يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Татьяна Александровна Гудашева"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Pharmacokinetics and Pharmacodynamics; № 3 (2018); 37-41 ; Фармакокинетика и Фармакодинамика; № 3 (2018); 37-41 ; 2686-8830 ; 2587-7836

    وصف الملف: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/68/68; Zuccato C., Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nature reviews. Aeurology. 2009;5:311- 322.; Schmidt HD, Duman RS. Peripheral BDNF Produces Antidepressant-Like Effects in Cellular and Behavioral Models. Aeuropsychopharmacology. 2010;35:2378- 2391.; Castren E., Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Developmental Aeurobiology. 2010;70:289- 297. DOI: http:// dx.doi.org/10.1002/dneu.20758; BDNF Study Group (Phase III). Aeurology. 1999;52:1427- 1433.; Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res. 1996;36:280- 286.; Гудашева Т.А., Тарасюк А.В., Помогайбо С.В., и др. Дизайн и синтез дипептидных миметиков мозгового нейротрофического фак тора // Биоорганическая химия. - 2012; - Т38. - №3: - С.280- 290.; Гудашева Т.А., Тарасюк А.В., Сазонова Н.М., и др. Новый дипептидный миметик мозгового нейротрофического фактора селективно активирует сигнальный путь MAPK-Erk // Доклады Академии наук. - 2017. - Т.476. - №1. - С. 108-112. DOI:10.7868/S0869565217250235; Jackson GR, Werrbach-Perez K., Ezell EL, et al. Nerve growth factor effects on pyridine nucleotides after oxidant injury of rat pheochromocytoma cells. Brain Res. 1992;592(1-2):239- 248.; Kanazawa I. How do neurons die in neurodegenerative diseases? Trends Mol Med. 2001;7(8):339- 344.; https://www.pharmacokinetica.ru/jour/article/view/68

  2. 2
    Academic Journal

    المساهمون: Работа была выполнена при поддержке РФФИ (проект № 18-015-00228).

    المصدر: Pharmacokinetics and Pharmacodynamics; № 4 (2018); 37-41 ; Фармакокинетика и Фармакодинамика; № 4 (2018); 37-41 ; 2686-8830 ; 2587-7836

    وصف الملف: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/74/74; Allen SJ, Watson JJ, Shoemark DK, et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–175. DOI:10.1016/j.pharmthera.2013.01.004; Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med. 2012;10(1):239. DOI:10.1186/1479-5876-10-239; Dunkel P, Chai CL, Sperl gh B, et al. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic lateral sclerosis. ExpertOpinInvestigDrugs. 2012;21(9):1267–1308. DOI:10.1517/13543784.2012.703178; Антипова Т.А., Гудашева Т.А., Середенин С.Б. Исследование invitro нейропротективных свойств нового оригинального миметика фактора роста нервов ГК-2 // Бюллетень экспериментальной биологии и медицины. – 2010. – Т. 150. – № 11. – С.5 37-540. [Antipova TA, Gudasheva TA, Seredenin SB. In vitro study of neuroprotective properties of GK-2, a new original nerve growth factor mimetic. Bulleten experimentalnoy biologii i medicini. 2011;150(5):607–9. (in Russ).].; Гудашева Т.А., Тарасюк А.В., Помогайбо СВ и др. Дизайн и синтез дипептидных миметиков мозгового нейротрофического фактора // Биоорганическая Химия. – 2012. – Т. 38. – № 3. – С. 280–290. [Gudasheva TA, Tarasyuk AV., Pomogaybo SV, et al. Design and synthesis of dipeptide mimetics of brain-derived neurotrophic factor. Bioorganicheskaya chimiya. 