يعرض 1 - 20 نتائج من 741 نتيجة بحث عن '"ТАРГЕТНАЯ ТЕРАПИЯ"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Surgery and Oncology; Том 14, № 4 (2024); 31-42 ; Хирургия и онкология; Том 14, № 4 (2024); 31-42 ; 2949-5857

    وصف الملف: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/754/482; Osterlund P., Salminen T., Soveri L.-M. et al. Repeated centralized multidisciplinary team assessment of resectability, clinical behavior, and outcomes in 1086 Finnish metastatic colorectal cancer patients (RAXO): A nationwide prospective intervention study. Lancet Reg Health Eur 2021;3:100049. DOI:10.1016/j.lanepe.2021.100049; Chow F.C., Chok K.S. Colorectal liver metastases: an update on multidisciplinary approach. World J Hepatol 2019;11(2):150–72. DOI:10.4254/wjh.v11.i2.150; Bregni G., Giasafaki P., Leurquin B. et al. 5MO – Individual patient data (IPD) meta-analysis of randomized phase III trials (RP3) of chemotherapy for resectable colorectal cancer liver metastases (CRCLM): EORTC RP-2145. Ann of Oncol 2024:35(Suppl_1):S1–74. DOI:10.1016/annonc/annonc1477; Rahbari N.N., Reissfelder C., Schulze-Bergkamen H. et al. Adjuvant therapy after resection of colorectal liver metastases: the predictive value of the MSKCC clinical risk score in the era of modern chemotherapy. BMC Cancer 2014;14:174. DOI:10.1186/1471-2407-14-174; Ros J., Salva F., Dopazo C. et al. Liver transplantation in metastatic colorectal cancer: are we ready for it? Br J Cancer 2023;128(10):1797–806. DOI:10.1038/s41416-023-02213-1; Sasaki K., Ruffolo L.I., Kim M.H. et al. The current state of liver transplantation for colorectal liver metastases in the United States: A call for standardized reporting. Ann Surg Oncol 2023;30(5):2769–77. DOI:10.1245/s10434-023-13147-6; Adam R., Piedvache C., Chiche L. et al. Liver transplantation plus chemotherapy versus chemotherapy alone in patients with permanently unresectable colorectal liver metastases (TransMet): results from a multicentre, open-label, prospective, randomised controlled trial. Lancet 2024;404(10458):1107–18. DOI:10.1016/S0140-6736(24)01595-2; Цуканов А.С., Шелыгин Ю.А., Семенов Д.А. и др. Синдром Линча. Современное состояние проблемы. Медицинская генетика 2017;16(2):11–8.; Ciardiello D., Bielo L.B., Napolitano S. et al. Comprehensive genomic profiling by liquid biopsy captures tumor heterogeneity and identifies cancer vulnerabilities in patients with RAS/BRAFV600E wild-type metastatic colorectal cancer in the CAPRI 2-GOIM trial. Ann Oncol 2024:S0923-7534(24)03914-0. DOI:10.1016/j.annonc.2024.08.2334; Федянин М.Ю., Эльснукаева Х.Х.-М., Демидова И.А. и др. Колоректальный рак с мутацией в гене BRAF в Российской Федерации: эпидемиология и клинические особенности. Результаты многоцентрового исследования. Медицинский совет 2021;(S4):52–63. DOI:10.21518/2079-701X-2021-4S-52-63; Kotani D., Bando H., Taniguchi H. et al. Efficacy and safety of combination therapy with binimetinib, encorafenib, and cetuximab for BRAF non-V600E mutated metastatic colorectal cancer: Results from a phase 2 BIG BANG trial (EPOC1703). J Clin Oncol 2024;42(16_suppl):3585. DOI:10.1200/JCO.2024.42.16_suppl.3585; Mulkidjan R.S., Saitova E.S., Preobrazhenskaya E.V. et al. ALK, ROS1, RET and NTRK1-3 gene fusions in colorectal and noncolorectal microsatellite-unstable cancers. Int J Mol Sci 2023;24(17):13610. DOI:10.3390/ijms241713610; Wang F., Zhao Q., Wang Y.-N. et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol 2019;5(10):1504–6. DOI:10.1001/jamaoncol.2019.2963.; Shiu K., André T., Kim T.W. et al. Pembrolizumab versus chemotherapy in microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) metastatic colorectal cancer (mCRC): 5-year follow-up of the randomized phase III KEYNOTE-177 study. Annals of Oncology 2023;34(suppl_2):S1254–335. DOI:10.1016/S0923-7534(23)04149-2; Lenz H.-J., Lonardi S., Elez E. et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment for microsatellite instability-high/mismatch repairdeficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): Expanded efficacy analysis from CheckMate 8HW. J Clin Oncol 2024;42(16_suppl). DOI:10.1200/JCO.2024.42.16_suppl.3503; Chen M., Wang Z., Liu Z. et al. PD-1/PD-L1 Inhibitor plus chemotherapy versus PD-1/PD-L1 inhibitor in microsatellite instability gastrointestinal cancers: A multicenter retrospective study. JCO Precis Oncol 2023:7:e2200463. DOI:10.1200/PO.22.00463; de Langen A.J., Johnson M.L., Mazieres J. et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: a randomised, open-label, phase 3 trial. Lancet 2023;401(10378):733–46. DOI:10.1016/S0140-6736(23)00221-0; Fakih M.G., Salvatore L., Esaki T. et al. Sotorasib plus panitumumab in refractory colorectal cancer with mutated KRASG12C. N Engl J Med 2023;389(23):2125–39. DOI:10.1056/NEJMoa2308795; Siena S., Yamaguchi K., Rodriguez J.C.R. et al. Sotorasib (soto), panitumumab (pani) and FOLFIRI in the first-line (1L) setting for KRASG12C–mutated metastatic colorectal cancer (mCRC): Safety and efficacy analysis from the phase Ib CodeBreaK 101 study. Annals of Oncol 2024;35(suppl_2):S428–81. DOI:10.1016/annonc/annonc1588; Yaeger R., Weiss J., Pelster M.S. et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRASG12C. N Engl J Med 2023;388(1):44–54. DOI:10.1056/NEJMoa2212419; Raghav K., Siena S., Takashima A. et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (DESTINY-CRC02): primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol 2024;25(9):1147–62. DOI:10.1016/S1470-2045(24)00380-2; Tabernero J., Grothey A., Van Cutsem E. et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J Clin Oncol 2021;39(4):273–84. DOI:10.1200/JCO.20.02088; Kopetz S., Yoshino T., Kim T.W. et al. BREAKWATER safety leadin (SLI): Encorafenib + cetuximab (EC) ± chemotherapy for firstline (1L) treatment (tx) of BRAF V600E-mutant (BRAF V600E) metastatic colorectal cancer (mCRC). J Clin Oncol 2022; 40(4_suppl):134. DOI:10.1200/JCO.2022.40.4_suppl.134; Cherny N.I., Dafni U., Bogaerts J. et al. ESMO-magnitude of clinical benefit scale version 1.1. Ann Oncol 2017;28(10):2340–66. DOI:10.1093/annonc/mdx310.; Krech R., Peters S., Kroemer H. et al. Tobacco cessation and the role of ESMO and medical oncologists: addressing the specific needs of cancer patients in times of the COVID-19 pandemic. ESMO Open 2023;8(3):101579. DOI:10.1016/j.esmoop.2023.101579; Shields P.G., Bierut L., Arenberg D. et al. Smoking cessation, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2023;21(3):297–322. DOI:10.6004/jnccn.2023.0013; Choy K.T., Lam K., Kong J.C. Exercise and colorectal cancer survival: an updated systematic review and meta-analysis. Int J Colorectal Dis 2022;37(8):1751–8. DOI:10.1007/s00384-022-04224-5; Agirre-Elordui S., Fernández-Landa J., Olasagasti-Ibargoien J. et al. Physical activity maintenance in colorectal cancer survivors after an exercise intervention applying behaviour change techniques: a systematic review and meta-analysis. J Cancer Surviv 2024. DOI:10.1007/s11764-024-01654-8; Walter V., Jansen L., Hoffmeister M., Brenner H. Smoking and survival of colorectal cancer patients: systematic review and meta-analysis. Ann Oncol 2014;25(8):1517–25. DOI:10.1093/annonc/mdu040; Alwers E., Carr P.R., Banbury B. Smoking behavior and prognosis after colorectal cancer diagnosis: a pooled analysis of 11 studies. JNCI Cancer Spectr 2021;5(5):p.pkab077. DOI:10.1093/jncics/pkab077; Badiani S., Diab J., Woodford E.R. Impact of preoperative smoking on patients undergoing right hemicolectomies for colon cancer. Langenbecks Arch Surg 2022;407(5):2001–9. DOI:10.1007/s00423-022-02486-9. Erratum in: Langenbecks Arch Surg 2022;407(8):3889. DOI:10.1007/s00423-022-02528-2; Park E.R., Perez G.K., Regan S. et al. Effect of sustained smoking cessation counseling and provision of medication vs shorter-term counseling and medication advice on smoking abstinence in patients recently diagnosed with cancer: A randomized clinical trial. JAMA 2020;324(14):1406–18. DOI:10.1001/jama.2020.14581; Scholten P.R., Stalpers L.J., Bronsema I. et al. The effectiveness of smoking cessation interventions after cancer diagnosis: a systematic review and meta-analysis. J Cancer Policy 2024;39:100463. DOI:10.1016/j.jcpo.2023.100463; Haussmann H.J., Fariss M.W. Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine per se. Critical reviews in toxicology 2016;46(8):701–34. DOI:10.1080/10408444.2016.1182116; Hartmann-Boyce J., McRobbie H., Butler A.R. et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2022;9:CD010216. DOI:10.1002/14651858.CD010216.pub5; Lindson N., Butler A.R., McRobbie H. et al. Electronic cigarettes for smoking cessation. Cochrane Database of Syst Rev 2024;1(1):CD010216. DOI:10.1002/14651858.CD010216.pub8; Ansari S.M., Hession P.S., David M. et al. Impact of switching from cigarette smoking to tobacco heating system use on biomarkers of potential harm in a randomized trial. Biomarkers 2024;29(5):298–314. DOI:10.1080/1354750X.2024.2358318; Hatsukami D.K., Benowitz N.L., Rennard S.I. et al. Biomarkers to assess the utility of potential reduced exposure tobacco products. Nicotine Tob Res 2006;8(4):600–22. DOI:10.1080/14622200600858166; Xue J., Yang S., Seng S. Mechanisms of cancer induction by tobacco-specific NNK and NNN. Cancers (Basel) 2014;6(2):1138–56. DOI:10.3390/cancers6021138; Yuan J.M., Butler L.M., Stepanov I., Hecht S.S. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer. Cancer Res 2014;74(2):401–11. DOI:10.1158/0008-5472.CAN-13-3178; Hoang T., Kim H., Kim J. Dietary intake in association with allcause mortality and colorectal cancer mortality among colorectal cancer survivors: A systematic review and meta-analysis of prospective studies. Cancers (Basel) 2020;12(11):3391. DOI:10.3390/cancers12113391; Chan D.S.M., Cariolou M., Markozannes G. et al. Post-diagnosis dietary factors, supplement use and colorectal cancer prognosis: A Global Cancer Update Programme (CUP Global) systematic literature review and meta-analysis. Int J Cancer 2024;155(3): 445–70. DOI:10.1002/ijc.34906

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 13 (2024); 92-98 ; Медицинский Совет; № 13 (2024); 92-98 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8503/7474; Hippocrates. The sacred disease. In: The genuine works of Hippocrates. New York: Dover; 1868; pp. 355-370.; Гармаш ВЯ, Куликов СА. История развития представлений о бронхиальной астме. Наука молодых (Eruditio Juvenium). 2018;6(2):298-307. https://doi.org/10.23888/HMJ201862298-307.; Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716-725. https://doi.org/10.1038/nm.2678.; Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372(9643):1107-1119. https://doi.org/10.1016/S0140-6736(08)61452-X.; Bhakta NR, Woodruff PG. Human asthma phenotypes: from the clinic, to cytokines, and back again. Immunol Rev. 2011;242(1):220-232. https://doi.org/10.1111/j.1600-065X.2011.01032.x.; Ishizaka K, Ishizaka T. Identification of gamma-E-antibodies as a carrier of reaginic activity. J Immunol. 1967;99(6):1187-1198. https://doi.org/10.4049/jimmunol.99.6.1187.; Johansson SG. Raised levels of a new immunoglobulin class (IgND) in asthma. Lancet. 1967;290(7523):951-953. https://doi.org/10.1016/s0140-6736(67)90792-1.; Ishizaka K, Ishizaka T. IgE and reaginic hypersensitivity. Ann N Y Acad Sci. 1971;190:443-456. https://doi.org/10.1111/j.1749-6632.1971.tb13554.x.; Johansson SG. Discovery and development of IgE assays. Clin Exp Allergy. 1997;27(1 Suppl.):60-63. https://doi.org/10.1111/j.1365-2222.1997.tb01828.x.; Johansson SG. The History of IgE: From discovery to 2010. Curr Allergy Asthma Rep. 2011;11(2):173-177. https://doi.org/10.1007/s11882-010-0174-3.; Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105(2):99-106. https://doi.org/10.1016/j.anai.2009.10.002.; Halken S. Prevention of allergic disease in childhood: clinical and epidemiological aspects of primary and secondary allergy prevention. Pediatr Allergy Immunol. 2004;15(16 Suppl.):4-32. https://doi.org/10.1111/j.1399-3038.2004.0148b.x.; Halken S, Jacobsen HP, H0st A, Holmenlund D. The effect of hypo-allergenic formulas in infants at risk of allergic disease. Eur J Clin Nutr. 1995;49(1 Suppl.): S77-83. Available at: https://pubmed.ncbi.nlm.nih.gov/8647067/.; Bell RG. IgE, allergies and helminth parasites: a new perspective on an old conundrum. Immunol Cell Biol. 1996;74(4):337-345. https://doi.org/10.1038/icb.1996.60.; Santiago HC, Nutman TB. Human Helminths and Allergic Disease: The Hygiene Hypothesis and Beyond. Am J Trop Med Hyg. 2016;95(4):746-753. https://doi.org/10.4269/ajtmh.16-0348.; Schoos AM, Chawes BL, F0lsgaard NV. Samandari N, B0nnelykke K, Bisgaard H. Disagreement between skin prick test and specific IgE in young children. Allergy. 2015;70(1):41-48. https://doi.org/10.1111/all.12523.; Nam YH, Lee SK. Comparison between skin prick test and serum immunoglobulin E by CAP system to inhalant allergens. Ann Allergy Asthma Immunol. 2017;118(5):608-613. https://doi.org/10.1016/j.anai.2017.03.005.; Monino-Romero S, Lexmond WS, Singer J, Bannert C, Amoah AS, Yazdanbakhsh M et al. Soluble FceRI: A biomarker for IgE-mediated diseases. Allergy. 2019;74(7):1381-1384. https://doi.org/10.1111/all.13734.; Krishnan KR, Peterson EL, Wegienka G, Havstad S, Johnson CC, Zoratti EM, Ownby DR. Pattern of allergen-specific IgE sensitization relative to total serum IgE concentration in young adults. Ann Allergy Asthma Immunol. 2010;105(5):401-403. https://doi.org/10.1016/j.anai.2010.09.014.; Мачарадзе ДШ. Современные клинические аспекты оценки уровней общего и специфических IgE. Педиатрия. Журнал имени Г.Н. Сперанского. 2017;96(2):121-127. Режим доступа: https://pediatriajournal.ru/archive?-show=357&section=4881.; Agache I, Beltran J, Akdis C, Akdis M, Canelo-Aybar C, Canonica GW et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines - recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1023-1042. https://doi.org/10.1111/all.14221.; Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315-323. https://doi.org/10.1164/rccm.200906-0896OC.; Ilmarinen P, Tuomisto LE, Niemela O, Tommola M, Haanpaa J, Kankaanranta H. Cluster Analysis on Longitudinal Data of Patients with Adult-Onset Asthma. J Allergy Clin Immunol Pract. 2017;5(4):967-978.e3. https://doi.org/10.1016/j.jaip.2017.01.027.; Molimard M, Mala L, Bourdeix I, Le Gros V. Observational study in severe asthmatic patients after discontinuation of omalizumab for good asthma control. Respir Med. 2014;108(4):571-576. https://doi.org/10.1016/j.rmed.2014.02.003.; Henriksen DP, Bodtger U, Sidenius K, Maltbaek N, Pedersen L, Madsen H et al. Efficacy of omalizumab in children, adolescents, and adults with severe allergic asthma: a systematic review, meta-analysis, and call for new trials using current guidelines for assessment of severe asthma. Allergy Asthma Clin Immunol. 2020;16:49. https://doi.org/10.1186/s13223-020-00442-0.; Djukanovic R, Wilson SJ, Kraft M, Jarjour NN, Steel M, Chung KF et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am J Respir Crit Care Med. 2004;170(6):583-593. https://doi.org/10.1164/rccm.200312-1651OC.; Holgate ST, Djukanovic R, Casale T, Bousquet J. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin Exp Allergy. 2005;35(4):408-416. https://doi.org/10.1111/j.1365-2222.2005.02191.x.; Heymann PW, Platts-Mills TAE, Woodfolk JA, Borish L, Murphy DD, Carper HT et al. Understanding the asthmatic response to an experimental rhinovirus infection: Exploring the effects of blocking IgE. J Allergy Clin Immunol. 2020;146(3):545-554. https://doi.org/10.1016/j.jaci.2020.01.035.; Pfaller B, Jose Yepes-Nunez J, Agache I, Akdis CA, Alsalamah M, Bavbek S et al. Biologicals in atopic disease in pregnancy: An EAACI position paper. Allergy. 2021;76(1):71-89. https://doi.org/10.1111/all.14282.; Shakuntulla F, Chiarella SE. Safety of Biologics for Atopic Diseases During Pregnancy. J Allergy Clin Immunol Pract. 2022;10(12):3149-3155. https://doi.org/10.1016/j.jaip.2022.08.013.; Van Rensen EL, Evertse CE, van Schadewijk WA, van Wijngaarden S, Ayre G, Mauad T et al. Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment. Allergy. 2009;64(1):72-80. https://doi.org/10.1111/j.1398-9995.2008.01881.x.; Noga O, Hanf G, Brachmann I, Klucken AC, Kleine-Tebbe J, Rosseau S et al. Effect of omalizumab treatment on peripheral eosinophil and T-lymphocyte function in patients with allergic asthma. J Allergy Clin Immunol. 2006;117(6):1493-1499. https://doi.org/10.1016/j.jaci.2006.02.028.; Hanf G, Brachmann I, Kleine-Tebbe J, Seybold J, Kunkel G, Suttorp N, Noga O. Omalizumab decreased IgE-release and induced changes in cellular immunity in patients with allergic asthma. Allergy. 2006;61(9):1141-1144. https://doi.org/10.1111/j.1398-9995.2006.01180.x.; Riccio AM, Dal Negro RW, Micheletto C, De Ferrari L, Folli C, Chiappori A, Canonica GW. Omalizumab modulates bronchial reticular basement membrane thickness and eosinophil infiltration in severe persistent allergic asthma patients. Int J Immunopathol Pharmacol. 2012;25(2):475-484. https://doi.org/10.1177/039463201202500217.; Solidoro P, Patrucco F, de Blasio F, Brussino L, Bellocchia M, Dassetto D et al. Predictors of reversible airway obstruction with omalizumab in severe asthma: a real-life study. Ther Adv Respir Dis. 2019;13:1753466619841274. https://doi.org/10.1177/1753466619841274.; Hoshino M, Ohtawa J. Effects of adding omalizumab, an anti-immunoglobulin E antibody, on airway wall thickening in asthma. Respiration. 2012;83(6):520-528. https://doi.org/10.1159/000334701.; Tajiri T, Niimi A, Matsumoto H, Ito I, Oguma T, Otsuka K et al. Comprehensive efficacy of omalizumab for severe refractory asthma: a time-series observational study. Ann Allergy Asthma Immunol. 2014;113(4):470-475.e2. https://doi.org/10.1016/j.anai.2014.06.004.; Rabe KF, Calhoun WJ, Smith N, Jimenez P. Can anti-IgE therapy prevent airway remodeling in allergic asthma? Allergy. 2011;66(9):1142-1151. https://doi.org/10.1111/j.1398-9995.2011.02617.x.; Vennera MDC, Sabadell C, Picado C. Duration of the efficacy of omalizumab after treatment discontinuation in ‘real life' severe asthma. Thorax. 2018;73(8):782-784. https://doi.org/10.1136/thoraxjnl-2017-210017.; Baena-Cagnani CE, Teijeiro A, Canonica GW. Four-year follow-up in children with moderate/severe uncontrolled asthma after withdrawal of a 1-year omalizumab treatment. Curr Opin Allergy Clin Immunol. 2015;15(3):267-271. https://doi.org/10.1097/ACI.0000000000000161.; Pelaia C, Calabrese C, Barbuto S, Busceti MT, Preiano M, Gallelli L et al. Omalizumab lowers asthma exacerbations, oral corticosteroid intake and blood eosinophils: Results of a 5-YEAR single-centre observational study. Pulm Pharmacol Ther. 2019;54:25-30. https://doi.org/10.1016/j.pupt.2018.11.002.; Metz M, Vadasz Z, Kocaturk E, Gimenez-Arnau AM. Omalizumab Updosing in Chronic Spontaneous Urticaria: an Overview of Real-World Evidence. Clin Rev Allergy Immunol. 2020;59(1):38-45. https://doi.org/10.1007/s12016-020-08794-6.; Bernstein JA, Kavati A, Tharp MD, Ortiz B, MacDonald K, Denhaerynck K, Abraham I. Effectiveness of omalizumab in adolescent and adult patients with chronic idiopathic/spontaneous urticaria: a systematic review of ‘real-world' evidence. Expert Opin Biol Ther. 2018;18(4):425-448. https://doi.org/10.1080/14712598.2018.1438406.; Goswamy VP, Lee KE, McKernan EM, Fichtinger PS, Mathur SK, Viswanathan RK. Omalizumab for treatment of idiopathic angioedema. Ann Allergy Asthma Immunol. 2022;129(5):605-611.e1. https://doi.org/10.1016/j.anai.2022.07.017.; Vashisht P, Casale T. Omalizumab for treatment of allergic rhinitis. Expert Opin Biol Ther. 2013;13(6):933-945. https://doi.org/10.1517/14712598.2013.795943.; Zhang Y, Yan B, Zhu Z, Wang X, Song X, Zhu D et al. Efficacy and safety of stapokibart (CM310) in uncontrolled seasonal allergic rhinitis (MERAK): an investigator-initiated, placebo-controlled, randomised, double-blind, phase 2 trial. eClinicalMedicine. 2024;69:102467. https://doi.org/10.1016/j.eclinm.2024.102467.; Gevaert P, Calus L, Van Zele T, Blomme K, De Ruyck N, Bauters W et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2013;131(1):110-116.e1. https://doi.org/10.1016/j.jaci.2012.07.047.; Naclerio RM, Baroody FM, Pinto JM. Should clinicians use omalizumab for the treatment of nasal polyps? J Allergy Clin Immunol. 2013;132(1):247. https://doi.org/10.1016/j.jaci.2013.04.001.; Labrosse R, Graham F, Des Roches A, Begin P. The Use of Omalizumab in Food Oral Immunotherapy. Arch Immunol Ther Exp (Warsz). 2017;65(3):189-199. https://doi.org/10.1007/s00005-016-0420-z.; https://www.med-sovet.pro/jour/article/view/8503

