Muller G, Hartz D, Punter J, Okonomopulos R, Kramer W. Differential interaction of glimepiride and glibenclamide with the beta-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1994; 371191(2): 267-77.; Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care 1997; 20(7): 1087-92.; Attorrese G, Massi-Benedetti M. Quality and behaviour generic versus amaryl under stress conditions. Diabetes Technology and Therapeutics 2007; 379(3): 287-96.; Cozma LS, Luzio SD, Dunseath GJ, Langendorg KW, Pieber T, Owens DR. Comparison of the effects of three insulinotropic drugs on plasma insulin levels after a standard meal. Diabetes Care 2002; 3725(8): 1271-6.; Hosker JP, Rudenski AS, Burnett MA, Matthews DR, Turner RC. Similar reduction of first- and second-phase β-cell responses at three different glucose levels in type II diabetes and the effect of gliclazide therapy. Metabolism 1989; 3738(8): 767-72.; Davis SN. The role of glimepiride in the effective management of type 2 diabetes. J Diabetes Complications 2004; 3718(6): 367-76.; Holstein A, Plaschke A, Egberts EH. Lower incidence of severe hypoglycaemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide. Diabetes Metab Res Rev. 2001; 3717(6): 467-73.; Schernthaner G, Grimaldi A, Di-Mario U, Drzewoski J, Kempler P, Kvapil M, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest. 2004; 3734(8): 535-42.; Sesti G, Laratta E, Cardellini M, Andreozzi F, Del Guerra S, Irace C, et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5’-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006; 3791(6): 2334-9.; Holstein A, Hahn M, Stumvoll M, Kovacs P. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes. Horm Metab Res. 2009; 3741(5): 387-90.; Nikolac N, Simundic AM, Katalinic D, Topic E, Cipak A, Zjacic Rotkvic V. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch Med Res. 2009; 40(5): 387-92.; Балаболкин МИ, Креминская ВМ, Клебанова ЕМ. Современная тактика лечения сахарного диабета типа 2. Consilium medicum 2001; 373(11): 535-40.; De Fronzo RA, Simonson DC. Oral sulfonylurea agents suppress hepatic glucose production in non-insulin-dependent diabetic individuals. Diabetes Care 1984; 377(1): 72-80.; Klepzig H, Kober G, Matter C, Luus H, Schneider H, Boedeker KH, et al. Sulfonylureas and ischemic preconditioning. A double-blind, placebo-controlled evolution of glimepiride and glibenclamide. Eur Heart J. 1999; 20(6): 439-46.; Nagashima K, Takahashi A, Ikeda H, Hamasaki A, Kuwamura N, Yamada Y, et al. Sulfonylurea and non-sulfonylurea hypoglycemic agents: pharmacological properties and tissue selectivity. Diabetes Res Clin Pract. 2004; 66 (Suppl. 1): S75-8.; Indiana University. Department of Medicine. P450 Drug Interaction Table. Available from: http://medicine.iupui.edu/clinpharm/ddis/ main-table.; Christ OE, Heptner W, Rupp W. Investigations on absorption, excretion and metabolism in man after administration of 14C-labelled HB 419. Horm Metab Res. 1969; 1 (Suppl. l): 51-4.; Peart GF, Boutagy J, Shenfield GM. The metabolism of glyburide in subjects of known debrisoquine phenotype. Clin Pharmacol Ther. 1989; 3745(3): 277-84.; Xu H, Williams KM, Liauw WS, Murray M, Day RO, McLachlan AJ. Effects of St John’s wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide. Br J Pharmacol. 2009; 37153(7): 1579-86.; Abulula M, Baranov V, Vorokhobina N, Zagorodnikova K. CYP2С9 genotype and clinical effects of gliclazide. Clinical Therapeutics 2015; 378(37): e144-e145.; Кукес ВГ, Грачев СВ, Сычев ДА, Раменская ГВ. Метаболизм лекарственных средств: научные основы персонализированной медицины. М.: ГЭОТАР-Медиа; 2008.; Woolf TF, ed. Handbook of drug metabolism. New York: Dekker; 1999.; Becker ML, Visser LE, Trienekens PH, Hofman A, van Schaik RH, Stricker BH. Cytochrome P450 2C9 *2 and *3 polymorphisms and the dose and effect of sulfonylurea in type II diabetes mellitus. Clin Pharmacol Ther. 2008; 3783(2): 288-92.; Suzuki K, Yanagawa T, Shibasaki T, Kaniwa N, Hasegawa R, Tohkin M. Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabetes Res Clin Pract. 2006; 3772(2): 48-54.; Surendiran A, Pradhan SC, Agraval A, Subrahmanyam DK, Rajan S, Anichavezhi D, et al. Influence of CYP2C9 gene polymorphism on response to glibenclamide in type 2 diabetes mellitus patients. Eur J Clin Pharmacol. 2011; 3767(8): 797-801.; Holstein A, Plaschke A, Ptak M, Egberts EH, El-Din J, Brockmoller J, et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglyacemic agents. Br J Clin Pharmacol 2005; 60(1): 103-6.; Ragia G, Petridis I, Tavridou A, Christakidis D, Manolopoulos VG. Presence of CYP2C9*3 allele increases risk for hypoglycemia in Type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics 2009; 10(11): 1781-7.; Шабельникова ОЮ, Бондарь ИА, Филипенко МЛ, Соколова ЕА. Ассоциация полиморфизма гена CYP2C9 с ответом на терапию препаратами сульфонилмочевины в Новосибирской области [Интернет]. Available from: http://rusendo.com/index.php/REC/ VIIREC/paper/view/878.; Tingle M, Burns K, Helsby N. Control of variable CYP2C19 expression within metaboliser categories. UPCP 2012: Up Close and Personalized International Congress on Personalized Medicine 2012, February 25; Florence, Italy. Program and Abstracts. P. 105.; Ледяев ЯМ. Значение фармакокинетического типирования изофермента СУР2С9 и оптимизации фармакотерапии сахарного диабета 2 типа: автореф. дис. канд. мед. наук. Волгоград; 2011.; Аникин ГС. Значение оценки активности изофермента цитохрома Р450 2C9 по фармакокинетике лозартана и его метаболита Е-3174 для оптимизации фармакотерапии: автореф. дис. … канд. мед. наук. М; 2010.; Lee JE, Ryu DH, Jeong HJ, Kim JH, Jun JE, Kim JS, et al. Extremely elevated international normalized ratio of warfarin in a patient with CYP2C9*1/*3 and thyrotoxicosis. J Korean Med Sci 2014; 3729(9): 1317-9.; Игнатов ЮД, Кукес ВГ, Мазуров ВИ. Клиническая фармакология нестероидных противовоспалительных средств. М.: ГЭОТАР-Медиа; 2010.; Sychev D, Antonov I, Ignatev I, Kasakov R. Advantages of pharmacogenetic approach (polymorphisms of genes CYP2C9 and VKORC1 study) to warfarin dosing, against the standard method for Russian patients with contestant form atrial fibrillation. J Basic and Clinical Pharmacology 2009; 105: 73-74.; Смирнов ВВ, Асланбеков СМ, Сычев ДА, Мирзаев КБ, Казаков РЕ. Активность цитохрома Р450 (CYP2С9), оцененная по лозартановому тесту, как прогностический фактор подбора терапевтической дозы варфарина у пациентов в отдаленные сроки после протезирования клапанов сердца. Российский кардиологический журнал 2015; 126(10): 70-4.; Сычев ДА. Рекомендации для фармацевтических компаний по изучению биотрансформации и транспортеров новых лекарственных средств: дизайн исследований, анализ данных и внесение информации в инструкции по применению. М.; 2009. Available from: https://goo.gl/1xCWuu.; Научное обоснование, разработка и совершенствование методологии оценки взаимозаменяемости лекарственных препаратов для медицинского применения. Отчет о НИР (промежуточный). ФГБУ «НЦЭСМП» Минздрава России; рук.: Романов БК, Прокофьев АБ, Ягудина РИ; исполн.: Аляутдин РН, Журавлева МВ. М.; 2016. 365 с. № ГР 115111740009. Деп. в ЦИТИС 26.01.2017, № ИКРБС 217012640056-0.; Букатина ТМ, Казаков АС, Вельц НЮ, Дармостукова МА, Колесникова ЕЮ, Аляутдин РН и др. Ингибиторы натрий-глюкозного котранспортера 2: риск кетоацидоза. Безопасность и риск фармакотерапии 2016; (2): 33-9.; Чучалин АГ, Хохлов АЛ, ред. Федеральное руководство по использованию лекарственных средств (формулярная система). Выпуск XVIII. М.: Видокс; 2017.; https://www.vedomostincesmp.ru/jour/article/view/146; undefined