2012;38(3):280–90. (In Russ).]; Gudasheva TA, Povarnina PY, Antipova TA, et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J Biomed Sci. 2015;22(5):106. DOI:10.1186/s12929-015-0198-z; Gudasheva TA, Povarnina P, Logvinov IO, et al. Mimetics of brainderived neurotrophic factor loops 1 and 4 are active in a model of ischemic stroke in rats. Drug Des Devel Ther. 2016;10:3545–3553. DOI:10.2147/DDDT.S118768; Povarnina P, Gudasheva TA, Seredenin SB. Dimeric dipeptide mimetics of NGF and BDNF are promising agents for post-stroke therapy. JBiomedSciEng. 2018;11(5):100–107. DOI:10.4236/jbise.2018.115009; Середенин С.Б., Поварнина П.Ю., Гудашева Т.А. Экспериментальная оценка терапевтического окна нейропротективной активности препарата ГК-2, низкомолекулярного миметика фактора роста нервов // Журнал неврологии и психиатрии имени С.С. Корсакова. – 2018. – Т. 118. – № 7. – С. 49–53. DOI:10.17116/jnevro20181187149 [Seredenin SB, Povarnina PY, Gudasheva TA, et al. An experimental evaluation of the therapeutic window of the neuroprotective activity of a low-molecular nerve growth factor mimetic GK-2. Zhurnal Nevrol i psikhiatrii im SS Korsakova. 2018;118(7):49. (in Russ).].; Karpukhina OV, Gumargalieva KZ, Inozemtsev AN. The effect of antioxidant compounds on oxidative stress in unicellular aquatic organisms. In: On the borders of physics, chemistry, biology, medicine and agriculture. Research and Development. Torun: Institute for Engineering of polymer materials and Dues. 2014:145–151.; Morgunov IG, Karpukhina OV, Kamzolova SV, et al. Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum. Prep Biochem Biotechnol. 2018;48(1):1–5. DOI:10.1080/10826068.2017.1381622; Simmons SO, Fan C-Y, Yeoman K, et al. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent. Curr Chem Genomics. 2011;5:1–12. DOI:10.2174/1875397301105010001; Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1(6):529–539. DOI:10.2174/1568026013394831; Flora SJS, Mittal M, Mehta A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res. 2008;128(4):501– 523. DOI:10.1093/jexbot/53.366.1; Pryor WA. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;48:657–667. DOI:10.1146/annurev.physiol.48.1.657; Tanabe H, Nishi N, Takagi Y, et al. Purification and identification of a growth factor produced by Paramecium tetraurelia. Biochem Biophys Res Commun. 1990;170(2):786–792. DOI:10.1016/0006-291X(90)92160-2; Rasmussen MI, Wheatley DN. Purification and characterisation of cell survival factor 1 (TCSF1) from Tetrahymena thermophila. J Cell Commun Signal. 2007;1(3-4):185–193. DOI:10.1007/s12079-007-0016-9; Гудашева ТА, Антипова ТА, Середенин СБ. Новые низкомолекулярные миметики фактора роста нервов. Доклады Академии Наук. 2010;4(1):549–552. [Gudasheva TA, Antipova TA, Seredenin SB. Novel lowmolecular-weight mimetics of the nerve growth factor. Dokl Biochem Biophys. 2010 Sep-Oct;434:262-5. (In Russ).] DOI:10.1134/S160767291005011X; https://www.pharmacokinetica.ru/jour/article/view/74

  3. 3
    Academic Journal

    المصدر: Pharmacokinetics and Pharmacodynamics; № 3 (2017); 3-13 ; Фармакокинетика и Фармакодинамика; № 3 (2017); 3-13 ; 2686-8830 ; 2587-7836