  8. 8
    Academic Journal

    المساهمون: This research was supported by Ministry of Health of Russia (No. 122040800129-5), Работа выполнена в рамках государственного задания Минздрава РФ (№ 122040800129-5).

    المصدر: Siberian journal of oncology; Том 23, № 4 (2024); 162-171 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 162-171 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3202/1261; Cyprine Neba Funeh C.N., Asiabi P., D’Huyvetter M., Devoogdt N. Case Study #3: Antibody Fragments in Radiopharmaceutical Therapy. Radiopharmaceutical Therapy. PP. 253–273. doi:10.1007/978-3-031-39005-0_12.; Kuna M., Mahdi F., Chade A.R., Bidwell G.L. 3rd. Molecular Size Modulates Pharmacokinetics, Biodistribution, and Renal Deposition of the Drug Delivery Biopolymer Elastin-like Polypeptide. Sci Rep. 2018; 8(1): 7923. doi:10.1038/s41598-018-24897-9.; Wittrup K.D., Thurber G.M., Schmidt M.M., Rhoden J.J. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol. 2012; 503: 255–68. doi:10.1016/B978-0-12-396962-0.00010-0.; Schmidt M.M., Wittrup K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther. 2009; 8(10): 2861–71. doi:10.1158/1535-7163.MCT-09-0195.; Vivier D., Sharma S.K., Adumeau P., Rodriguez C., Fung K., Zeglis B.M. The Impact of FcγRI Binding on Immuno-PET. J Nucl Med. 2019; 60(8): 1174–82. doi:10.2967/jnumed.118.223636.; Vivier D., Fung K., Rodriguez C., Adumeau P., Ulaner G.A., Lewis J.S., Sharma S.K., Zeglis B.M. The Influence of Glycans-Specific Bioconjugation on the FcγRI Binding and In vivo Performance of 89Zr-DFO-Pertuzumab. Theranostics. 2020; 10(4): 1746–57. doi:10.7150/ thno.39089.; Behr T.M., Goldenberg D.M., Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med. 1998; 25(2): 201–12. doi:10.1007/s002590050216.; Vegt E., de Jong M., Wetzels J.F., Masereeuw R., Melis M., Oyen W.J., Gotthardt M., Boerman O.C. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010; 51(7): 1049–58. doi:10.2967/jnumed.110.075101.; Pimm M.V., Gribben S.J. Prevention of renal tubule re-absorption of radiometal (indium-111) labelled Fab fragment of a monoclonal antibody in mice by systemic administration of lysine. Eur J Nucl Med. 1994; 21(7): 663–5. doi:10.1007/BF00285590.; Behr T.M., Becker W.S., Sharkey R.M., Juweid M.E., Dunn R.M., Bair H.J., Wolf F.G., Goldenberg D.M. Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J Nucl Med. 1996; 37(5): 829–33.; Chigoho D.M., Bridoux J., Hernot S. Reducing the renal retention of low- to moderate-molecular-weight radiopharmaceuticals. Curr Opin Chem Biol. 2021; 63: 219–28. doi:10.1016/j.cbpa.2021.06.008.; Xiong C., Yin D., Li J., Huang Q., Ravoori M.K., Kundra V., Zhu H., Аng Z., Lu Y., Li C. Metformin Reduces Renal Uptake of Radiotracers and Protects Kidneys from Radiation-Induced Damage. Mol Pharm. 2019; 16(2): 808–15. doi:10.1021/acs.molpharmaceut.8b01091.; Gainkam L.O., Caveliers V., Devoogdt N., Vanhove C., Xavier C., Boerman O., Muyldermans S., Bossuyt A., Lahoutte T. Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol Imaging. 2011; 6(2): 85–92. doi:10.1002/cmmi.408.; van Eerd J.E., Vegt E., Wetzels J.F., Russel F.G., Masereeuw R., Corstens F.H., Oyen W.J., Boerman O.C. Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats. J Nucl Med. 2006; 47(3): 528–33.; Briat A., Wenk C.H., Ahmadi M., Claron M., Boturyn D., Josserand V., Dumy P., Fagret D., Coll J.L., Ghezzi C., Sancey L., Vuillez J.P. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging. Cancer Sci. 2012; 103(6): 1105–10. doi:10.1111/j.1349-7006.2012.02286.x.; Melis M., Bijster M., de Visser M., Konijnenberg M.W., de Swart J., Rolleman E.J., Boerman O.C., Krenning E.P., de Jong M. Dose-response effect of Gelofusine on renal uptake and retention of radiolabelled octreotate in rats with CA20948 tumours. Eur J Nucl Med Mol Imaging. 2009; 36(12): 1968–76. doi:10.1007/s00259-009-1196-8.; Chatalic K.L., Heskamp S., Konijnenberg M., Molkenboer-Kuenen J.D., Franssen G.M., Clahsen-van Groningen M.C., Schottelius M., Wester H.J., van Weerden W.M., Boerman O.C., de Jong M. Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising ProstateSpecific Membrane Antigen-Targeted Theranostic Agent. Theranostics. 2016; 6(6): 849–61. doi:10.7150/thno.14744.; Matteucci F., Mezzenga E., Caroli P., Di Iorio V., Sarnelli A., Celli M., Fantini L., Moretti A., Galassi R., De Giorgi U., Paganelli G. Reduction of 68Ga-PSMA renal uptake with mannitol infusion: preliminary results. Eur J Nucl Med Mol Imaging. 2017; 44(13): 2189–94. doi:10.1007/s00259-017-3791-4.; Altai M., Garousi J., Rinne S.S., Schulga A., Deyev S., Vorobyeva A. On the prevention of kidney uptake of radiolabeled DARPins. EJNMMI Res. 2020; 10(1): 7. doi:10.1186/s13550-020-0599-1.; Vorobyeva A., Oroujeni M., Lindbo S., Hober S., Xu T., Liu Y., Rinne S.S., Garousi J. Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules. 2020; 25(19): 4448. doi:10.3390/molecules25194448.; Kuo H.T., Pan J., Zhang Z., Lau J., Merkens H., Zhang C., Colpo N., Lin K.S., Bénard F. Effects of Linker Modification on Tumor-to-Kidney Contrast of 68Ga-Labeled PSMA-Targeted Imaging Probes. Mol Pharm. 2018; 15(8): 3502–11. doi:10.1021/acs.molpharmaceut.8b00499.; Baranski A.C., Schäfer M., Bauder-Wüst U., Wacker A., Schmidt J., Liolios C., Mier W., Haberkorn U., Eisenhut M., Kopka K., Eder M. Improving the Imaging Contrast of 68Ga-PSMA-11 by Targeted Linker Design: Charged Spacer Moieties Enhance the Pharmacokinetic Properties. Bioconjug Chem. 2017; 28(9): 2485–92. doi:10.1021/acs.bioconjchem.7b00458.; Flook A.M., Yang J., Miao Y. Substitution of the Lys linker with the β-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone peptides. J Med Chem. 2014; 57(21): 9010–8. doi:10.1021/ jm501114v.; Hofström C., Altai M., Honarvar H., Strand J., Malmberg J., Hosseinimehr S.J., Orlova A., Gräslund T., Tolmachev V. HAHAHA, HEHEHE, HIHIHI, or HKHKHK: influence of position and composition of histidine containing tags on biodistribution of [(99m)Tc(CO)3] (+)-labeled affibody molecules. J Med Chem. 2013; 56(12): 4966–74. doi:10.1021/jm400218y.; Strand J., Nordeman P., Honarvar H., Altai M., Orlova A., Larhed M., Tolmachev V. Site-Specific Radioiodination of HER2-Targeting Affibody Molecules using 4-Iodophenethylmaleimide Decreases Renal Uptake of Radioactivity. ChemistryOpen. 2015; 4(2): 174–82. doi:10.1002/open.201402097.; Ekblad T., Tran T., Orlova A., Widström C., Feldwisch J., Abrahmsén L., Wennborg A., Karlström A.E., Tolmachev V. Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging. 2008; 35(12): 2245–55. doi:10.1007/s00259-008-0845-7.; Guo H., Yang J., Gallazzi F., Prossnitz E.R., Sklar L.A., Miao Y. Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide. Bioconjug Chem. 2009; 20(11): 2162–8. doi:10.1021/bc9003475.; Mitran B., Thisgaard H., Rinne S., Dam J.H., Azami F., Tolmachev V., Orlova A., Rosenström U. Selection of an optimal macrocyclic chelator improves the imaging of prostate cancer using cobalt-labeled GRPR antagonist RM26. Sci Rep. 2019; 9(1). doi:10.1038/s41598-019-52914-y.; Chatalic K.L., Veldhoven-Zweistra J., Bolkestein M., Hoeben S., Koning G.A., Boerman O.C., de Jong M., van Weerden W.M. A Novel ¹¹¹InLabeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer. J Nucl Med. 2015; 56(7): 1094–9. doi:10.2967/jnumed.115.156729.; D’Huyvetter M., Vincke C., Xavier C., Aerts A., Impens N., Baatout S., De Raeve H., Muyldermans S., Caveliers V., Devoogdt N., Lahoutte T. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014; 4(7): 708–20. doi:10.7150/thno.8156.; Duncan J.R., Behr T.M., DeNardo S.J. Intracellular fate of radiometals. J Nucl Med. 1997; 38(5): 829.; Dietlein M., Kobe C., Kuhnert G., Stockter S., Fischer T., Schomäcker K., Schmidt M., Dietlein F., Zlatopolskiy B.D., Krapf P., Richarz R., Neubauer S., Drzezga A., Neumaier B. Comparison of [(18) F]DCFPyL and [ (68)Ga]Ga-PSMA-HBED-CC for PSMA-PET Imaging in Patients with Relapsed Prostate Cancer. Mol Imaging Biol. 2015; 17(4): 575–84. doi:10.1007/s11307-015-0866-0.; Bala G., Crauwels M., Blykers A., Remory I., Marschall A.L.J., Dübel S., Dumas L., Broisat A., Martin C., Ballet S., Cosyns B., Caveliers V., Devoogdt N., Xavier C., Hernot S. Radiometal-labeled anti-VCAM-1 nano-bodies as molecular tracers for atherosclerosis – impact of radiochemistry on pharmacokinetics. Biol Chem. 2019; 400(3): 323–32. doi:10.1515/hsz-2018-0330.; Maschauer S., Einsiedel J., Hübner H., Gmeiner P., Prante O. (18) F- and (68)Ga-Labeled Neurotensin Peptides for PET Imaging of Neurotensin Receptor 1. J Med Chem. 2016; 59(13): 6480–92. doi:10.1021/acs.jmedchem.6b00675.; Potemkin R., Strauch B., Kuwert T., Prante O., Maschauer S. Development of 18F-Fluoroglycosylated PSMA-Ligands with Improved Renal Clearance Behavior. Mol Pharm. 2020; 17(3): 933–43. doi:10.1021/acs.molpharmaceut.9b01179.; Akizawa H., Imajima M., Hanaoka H., Uehara T., Satake S., Arano Y. Renal brush border enzyme-cleavable linkages for low renal radioactivity levels of radiolabeled antibody fragments. Bioconjug Chem. 2013; 24(2): 291–9. doi:10.1021/bc300428b.; Zhou Z., Devoogdt N., Zalutsky M.R., Vaidyanathan G. An Efficient Method for Labeling Single Domain Antibody Fragments with 18F Using Tetrazine- Trans-Cyclooctene Ligation and a Renal Brush Border Enzyme-Cleavable Linker. Bioconjug Chem. 2018; 29(12): 4090–103. doi:10.1021/acs.bioconjchem.8b00699.; Vaidyanathan G., Kang C.M., McDougald D., Minn I., Brummet M., Pomper M.G., Zalutsky M.R. Brush border enzyme-cleavable linkers: Evaluation for reducing renal uptake of radiolabeled prostate-specific membrane antigen inhibitors. Nucl Med Biol. 2018; 62–63: 18–30. doi:10.1016/j.nucmedbio.2018.05.002.; Suzuki C., Uehara T., Kanazawa N., Wada S., Suzuki H., Arano Y. Preferential Cleavage of a Tripeptide Linkage by Enzymes on Renal Brush Border Membrane To Reduce Renal Radioactivity Levels of Radiolabeled Antibody Fragments. J Med Chem. 2018; 61(12): 5257–68. doi:10.1021/acs.jmedchem.8b00198.; Uehara T., Yokoyama M., Suzuki H., Hanaoka H., Arano Y. A Gallium-67/68-Labeled Antibody Fragment for Immuno-SPECT/PET Shows Low Renal Radioactivity Without Loss of Tumor Uptake. Clin Cancer Res. 2018; 24(14): 3309–16. doi:10.1158/1078-0432.CCR-18-0123.; Zhang M., Jacobson O., Kiesewetter D.O., Ma Y., Wang Z., Lang L., Tang L., Kang F., Deng H., Yang W., Niu G., Wang J., Chen X. Improving the Theranostic Potential of Exendin 4 by Reducing the Renal Radioactivity through Brush Border Membrane Enzyme-Mediated Degradation. Bioconjug Chem. 201; 30(6): 1745–53. doi:10.1021/acs.bioconjchem.9b00280.; Bendre S., Zhang Z., Kuo H.T., Rousseau J., Zhang C., Merkens H., Roxin Á., Bénard F., Lin K.S. Evaluation of Met-Val-Lys as a Renal Brush Border Enzyme-Cleavable Linker to Reduce Kidney Uptake of 68GaLabeled DOTA-Conjugated Peptides and Peptidomimetics. Molecules. 