يعرض 1 - 20 نتائج من 87 نتيجة بحث عن '"С. Р. Варфоломеева"', وقت الاستعلام: 0.85s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Pediatric pharmacology; Том 21, № 5 (2024); 449-454 ; Педиатрическая фармакология; Том 21, № 5 (2024); 449-454 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2528/1640; Evans WE, Abromowitch M, Crom WR, et al. Clinical pharmacodynamic studies of high-dose methotrexate in acute lymphocytic leukemia. NCI Monogr.1987;(5):81–85.; Giletti A, Esperon P. Genetic markers in methotrexate treatments. Pharmacogenomics J. 2018;18(6):689–703. doi: https://doi.org/10.1038/s41397-018-0047-z; Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(4):612–619. d oi: https://doi.org/10.1002/pbc.23074; Ramsey LB, Balis FM, O’Brien MM, et al. Consensus Guideline for Use of Glucarpidase in Patients with High-Dose Methotrexate Induced Acute Kidney Injury and Delayed Methotrexate Clearance. Oncologist. 2018;23(1):52–61. doi: https://doi.org/10.1634/theoncologist.2017-0243; Диникина Ю.В., Смирнова А.Ю., Голубева К.М. и др. Применение высоких доз метотрексата у детей с онкологическими заболеваниями: особенности сопроводительной терапии, оценка токсичности // Российский журнал детской гематологии и онкологии. — 2018. — Т. 5. — № 2. — С. 11–18. — doi: https://doi.org/10.17650/2311-1267-2018-5-2-11-18; Pannu AK. Methotrexate overdose in clinical practice. Curr Drug Metab. 2019;20(9):714–719. doi: https://doi.org/10.2174/1389200220666190806140844; Tavakolpour S, Darvishi M, Ghasemiadl M. Pharmacogenetics: A strategy for personalized medicine for autoimmune diseases. Clin Genet. 2018;93(3):481–497. doi: https://doi.org/10.1111/cge.13186; Малова М.Д., Михайлова С.Н., Белышева Т.С. Высокодозный метотрексат в детской онкогематологии: вопросы токсичности терапии // Вестник гематологии. — 2023. — Т. 19. — № 3. — С. 22–27.; Meyers PA, Flombaum C. High-dose methotrexate-induced renal dysfunction: is glucarpidase necessary for rescue? J Clin Oncol. 2011;29(7):e180. doi: https://doi.org/10.1200/JCO.2010.32.8245; Treon SP, Chabner BA. Concepts in use of high-dose methotrexate therapy. Clin Chem. 1996;42(8 Pt 2):1322–1329.; Choi YJ, Park H, Lee JS, et al. Methotrexate elimination and toxicity: MTHFR 677C>T polymorphism in patients with primary CNS lymphoma treated with high-dose methotrexate. Hematol Oncol. 2017;35(4):504–509. doi: https://doi.org/10.1002/hon.2363; Park JA, Shin HY. Influence of genetic polymorphisms in the folate pathway on toxicity a fter high-dose methotrexate treatment in pediatric osteosarcoma. Blood Res.2016;51(1):50–57. doi: https://doi.org/10.5045/br.2016.51.1.50; Castaldo P, Magi S, Nasti AA, et al. Clinical pharmacogenetics of methotrexate. Curr Drug Metab. 2011;12(3):278–286. doi: https://doi.org/10.2174/138920011795101840; Леонов Д.В., Устинов Е.М., Деревянная В.О. и др. Генетический полиморфизм. Значение. Методы исследования // Амурский медицинский журнал. — 2017. — № 2. — С. 62–67.; Song Z, Hu Y, Liu S, et al. The Role of Genetic Polymorphisms in High-Dose Methotrexate Toxicity and Response in Hematological Malignancies: A Systematic Review and Meta-Analysis. Front Pharmacol. 2021;12:757464. doi: https://doi.org/10.3389/fphar.2021.757464; Sundbaum JK, Baecklund E, Eriksson N, et al. MTHFR, TYMS and SLCO1B1 polymorphisms and adverse liver effects of methotrexate in rheumatoid arthritis. Pharmacogenomics. 