    وصف الملف: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/20/20; Barde Y.A., Davies A.M., Johnson J.E., Lindsay R.M., Thoenen H. Brain-derived neurotrophic factor. Prog Brain Res. 1987; 71: 185-189.; Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., Lu B, Weinberger D.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003; 112: 2: 257-269.; Bath K.G., Lee F.S. Variant BDNF (Val66Met) impact on brain structure and function. Cogn. Affect Behav. Neurosci. 2006; 6: 1: 79-85.; Maisonpierre P.C., Belluscio L., Friedman B., Alderson R.F., Wiegand S.J., Furth M.E., Lindsay R.M., Yancopoulos G.D. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron. 1990; 5: 4: 501-509.; Altman J., Bayer S.A. The development of the rat spinal cord. Advances in Anatomy, Embryology, and Cell Biology. 1984; 85: 1-164.; Bayer S., Altman J. Development of the telencephalon: neural stem cells, neurogenesis and neuronal migration in The Rat Nervous System. G. Paxinos, Ed., Elsevier, Waltham, Mass, USA. 2004: 27-73.; Jones K.R., Farinas I., Backus C., Reichardt L.F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell. 1994; 76: 6: 989-999.; Ernfors P., Lee K.F., Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature. 1994; 368: 6467: 147-150.; Schwartz P.M., Borghesani P.R., Levy R.L., Pomeroy S.L., Segal R.A. Abnormal cerebellar development and foliation in BDNF (-/-) mice reveals a role for neurotrophins in CNS patterning. Neuron. 1997; 19: 2: 269-281.; Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001; 21: 17: 6706-6717.; Scharfman H., Goodman J., Macleod A., Phani S., Antonelli C., Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Experimental Neurology. 2005; 192: 2: 348-356.; Danzer S.C., Crooks K.R.C., Lo D.C., McNamara J.O. Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J. Neurosci. 2002; 22: 9754-9763.; Gottmann K., Mittmann T., Lessmann V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Experimental Brain Research. 2009; 199: 3-4: 203-234.; Gärtner A., Polnau D.G., Staiger V., Sciarretta C., Minichiello L., Thoenen H., Bonhoeffer T., Korte M. Hippocampal long-termpotentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cy signaling. J. Neurosci. 2006; 26: 13: 3496-3504.; Pozzo-Miller L.D., Gottschalk W., Zhang L., McDermott K., Du J., Gopalakrishnan R., Oho C., Sheng Z.H., Lu B. Pozzo-Miller L.D., Gottschalk W., Zhang L., McDermott K., Du J., Gopalakrishnan R., Oho C., Sheng Z.H., Lu B. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci. 1999; 19: 12: 4972-4983.; Korte M., Carroll P., Wolf E., Brem G., Thoenen H., Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America. 1995; 92: 19: 8856-8860.; Korte M., Griesbeck O., Gravel C., Carroll P., Staiger V., Thoenen H., Bonhoeffer T. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Nat. Acad. Sci. USA. 1996; 93: 22: 12547-12552.; Xu B., Gottschalk W., Chow A, Wilson R.I., Schnell E., Zang K., Wang D., Nicoll R.A., Lu B., Reichardt L.F. The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving trkB. J. Neurosci. 2000; 20: 18: 6888-6897.; Kramar E.A., Chen L.Y., Lauterborn J.C., Simmons D.A., Gall C.M., Lynch G. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiology of Aging. 2012; 33: 4: 708-719.; Caldeira M.V., Melo C.V., Pereira D.B., Carvalho R.F., Carvalho A.L., Duarte C.B. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons Molecular and Cellular Neuroscience. 2007; 35: 2: 208-219.; Zhu S.W., Yee B.K., Nyffeler M., Winblad B., Feldon J., Mohammed A.H. Influence of differential housing on emocional behavior and neurotrophin levels in mice. Behav. Brain Res. 2006; 169: 10-20.; Kesslak J.P., Chuanq K.R., Berchtold N.C. Spatial learning is delayed and brain-derived neurotrohpic factor mRNA expression inhibited by administration of MK-801 in rats. Neurosci. Lett. 2003; 353: 2: 95-98.; Cirulli А., Berry A., Chiarotti F., Alleva E. Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus. 2004; 14: 7: 802-807.; Koponen E.,Voikar V., Riekki R., Saarelainen T., Rauramaa T., Rauvala H., Taira T., Castrén E. Transgenic mice overexpressing the full-length neurotrophin receptor TrkB exhibit increased activation of the TrkB-PLCgamma pathway, reduced anxiety, and facilitated learning. Mol. Cell. Neurosci. 2004; 26: 1: 166-181.; Alonso M., Vianna M.R., Depino A.M., Mello e Souza T., Pereira P., Szapiro G., Viola H., Pitossi F., Izquierdo I., Medina J.H. BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus. 2002; 12: 4: 551-560.; Shirayama Y., Chen A.C., Nakagawa S., Russell D.S., Duman R.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 2002; 22: 3251-3261.; Hoshaw B.A., Malberg J.E., Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res. 2005; 1037: 204-208.; Hu Y., Russek S.J. BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J. Neurochem. 2008; 105: 1-17.; Tikhova M., Kulikov A.V. Antidepressant-like effects of central BDNF administration in mice of antidepressant sensitive catalepsy (ASC) strain. Chin J. Physiol. 2012; 55: 4: 284-293.; Naumenko V.S., Kondaurova E.M., Bazovkina D.V., Tsybko A.S., Tikhonova M.A., Popova N.K. Effect of brain-derived neurotrophic factor on behavior and key members of the brain seretonon system in genetically predisposed to behavioral disorders mouse strains. Neurosci. 2012; 214: 59-67.; Polyakova M., Stuke K., Schuemberg K., Mueller K., Schoenknecht P., Schroeter M.L. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J. Affect. Disord. 2015; 174: 432-440.; Autry A.E., Monteggia L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 2012; 64: 2: 238-258.; Karege F., Vaudan G., Schwald M., Perroud N., La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Mol. Brain Res. 2005; 136: 1-2: 29-7.; Jiang C., Salton R. The Role of Neurotrophins in Major Depressive Disorder. Transl. Neurosci. 2013; 4: 1: 46-58.; Wainwright S.R., Galea L.A. The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA NCAM within the hippocampus. Neural. Plast. 2013; 805497.; Dwivedi Y. Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression. Am. J. Geriatr. Psychiatry. 2013; 21: 5: 433-449.; McKinnon M.C., Yucel K., Nazarov A., MacQueen G.M. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J. Psychiatry and Neurosci. 2009; 34: 1: 41-54.; Cobb J.A., Simpson J., Mahajan G.J., Overholser J.C., Jurjus G.J., Dieter L., Herbst N., May W., Rajkowska G., Stockmeier C.A. Hippocampal volume and total cell numbers in major depressive disorder. J. Psychiatric Res. 2013; 47: 3: 299-306.; Boldrini M., Santiago A.N., Hen R., Dwork A.J., Rosoklija G.B., Tamir H., Arango V., John Mann J. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacol. 2013; 38: 6: 1068-1077.; Castren E. Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol. 2004; 4: 58-64.; Pandey G.N., Ren X., Rizavi H.S., Conley R.R., Roberts R.C., Dwivedi Y. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int. J. Neuropsychopharmacol. 2008; 11: 1047-1061.; Pham K., Nacher J., Hof P.R., McEwen B.S. Repeated restraint stress suppresses neurogenesis and induces biphasic PSANCAM expression in adult rat dentate gyrus. Eur. J. Neurosci. 2003; 17: 879-886.; Masi G., Brovedani P. The Hippocampus, Neurotrophic Factors and Depression. Possible implications for the pharmacotherapy of depression. CNS Drugs. 