2020; 25(17): 3854. doi:10.3390/molecules25173854.; Suzuki H., Kise S., Kaizuka Y., Watanabe R., Sugawa T., Furukawa T., Fujii H., Uehara T. Copper-64-Labeled Antibody Fragments for Immuno-PET/Radioimmunotherapy with Low Renal Radioactivity Levels and Amplified Tumor-Kidney Ratios. ACS Omega. 2021; 6(33): 21556–62. doi:10.1021/acsomega.1c02516.; Zhang M., Ye J., Xie Z., Yan Y., Wang J., Chen X. Optimization of Enzymolysis Clearance Strategy To Enhance Renal Clearance of Radioligands. Bioconjug Chem. 2021; 32(9): 2108–16. doi:10.1021/acs.bioconjchem.1c00392.; Yim C.B., Mikkola K., Fagerholm V., Elomaa V.V., Ishizu T., Rajander J., Schlesinger J., Roivainen A., Nuutila P., Solin O. Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a Nε-maleoyl-L-lysyl-glycine linkage. Nucl Med Biol. 2013; 40(8): 1006–12. doi:10.1016/j.nucmedbio.2013.06.012.; Nilvebrant J., Hober S. The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J. 2013. doi:10.5936/csbj.201303009.; Dennis M.S., Jin H., Dugger D., Yang R., McFarland L., Ogasawara A., Williams S., Cole M.J., Ross S., Schwall R. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res. 2007; 67(1): 254–61. doi:10.1158/0008-5472.CAN-06-2531.; Krasniqi A., Bialkowska M., Xavier C., van der Jeught K., Muyldermans S., Devoogdt N., D’Huyvetter M. Pharmacokinetics of radiolabeled dimeric sdAbs constructs targeting human CD20. N Biotechnol. 2018; 45: 69–79. doi:10.1016/j.nbt.2018.03.004.; Tolmachev V., Orlova A., Pehrson R., Galli J., Baastrup B., Andersson K., Sandström M., Rosik D., Carlsson J., Lundqvist H., Wennborg A., Nilsson F.Y. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res. 2007; 67(6): 2773–82. doi:10.1158/0008-5472.CAN-06-1630.; Orlova A., Jonsson A., Rosik D., Lundqvist H., Lindborg M., Abrahmsen L., Ekblad C., Frejd F.Y., Tolmachev V. Site-specific radiometal labeling and improved biodistribution using ABY-027, a novel HER2- targeting affibody molecule-albumin-binding domain fusion protein. J Nucl Med. 2013; 54(6): 961–8. doi:10.2967/jnumed.112.110700.; Jonsson A., Dogan J., Herne N., Abrahmsén L., Nygren P.A. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel. 2008; 21(8): 515–27. doi:10.1093/protein/gzn028.; Liu H., Lindbo S., Ding H., Altai M., Garousi J., Orlova A., Tolmachev V., Hober S., Gräslund T. Potent and specific fusion toxins consisting of a HER2-binding, ABD-derived affinity protein, fused to truncated versions of Pseudomonas exotoxin A. Int J Oncol. 2019; 55(1): 309–19. doi:10.3892/ijo.2019.4814.; Kaeppeli S.A.M., Jodal A., Gotthardt M., Schibli R., Béhé M. Exendin-4 Derivatives with an Albumin-Binding Moiety Show Decreased Renal Retention and Improved GLP-1 Receptor Targeting. Mol Pharm. 2019; 16(9): 3760–9. doi:10.1021/acs.molpharmaceut.9b00271.; Davis R.A., Hausner S.H., Harris R., Sutcliffe J.L. A Comparison of Evans Blue and 4-(p-Iodophenyl)butyryl Albumin Binding Moieties on an Integrin αvβ6 Binding Peptide. Pharmaceutics. 2022; 14(4): 745. doi:10.3390/pharmaceutics14040745.; Benešová M., Umbricht C.A., Schibli R., Müller C. Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Mol Pharm. 2018; 15(3): 934–46. doi:10.1021/acs.molpharmaceut.7b00877.; Zang J., Fan X., Wang H., Liu Q., Wang J., Li H., Li F., Jacobson O., Niu G., Zhu Z., Chen X. First-in-human study of 177Lu-EB-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2019; 46(1): 148–58. doi:10.1007/s00259-018-4096-y.; Wang Z., Tian R., Niu G., Ma Y., Lang L., Szajek L.P., Kiesewetter D.O., Jacobson O., Chen X. Single Low-Dose Injection of Evans Blue Modified PSMA-617 Radioligand Therapy Eliminates Prostate-Specific Membrane Antigen Positive Tumors. Bioconjug Chem. 2018; 29(9): 3213–21. doi:10.1021/acs.bioconjchem.8b00556.; Deberle L.M., Benešová M., Umbricht C.A., Borgna F., Büchler M., Zhernosekov K., Schibli R., Müller C. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics. 2020; 10(4): 1678–93. doi:10.7150/thno.40482.; Chapman A.P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev. 2002; 54(4): 531–45. doi:10.1016/s0169-409x(02)00026-1.; Koussoroplis S.J., Paulissen G., Tyteca D., Goldansaz H., Todoroff J., Barilly C., Uyttenhove C., Van Snick J., Cataldo D., Vanbever R. PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract. J Control Release. 2014; 187: 91–100. doi:10.1016/j.jconrel.2014.05.021.; Rashidian M., Ingram J.R., Dougan M., Dongre A., Whang K.A., LeGall C., Cragnolini J.J., Bierie B., Gostissa M., Gorman J., Grotenbreg G.M., Bhan A., Weinberg R.A., Ploegh H.L. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017; 214(8): 2243–55. doi:10.1084/jem.20161950.; Kang J.S., Deluca P.P., Lee K.C. Emerging PEGylated drugs. Expert Opin Emerg Drugs. 2009; 14(2): 363–80. doi:10.1517/14728210902907847.; Li L., Crow D., Turatti F., Bading J.R., Anderson A.L., Poku E., Yazaki P.J., Carmichael J., Leong D., Wheatcroft D., Raubitschek A.A., Hudson P.J., Colcher D., Shively J.E. Site-specific conjugation of monodispersed DOTA-PEGn to a thiolated diabody reveals the effect of increasing peg size on kidney clearance and tumor uptake with improved 64-copper PET imaging. Bioconjug Chem. 2011; 22(4): 709–16. doi:10.1021/bc100464e. Erratum in: Bioconjug Chem. 2011; 22(6): 1256. Wheatcroft, Michael P [corrected to Wheatcroft, David].; Li L., Turatti F., Crow D., Bading J.R., Anderson A.L., Poku E., Yazaki P.J., Williams L.E., Tamvakis D., Sanders P., Leong D., Raubitschek A., Hudson P.J., Colcher D., Shively J.E. Monodispersed DOTA-PEG-conjugated anti-TAG-72 diabody has low kidney uptake and high tumor-to-blood ratios resulting in improved 64Cu PET. J Nucl Med. 2010; 51(7): 1139–46. doi:10.2967/jnumed.109.074153.; Stickney D.R., Anderson L.D., Slater J.B., Ahlem C.N., Kirk G.A., Schweighardt S.A., Frincke J.M. Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res. 1991; 51(24): 6650–5.; Barbet J., Peltier P., Bardet S., Vuillez J.P., Bachelot I., Denet S., Olivier P., Leccia F., Corcuff B., Huglo D., Proye C., Rouvier E., Meyer P., Chatal J.F. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody. J Nucl Med. 1998; 39(7): 1172–8.; Sharkey R.M., Karacay H., Litwin S., Rossi E.A., McBride W.J., Chang C.H., Goldenberg D.M. Improved therapeutic results by pretargeted radioimmunotherapy of non-Hodgkin’s lymphoma with a new recombinant, trivalent, anti-CD20, bispecific antibody. Cancer Res. 2008; 68(13): 5282–90. doi:10.1158/0008-5472.CAN-08-0037.; Hnatowich D.J., Virzi F., Rusckowski M. Investigations of avidin and biotin for imaging applications. J Nucl Med. 1987; 28(8): 1294–302.; Weiden P.L., Breitz H.B., Press O., Appelbaum J.W., Bryan J.K., Gaffigan S., Stone D., Axworthy D., Fisher D., Reno J. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin’s lymphoma (NHL): initial phase I/II study results. Cancer Biother Radiopharm. 2000; 15(1): 15–29. doi:10.1089/cbr.2000.15.15.; Breitz H.B., Fisher D.R., Goris M.L., Knox S., Ratliff B., Murtha A.D., Weiden P.L. Radiation absorbed dose estimation for 90Y-DOTA-biotin with pretargeted NR-LU-10/streptavidin. Cancer Biother Radiopharm. 1999; 14(5): 381–95. doi:10.1089/cbr.1999.14.381.; Green D.J., Frayo S.L., Lin Y., Hamlin D.K., Fisher D.R., Frost S.H., Kenoyer A.L., Hylarides M.D., Gopal A.K., Gooley T.A., Orozco J.J., Till B.G., O’Steen S., Orcutt K.D., Wilbur D.S., Wittrup K.D., Press O.W. Comparative Analysis of Bispecific Antibody and Streptavidin-Targeted Radioimmunotherapy for B-cell Cancers. Cancer Res. 2016; 76(22): 6669–79. doi:10.1158/0008-5472.CAN-16-0571.; Westerlund K., Altai M., Mitran B., Konijnenberg M., Oroujeni M., Atterby C., de Jong M., Orlova A., Mattsson J., Micke P., Karlström A.E., Tolmachev V. Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid-Mediated Pretargeting: In Vivo Proof of Principle. J Nucl Med. 2018; 59(7): 1092–8. doi:10.2967/jnumed.118.208348.; Altai M., Perols A., Tsourma M., Mitran B., Honarvar H., Robillard M., Rossin R., ten Hoeve W., Lubberink M., Orlova A., Karlström A.E., Tolmachev V. Feasibility of Affibody-Based Bioorthogonal Chemistry-Mediated Radionuclide Pretargeting. J Nucl Med. 2016; 57(3): 431–6. doi:10.2967/jnumed.115.162248.; Leonidova A., Foerster C., Zarschler K., Schubert M., Pietzsch H.J., Steinbach J., Bergmann R., Metzler-Nolte N., Stephan H., Gasser G. In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. Chem Sci. 2015; 6(10): 5601–16. doi:10.1039/c5sc00951k.; Westerlund K., Honarvar H., Tolmachev V., Eriksson Karlström A. Design, Preparation, and Characterization of PNA-Based Hybridization Probes for Affibody-Molecule-Mediated Pretargeting. Bioconjug Chem. 2015; 26(8): 1724–36. doi:10.1021/acs.bioconjchem.5b00292.; Poty S., Carter L.M., Mandleywala K., Membreno R., Abdel-Atti D., Ragupathi A., Scholz W.W., Zeglis B.M., Lewis J.S. Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2019; 25(2): 868–80. doi:10.1158/1078-0432.CCR-18-1650.; Timperanza C., Jensen H., Bäck T., Lindegren S., Aneheim E. Pretargeted Alpha Therapy of Disseminated Cancer Combining Click Chemistry and Astatine-211. Pharmaceuticals (Basel). 2023; 16(4): 595. doi:10.3390/ph16040595.; Tano H., Oroujeni M., Vorobyeva A., Westerlund K., Liu Y., Xu T., Vasconcelos D., Orlova A., Karlström A.E., Tolmachev V. Comparative Evaluation of Novel 177Lu-Labeled PNA Probes for Affibody-Mediated PNA-Based Pretargeting. Cancers (Basel). 2021; 13(3): 500. doi:10.3390/cancers13030500.; Su F.M., Beaumier P., Axworthy D., Atcher R., Fritzberg A. Pretargeted radioimmunotherapy in tumored mice using an in vivo 212Pb/212Bi generator. Nucl Med Biol. 2005; 32(7): 741–7. doi:10.1016/j.nucmedbio.2005.06.009.; Heskamp S., Hernandez R., Molkenboer-Kuenen J.D.M., Essler M., Bruchertseifer F., Morgenstern A., Steenbergen E.J., Cai W., Seidl C., McBride W.J., Goldenberg D.M., Boerman O.C. α-Versus β-Emitting Radionuclides for Pretargeted Radioimmunotherapy of Carcinoembryonic Antigen-Expressing Human Colon Cancer Xenografts. J Nucl Med. 2017; 58(6): 926–33. doi:10.2967/jnumed.116.187021.; Altai M., Membreno R., Cook B., Tolmachev V., Zeglis B.M. Pretargeted Imaging and Therapy. J Nucl Med. 2017; 58(10): 1553–9. doi:10.2967/jnumed.117.189944.; Cheal S.M., Chung S.K., Vaughn B.A., Cheung N.V., Larson S.M. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med. 2022; 63(9): 1302–15. doi:10.2967/jnumed.121.262186.; https://www.siboncoj.ru/jour/article/view/3202

  9. 9
    Academic Journal

    المصدر: Vestnik dermatologii i venerologii; Vol 100, No 2 (2024); 8-17 ; Вестник дерматологии и венерологии; Vol 100, No 2 (2024); 8-17 ; 2313-6294 ; 0042-4609 ; 10.25208/vdv.1002

    وصف الملف: application/pdf

  10. 10
    Academic Journal

    المساهمون: The study was carried out with the support of the Russian Science Foundation (grant No. 20-15-00001). The study was performed as a part of Russia Strategic Academic Leadership Program (“Priority-2030”) of Kazan Federal University, Исследование выполнено при поддержке Российского научного фонда (РНФ) (грант № 20-15-00001) и в рамках Программы стратегического академического лидерства ФГАОУ ВО «Казанский (Приволжский) федеральный университет» («Приоритет-2030»)