2011; 25: 11: 913-932.; Saarelainen T., Hendolin P., Lucas G., Koponen E., Sairanen M., MacDonald E., Agerman K., Haapasalo A., Nawa H., Aloyz R., Ernfors P., Castrén E. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for anti-depressant-induced behavioral effects. J. Neurosci. 2003; 23: 1: 349-357.; Santarelli L., Saxe M., Gross C., Surget A., Battaglia F., Dulawa S., Weisstaub N., Lee J., Duman R., Arancio O., Belzung C., Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003; 301: 805-809.; Phillips L.J., McGorry P.D., Garner B., Thompson K.N., Pantelis C., Wood S.J., Berqer G. Stress, the hippocampus and the hypothalamic-pituitary-adrenal axis: implication for the development of psychotic disorders. Aust. N. Z. J. Psychiatry. 2006; 40: 9: 725-741.; Figlewicz D.P. Endocrine regulation of neurotransmitter transport. Epilepsy Res. 1999; 37: 203-210.; Huang G.J., Herbert J. The role of 5-HT1A receptors in the proliferation and survival of progenitor cells in the dentate gyrus of the adult hippocampus and their regulation by corticoids. Neurosci. 2005; 135: 803-813.; Merlio J.P., Ernfors P., Jaber M., Persson H. Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system. Neurosci. 1992; 51: 513-532.; Anderson K.D., Alderson R.F., Altar C.A., DiStefano P.S., Corcoran T.L., Lindsay R.M., Wiegand S.J. Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. J. Comp. Neurol. 1995; 357: 296-317.; Lyons W.E., Mamounas L.A., Ricaurte G.A., Coppola V., Reid S.W., Bora S.H., Wihler C., Koliatsos V.E., Tessarollo L. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Nat. Acad. Sci. USA. 1999; 96: 15239-15244.; Soliman F., Glatt C.E., Bath K.G., Levita L., Jones R.M., Pattwell S.S., JingD., Tottenham N., Amso D., Somerville L.H., Voss H.U., Glover G., Ballon D.J., Liston C., Teslovich T., Van Kempen T., Lee F.S., Casey B.J. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science. 2010; 327: 863-866.; Numata S., Ueno S., Iga J., Yamauchi K., Hongwei S., Ohta K., Kinouchi S., Tayoshi S., Aono M., Kameoka N., Sumitani S., Tomotake M., Kaneda Y., Taniguchi T., Ishimoto Y., Ohmori T. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in schizophrenia is associated with age at onset and symptoms. Neurosci. Lett. 2006; 401: 1-5.; Ribases M., Gratacos M., Fernandez-Aranda F., Bellodi L., Boni C., Anderluh M., Cristina Cavallini M., Cellini E., Di Bella D., Erzegovesi S., Foulon C., Gabrovsek M., Gorwood P., Hebebrand J., Hinney A., Holliday J., Hu X., Karwautz A., Kipman A., Komel R., Nacmias B., Remschmidt H., Ricca V., Sorbi S., Tomori M., Wagner G., Treasure J., Collier D.A., Estivill X. Association of BDNF with restricting anorexia nervosa and minimum body mass index: a family-based association study of eight European populations. Eur. J. Hum. Genet. 2005; 13: 428-434.; Dmitrzak-Weglarz M., Skibinska M., Slopien A., Szczepankiewicz A., Rybakowski F., Kramer L., Hauser J., Rajewski A. BDNF Met66 allele is associated with anorexia nervosa in the Polish population. Psychiatr. Genet. 2007; 17: 245-246.; Knable M.B., Barci B.M., Webster M.J., Meador-Woodruff J, Torrey E.F. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol. Psychiatr. 2004; 9: 609-620.; Weickert C.S., Hyde T.M., Lipska B.K., Herman M.M., Weinberger D.R., Kleinman J.E. Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol. Psychiatry 2003; 8: 592-610.; Suliman S., Hemmings S.M.J., Seedat S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis. Frontiers in Integrative Neurosci. 