    المصدر: Advances in Molecular Oncology; Том 11, № 1 (2024); 8-21 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 8-21 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/645/334; Housman G., Byler S., Heerboth S. et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014;6(3):1769–92. DOI:10.3390/cancers6031769; Rueff J., Rodrigues A.S. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol 2016;1395:1–18. DOI:10.1007/978-1-4939-3347-1_1; Ставровская А.А., Генс Г.П. Новое в изучении множественной лекарственной устойчивости клеток рака молочной железы. Успехи молекулярной онкологии 2015;2(1):39–51. DOI:10.17650/2313-805X.2015.2.1.039–051; Deng J., Bai X., Feng X. et al. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 2019;19(1):618. DOI:10.1186/s12885-019-5824-9; Stefan S.M. Multi-target ABC transporter modulators: what next and where to go? Future Med Chem 2019;11(18):2353–8. DOI:10.4155/fmc-2019-0185; Juan-Carlos P.M., Perla-Lidia P.P., Stephanie-Talia M.M. et al. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep 2021;48(2):1883–901. DOI:10.1007/s11033-021-06155-w; Robey R.W., Pluchino K.M., Hall M.D. et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018;18(7):452–64. DOI:10.1038/s41568-018-0005-8; Смирнов Л.П. АТФ-связывающие транспортные белки семейства abc (ATP-binding cassette transporters, abc). Номенклатура, структура, молекулярное разнообразие, функция, участие в функционировании системы биотрансформации ксенобиотиков. Труды Карельского научного центра РАН 2020;3:5–19. DOI:10.17076/eb1044; Alam A., Locher K.P. Structure and mechanism of human ABC transporters. Annu Rev Biophys 2023;52:275–300. DOI:10.1146/annurev-biophys-111622-091232; Thomas C., Tampé R. Structural and mechanistic principles of ABC transporters. Annu Rev Biochem 2020;89:605–36. DOI:10.1146/annurev-biochem-011520-105201; Rees D.C., Johnson E., Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol 2009;10(3):218–27. DOI:10.1038/nrm2646; Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep 2015;7:14. DOI:10.12703/P7-14; Fitzgerald M.L., Mujawar Z., Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis 2010;211(2):361–70. DOI:10.1016/j.atherosclerosis.2010.01.011; Yvan-Charvet L., Wang N., Tall A.R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 2010;30(2):139–43. DOI:10.1161/ATVBAHA.108.179283; Davis W. Jr. The ATP-binding cassette transporter-2 (ABCA2) overexpression modulates sphingosine levels and transcription of the amyloid precursor protein (APP) Gene. Curr Alzheimer Res 2015;12(9):847–59. DOI:10.2174/156720501209151019105834; Michaki V., Guix F.X., Vennekens K. et al. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-β production by altering Nicastrin maturation and intracellular localization. J Biol Chem 2012;287(2):1100–11. DOI:10.1074/jbc.M111.288258; Hovnanian A. Harlequin ichthyosis unmasked: a defect of lipid transport. J Clin Invest 2005;115(7):1708–10. DOI:10.1172/JCI25736; Thomas A.C., Cullup T., Norgett E.E. et al. ABCA12 is the major harlequin ichthyosis gene. J Invest Dermatol 2006;126(11):2408–13. DOI:10.1038/sj.jid.5700455; de Vree J.M., Jacquemin E., Sturm E. et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA 1998;95(1):282–7. DOI:10.1073/pnas.95.1.282; Zhang Y., Li F., Patterson A.D. et al. Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice. J Biol Chem 2012;287(29):24784–94. DOI:10.1074/jbc.M111.329318; Zhang C., Li D., Zhang J. et al. Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J Invest Dermatol 2013;133(9):2221–8. DOI:10.1038/jid.2013.145; Helias V., Saison C., Ballif B.A. et al. ABCB6 is dispensable for eryth- ropoiesis and specifies the new blood group system Langereis. Nat Genet 2012;44(2):170–3. DOI:10.1038/ng.1069; Bekri S., Kispal G., Lange H. et al. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 2000;96(9):3256–64.; Maguire A., Hellier K., Hammans S. et al. X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L. Br J Haematol 2001;115(4):910–7. DOI:10.1046/j.1365-2141.2001.03015.x; Leslie E.M., Deeley R.G., Cole S.P. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005;204(3):216–37. DOI:10.1016/j.taap.2004.10.012; Bienengraeber M., Olson T.M., Selivanov V.A. et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet 2004;36(4):382–7. DOI:10.1038/ng1329; Singareddy S.S., Roessler H.I., McClenaghan C. et al. ATP-sensitive potassium channels in zebrafish cardiac and vascular smooth muscle. J Physiol 2022;600(2):299–312. DOI:10.1113/JP282157.; van Bon B.W., Gilissen C., Grange D.K. et al. Cantú syndrome is caused by mutations in ABCC9. Am J Hum Genet 2012;90(6):1094–101. DOI:10.1016/j.ajhg.2012.04.014; Engelen M., Kemp S., de Visser M. et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 2012;7:51. DOI:10.1186/1750-1172-7-51; Kemp S., Wanders R.J. X-linked adrenoleukodystrophy: very longchain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. Mol Genet Metab 2007;90(3):268–76. DOI:10.1016/j.ymgme.2006.10.001; Ferdinandusse S., Jimenez-Sanchez G., Koster J. et al. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 2015;24(2):361–70. DOI:10.1093/hmg/ddu448; Coelho D., Kim J.C., Miousse I.R. et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet 2012;44(10):1152–5. DOI:10.1038/ng.2386; Deme J.C., Hancock M.A., Xia X. et al. Purification and interaction analyses of two human lysosomal vitamin B12 transporters: LMBD1 and ABCD4. Mol Membr Biol 2014;31(7–8):250–61. DOI:10.3109/09687688.2014.990998; Lu K., Lee M.H., Hazard S. et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 2001;69(2):278–90. DOI:10.1086/321294; Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R. et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 2012;27(2):187–96. DOI:10.1093/mutage/ger075; Mohelnikova-Duchonova B., Brynychova V., Oliverius M. et al. Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas 2013;42(4):707–16. DOI:10.1097/MPA.0b013e318279b861; Moore J.M., Bell E.L., Hughes R.O. et al. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023;29(2):152–72. DOI:10.1016/j.molmed.2022.11.001; Zhao X., Guo Y., Yue W. et al. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer. Onco Targets Ther 2014;7:343–51. DOI:10.2147/OTT.S56029; Zheng S., Liu D., Wang F. et al. ABCA12 promotes proliferation and migration and inhibits apoptosis of pancreatic cancer cells through the AKT signaling pathway. Front Genet 2022;13:906326. DOI:10.3389/fgene.2022.906326; Demidenko R., Razanauskas D., Daniunaite K. et al. Frequent down-regulation of ABC transporter genes in prostate cancer. BMC Cancer. 2015;15:683. DOI:10.1186/s12885-015-1689-8; Andersen V., Svenningsen K., Knudsen L.A. et al. Novel understanding of ABC transporters ABCB1/ MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World J Gastroenterol 2015;21(41):11862–76. DOI:10.3748/wjg.v21.i41.11862; Begicevic R.R., Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci 2017;18(11):2362. DOI:10.3390/ijms18112362; Bradley G., Sharma R., Rajalakshmi S. et al. P-glycoprotein expression during tumor progression in the rat liver. Cancer Res 1992;52(19):5154–61.; Skinner K.T., Palkar A.M., Hong A.L. Genetics of ABCB1 in Cancer. Cancers (Basel). 2023;15(17):4236. DOI:10.3390/cancers15174236.; Abe T., Mori T., Wakabayashi Y. et al. Expression of multidrug resistance protein gene in patients with glioma after chemotherapy. J Neurooncol 1998;40(1):11–8. DOI:10.1023/a:1005954406809; Kunická T., Souček P. Importance of ABCC1 for cancer therapy and prognosis. Drug Metab Rev 2014;46(3):325–42. DOI:10.3109/03602532.2014.901348; Andersen V., Vogel L.K., Kopp T.I. et al. High ABCC2 and low ABCG2 gene expression are early events in the colorectal adenomacarcinoma sequence. PLoS One 2015;10(3):e0119255. DOI:10.1371/journal.pone.0119255; Cervenkova L., Vycital O., Bruha J. et al. Protein expression of ABCC2 and SLC22A3 associates with prognosis of pancreatic adenocarcinoma. Sci Rep 2019;9(1):19782. DOI:10.1038/s41598-019-56059-w; Chen Y., Zhou H., Yang S. et al. Increased ABCC2 expression predicts cisplatin resistance in non-small cell lung cancer. Cell Biochem Funct 2021;39(2):277–86. DOI:10.1002/cbf.3577; Li J., Zhang J.T., Jiang X. et al. The cystic fibrosis transmembrane conductance regulator as a biomarker in non-small cell lung cancer. Int J Oncol 2015;46(5):2107–15. DOI:10.3892/ijo.2015.2921; Wu Z., Peng X., Li J. et al. Constitutive activation of nuclear factor κB contributes to cystic fibrosis transmembrane conductance regulator expression and promotes human cervical cancer progression and poor prognosis. Int J Gynecol Cancer 2013;23(5):906–15. DOI:10.1097/IGC.0b013e318292da82; Xu J., Yong M., Li J. et al. High level of CFTR expression is associated with tumor aggression and knockdown of CFTR suppresses proliferation of ovarian cancer in vitro and in vivo. Oncol Rep 2015;33(5):2227–34. DOI:10.3892/or.2015.3829; Zhang J.T., Jiang X.H., Xie C. et al. Downregulation of CFTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer. Biochim Biophys Acta 2013;1833(12):2961–9. DOI:10.1016/j.bbamcr.2013.07.021; Theodoulou F.L., Kerr I.D. ABC transporter research: going strong 40 years on. Biochem Soc Trans 2015;43(5):1033–40. DOI:10.1042/BST20150139; Linton K.J. Structure and function of ABC transporters. Physiology (Bethesda) 2007;22:122–30. DOI:10.1152/physiol.00046.2006; Литвяков Н.В., Цыганов М.М. Клинические исследования вклада ABC-транспортеров в реализацию фенотипа множественной лекарственной устойчивости рака молочной железы. Вопросы онкологии 2016;62(1):45–52.; Badiee S.A., Isu U.H., Khodadadi E. et al. The alternating access mechanism in mammalian multidrug resistance transporters and their bacterial homologs. Membranes 2023;13(6):568. DOI:10.3390/membranes13060568; Shaikh S., Wen P.C., Enkavi G. et al. Capturing functional motions of membrane channels and transporters with molecular dynamics simulation. J Comput Theor Nanosci 2010;7(12):2481–500. DOI:10.1166/jctn.2010.1636; George A.M., Jones P.M. Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. Prog Biophys Mol Biol 2012;109(3):95–107. DOI:10.1016/j.pbiomolbio.2012.06.003; Higgins C.F., Linton K.J. The ATP switch model for ABC transporters. Nat Struct Mol Biol 2004;11(10):918–26. DOI:10.1038/nsmb836; Jones P.M., George A.M. Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit Rev Biochem Mol Biol 2013;48(1):39–50. DOI:10.3109/10409238.2012.735644; Mochida Y., Taguchi K., Taniguchi S. et al. The role of P-glycoprotein in intestinal tumorigenesis: disruption of mdr1a suppresses polyp formation in Apc(Min/+) mice. Carcinogenesis 2003;24(7):1219–24. DOI:10.1093/carcin/bgg073; Henderson M.J., Haber M., Porro A. et al. ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. J Natl Cancer Inst 2011;103(16):1236–51. DOI:10.1093/jnci/djr256; Yamada A., Ishikawa T., Ota I. et al. High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res Treat 2013;137(3):773–82. DOI:10.1007/s10549-012-2398-5; Omran O.M. The prognostic value of breast cancer resistance protein (BCRB/ABCG2) expression in breast carcinomas. J Environ Pathol Toxicol Oncol 2012;31(4):367–76. DOI:10.1615/jenvironpatholtoxicoloncol.2013006767; Xiang L., Su P., Xia S. et al. ABCG2 is associated with HER-2 expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma. Diagn Pathol 2011;6:90. DOI:10.1186/1746-1596-6-90; Liu T., Li Z., Zhang Q. et al. Targeting ABCB1 (MDR1) in multidrug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. Oncotarget 2016;7(50):83502–13. DOI:10.18632/oncotarget.13148; Serra M., Pasello M., Manara M.C. et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol 2006;29(6):1459–68.; Nobili S., Lapucci A., Landini I. et al. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020;60:72–95. DOI:10.1016/j.semcancer.2019.08.006; Jiang Z.S., Sun Y.Z., Wang S.M. et al. Epithelial-mesenchymal transition: potential regulator of ABC transporters in tumor progression. J Cancer 2017;8(12):2319–27. DOI:10.7150/jca.19079; Stewart T.A., Azimi I., Thompson E.W. et al. A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition. Biochem Biophys Res Commun 2015;458(3):509–14. DOI:10.1016/j.bbrc.2015.01.141; Tian Y., Tian X., Han X. et al. Expression of ATP binding cassette E1 enhances viability and invasiveness of lung adenocarcinoma cells in vitro. Mol Med Rep 2016;14(2):1345–50. DOI:10.3892/mmr.2016.5388; Цыганов М.М., Цыденова И.А., Маркович В.А. и др. Экспрессионная гетерогенность генов семейства ABC-транспортеров и генов химиочувствительности в опухоли желудка, канцероматозе и метастазах в лимфатические узлы. Успехи молекулярной онкологии 2022;9(4):78–88. DOI:10.17650/2313-805X-2022-9-4-78-88; Цыганов М.М., Ибрагимова М.К., Певзнер А.М. и др. Анализ экспрессии генов семейства ABC-транспортеров в опухоли молочной железы: связь с эффективностью химиотерапии и прогнозом заболевания. Успехи молекулярной онкологии 2020;7(2):29–38. DOI:10.17650/2313-805X-2020-7-2-29-38; Durmus S., Hendrikx J.J., Schinkel A.H. Apical ABC transporters and cancer chemotherapeutic drug disposition. Adv Cancer Res 2015;125:1–41. DOI:10.1016/bs.acr.2014.10.001; Leonard G.D., Fojo T., Bates S.E. The role of ABC transporters in clinical practice. Oncologist 2003;8(5):411–24. DOI:10.1634/theoncologist.8-5-411; Mo W., Zhang J.T. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 2012;3(1):1–27.; Xiao H., Zheng Y., Ma L. et al. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol 2021;12:648407. DOI:10.3389/fphar.2021.648407; Lhommé C., Joly F., Walker J.L. et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol 2008;26(16):2674–82. DOI:10.1200/JCO.2007.14.9807; Adamska A., Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018;24(29):3222–38. DOI:10.3748/wjg.v24.i29.3222; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a Pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Tamaki A., Ierano C., Szakacs G. et al. The controversial role of ABC transporters in clinical oncology. Essays Biochem 2011;50(1):209–32. DOI:10.1042/bse0500209; Cripe L.D., Uno H., Paietta E.M. et al. Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood 2010;116(20):4077–85. DOI:10.1182/blood-2010-04-277269; Xu T., Guo P., He Y. et al. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020;34(10): 2438–58. DOI:10.1002/ptr.6694; Gonçalves B.M.F., Cardoso D.S.P., Ferreira U.M.J. Overcoming multidrug resistance: flavonoid and terpenoid nitrogen-containing derivatives as ABC transporter modulators. Molecules 2020;25(15):3364. DOI:10.3390/molecules25153364; Kelly R.J., Draper D., Chen C.C. et al. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin Cancer Res 2011;17(3):569–80. DOI:10.1158/1078-0432.CCR-10-1725; Palmeira A., Sousa E., Vasconcelos M.H. et al. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 2012;19(13):1946–2025. DOI:10.2174/092986712800167392; Dury L., Nasr R., Lorendeau D. et al. Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1. Biochem Pharmacol 2017;124:10–8. DOI:10.1016/j.bcp.2016.10.013; Ni K., Yang L., Wan C. et al. Flavonostilbenes from Sophora alopecuroides L. as multidrug resistance associated protein 1 (MRP1) inhibitors. Nat Prod Res 2014;28(23):2195–8. DOI:10.1080/14786419.2014.930856; Chen J.R., Jia X.H., Wang H. et al. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway. Int J Oncol 2016;48(5):2063–70. DOI:10.3892/ijo.2016.3423; Ji L., Liu X., Zhang S. et al. The Novel triazolonaphthalimide derivative LSS-11 synergizes the anti-proliferative effect of paclitaxel via STAT3-dependent MDR1 and MRP1 downregulation in chemo- resistant lung cancer cells. Molecules 2017;22(11):1822. DOI:10.3390/molecules22111822; Antoni F., Bause M., Scholler M. et al. Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP). Eur J Med Chem 2020;191:112133. DOI:10.1016/j.ejmech.2020.112133; Weidner L.D., Zoghbi S.S., Lu S. et al. The inhibitor Ko143 is not specific for ABCG2. J Pharmacol Exp Ther 2015;354(3):384–93. DOI:10.1124/jpet.115.225482; Tsuruo T., Iida H., Tsukagoshi S. et al. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981;41(5):1967–72.; Wang L., Sun Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein. Arch Biochem Biophys 2020;696:108675. DOI:10.1016/j.abb.2020.108675; Borska S., Chmielewska M., Wysocka T. et al. In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem Toxicol 2012;50(9):3375–83. DOI:10.1016/j.fct.2012.06.035; Chen Y.Y., Chang Y.M., Wang K.Y. et al. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ Toxicol 2019;34(3):233–9. DOI:10.1002/tox.22677; Eid S.Y., El-Readi M.Z., Wink M. Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells. Phytomedicine 2012;19(14):1288–97. DOI:10.1016/j.phymed.2012.08.010; Jain S., Laphookhieo S., Shi Z. et al. Reversal of P-glycoproteinmediated multidrug resistance by sipholane triterpenoids. J Nat Prod 2007;70(6):928–31. DOI:10.1021/np0605889; Pires M.M., Emmert D., Hrycyna C.A. et al. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol Pharmacol 2009;75(1):92–100. DOI:10.1124/mol.108.050492; Zhang Y., Guo L., Huang J. et al. Inhibitory effect of berberine on broiler P-glycoprotein expression and function: in situ and in vitro studies. Int J Mol Sci 2019;20(8):1966. DOI:10.3390/ijms20081966; Choi Y.H., Yu A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 2014;20(5):793–807. DOI:10.2174/138161282005140214165212; Beretta G.L., Cassinelli G., Pennati M. et al. Overcoming ABC transporter-mediated multidrug resistance: the dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 2017;142:271–89. DOI:10.1016/j.ejmech.2017.07.062; Kathawala R.J., Gupta P., Ashby C.R. Jr. et al. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2015;18:1–17. DOI:10.1016/j.drup.2014.11.002; Callaghan R., Higgins C.F. Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br J Cancer 1995;71(2):294–9. DOI:10.1038/bjc.1995.59; Liu Z.H., Ma Y.L., He Y.P. et al. Tamoxifen reverses the multi-drugresistance of an established human cholangiocarcinoma cell line in combined chemotherapeutics. Mol Biol Rep 2011;38(3):1769–75. DOI:10.1007/s11033-010-0291-z; Богуш Т.А., Дудко Е.А., Богуш Е.А. и др. Молекулярные мишени тамоксифена, отличные от эстрогеновых рецепторов. Антибиотики и химиотерапия 2012;57(1–2):50–8.; Bakadlag R., Limniatis G., Georges G. et al. The anti-estrogen receptor drug, tamoxifen, is selectively lethal to P-glycoprotein expressing multidrug resistant tumor cells. BMC Cancer 2023;23(1):24. DOI:10.1186/s12885-022-10474-x; Shen L.Z., Hua Y.B., Yu X.M. et al. Tamoxifen can reverse multidrug resistance of colorectal carcinoma in vivo. World J Gastroenterol 2005;11(7):1060–4. DOI:10.3748/wjg.v11.i7.1060; Wen S., Fu X., Li G. et al. Efficacy of tamoxifen in combination with docetaxel in patients with advanced non-small-cell lung cancer pretreated with platinum-based chemotherapy. Anticancer Drugs 2016;27(5):447–56. DOI:10.1097/CAD.0000000000000350; https://umo.abvpress.ru/jour/article/view/645

  11. 11
    Academic Journal

    المساهمون: This work was supported by the grant of the Russian Science Foundation No. 22-15-00487., Работа поддержана грантом Российского научного фонда № 22-15-00487.