2013; 7: 55. doi:10.3389/fnint.2013.00055.; Hashimoto K., Koizumi H., Nakazato M., Shimizu E., Iyo M. Role of brain-derived neurotrophic factor in eating disorders: recent findings and its pathophysiological implications. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2005; 29: 499-504.; Lindholm J.S.O., Castrén E. Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Frontiers in Behav. Neurosci. 2014; 8: 143. doi:10.3389/fnbeh.2014.00143.; Rattiner L.M., Davis M., French C.T., Ressler K.J. Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdaladependent fear conditioning. J. Neurosci. 2004; 24: 4796-4806.; Monteggia L.M., Barrot M., Powell C.M., Berton O., Galanis V., Gemelli T., Meuth S., Nagy A., Greene R.W., Nestler E.J. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Nat. Acad. Sci. USA. 2004; 101: 10827-10832.; Kline D.D., Ogter M., Kunze D.L., Katz D.M. Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J. Neurosci. 2010; 30: 5303-5310.; Kaplan D.R., Miller F.D. Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology. 2000; 10: 3: 381-391.; Binder D.K., Scharfman H.E. Brain-derived neurotrophic factor. Growth Factors. 2004; 22: 3: 123-131.; Patapoutian A., Reichardt L.F. Trk receptors: mediators of neurotrophin action. Current Opinion in Neurobiology. 2001; 11: 3: 272-280.; Bibel M., Hoppe E., Barde Y.A. Biochemical and functional interactions between the neurotrophin receptors trk and p75(NTR). EMBO J. 1999; 18: 3: 616-622.; Kraemer B.R., Yoon S.O., Carter B.D. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb. Exp. Pharmacol. 2014; 220: 121-164.; McDonald N.Q., Lapatto R., Murray-Rust J., Gunning J., Wlodawer A., Blundell T.L. New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature. 1991; 354: 6352: 411-414.; Butte M.J., Hwang P.K., Mobley W.C., Fletterick R.J. Crystal structure of neurotrophin-3 homodimer shows distinct regions are used to bind its receptors. Biochemistry. 1998; 37: 48: 16846-16852.; Robinson R.C., Radziejewski C., Spraggon G., Greenwald J., Kostura M.R., Burtnick L.D., Stuart D.I., Choe S., Jones E.Y. The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/ neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci. 1999; 8: 12: 2589-2597.; Ryden M., Murray-Rust J., Glass D., IlagL.L., Trupp M., Yancopoulos G.D., McDonald N.Q., Ibânez. C.F. Functional analysis of mutant neurotrophins deficient in low-affinity binding reveals a role for p75LNGFR in NT-4 signalling. EMBO J. 1995; 14: 1979-1990.; O’Leary P.D., Hughes R.A. Structure-activity relationships of conformationally constrained peptide analogues of loop 2 of brain-derived neurotrophic factor. J. Neurochem. 1998; 70: 1712-1721.; Robinson R.C., Radziejewski C., Stuart D.I., Jones E.Y. Structure of the brain-derived neurotrophic factor/neurotrophin 3 heterodimer. Biochemistry. 1995; 34: 4139-4146.; Ibânez C.F., Ilag L.L., Murray-Rust J., Persson H. An extended surface of binding to Trk tyrosine kinase receptors in NGF and BDNF allows the engineering of a multifunctional pan-neurotrophin. EMBO J. 1993; 12: 2281-2293.; O’Leary P.D., Hughes R.A. Design of potent peptide mimetics of brain-derived neurotrophic factor. J. Biol. Chem. 2003; 28: 11: 25738-25744.; Fletcher J.M., Hughes R.A. Novel monocyclic and bicyclic loop mimetics of brain-derived neurotrophic factor. J. Pept. Sci. 2006; 12: 515-524.; Fletcher J.M., Morton C.J., Zwar R.A., Murray S.S., O'Leary P.D., Hughes R.A. Design of a conformationally defined and proteolytically stable circular mimetic of brain-derived neurotrophic factor. J. Biol. Chem. 2008; 283: 33375-33383.; Xiao J., Hughes R.A., Lim J.Y., Wong A.W., Ivanusic J.J., Ferner A.H., Kilpatrick T.J., Murray S.S. A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination. J. Neurochemistry. 