    المصدر: Siberian journal of oncology; Том 23, № 1 (2024); 130-141 ; Сибирский онкологический журнал; Том 23, № 1 (2024); 130-141 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2957/1196; Banales J.M., Cardinale V., Carpino G., Marzioni M., Andersen J.B., Invernizzi P., Lind G.E., Folseraas T., Forbes S.J., Fouassier L., Geier A., Calvisi D.F., Mertens J.C., Trauner M., Benedetti A., Maroni L., Vaquero J., Macias R.I., Raggi C., Perugorria M.J., Gaudio E., Boberg K.M., Marin J.J., Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016; 13(5): 261–80. doi:10.1038/nrgastro.2016.51.; Baria K., De Toni E.N., Yu B., Jiang Z., Kabadi S.M., Malvezzi M. Worldwide Incidence and Mortality of Biliary Tract Cancer. Gastro Hep Advances. 2022; 1(4): 618–26. doi:10.1016/j.gastha.2022.04.007.; Valle J.W., Kelley R.K., Nervi B., Oh D.Y., Zhu A.X. Biliary tract cancer. Lancet. 2021; 397(10272): 428–44. doi:10.1016/S0140-6736-(21)00153-7.; Друк И.В., Нечаева Г.И., Лялюкова Е.А., Семенова Е.В. Рак желчного пузыря: эпидемиология, факторы риска. Экспериментальная и клиническая гастроэнтерология. 2022; (9): 153–60. doi:10.31146/1682-8658-ecg-205-9-153-160.; Lepage C., Capocaccia R., Hackl M., Lemmens V., Molina E., Pierannunzio D., Sant M., Trama A., Faivre J.; EUROCARE-5 Working Group. Survival in patients with primary liver cancer, gallbladder and extrahepatic biliary tract cancer and pancreatic cancer in Europe 1999–2007: Results of EUROCARE-5. Eur J Cancer. 2015; 51(15): 2169–78. doi:10.1016/j.ejca.2015.07.034.; Valle J., Wasan H., Palmer D.H., Cunningham D., Anthoney A., Maraveyas A., Madhusudan S., Iveson T., Hughes S., Pereira S.P., Roughton M., Bridgewater J.; ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010; 362(14): 1273–81. doi:10.1056/NEJMoa0908721.; Okusaka T., Nakachi K., Fukutomi A., Mizuno N., Ohkawa S., Funakoshi A., Nagino M., Kondo S., Nagaoka S., Funai J., Koshiji M., Nambu Y., Furuse J., Miyazaki M., Nimura Y. Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: a comparative multicentre study in Japan. Br J Cancer. 2010; 103(4): 469–74. doi:10.1038/sj.bjc.6605779.; Oh D.-Y., He A.R., Qin S., Chen L.-T., Okusaka T., Vogel A., Kim J.W., Thatthan S., Lee M.A., Kitano M., Burris H., Bouattour M., Tanasanvimon S., McNamara M.G., Zaucha R., Avallone A., Tan B., Cundom J., Lee C.-K., Takahashi H., Ikeda M., Chen J.-S., Wang J., Makowsky M., Rokutanda N., He P., Kurland J.F., Cohen G., and Valle J.W., for the TOPAZ-1 Investigators. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022; 1(8). doi:10.1056/EVIDoa2200015.; Vogel A., Bridgewater J., Edeline J., Kelley R.K., Klümpen H.J., Malka D., Primrose J.N., Rimassa L., Stenzinger A., Valle J.W., Ducreux M.; ESMO Guidelines Committee. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023; 34(2): 127–40. doi:10.1016/j.annonc.2022.10.506.; Ramjeesingh R., Chaudhury P., Tam V.C., Roberge D., Lim H.J., Knox J.J., Asselah J., Doucette S., Chhiber N., Goodwin R. A Practical Guide for the Systemic Treatment of Biliary Tract Cancer in Canada. Curr Oncol. 2023; 30(8): 7132–50. doi:10.3390/curroncol30080517.; Kelley R.K., Ueno M., Yoo C., Finn R.S., Furuse J., Ren Z., Yau T., Klümpen H.J., Chan S.L., Ozaka M., Verslype C., Bouattour M., Park J.O., Barajas O., Pelzer U., Valle J.W., Yu L., Malhotra U., Siegel A.B., Edeline J., Vogel A.; KEYNOTE-966 Investigators. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023; 401(10391): 1853–65. doi:10.1016/S0140-6736(23)00727-4. Erratum in: Lancet. 2023; 402(10406): 964.; Lamarca A., Palmer D.H., Wasan H.S., Ross P.J., Ma Y.T., Arora A., Falk S., Gillmore R., Wadsley J., Patel K., Anthoney A., Maraveyas A., Iveson T., Waters J.S., Hobbs C., Barber S., Ryder W.D., Ramage J., Davies L.M., Bridgewater J.A., Valle J.W.; Advanced Biliary Cancer Working Group. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021; 22(5): 690–701. doi:10.1016/S1470-2045(21)00027-9.; Galdy S., Lamarca A., McNamara M.G., Hubner R.A., Cella C.A., Fazio N., Valle J.W. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: a potential therapeutic target? Cancer Metastasis Rev. 2017; 36(1): 141–57. doi:10.1007/s10555-016-9645-x.; Javle M., Borad M.J., Azad N.S., Kurzrock R., Abou-Alfa G.K., George B., Hainsworth J., Meric-Bernstam F., Swanton C., Sweeney C.J., Friedman C.F., Bose R., Spigel D.R., Wang Y., Levy J., Schulze K., Cuchelkar V., Patel A., Burris H. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2021; 22(9): 1290–300. doi:10.1016/S1470-2045(21)00336-3.; Ohba A., Morizane C., Kawamoto Y., Komatsu Y., Ueno M., Kobayashi S., Ikeda M., Sasaki M., Furuse J., Okano N., Hiraoka N., Yoshida H., Kuchiba A., Sadachi R., Nakamura K., Matsui N., Nakamura Y., Okamoto W., Yoshino T., Okusaka T. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing unresectable or recurrent biliary tract cancer (BTC): An investigator-initiated multicenter phase 2 study (HERB trial). J Clin Oncol. 2022; 40(16_suppl). doi:10.1200/JCO.2022.40.16_suppl.4006.; Harding J.J., Fan J., Oh D.Y., Choi H.J., Kim J.W., Chang H.M., Bao L., Sun H.C., Macarulla T., Xie F., Metges J.P., Ying J., Bridgewater J., Lee M.A., Tejani M.A., Chen E.Y., Kim D.U., Wasan H., Ducreux M., Bao Y., Boyken L., Ma J., Garfin P., Pant S.; HERIZON-BTC-01 study group. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol. 2023; 24(7): 772–82. doi:10.1016/S1470-2045(23)00242-5.; Zheng Y., Shen G., Zhang C., Huo X., Xin Y., Fang Q., Guan Y., Zhao F., Ren D., Liu Z., Wang M., Zhao J. Efficacy of anti-HER2 drugs in the treatment of patients with HER2-mutated cancers: a systematic review and meta-analysis. Clin Exp Med. 2023; 23(7): 3205–16. doi:10.1007/s10238-023-01072-7.; Goeppert B., Frauenschuh L., Renner M., Roessler S., StenzingerA., Klauschen F., Warth A., Vogel M.N., Mehrabi A., Hafezi M., Boehmer K., von Deimling A., Schirmacher P., Weichert W., Capper D. BRAF V600E-specific immunohistochemistry reveals low mutation rates in biliary tract cancer and restriction to intrahepatic cholangiocarcinoma. Mod Pathol. 2014; 27(7): 1028–1034. doi:10.1038/modpathol.2013.206.; Kendre G., Murugesan K., Brummer T., Segatto O., Saborowski A., Vogel A. Charting co-mutation patterns associated with actionable drivers in intrahepatic cholangiocarcinoma. J Hepatol. 2023; 78(3): 614–26. doi:10.1016/j.jhep.2022.11.030.; Subbiah V., Kreitman R.J., Wainberg Z.A., Gazzah A., Lassen U., Stein A., Wen P.Y., Dietrich S., de Jonge M.J.A., Blay J.Y., Italiano A., Yonemori K., Cho D.C., de Vos F.Y.F.L., Moreau P., Fernandez E.E., Schellens J.H.M., Zielinski C.C., Redhu S., Boran A., Passos V.Q., Ilankumaran P., Bang Y.J. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial. Nat Med. 2023; 29(5): 1103–12. doi:10.1038/s41591-023-02321-8.; Subbiah V., Puzanov I., Blay J.Y., Chau I., Lockhart A.C., Raje N.S., Wolf J., Baselga J., Meric-Bernstam F., Roszik J., Diamond E.L., Riely G.J., Sherman E.J., Riehl T., Pitcher B., Hyman D.M. Pan-Cancer Efficacy of Vemurafenib in BRAFV600-Mutant Non-Melanoma Cancers. Cancer Discov. 2020; 10(5): 657–63. doi:10.1158/2159-8290.CD-19-1265.; Bekaii-Saab T.S., Yaeger R., Spira A.I., Pelster M.S., Sabari J.K., Hafez N., Barve M., Velastegui K., Yan X., Shetty A., Der-Torossian H., Pant S. Adagrasib in Advanced Solid Tumors Harboring a KRAS G12C Mutation. J Clin Oncol. 2023; 41(25): 4097–4106. doi:10.1200/JCO.23.00434.; Roubal K., Myint Z.W., Kolesar J.M. Erdafitinib: A novel therapy for FGFR-mutated urothelial cancer.Am J Health Syst Pharm. 2020; 77(5): 346–51. doi:10.1093/ajhp/zxz329.; Uson Junior P.L.S., Borad M.J. Targeting Fibroblast Growth Factor Receptor Pathway: Precision Medicine for Biliary Cancer and Beyond. Semin Liver Dis. 2023; 43(2): 218–25. doi:10.1055/a-2049-3149.; Abou-Alfa G.K., Sahai V., Hollebecque A., Vaccaro G., Melisi D., Al-Rajabi R., Paulson A.S., Borad M.J., Gallinson D., Murphy A.G., Oh D.Y., Dotan E., Catenacci D.V., Van Cutsem E., Ji T., Lihou C.F., Zhen H., Féliz L., Vogel A. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020; 21(5): 671–84. doi:10.1016/S1470-2045(20)30109-1. Erratum in: Lancet Oncol. 2024; 25(1).; Javle M., Roychowdhury S., Kelley R.K., Sadeghi S., Macarulla T., Weiss K.H., Waldschmidt D.T., Goyal L., Borbath I., El-Khoueiry A., Borad M.J., Yong W.P., Philip P.A., Bitzer M., Tanasanvimon S., Li A., Pande A., Soifer H.S., Shepherd S.P., Moran S., Zhu A.X., Bekaii-Saab T.S., Abou-Alfa G.K. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol Hepatol. 2021; 6(10): 803–15. doi:10.1016/S2468-1253(21)00196-5.; Javle M., King G., Spencer K., Borad M.J. Futibatinib, an Irreversible FGFR1-4 Inhibitor for the Treatment of FGFR-Aberrant Tumors. Oncologist. 2023; 28(11): 928–43. doi:10.1093/oncolo/oyad149.; Bitzer M., Spahn S., Babaei S., Horger M., Singer S., Schulze-Osthoff K., Missios P., Gatidis S., Nann D., Mattern S., Scheble V., Nikolaou K., Armeanu-Ebinger S., Schulze M., Schroeder C., Biskup S., Beha J., Claassen M., Ruhm K., Poso A., Malek N.P. Targeting extracellular and juxtamembrane FGFR2 mutations in chemotherapy-refractory cholangiocarcinoma. NPJ Precis Oncol. 2021; 5(1): 80. doi:10.1038/s41698-021-00220-0.; Hempel L., Lapa C., Dierks A., Gaumann A., Scheiber J., Veloso de Oliveira J., Philipp P., Oyarzun Laura C., Wesarg S., Robert S., Hempel D. A new promising oncogenic target (p.C382R) for treatment with pemigatinib in patients with cholangiocarcinoma. Ther Adv Med Oncol. 2022; 14. doi:10.1177/17588359221125096.; Cleary J.M., Raghavan S., Wu Q., Li Y.Y., Spurr L.F., Gupta H.V., Rubinson D.A., Fetter I.J., Hornick J.L., Nowak J.A., Siravegna G., Goyal L., Shi L., Brais L.K., Loftus M., Shinagare A.B., Abrams T.A., Clancy T.E., Wang J., Patel A.K., Brichory F., Vaslin Chessex A., Sullivan R.J., Keller R.B., Denning S., Hill E.R., Shapiro G.I., Pokorska-BocciA., Zanna C., Ng K., Schrag D., Jänne P.A., Hahn W.C., Cherniack A.D., Corcoran R.B., Meyerson M., Daina A., Zoete V., Bardeesy N., Wolpin B.M. FGFR2 Extracellular Domain In-Frame Deletions Are Therapeutically Targetable Genomic Alterations That Function as Oncogenic Drivers in Cholangiocarcinoma. Cancer Discov. 2021; 11(10): 2488–505. doi:10.1158/2159-8290.CD-20-1669.; Митюшкина Н.В., Имянитов Е.Н. Молекулярная диагностика нарушений в генах семейства FGFR. Вопросы онкологии. 2023; 69(3): 364–72. doi:10.37469/0507-3758-2023-69-3-364-372.; Boscoe A.N., Rolland C., Kelley R.K. Frequency and prognostic significance of isocitrate dehydrogenase 1 mutations in cholangiocarcinoma: a systematic literature review. J Gastrointest Oncol. 2019; 10(4): 751–65. doi:10.21037/jgo.2019.03.10.; Abou-Alfa G.K., Macarulla T., Javle M.M., Kelley R.K., Lubner S.J., Adeva J., Cleary J.M., Catenacci D.V., Borad M.J., Bridgewater J., Harris W.P., Murphy A.G., Oh D.Y., Whisenant J., Lowery M.A., Goyal L., Shroff R.T., El-Khoueiry A.B., Fan B., Wu B., Chamberlain C.X., Jiang L., Gliser C., Pandya S.S., Valle J.W., Zhu A.X. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020; 21(6): 796–807. doi:10.1016/S1470-2045(20)30157-1. Erratum in: Lancet Oncol. 2020; 21(10). Erratum in: Lancet Oncol. 2024; 25(2).; Drilon A., Laetsch T.W., Kummar S., DuBois S.G., Lassen U.N., Demetri G.D., Nathenson M., Doebele R.C., Farago A.F., Pappo A.S., Turpin B., Dowlati A., Brose M.S., Mascarenhas L., Federman N., Berlin J., El-Deiry W.S., Baik C., Deeken J., Boni V., Nagasubramanian R., Taylor M., Rudzinski E.R., Meric-Bernstam F., Sohal D.P.S., Ma P.C., Raez L.E., Hechtman J.F., Benayed R., Ladanyi M., Tuch B.B., Ebata K., Cruickshank S., Ku N.C., Cox M.C., Hawkins D.S., Hong D.S., Hyman D.M. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med. 2018; 378(8): 731–9. doi:10.1056/NEJMoa1714448.; DoebeleR.C.,DrilonA.,Paz-AresL.,SienaS.,ShawA.T.,FaragoA.F., Blakely C.M., Seto T., Cho B.C., Tosi D., Besse B., Chawla S.P., Bazhenova L., Krauss J.C., Chae Y.K., Barve M., Garrido-Laguna I., Liu S.V., Conkling P., John T., Fakih M., Sigal D., Loong H.H., Buchschacher G.L. Jr, Garrido P., Nieva J., Steuer C., Overbeck T.R., Bowles D.W., Fox E., Riehl T., Chow-Maneval E., Simmons B., Cui N., Johnson A., Eng S., Wilson T.R., Demetri G.D.; trial investigators. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020; 21(2): 271–82. doi:10.1016/S1470-2045(19)30691-6. Erratum in: Lancet Oncol. 2020; 21(2). Erratum in: Lancet Oncol. 2020; 21(7). Erratum in: Lancet Oncol. 2020; 21(8). Erratum in: Lancet Oncol. 2021; 22(10).; Solomon J.P., Linkov I., Rosado A., Mullaney K., Rosen E.Y., Frosina D., Jungbluth A.A., Zehir A., Benayed R., Drilon A., Hyman D.M., Ladanyi M., Sireci A.N., Hechtman J.F. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020; 33(1): 38–46. doi:10.1038/s41379-019-0324-7.; Romanko A.A., Mulkidjan R.S., Tiurin V.I., Saitova E.S., Preobrazhenskaya E.V., Krivosheyeva E.A., Mitiushkina N.V., Shestakova A.D., Belogubova E.V., Ivantsov A.O., Iyevleva A.G., Imyanitov E.N. Cost-Efficient Detection of NTRK1/2/3 Gene Fusions: Single-Center Analysis of 8075 Tumor Samples. Int J Mol Sci. 2023; 24(18): 14203. doi:10.3390/ijms241814203.; Subbiah V., Cassier P.A., Siena S., Garralda E., Paz-Ares L., Garrido P., Nadal E., Vuky J., Lopes G., Kalemkerian G.P., Bowles D.W., Seetharam M., Chang J., Zhang H., Green J., Zalutskaya A., Schuler M., Fan Y., Curigliano G. Pan-cancer efficacy of pralsetinib in patients with RET fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat Med. 2022; 28(8): 1640–5. doi:10.1038/s41591-022-01931-y.; Subbiah V.,WolfJ.,KondaB.,KangH.,SpiraA.,WeissJ.,TakedaM., Ohe Y., Khan S., Ohashi K., Soldatenkova V., Szymczak S., Sullivan L., Wright J., Drilon A. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. Lancet Oncol. 2022; 23(10): 1261–73. doi:10.1016/S1470-2045(22)00541-1.; Zhou Y., Lizaso A., Mao X., Yang N., Zhang Y. Novel AMBRA1-ALK fusion identified by next-generation sequencing in advanced gallbladder cancer responds to crizotinib: a case report. Ann Transl Med. 2020; 8(17): 1099. doi:10.21037/atm-20-1007.; Valery M., Facchinetti F., Malka D., Ducreux M., Friboulet L., Hollebecque A. Cholangiocarcinoma with STRN-ALK translocation treated with ALK inhibitors. Dig Liver Dis. 2021; 53(12): 1664–5. doi:10.1016/j.dld.2021.09.001.; Jakubowski C.D., Mohan A.A., Kamel I.R., Yarchoan M. Response to Crizotinib in ROS1 Fusion-Positive Intrahepatic Cholangiocarcinoma. JCO Precis Oncol. 2020; 4: 825–8. doi:10.1200/PO.20.00116.; Augustin J., Gabignon C., Scriva A., Menu L., Calmel C., Scatton O., Paye F., Fléjou J.F., Praz F., Cervera P., Wendum D. Testing for ROS1, ALK, MET, and HER2 rearrangements and amplifications in a large series of biliary tract adenocarcinomas. VirchowsArch. 2020; 477(1): 33–45. doi:10.1007/s00428-020-02822-8.; Xia H., Zhang J., Chen T., Wang M., Chen D., Si T., Liu Y. Molecular characterization of MET fusions from a large real-world Chinese population: A multicenter study. Cancer Med. 2023; 12(13): 14015–24. doi:10.1002/cam4.6047.; Lefler D.S., Tierno M.B., Bashir B. Partial treatment response to capmatinib in MET-amplified metastatic intrahepatic cholangiocarcinoma: case report & review of literature. Cancer Biol Ther. 2022; 23(1): 112–6. doi:10.1080/15384047.2022.2029128.; Turpin A., Descarpentries C., Grégoire V., Farchi O., Cortot A.B., Jamme P. Response to Capmatinib in a MET Fusion-positive Cholangiocarcinoma. Oncologist. 2023; 28(1): 80–3. doi:10.1093/oncolo/oyac194.; Lo J.H., Agarwal R., Goff L.W., Heumann T.R. Lo J.H., Agarwal R., Goff L.W., Heumann T.R. Immunotherapy in Biliary Tract Cancers: Current Standard-of-Care and Emerging Strategies. Cancers (Basel). 2023; 15(13): 3312. doi:10.3390/cancers15133312.; Frega G., Cossio F.P., Banales J.M., Cardinale V., Macias R.I.R., Braconi C., Lamarca A. Lacking Immunotherapy Biomarkers for Biliary Tract Cancer: A Comprehensive Systematic Literature Review and Meta-Analysis. Cells. 2023; 12(16): 2098. doi:10.3390/cells12162098.; Marabelle A., Fakih M., Lopez J., Shah M., Shapira-Frommer R., Nakagawa K., Chung H.C., Kindler H.L., Lopez-Martin J.A., Miller W.H. Jr, Italiano A., Kao S., Piha-Paul S.A., Delord J.P., McWilliams R.R., Fabrizio D.A., Aurora-Garg D., Xu L., Jin F., Norwood K., Bang Y.J. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020; 21(10): 1353–65. doi:10.1016/S1470-2045(20)30445-9.; McGrail D.J., Pilié P.G., Rashid N.U., Voorwerk L., Slagter M., Kok M., Jonasch E., Khasraw M., Heimberger A.B., Lim B., Ueno N.T., Litton J.K., Ferrarotto R., Chang J.T., Moulder S.L., Lin S.Y. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021; 32(5): 661–72. doi:10.1016/j.annonc.2021.02.006.; Maio M., Ascierto P.A., Manzyuk L., Motola-Kuba D., Penel N., Cassier P.A., Bariani G.M., De Jesus Acosta A., Doi T., Longo F., Miller W.H., Oh D.Y., Gottfried M., Xu L., Jin F., Norwood K., Marabelle A. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann Oncol. 2022; 33(9): 929–38. doi:10.1016/j.annonc.2022.05.519.; Yurgelun M.B., Hampel H. Recent Advances in Lynch Syndrome: Diagnosis, Treatment, and Cancer Prevention. Am Soc Clin Oncol Educ Book. 2018; 38: 101–9. doi:10.1200/EDBK_208341.; He W.Z., Huang Y.H., Hu W.M., Wang F., Xu Y.X., Yi J.H., Xue J., Yang Y.Z., Chao X.Y., Lin H.B., Guo G.F., Yun J.P., Xia L.P. Response to programmed cell death protein 1 antibody in patients with Epstein-Barr virus-associated intrahepatic cholangiocarcinoma. Eur J Cancer. 2023; 194. doi:10.1016/j.ejca.2023.113337.; Yin C., Kulasekaran M., Roy T., Decker B., Alexander S., Margolis M., Jha R.C., Kupfer G.M., He A.R. Homologous Recombination Repair in Biliary Tract Cancers: A Prime Target for PARP Inhibition? Cancers (Basel). 2022; 14(10): 2561. doi:10.3390/cancers14102561.; MaynardH.,StadlerZ.K.,BergerM.F.,SolitD.B.,LyM.,LoweryM.A., Mandelker D., Zhang L., Jordan E., El Dika I., Kemel Y., Ladanyi M., Robson M.E., O’Reilly E.M., Abou-Alfa G.K. Germline alterations in patients with biliary tract cancers: A spectrum of significant and previously underappreciated findings. Cancer. 2020; 126(9): 1995–2002. doi:10.1002/cncr.32740.; Wardell C.P., Fujita M., Yamada T., Simbolo M., Fassan M., Karlic R., Polak P., Kim J., Hatanaka Y., Maejima K., Lawlor R.T., Nakanishi Y., Mitsuhashi T., Fujimoto A., Furuta M., Ruzzenente A., Conci S., Oosawa A., Sasaki-Oku A., Nakano K., Tanaka H., Yamamoto Y., Michiaki K., Kawakami Y., Aikata H., Ueno M., Hayami S., Gotoh K., Ariizumi S.I., Yamamoto M., Yamaue H., Chayama K., Miyano S., Getz G., Scarpa A., Hirano S., Nakamura T., Nakagawa H. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol. 2018; 68(5): 959–69. doi:10.1016/j.jhep.2018.01.009.; Cheng Y., Zhang J., Qin S.K., Hua H.Q. Treatment with olaparib monotherapy for BRCA2-mutated refractory intrahepatic cholangiocarcinoma: a case report. Onco Targets Ther. 2018; 11: 5957–62. doi:10.2147/OTT.S176914.; Su Y.L., Ng C.T., Jan Y.H., Hsieh Y.L., Wu C.L., Tan K.T. Remarkable Response to Olaparib in a Patient with Combined Hepatocellular-Cholangiocarcinoma Harboring a Biallelic BRCA2 Mutation. Onco Targets Ther. 2021; 14: 3895–901. doi:10.2147/OTT.S317514.; Zhou T., Mahn R., Möhring C., Sadeghlar F., Meyer C., Toma M., Kreppel B., Essler M., Glowka T., Matthaei H., Kalff J.C., Strassburg C.P., Gonzalez-Carmona M.A. Case Report: Sustained complete remission on combination therapy with olaparib and pembrolizumab in BRCA2-mutated and PD-L1-positive metastatic cholangiocarcinoma after platinum derivate. Front Oncol. 2022; 12. doi:10.3389/fonc.2022.933943.; Mitiushkina N.V., Tiurin V.I., Anuskina A.A., Bordovskaya N.A., Shestakova A.D., Martianov A.S., Bubnov M.G., Shishkina A.S., Semina M.V., Romanko A.A., Kuligina E.S., Imyanitov E.N. Molecular Analysis of Biliary Tract Cancers with the Custom 3’ RACE-Based NGS Panel. Diagnostics (Basel). 2023; 13(20): 3168. doi:10.3390/diagnostics13203168.; https://www.siboncoj.ru/jour/article/view/2957

  12. 12
    Academic Journal

    المصدر: Siberian journal of oncology; Том 23, № 1 (2024); 142-154 ; Сибирский онкологический журнал; Том 23, № 1 (2024); 142-154 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2958/1197; Grochans S., Cybulska A.M., Simińska D., Korbecki J., Kojder K., Chlubek D., Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme - Literature Review. Cancers (Basel). 2022; 14(10): 2412. doi:10.3390/cancers14102412.; Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., Curschmann J., Janzer R.C., Ludwin S.K., Gorlia T., Allgeier A., Lacombe D., Cairncross J.G., Eisenhauer E., Mirimanoff R.O.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005; 352(10): 987–96. doi:10.1056/NEJMoa043330.; Allemani C., Matsuda T., Di Carlo V., Harewood R., Matz M., Nikšić M., Bonaventure A., Valkov M., Johnson C.J., Estève J., Ogunbiyi O.J., Azevedo E Silva G., Chen W.Q., Eser S., Engholm G., Stiller C.A., Monnereau A., Woods R.R., Visser O., Lim G.H., Aitken J., Weir H.K., Coleman M.P.; CONCORD Working Group. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018; 391(10125): 1023–75. doi:10.1016/S0140-6736(17)33326-3.; Ostrom Q.T., Price M., Neff C., Cioffi G., Waite K.A., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro Oncol. 2022; 24(s5):1–95. doi:10.1093/neuonc/noac202.; Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., Hau P., Brandes A.A., Gijtenbeek J., Marosi C., Vecht C.J., Mokhtari K., Wesseling P., Villa S., Eisenhauer E., Gorlia T., Weller M., Lacombe D., Cairncross J.G., Mirimanoff R.O.; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10(5): 459–66. doi:10.1016/S1470-2045(09)70025-7.; NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Central Nervous System Cancers [Internet]. Version 1.2023 – March 24, 2023, nccn.org. [cited 2023 Dec 19]. URL: https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf.; De Bonis P., Anile C., Pompucci A., Fiorentino A., Balducci M., Chiesa S., Lauriola L., Maira G., Mangiola A. The influence of surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg. 2013; 115(1): 37–43. doi:10.1016/j.clineuro.2012.04.005.; van Nifterik K.A., Elkhuizen P.H., van Andel R.J., Stalpers L.J., Leenstra S., Lafleur M.V., Vandertop W.P., Slotman B.J., Hulsebos T.J., Sminia P. Genetic profiling of a distant second glioblastoma multiforme after radiotherapy: Recurrence or second primary tumor? J Neurosurg. 2006; 105(5): 739–44. doi:10.3171/jns.2006.105.5.739.; Weller M., van den Bent M., Preusser M., Le Rhun E., Tonn J.C., Minniti G., Bendszus M., Balana C., Chinot O., Dirven L., French P., Hegi M.E., Jakola A.S., Platten M., Roth P., Rudà R., Short S., Smits M., Taphoorn M.J.B., von Deimling A., Westphal M., Soffietti R., Reifenberger G., Wick W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021; 18(3): 170–86. doi:10.1038/s41571-020-00447-z. Erratum in: Nat Rev Clin Oncol. 2022; 19(5): 357–8.; Sminia P., Mayer R. External beam radiotherapy of recurrent glioma: radiation tolerance of the human brain. Cancers (Basel). 2012; 4(2): 379–99. doi:10.3390/cancers4020379.; Minniti G., Niyazi M., Alongi F., Navarria P., Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol. 2021; 16(1): 36. doi:10.1186/s13014-021-01767-9.; Scoccianti S., Francolini G., Carta G.A., Greto D., Detti B., Simontacchi G., Visani L., Baki M., Poggesi L., Bonomo P., Mangoni M., Desideri I., Pallotta S., Livi L. Re-irradiation as salvage treatment in recurrent glioblastoma: A comprehensive literature review to provide practical answers to frequently asked questions. Crit Rev Oncol Hematol. 2018; 126: 80–91. doi:10.1016/j.critrevonc.2018.03.024.; Kazmi F., Soon Y.Y., Leong Y.H., Koh W.Y., Vellayappan B. Reirradiation for recurrent glioblastoma (GBM): a systematic review and meta-analysis. J Neurooncol. 2019; 142(1): 79–90. doi:10.1007/s11060-018-03064-0.; Marwah R., Xing D., Squire T., Soon Y.Y., Gan H.K., Ng S.P. Reirradiation versus systemic therapy versus combination therapy for recurrent high-grade glioma: a systematic review and meta-analysis of survival and toxicity. J Neurooncol. 2023; 164(3): 505–24. doi:10.1007/s11060-023-04441-0.; Kiseleva V., Gordon K., Vishnyakova P., Gantsova E., Elchaninov A., Fatkhudinov T. Particle Therapy: Clinical Applications and Biological Effects. Life (Basel). 2022; 12(12): 2071. doi:10.3390/life12122071.; Patyal B. Dosimetry aspects of proton therapy. Technol Cancer Res Treat. 2007; 6(4s): 17–23. doi:10.1177/15330346070060S403.; Saeed A.M., Khairnar R., Sharma A.M., Larson G.L., Tsai H.K., Wang C.J., Halasz L.M., Chinnaiyan P., Vargas C.E., Mishra M.V. Clinical Outcomes in Patients with Recurrent Glioblastoma Treated with Proton Beam Therapy Reirradiation: Analysis of the Multi-Institutional Proton Collaborative Group Registry. Adv Radiat Oncol. 2020; 5(5): 978–83. doi:10.1016/j.adro.2020.03.022.; Gulidov I., Gordon K., Semenov A., Gogolin D., Lepilina O., Golovanova O., Dujenko S., Medvedeva K., Koryakin S., Ivanov S., Kaprin A. Proton re-irradiation of unresectable recurrent brain gliomas: clinical outcomes and toxicity. J BUON. 2021; 26(3): 970–6.; Гулидов И.А., Гордон К.Б., Гоголин Д.В., Мардынский Ю.С., Лепилина О.Г., Неледов Д.В., Галкин В.Н., Каприн А.Д. Повторное облучение интракраниальных опухолей активным сканирующим пучком протонов. Сибирский онкологический журнал. 2017; 16(5): 63–70. doi:10.21294/1814-4861-2017-16-5-63-70.; Медведева К.Е., Гулидов И.А., Мардынский Ю.С., Гоголин Д., Гордон К.Б., Семенов А.В., Лепилина О.Г., Каприн А.Д., Костин А.А., Иванов С.А. Возможности протонной терапии при повторном облучении рецидивных глиом. Медицинская радиология и радиационная безопасность. 2019; 64(2): 70–4. doi:10.12737/article_5ca607bf670c97.49055999.; Simon J.M., Cornu P., Boisserie G., Hasboun D., Tep B., Hardiman C., Valery C.A., Delattre J.Y., Dormont D., Baillet F., Mazeron J.J. Brachytherapy of glioblastoma recurring in previously irradiated territory: predictive value of tumor volume. Int J Radiat Oncol Biol Phys. 2002; 53(1): 67–74. doi:10.1016/s0360-3016(01)02804-8.; Gutin P.H., Phillips T.L., Wara W.M., Leibel S.A., Hosobuchi Y., Levin V.A., Weaver K.A., Lamb S. Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources. J Neurosurg. 1984; 60(1): 61–8. doi:10.3171/jns.1984.60.1.0061.; Chan T.A., Weingart J.D., Parisi M., Hughes M.A., Olivi A., Borzillary S., Alahakone D., Detorie N.A., Wharam M.D., Kleinberg L. Treatment of recurrent glioblastoma multiforme with GliaSite brachy-therapy. Int J Radiat Oncol Biol Phys. 2005; 62(4): 1133–9. doi:10.1016/j.ijrobp.2004.12.032.; Takano S., Yamashita T., Ohneda O. Molecular therapeutic targets for glioma angiogenesis. J Oncol. 2010. doi:10.1155/2010/351908.; Bruna A., Darken R.S., Rojo F., Ocaña A., Peñuelas S., Arias A., Paris R., Tortosa A., Mora J., Baselga J., Seoane J. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 2007; 11(2): 147–60. doi:10.1016/j.ccr.2006.11.023.; Lin J.L., Wang M.J., Lee D., Liang C.C., Lin S. Hypoxia-inducible factor-1alpha regulates matrix metalloproteinase-1 activity in human bone marrow-derived mesenchymal stem cells. FEBS Lett. 2008; 582(17): 2615–9. doi:10.1016/j.febslet.2008.06.033.; Phillips H., Armani M., Stavrou D., Ferrara N., Westphal M. Intense focal expression of vascular endothelial growth-factor messenger-RNA in human intracranial neoplasms – association with regions of necrosis. Int J Oncol. 1993; 2(6): 913–9. doi:10.3892/ijo.2.6.913.; Zang J., Li C., Zhao L.N., Shi M., Zhou Y.C., Wang J.H., Li X. Prognostic value of vascular endothelial growth factor in patients with head and neck cancer: A meta-analysis. Head Neck. 2013; 35(10): 1507–14. doi:10.1002/hed.23156.; Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249–57. doi:10.1038/35025220.; Winkler F., Kozin S.V., Tong R.T., Chae S.S., Booth M.F., Garkavtsev I., Xu L., Hicklin D.J., Fukumura D., di Tomaso E., Munn L.L., Jain R.K. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004; 6(6): 553–63. doi:10.1016/j.ccr.2004.10.011.; Liu G., Yuan X., Zeng Z., Tunici P., Ng H., Abdulkadir I.R., Lu L., Irvin D., Black K.L., Yu J.S. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006; 5: 67. doi:10.1186/1476-4598-5-67.; Bao S., Wu Q., Sathornsumetee S., Hao Y., Li Z., Hjelmeland A.B., Shi Q., McLendon R.E., Bigner D.D., Rich J.N. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006; 66(16): 7843–8. doi:10.1158/0008-5472.CAN-06-1010.; Friedman H.S., Prados M.D., Wen P.Y., Mikkelsen T., Schiff D., Abrey L.E., Yung W.K., Paleologos N., Nicholas M.K., Jensen R., Vredenburgh J., Huang J., Zheng M., Cloughesy T. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009; 27(28): 4733–40. doi:10.1200/JCO.2008.19.8721.; Lombardi G., Pambuku A., Bellu L., Farina M., Della Puppa A., Denaro L., Zagonel V. Effectiveness of antiangiogenic drugs in glioblastoma patients: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol. 2017; 111: 94–102. doi:10.1016/j.critrevonc.2017.01.018.; McBain C., Lawrie T.A., Rogozińska E., Kernohan A., Robinson T., Jefferies S. Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. Cochrane Database Syst Rev. 2021; 5(1). doi:10.1002/14651858.CD013579.pub2.; Zhang T., Xin Q., Kang J.M. Bevacizumab for recurrent glioblastoma: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021; 25(21): 6480–91. doi:10.26355/eurrev_202111_27092.; Combs S.E., Niyazi M., Adeberg S., Bougatf N., Kaul D., Fleischmann D.F., Gruen A., Fokas E., Rödel C.M., Eckert F., Paulsen F., Oehlke O., Grosu A.L., Seidlitz A., Lattermann A., Krause M., Baumann M., Guberina M., Stuschke M., Budach V., Belka C., Debus J., Kessel K.A. Re-irradiation of recurrent gliomas: pooled analysis and validation of an established prognostic score-report of the Radiation Oncology Group (ROG) of the German Cancer Consortium (DKTK). Cancer Med. 2018; 7(5): 1742–9. doi:10.1002/cam4.1425.; Møller S., Munck Af Rosenschöld P., Costa J., Law I., Poulsen H.S., Engelholm S.A., Engelholm S. Toxicity and efficacy of re-irradiation of high-grade glioma in a phase I dose- and volume escalation trial. Radiother Oncol. 2017; 125(2): 223–7. doi:10.1016/j.radonc.2017.09.039.; Moeller B.J., Cao Y., Li C.Y., Dewhirst M.W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004; 5(5): 429–41. doi:10.1016/s1535-6108(04)00115-1.; Heath V.L., Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol. 2009; 6(7): 395–404. doi:10.1038/nrclinonc.2009.52.; Gutin P.H., Iwamoto F.M., Beal K., Mohile N.A., Karimi S., Hou B.L., Lymberis S., Yamada Y., Chang J., Abrey L.E. Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys. 2009; 75(1): 156–63. doi:10.1016/j.ijrobp.2008.10.043.; Fleischmann D.F., Jenn J., Corradini S., Ruf V., Herms J., Forbrig R., Unterrainer M., Thon N., Kreth F.W., Belka C., Niyazi M. Bevacizumab reduces toxicity of reirradiation in recurrent high-grade glioma. Radiother Oncol. 2019; 138: 99–105. doi:10.1016/j.radonc.2019.06.009.; Kreisl T.N., Kim L., Moore K., Duic P., Royce C., Stroud I., Garren N., Mackey M., Butman J.A., Camphausen K., Park J., Albert P.S., Fine H.A. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009; 27(5): 740–5. doi:10.1200/JCO.2008.16.3055.; Kirkpatrick J.P., Meyer J.J., Marks L.B. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008; 18(4): 240–3. doi:10.1016/j.semradonc.2008.04.005.; Cuneo K.C., Vredenburgh J.J., Sampson J.H., Reardon D.A., Desjardins A., Peters K.B., Friedman H.S., Willett C.G., Kirkpatrick J.P. Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys. 2012; 82(5): 2018–24. doi:10.1016/j.ijrobp.2010.12.074.; Park K.J., Kano H., Iyer A., Liu X., Niranjan A., Flickinger J.C., Lieberman F.S., Lunsford L.D., Kondziolka D. Salvage gamma knife stereotactic radiosurgery followed by bevacizumab for recurrent glioblastoma multiforme: a case-control study. J Neurooncol. 2012; 107(2): 323–33. doi:10.1007/s11060-011-0744-9.; Guan Y., Xiong J., Pan M., Shi W., Li J., Zhu H., Gong X., Li C., Mei G., Liu X., Pan L., Dai J., Wang Y., Wang E., Wang X. Safety and efficacy of Hypofractionated stereotactic radiosurgery for high-grade Gliomas at first recurrence: a single-center experience. BMC Cancer. 2021; 21(1): 123. doi:10.1186/s12885-021-07856-y.; Morris S.L., Zhu P., Rao M., Martir M., Zhu J.J., Hsu S., Ballester L.Y., Day A.L., Tandon N., Kim D.H., Shepard S., Blanco A., Esquenazi Y. Gamma Knife Stereotactic Radiosurgery in Combination with Bevacizumab for Recurrent Glioblastoma. World Neurosurg. 2019; 127: 523–33. doi:10.1016/j.wneu.2019.03.193.; Hundsberger T., Brügge D., Putora P.M., Weder P., Weber J., Plasswilm L. Re-irradiation with and without bevacizumab as salvage therapy for recurrent or progressive high-grade gliomas. J Neurooncol. 2013; 112(1): 133–9. doi:10.1007/s11060-013-1044-3.; Schnell O., Thorsteinsdottir J., Fleischmann D.F., Lenski M., Abenhardt W., Giese A., Tonn J.C., Belka C., Kreth F.W., Niyazi M. Reirradiation strategies in combination with bevacizumab for recurrent malignant glioma. J Neurooncol. 2016; 130(3): 591–9. doi:10.1007/s11060-016-2267-x.; Youland R.S., Lee J.Y., Kreofsky C.R., Brown P.D., Uhm J.H., Laack N.N. Modern reirradiation for recurrent gliomas can safely delay tumor progression. Neurooncol Pract. 2018; 5(1): 46–55. doi:10.1093/nop/npx014.; Chan J., Jayamanne D., Wheeler H., Khasraw M., Wong M., Kastelan M., Guo L., Back M. The role of large volume re-irradiation with Bevacizumab in chemorefractory high grade glioma. Clin Transl Radiat Oncol. 2020; 22: 33–9. doi:10.1016/j.ctro.2020.03.005.; Helis C.A., Prim S.N., Cramer C.K., Strowd R., Lesser G.J., White J.J., Tatter S.B., Laxton A.W., Whitlow C., Lo H.W., Debinski W., Ververs J.D., Black P.J., Chan M.D. Clinical outcomes of dose-escalated re-irradiation in patients with recurrent high-grade glioma. Neurooncol Pract. 2022; 9(5): 390–401. doi:10.1093/nop/npac032.; Tsien C.I., Pugh S.L., Dicker A.P., Raizer J.J., Matuszak M.M., Lallana E.C., Huang J., Algan O., Deb N., Portelance L., Villano J.L., Hamm J.T., Oh K.S., Ali A.N., Kim M.M., Lindhorst S.M., Mehta M.P. NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma. J Clin Oncol. 2023; 41(6): 1285–95. doi:10.1200/JCO.22.00164.; Cuncannon M., Wong M., Jayamanne D., Guo L., Cove N., Wheeler H., Back M. Role of delayed salvage bevacizumab at symptomatic progression of chemorefractory glioblastoma. BMC Cancer. 2019; 19(1): 445. doi:10.1186/s12885-019-5678-1.; Modh A., Bergman D., Schultz L., Snyder J., Mikkelsen T., Ryu S., Siddiqui M.S., Walbert T. RTHP-06. Randomized prospective trial of stereotactic radiosurgery versus chemotherapy for recurrent malignant glioma after second-line chemotherapy. Neuro Oncol. 2018; 20(6). doi:10.1093/neuonc/noy148.938.; Tsien C., Pugh S., Dicker A.P., Raizer J.J., Matuszak M.M., Lallana E., Huang J., Algan O., Taylor N., Portelance L., Villano J., Hamm J., Oh K.S., Ali A.N., Kim M.M., Lindhorst S., Mehta M.P. Randomized phase II trial of re-irradiation and concurrent bevacizumab versus bevacizumab alone as treatment for recurrent glioblastoma (NRG Oncology/RTOG 1205): initial outcomes and RT plan quality report. Int J Radiat Oncol Biol Phys. 2019; 105(1): 78. doi:10.1016/j.ijrobp.2019.06.539.; Kim K.J., Li B., Winer J., Armanini M., Gillett N., Phillips H.S., Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993; 362(6423): 841–4. doi:10.1038/362841a0.; Jain R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307(5706): 58–62. doi:10.1126/science.1104819.; Duda D.G., Jain R.K., Willett C.G. Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J Clin Oncol. 2007; 25(26): 4033–42. doi:10.1200/JCO.2007.11.3985.; Calabrese C., Poppleton H., Kocak M., Hogg T.L., Fuller C., Hamner B., Oh E.Y., Gaber M.W., Finklestein D., Allen M., Frank A., Bayazitov I.T., Zakharenko S.S., Gajjar A., Davidoff A., Gilbertson R.J. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007; 11(1): 69–82. doi:10.1016/j.ccr.2006.11.020.; Gilbertson R.J., Rich J.N. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 2007; 7(10): 733–6. doi:10.1038/nrc2246.; Мацко М.В., Мацко E.Д. Нейроонкология, 2021. Краткий анализ новой классификации Всемирной организации здравоохране-ния опухолей центральной нервной системы. Вестник Санкт-Петербургского университета. Медицина. 2022; 17(2): 88–100. doi:10.21638/spbu11.2022.202.; https://www.siboncoj.ru/jour/article/view/2958