2013; 125: 386-398.; Wong A.W., Giuffrida L., Wood R., Peckham H., Gonsalvez D., Murray S.S., Hughes R.A., Xiao J. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination. Mol. Cell. Neurosci. 2014; 63: 132-140.; Fletcher J.M., Hughes R.A. Modified low molecular weight cyclic peptides as mimetics of BDNF with improved potency, proteolytic stability and transmembrane passage in vitro. Bioorg. Med.Chem. 2009; 17: 26952702.; Massa S.M., Yang T., Xie Y., Shi J., Bilgen M., Joyce J.N., Nehama D., Rajadas J., Longo F.M. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest. 2010; 120: 5: 1774-1785.; Ibânez C.F., Ebendal T., Persson H. Chimeric molecules with multiple neurotrophic activities reveal structural elements determining the specificities of NGF and BDNF. EMBO J. 1991; 10: 8: 2105-2110.; Kron M., Lang M., Adams I.T., Sceniak M., Longo F., Katz D.M. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome. Disease Models & Mechanisms. 2014; 7: 1047-1055.; Kajiya M., Takeshita K., Kittaka M., Matsuda S., Ouhara K., Takeda K., Takata T., Kitagawa M., Fujita T., Shiba H., Kurihara H. BDNF mimetic compound LM22A-4 regulates cementoblast differentiation via the /Akt signaling cascade. Int. Immunopharmacol. 2014; 19: 2: 245-252.; Cardenas-Aguayo M.C., Kazim S.F., Grundke-Iqbal I., Iqbal K. Neurogenic and Neurotrophic Effects of BDNF Peptides in Mouse Hippocampal Primary Neuronal Cell Cultures. PLoS ONE. 2013; 8: 1: 1-18.; Гудашева Т.А., Тарасюк А.В., Помогайбо С.В., Логвинов И.О., Поварнина П.Ю., Антипова Т.А., Середенин С.Б. Дизайн и синтез дипептидных миметиков мозгового нейротрофического фактора. Биоорганическая химия. 2012; 38: 3: 280-290.; Гудашева Т.А., Логвинов И.О., Антипова Т.А., Середенин С.Б. Дипептидный миметик 4-й петли мозгового нейротрофического фактора ГСБ-106 активирует TrkB, Erk, Akt и способствует выживаемости нейронов in vitro. Доклады академии наук. 2013; 451: 5: 577-580.; Логвинов И.О., Антипова Т.А., Гудашева Т.А., Тарасюк А.В., Антипов П.И., Середенин С.Б. Нейропротективные свойства дипептидного миметика мозгового нейротрофического фактора ГСБ-106 в экспериментах in vitro. Бюлл. экспер. биол. и мед. 2013; 155: 3: 319-322.; Gudasheva T.A., Povarnina P.Yu., Logvinov I.O., Antipova T.A., Seredenin S.B. Mimetics of brain-derived neurotrophic factor loops 1 and 4 are active in a model of ischemic stroke in rats. Drug Design, Development and Therapy. 2016;10: 3545-3553.; Середенин С.Б., Воронина Т.А., Гудашева Т.А., Гарибова Т.Л., Молодавкин Г.М., Литвинова С.А., Елизарова О.А., Посева В.И. Антидепрессивный эффект оригинального низкомолекулярного миметика BDNF, димерного дипептида ГСБ-106. Acta Naturae. 2013; 5: 4 (19): 116-120.; Гудашева Т.А., Поварнина П.Ю., Середенин С.Б. Дипептидный миметик мозгового нейротрофического фактора предотвращает нарушение нейрогенеза у стрессированных мышей. Бюлл. экспер. биол. и мед. 2016; 162: 10: 448-451.; https://www.pharmacokinetica.ru/jour/article/view/20