  13. 13
    Academic Journal

    المساهمون: The study was supported by the Russian Science Foundation grant No. 22-15-00212 dated May 13, 2022 “Transcriptomic and proteomic markers for the prognosis and effectiveness of therapy for metastatic colon cancer.”, Работа поддержана грантом РНФ № 22-15-00212 от 13.05.2022 «Транскриптомные и протеомные маркеры прогноза и эффективности терапии метастатического рака толстой кишки».

    المصدر: Siberian journal of oncology; Том 23, № 1 (2024); 162-169 ; Сибирский онкологический журнал; Том 23, № 1 (2024); 162-169 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2969/1207; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–49. doi:10.3322/caac.21660.; Engstrand J., Strömberg C., Nilsson H., Freedman J., Jonas E. Synchronous and metachronous liver metastases in patients with colorectal cancer-towards a clinically relevant definition. World J Surg Oncol. 2019; 17(1): 228. doi:10.1186/s12957-019-1771-9.; Calderon Novoa F., Ardiles V., de Santibañes E., Pekolj J., Goransky J., Mazza O., Sánchez Claria R., de Santibañes M. Pushing the Limits of Surgical Resection in Colorectal Liver Metastasis: How Far Can We Go? Cancers (Basel). 2023; 15(7): 2113. doi:10.3390/cancers15072113.; Mohamad I., Barry A., Dawson L., Hosni A. Stereotactic body radiation therapy for colorectal liver metastases. Int J Hyperthermia. 2022; 39(1): 611–9. doi:10.1080/02656736.2021.1923836.; Афанасьев С.Г., Тузиков С.А. Нерезектабельные опухоли печени (обзор литературы). Сибирский онкологический журнал. 2006; 1: 49–54.; de Jong M.C., Pulitano C., Ribero D., Strub J., Mentha G., Schulick R.D., Choti M.A., Aldrighetti L., Capussotti L., Pawlik T.M. Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis: an international multi-institutional analysis of 1669 patients. Ann Surg. 2009; 250(3): 440–8. doi:10.1097/SLA.0b013e3181b4539b.; Tournigand C., André T., Achille E., Lledo G., Flesh M., Mery-Mignard D., Quinaux E., Couteau C., Buyse M., Ganem G., Landi B., Colin P., Louvet C., de Gramont A. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004; 22(2): 229–37. doi:10.1200/JCO.2004.05.113. Corrected and republished in: J Clin Oncol. 2023; 41(19): 3469–77.; Benoist S., Brouquet A., Penna C., Julié C., El Hajjam M., Chagnon S., Mitry E., Rougier P., Nordlinger B. Complete response of colorectal liver metastases after chemotherapy: does it mean cure? J Clin Oncol. 2006; 24(24): 3939–45. doi:10.1200/JCO.2006.05.8727.; Добродеев А.Ю., Костромицкий Д.Н., Тарасова А.С., Афанасьев С.Г., Бабышкина Н.Н., Пономарева А.А., Ермоленко Р.В., Фролова И.Г., Черемисина О.В. Непосредственные результаты неоадъювантной химиотерапии у больных метастатическим колоректальным раком с изолированным поражением печени. Сибирский онкологический журнал. 2022; 21(6): 17–24. doi.:10.21294/1814-4861-2022-21-6-17-24.; Chow F.C., Chok K.S. Colorectal liver metastases: An update on multidisciplinary approach. World J Hepatol. 2019; 11(2): 150–72. doi:10.4254/wjh.v11.i2.150.; Ardito F., Panettieri E., Vellone M., Ferrucci M., Coppola A., Silvestrini N., Arena V., Adducci E., Capelli G., Vecchio F.M., Giovannini I., Nuzzo G., Giuliante F. The impact of R1 resection for colorectal liver metastases on local recurrence and overall survival in the era of modern chemotherapy: An analysis of 1,428 resection areas. Surgery. 2019; 165(4): 712–20. doi:10.1016/j.surg.2018.09.005.; Falcone A., Ricci S., Brunetti I., Pfanner E., Allegrini G., Barbara C., Crinò L., Benedetti G., Evangelista W., Fanchini L., Cortesi E., Picone V., Vitello S., Chiara S., Granetto C., Porcile G., Fioretto L., Orlandini C., Andreuccetti M., Masi G.; Gruppo Oncologico Nord Ovest. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol. 2007; 25(13): 1670–6. doi:10.1200/JCO.2006.09.0928.; Martin J., Petrillo A., Smyth E.C., Shaida N., Khwaja S., Cheow H.K., Duckworth A., Heister P., Praseedom R., Jah A., Balakrishnan A., Harper S., Liau S., Kosmoliaptsis V., Huguet E. Colorectal liver metastases: Current management and future perspectives. World J Clin Oncol. 2020; 11(10): 761–808. doi:10.5306/wjco.v11.i10.761.; Araujo R.L.C., Milani J.M., Armentano D.P., Moreira R.B., Pinto G.S.F., de Castro L.A., Lucchesi F.R. Disappearing colorectal liver metastases: Strategies for the management of patients achieving a radiographic complete response after systemic chemotherapy. J Surg Oncol. 2020; 121(5): 848–56. doi:10.1002/jso.25784.; Xu D., Yan X.L., Liu J.M., Li J., Xing B.C. The characteristics and long-term survival of patients with colorectal liver metastases with pathological complete response after chemotherapy. J Cancer. 2020; 11(21): 6256–63. doi:10.7150/jca.47911.; Adam R., Wicherts D.A., de Haas R.J., Aloia T., Lévi F., Paule B., Guettier C., Kunstlinger F., Delvart V., Azoulay D., Castaing D. Complete pathologic response after preoperative chemotherapy for colorectal liver metastases: myth or reality? J Clin Oncol. 2008; 26(10): 1635–41. doi:10.1200/JCO.2007.13.7471.; Barimani D., Kauppila J.H., Sturesson C., Sparrelid E. Imaging in disappearing colorectal liver metastases and their accuracy: a systematic review. World J Surg Onc. 2020; 18. doi:10.1186/s12957-020-02037-w.; https://www.siboncoj.ru/jour/article/view/2969

  14. 14
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 34, № 2 (2024); 295-299 ; Пульмонология; Том 34, № 2 (2024); 295-299 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4447/3653; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4447/2447; Caley L.R., Jarosz-Griffiths H.H., Smith L. et al. Body mass index and nutritional intake following elexacaftor/tezacaftor/ivacaftor modulator therapy in adults with cystic fibrosis. J. Cyst. Fibros. 2023; 22 (6): 1002–1009. DOI:10.1016/j.jcf2023.06.010.; Ooi C.Y., Durec. P.R. Cystic fibrosis from the gastroenterologist’s perspective. Nat. Rev. Gastroenterol. Hepatol. 2016; 13 (3): 175–185. DOI:10.1038/ngastro.2015.226.; Stallings A., Stark L.J., Robinson K.A. et al. Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: results of a systematic review. J. Am Diet. Assoc. 2008; 108 (5): 832–839. DOI:10.1016/j.jada.2008.02.020.; Cystic Fibrosis Trust. Nutritional management of cystic fibrosis. 2nd Edn. London; 2016. Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/Nutritional%20Management%20of%20cystic%20fibrosis%20Sep%2016.pdf; Bass R., Brownell J.N., Stallings V.A. The impact of highly effective CFTR modulators on growth and nutritional status. Nutrients. 2021; 13 (9): 2907. DOI:10.3390/nu13092907.; Rosenfeld M., Wainwright C.E., Higgins M. et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to 24 month and with a CFTR gating mutation (ARRIVAL): a phase 3 single arm study. 2018; 6 (7): 545–553. DOI:10.1016/S2213-2600(18)30202-9.; Hayes D.Jr., Warren P.S., McCoy K.S., Sheikh S.I. Improvement of hepatic steatosis in cystic fibrosis with ivacaftor therapy. Pediatr. Gastroenterol. Nutr. 2015; 60 (5): 578–579. DOI:10.1097/MPG.0000000000000765.; Ooi C.Y., Syed S.A., Rossi L. et al. Impact of CFTR modulation with Ivacaftor on gut microbiota and intestinal inflammation. Sci. Rep. 2018; 8 (1): 17834. DOI:10.1038/s41598-018-36364-6.; Gelfond D., Heltshe S., Ma C. et al. Impact of CFTR modulation on intestinal pH motility and clinical outcomes in patients with cystic fibrosis and the G551D mutation. Clin. Gastroenterol. 2017; 8 (3): e81 DOI:10.1038/ctg.2017.10.; Stallings V.A., Sainath N., Oberle M. et al. Energy balance and mechanisms of weight gain with ivacaftor treatment of cystic fibrosis gating mutations. J. Pediatr. 2018; 201: 229–237.e4. DOI:10.1016/j.jpeds.2018.05.018.; Wainwriht C.E., Elborn J.S., Ramsey B.W. et al. Lumacaftor-Ivacaftor in patients with cystic fibrosis homozigos F508del CFTR. N. Engl. J. Med. 2015; 373 (3): 220–231. DOI:10.1056/nejmoa1409547; Taylor-Cousar J.L., Munck A., McKone E.F. et al. Tezacaftor/ Ivacaftor in patients with cystic fibrosis homozigos Phe508del. N. Engl. J. Med. 2017; 377 (21): 2013–2023 DOI:10.1056/nejmoa1709846; Petersen M.C., Begnel L., Wallendorf M. et al. Effect of elexacaftor/ tezacaftor/ivacaftor jn bodyweight and metabolic parameters in adults with cystic fibrosis. J. Cyst. Fibros. 2022; 21 (2): 265–271. DOI:10.1016/j.cf.2021.11.012.; Knff-Torcal C., Sebastián-Valles F., Girón Moreno R.M. et al. A prospective study to assess the impact of a novel CFTR-therapy combination in patients with cystic fibrosis with F508del mutation. 2023; 42 (12): 2468–2474. DOI:10.1016/j.clnu.2023.10.015.; McDonald C.M., Alvarez J.A., Bailey J. et al. Academy of Nutrition and Dietetics: 2020 Cystic Fibrosis Evidence Analysis Center Evidence-Based Nutrition Practice Guideline. J. Acad. Nutr. Diet. 2021; 121 (8): 1591–1636.e3. DOI:10.1016/j.jand.2020.03.015.; https://journal.pulmonology.ru/pulm/article/view/4447

  15. 15
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 34, № 2 (2024); 257-263 ; Пульмонология; Том 34, № 2 (2024); 257-263 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4448/3647; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2448; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2542; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2543; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2544; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2545; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2546; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2547; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2548; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2549; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2550; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4448/2551; Fokkens W.J., Lund V.J., Hopkins C. et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020; 58 (Suppl. S29): 1–464. DOI:10.4193/rhin20.600.; Mainz, J.G., Naehrlich L., Schien M. et al. Concordant genotype of upper and lower airways P. aeruginosa and S. aureus isolates in cystic fibrosis. Thorax. 2009; 64 (6): 535–540. DOI:10.1136/thx.2008.104711.; Hamilos D.L. Nasal and sinus problems in cystic fibrosis patients. In: Bachert C., Bourdin A., Chanez P., eds. The nose and sinuses in respiratory disorders. Sheffield: European Respiratory Society; 2017: 48–66. DOI:10.1183/2312508X.10009616.; Шумкова Г.Л., Амелина Е.Л., Свистушкин В.М. и др. Хронический риносинусит у взрослых больных муковицидозом: клинические проявления и подходы к лечению. Пульмонология. 2019; 29 (3): 311–320. DOI:10.18093/0869-0189-2019-29-3-311-320.; Berkhout M.C., van Rooden CJ, Rijntjes E. et al. Sinonasal manifestations of cystic fibrosis: a correlation between genotype and phenotype? J. Cyst. Fibrosis. 2014; 13 (4): 442–448. DOI:10.1016/j.jcf.2013.10.011.; Mainz J.G., Koitschev A. Pathogenesis and management of nasal polyposis in cystic fibrosis. Curr. Allergy Asthma Rep. 2012; 12 (2): 163–174. DOI:10.1007/s11882-012-0250-y; Кондратенко О.В., Жестков А.В., Лямин А.В., Поликарпова С.В. Микробиота респираторного тракта у пациентов с муковисцидозом. Бюллетень Оренбургского научного центра УрО РАН. 2019; (3): 1–8. Доступно на: https://cyberleninka.ru/article/n/mikrobiota-respiratornogo-trakta-u-patsientov-s-mukovistsidozom?ysclid=lteb0xjjug10993699; McCormick J., Cho D.Y., Lampkin B. et al. Ivacaftor improves rhinologic, psychologic, and sleep-related quality of life in G551D cystic fibrosis patients. Int. Forum Allergy Rhinol. 2019; 9 (3): 292–297. DOI:10.1002/alr.22251.; Sheikh S.I., Long F.R., McCoy K.S. et al. Ivacaftor improves appearance of sinus disease on computerised tomography in cystic fibrosis patients with G551D mutation. Clin. Otolaryngol. 2015; 40 (1): 16–21. DOI:10.1111/coa.12310.; Wucherpfennig L., Wuennemann F., Eichinger M. et al. Longterm effects of lumacaftor/ivacaftor on paranasal sinus abnormalities in children with cystic fibrosis detected with magnetic resonance imaging. Front. Pharmacol. 2023; 14: 1161891. DOI:10.3389/fphar.2023.1161891.; Stapleton A. L., Kimple A.J., Goralski J.L. et al. Elexacaftor-Tezacaftor- Ivacaftor improves sinonasal outcomes in cystic fibrosis. J. Cyst. Fibros. 2022; 21 (5): 792–799 DOI:10.1016/j.jcf.2022.03.002.; https://journal.pulmonology.ru/pulm/article/view/4448

  16. 16
    Academic Journal

    المساهمون: The work was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the Federal State Budgetary Scientific Institution “Research Centre for Medical Genetics”, Ministry of Science and Higher Education of the Russian Federation, Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации для Федерального государственного бюджетного научного учреждения «Медико-генетический научный центр имени академика Н.П. Бочкова» Министерства науки и высшего образования Российской Федерации

    المصدر: PULMONOLOGIYA; Том 34, № 2 (2024); 283-288 ; Пульмонология; Том 34, № 2 (2024); 283-288 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4451/3651; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4451/2513; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4451/2588; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4451/2679; De Boeck K. Cystic fibrosis in the year 2020: a disease with a new face. Acta Paediatr. 2020; 109 (5): 893–899. DOI:10.1111/apa.15155.; Bierlaagh M.C., Muilwijk D., Beekman J.M., van der Ent C.K. A new era for people with cystic fibrosis. Eur. J. Pediatr. 2021; 180 (9): 2731–2739. DOI:10.1007/s00431-021-04168-y.; Roda J., Pinto-Silva C., Silva I.A.I. et al. New drugs in cystic fibrosis: what has changed in the last decade? Ther. Adv. Chronic Dis. 2022; 13: 20406223221098136. DOI:10.1177/20406223221098136.; Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Таргетная терапия при муковисцидозе. Пульмонология. 2021; 31 (2): 226–236. DOI:10.18093/0869-0189-2021-31-2-226-236.; Allen L., Allen L., Carr S.B. et al. Future therapies for cystic fibrosis. Nat. Commun. 2023; 14 (1): 693. DOI:10.1038/s41467-023-36244-2.; Mall M.A., Mayer-Hamblett N., Rowe S.M. Cystic fibrosis: Emergence of highly effective targeted therapeutics and potential clinical implications. Am. J. Respir. Crit. Care Med. 2020; 201 (10): 1193–1208. DOI:10.1164/rccm.201910-1943so.; Krainer G., Schenkel M., Hartmann A. et al. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor. J. Biol. Chem. 2020; 295 (7): 1985–1991. DOI:10.1074/jbc.AC119.011360.; Derichs N., Sanz J., Von Kanel T. et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010; 65 (7): 594–599. DOI:10.1136/thx.2009.125088.; Мельяновская Ю.Л. Молекулярная эпидемиология муковисцидоза в РФ и комплексная оценка патогенетической роли вариантов гена CFTR на основе изучения функции эпителиальных ионных каналов (ENaC, CFTR, CaCCs): Автореф. дис. … канд. мед. наук. М.; 2023.; https://journal.pulmonology.ru/pulm/article/view/4451

  17. 17
    Academic Journal

    المساهمون: The work was carried within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation for Federal State Budgetary Scientific Institution “Research Centre for Medical Genetics”, Ministry of Science and Higher Education of the Russian Federation, Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации для Федерального государственного бюджетного научного учреждения «Медико-генетический научный центр имени академика Н.П.Бочкова» Министерства науки и высшего образования Российской Федерации

    المصدر: PULMONOLOGIYA; Том 34, № 2 (2024); 218-224 ; Пульмонология; Том 34, № 2 (2024); 218-224 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4443/3642; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2438; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2439; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2440; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2555; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2556; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2557; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2558; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2559; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2560; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4443/2561; Bell S.C., Mall M.A., Gutierrez H. et al. The future of cystic fibrosis care: a global perspective. Lancet Respir. Med. 2020; 8 (1): 65–124. DOI:10.1016/S2213-2600(19)30337-6.; Bardin E., Pastor A., Semeraro M. et al. Modulators of CFTR. Updates on clinical development and future directions. Eur. J. Med. Chem. 2021; 213: 113195. DOI:10.1016/j.ejmech.2021.113195.; Van Goor F., Hadida S., Grootenhuis P.D.J. et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA. 2009; 106 (44): 18825–18830. DOI:10.1073/pnas.0904709106.; Barry P.J., Mall M.A., Álvarez A. et al. Triple therapy for cystic fibrosis Phe508del-gating and-residual function genotypes. N. Engl. J. Med. 2021; 385 (9): 815–825. DOI:10.1056/NEJMoa2100665.; Boyle M.P., De Boeck K. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir. Med. 2013; 1 (2): 158–163. DOI:10.1016/S2213-2600(12)70057-7.; Keating D., Marigowda G., Burr L. et al. VX-445–tezacaftor–ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N. Engl. J. Med. 2018; 379 (17): 1612–1620. DOI:10.1056/NEJMoa1807120.; Красовский С.А., Старинова А.Ю., Воронкова Е.Л. и др., ред. Регистр больных муковисцидозом в Российской Федерации. 2021 год. СПб: Благотворительный фонд «Острова»; 2023. Доступно на: https://mukoviscidoz.org/doc/registr/registr_systicfibrosis_brochure_19_10.pdf; Cystic Fibrosis Foundation. 2019 Patient Registry: Annual Data Report. 2020. Available at: https://www.cff.org/; ECFS. ECFS Patient Registry. Annual Report. 2021. Available at: https://www.ecfs.eu/projects/ecfs-patient-registry/annual-reports; Middleton P.G., Mall M.A., Dřevínek P. et al. Elexacaftortezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N. Engl. J. Med. 2019; 381 (19): 1809–1819. DOI:10.1056/NEJMoa1908639.; Ribeiro A.S., Azevedo P., Lopes C., Veloso P. Sweat chloride concentration as a surrogate marker of CFTR modulator therapy response. Eur. Respir. J. 2023, 62 (Suppl. 67): PA2157. DOI:10.1183/13993003.congress-2023.pa2157.; Wainwright C., McColley S.A., McNally P. et al. Long-term safety and efficacy of elexacaftor/tezacaftor/ivacaftor in children aged ≥ 6 years with cystic fibrosis and at least one F508del allele: a phase 3, open-label clinical trial. Am. J. Respir. Crit. Care Med. 2023; 208 (1): 68–78. DOI:10.1164/rccm.202301-0021OC.; Zemanick E.T., Taylor-Cousar J.L., Davies J. et al. A phase 3 open-label study of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis and at least one F508del allele. Am. J. Respir. Crit. Care Med. 2021; 203 (13): 1522–1532. DOI:10.1164/rccm.202102-0509OC.; Кондратьева Е.И., Одинаева Н.Д., Воронкова А.Ю. и др. Эффективность таргетной терапии лумакафтором/ивакафтором у детей при муковисцидозе (12-месячное наблюдение). Архив педиатрии и детской хирургии. 2023;1 (1): 50–58. DOI:10.31146/2949-4664-apps-1-1-50-58.; https://journal.pulmonology.ru/pulm/article/view/4443

  18. 18
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 34, № 2 (2024); 277-282 ; Пульмонология; Том 34, № 2 (2024); 277-282 ; 2541-9617 ; 0869-0189

    مصطلحات موضوعية: дети, таргетная терапия

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4437/3650; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4437/2423; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4437/2424; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4437/2425; Кондратьева Е.И., Каширская Н.Ю., Капранов Н.И., ред. Национальный консенсус «Муковисцидоз: определение, диагностические критерии, терапия». М.: Боргес; 2016. Доступно на: https://mukoviscidoz.org/doc/konsensus/CF_consensus_2017.pdf?ysclid=lub6dusge2963690559; Министерство здравоохранения Российской Федерации. Клинические рекомендации: Кистозный фиброз (муковисцидоз). 2021. Доступно на: https://cr.minzdrav.gov.ru/recomend/372_2 [Дата обращения: 20.12.23]; Каширская Н.Ю., Кондратьева Е.И., Красовский С.А. и др., ред. Муковисцидоз. Регистр больных муковисцидозом в Российской Федерации. 2019 год. М.: Медпрактика-М, 2021. Доступно на: https://mukoviscidoz.org/doc/registr/site_Registre_2019.pdf?ysclid=lub6yfclmh880795942; Союз педиатров России. Методические рекомендации: Таргетная терапия кистозного фиброза (муковисцидоза). 2023. Доступно на: https://mukoviscidoz.org/doc/med_doc/target-metodrecomend-2023.pdf?ysclid=lub76ua474408183502 [Дата обращения: 20.12.23].; https://journal.pulmonology.ru/pulm/article/view/4437

  19. 19
    Academic Journal

    المساهمون: The work was supported by the Russian Science Foundation grant No.22-15-00473 “Study of the influence of complex alleles of the CFTR gene on the functional activity of chloride channel for personalized selection of targeted therapy for cystic fibrosis”, Работа выполнена за счет средств гранта РНФ №22-15-00473 “Исследование влияния комплексных аллелей гена CFTR на функциональную активность хлорного канала для персонализированного подбора таргетной терапии при муковисцидозе”

    المصدر: PULMONOLOGIYA; Том 34, № 2 (2024); 264-270 ; Пульмонология; Том 34, № 2 (2024); 264-270 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4452/3648; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4452/2458; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4452/2613; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4452/2614; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4452/2615; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4452/2616; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4452/2617; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4452/2618; Dekkers J.F., Berkers G., Kruisselbrink E. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 2016; 8 (344): 344ra84. DOI:10.1126/scitranslmed.aad8278.; Clinical and functional translation of CFTR. Available at: https://cftr2.org/ [Accessed: January 29, 2024].; Красовский С.А., Старинова М.А., Воронкова А.Ю. и др., ред. Регистр пациентов с муковисцидозом в Российской Федерации. 2021 год. СПб: Благотворительный фонд «Острова»; 2023. Доступно на: https://mukoviscidoz.org/doc/registr/registr_systicfibrosis_brochure_19_10.pdf; Kondratyeva E., Efremova A., Melyanovskaya Y. et al. Evaluation of the complex p.[Leu467Phe;Phe508del] CFTR allele in the intestinal organoids model: implications for therapy. Int. J. Mol. Sci. 2022; 23 (18): 10377. DOI:10.3390/ijms231810377.; Boeck K.De, Zolin A., Cuppens H. et al. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J. Cyst. Fibros. 2014; 13 (4): 403–409. DOI:10.1016/j.jcf.2013.12.003.; Van Goor F., Yu H., Burton B., Hoffman B.J. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J. Cyst. Fibros. 2014; 13 (1): 29–36. DOI:10.1016/j.jcf.2013.06.008.; Гембицкая Т.Е., Иващенко Т.Э., Черменский А.Г., Насыхова Ю.A. Фенотипические особенности и генетическая неоднородность больных при поздней манифестации и неклассическом течении муковисцидоза. Пульмонология. 2014; (1): 66–70. DOI:10.18093/0869-0189-2014-0-1-66-70.; Ramalho A.S., Fürstová E., Vonk A.M. et al. Correction of CFTR function in intestinal organoids to guide treatment of cystic fibrosis. Eur. Respir. J. 2021; 57 (1): 190242. DOI:10.1183/13993003.02426-2019.; Boj S.F., Vonk A.M., Statia M. et al. Forskolin-induced swelling in intestinal organoids: An in vitro assay for assessing drug response in cystic fibrosis patients. J. Vis. Exp. 2017; (120): 55159. DOI:10.3791/55159.; Derichs N., Sanz J., Von Kanel T. et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010; 65 (7): 594–599. DOI:10.1136/thx.2009.125088.; Sondo E., Cresta F., Pastorino C. et al. The L467F-F508del complex allele hampers pharmacological rescue of mutant CFTR by elexacaftor/tezacaftor/ivacaftor in cystic fibrosis patients: The value of the ex vivo nasal epithelial model to address non-responders to CFTR-modulating grugs. Int. J. Mol. Sci. 2022; 23 (6): 3175. DOI:10.3390/ijms23063175.; https://journal.pulmonology.ru/pulm/article/view/4452

  20. 20
    Academic Journal

    المصدر: Surgery and Oncology; Том 14, № 1 (2024); 32-43 ; Хирургия и онкология; Том 14, № 1 (2024); 32-43 ; 2949-5857

    وصف الملف: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/688/452; https://www.onco-surgery.info/jour/article/view/688/460; Munteanu I., Mastalier B. Genetics of colorectal cancer. Journal of Medicine and Life 2014;7(4):507–11. PMID: 25713610; PMCID: PMC4316127.; Markowitz S.D., Bertagnolli M.M. Molecular Basis of Colorectal Cancer. N Engl J Med 2009;361:2449–60. DOI:10.1056/NEJMra0804588; Parsons D.W., Jones S., Zhang X. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321(5897):1807–12. DOI:10.1126/science.1164382; Sjoblom T., Jones S., Wood L.D. et al. The Consensus Coding Sequences of human Brest and Colorectal Cancers. Science 2006;13;314(5797):268–74. DOI:10.1126/science1133427; Yan H., Yuan W., Velculescu V. et al. Allelic Variation in Human Gene Expression. Science 2002;297(5584):1143. DOI:10.1126/science 1072545; Venugopal A., Carethers J.M. Epidemiology and biology of early onset colorectal cancer. EXCLI J 2022;21:162–82. PMID: 35221839; PMCID: PMC8859644. DOI:10.17179/excli2021-4456; Kinzler K.W., Vogelstein B. Colorectal tumors. In: Vogelstein B., Kinzler K.W. The genetic basis of human cancer. 2nd ed. New York: McGraw-Hill, 2002. Pp. 583–612.; Barber T.D., Mc Manus K., Yen K.W. et al. Cromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Nati Acad Sci USA 2008;105(9):3443–8. DOI:10.1073/pnas.0712384105; Chen W.S., Chen J.Y., Liu J.M. et al. Microsatellite instability in sporadic colon cancer patients with and without liver metastases. Int J Cancer 1997;74(4):470–4.; Hampel H., Frankel W.L., Martin E. et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 2005;352(18):1851–60. DOI:10.1056/NEJMoa043146; Linch H.T., Linch J.F., Linch P.M., Attard T. Hereditary colorectal cancer syndromes; molecular genetics, genetic counseling, diagnosis and management. Fam Cancer 2008;7:(1):27–39. DOI:10.1007/s10689-007-9165-5; Jävinen H.J., Aarnio M., Mustonen H. et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 2000;118(5):829–34.; Cerrito M.G., Grassilli E. Identifying Novel Actionable targets in colon cancer. Biomedicines 2021;9:579. DOI:10.3390/biomedicines9050579; Hafner A., Bulyk M.L., Jambhekar A., Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 2019;20: 199–210.; Carethers J.M., Jung B.H. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology 2015;149:1177–90.e3.; Weisenberger D.J., Siegmund K.D., Campan M. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006;38(7):787–93.; Huerta S. Recent Advances in the molecular diagnosis and prognosis of colorectal cancer. Expert Rev Mol Diagn 2008;8(3):277–88.; Elnatan J., Goh H.S., Smith D.R. C-KI-RAS activation and the biological behavior of proximal and distal colonic adenocarcinomas. Eur J Cancer 1996;32A(3):491–7.; Fearon E.R., Vogelstein B. The genetic model for colorectal tumorigenesis. Cell 1990;61(5):759–67.; Kahlenberg M.S., Sullivan J.M., Witmer D.D., Petrelli N.J. Molecular prognostics in colorectal cancer. Surg Oncol 2003;12(3):173–86.; Wadler S., Bajaj R., Neuberg D. et al. Prognostic implications of the Ki-ras mutations in patients with advanced colorectal cancer treated with 5-fluorouracil and interferon: a study of the Eastern Cooperative Oncology group (EST 2292) Cancer J Sci Am 1996;171(1):41–6.; Yavropoulou M.P., Yovos J.G. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens) 2007;6(4):279–94.; Lowe S.W., Ruley H.E., Jacks T., Housman D.E. P-53-dependent apoptosis modulate the cytotoxicity of anticancer agents. Cell 1993;74(6):957–67.; Chan A.T., Ogino S., Fichs C.S. Aspirin use and risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 2007;356:2131–42.; Lynch H.T., Trudy G. Show practical genetics of colorectal cancer. Chin Clin Oncol 2013;2(2):12. DOI:10.3978/J-issn. 2304-3865; Ewing L., Hurley J.J., Josephides E., Millar A. The molecular genetics of colorectal cancer. Frontline Gastroenterology 2014;5:26–30. DOI:10.1136/flgastro-2013-100329; Bertagnolli M.M., Eagle C.J., Zauber A.G. et al. Colecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 2006;355:873–84.; Fearon E.R. Molecular genetics of colorectal cancer. Annu Rev Pathol 2011:6:479–507. DOI:10.1146/annurev-pathol-011110-130235; Amado R.G., Wolf M., Peeters M. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26(10):1626–34.; HurWitz H., Fehrenbacher L., Novotny W. et al. Bevacizumab plus Irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350(23):2335–42.; Mastalier B., Simion S., Brătucu E. Surgical treatment results in rectal cancer-experience of last 10 years. J Med Life 2011; IV(special issue):68–78.; Mastalier B. Cancerul de rect. Editura Universitară Carol Davila, 2011.; Migliore L., Migheli F., Spisni R., Coppede F. Genetics, cytogenetics and epigenetics of colorectal cancer. J Biomed Biotechnol 2011. DOI:10.1155/2011/792362; Bogaert J., Prenen H. Molecular genetics of colorectal cancer. Ann Gastroenterol 2014;27(1):1–6.; Zhu G., Pei L., Xia H. et al. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer 2021;20(1):143. DOI:10.1186/s12943-021-01441-4; Alexandrov L.B., Nik-Zainal S., Wedge D.C. et al. Signatures of mutational processes in human cancer. Nature 2013;500(7463):415–21. DOI:10.1038/nature12477; Tran E., Robbins P.F., Lu Y.C. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 2016;375(23):2255–62. DOI:10.1056/NEJMoa1609279; https://www.onco-surgery.info/jour/article/view/688