2020;21(5):337–346. doi: https://doi.org/10.2217/pgs-2019-0186; Sramek M, Neradil J, Veselska R. Much more than you expected: The non-DHFR-mediated effects of methotrexate. Biochim Biophys Acta Gen Subj. 2017;1861(3):499–503. doi: https://doi.org/10.1016/j.bbagen.2016.12.014; Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat. 2006;9(4-5):227–246. doi: https://doi.org/10.1016/j.drup.2006.09.001; Lopez-Lopez E, Gutierrez-Camino A, Bilbao-Aldaiturriaga N, et al. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014;15(10):1383–1398. doi: https://doi.org/10.2217/pgs.14.106; Umerez M, Gutierrez-Camino Á, Muñoz-Maldonado C, et al. MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med. 2017;10:69–78. doi: https://doi.org/10.2147/PGPM.S107047; Lambrecht L, Sleurs C, Labarque V, et al. The role of the MTHFR C677T polymorphism in methotrexate-induced toxicity in pediatric osteosarcoma patients. Pharmacogenomics. 2017;18(8):787–795. doi: https://doi.org/10.2217/pgs-2017-0013; Генокарта: генетическая энциклопедия. Доступно по: https://www.genokarta.ru. Ссылка активна на 31.01.2024.; Mahmuda NA, Yokoyama S, Huang JJ, et al. Study of Single Nucleotide Polymorphisms of the SLC19A1/RFC1 Gene in Subjects with Autism Spectrum Disorder. Int J Mol Sci. 2016;17(5):772. doi: https://doi.org/10.3390/ijms17050772; Leyva-Vázquez MA, Organista-Nava J, Gómez-Gómez Y, et al. Polymorphism G80A in the reduced folate carrier gene and its relationship to survival and risk of relapse in acute lymphoblastic leukemia. J Investig Med. 2012;60(7):1064–1067. doi: https://doi.org/10.2310/JIM.0b013e31826803c1; de Jonge R, Tissing WJ, Hooijberg JH, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood. 2009;113(10):2284–2289. doi: https://doi.org/10.1182/blood-2008-07-165928; Gregers J, Christensen IJ, Dalhoff K, et al. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood. 2010;115(23):4671–4677. doi: https://doi.org/10.1182/blood-2010-01-256958; Han JM, Choi KH, Lee HH, et al. Association between SLCO1B1 polymorphism and methotrexate-induced hepatotoxicity: a systematic review and meta-analysis. Anticancer Drugs. 2022;33(1):75–79. doi: https://doi.org/10.1097/CAD.0000000000001125; Ebid AIM, Hossam A, El Gammal MM, et al. High dose methotrexate in adult Egyptian patients with hematological malignancies: impact of ABCB1 3435C > T rs1045642 and MTHFR 677C > T rs1801133 polymorphisms on toxicities and delayed elimination. J Chemother. 2022;34(6):381–390. doi: https://doi.org/10.1080/1120009X.2021.2009723; Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem. 2021;28(5):910–939. doi: https://doi.org/10.2174/0929867326666191016151018; Kotur N, Lazic J, Ristivojevic B, et al. Pharmacogenomic Markers of Methotrexate Response in the Consolidation Phase of Pediatric Acute Lymphoblastic Leukemia Treatment. Genes. 2020;11(4):468. doi: https://doi.org/10.3390/genes11040468; Erčulj N, Kotnik BF, Debeljak M, et al. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(6):1096–1104. doi: https://doi.org/10.3109/10428194.2011.639880; Aminkeng F, Ross CJ, Rassekh SR, et al. CPNDS Clinical Practice Recommendations Group. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–695. doi: https://doi.org/10.1111/bcp.13008; Pratt VM, Cavallari LH, Fulmer ML, et al. TPMT and NUDT15 Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase. J Mol Diagn. 2022;24(10):1051–1063. doi: https://doi.org/10.1016/j.jmoldx.2022.06.007; Rocha V, Porcher R, Fernandes JF, et al. Association of drug metabolism gene polymorphisms with toxicities, graft-versus-host disease and survival after HLA-identical sibling hematopoietic stem cell transplantation for patients with leukemia. Leukemia. 2009;23(3):545–556. doi: https://doi.org/10.1038/leu.2008.323; Gagné V, St-Onge P, Beaulieu P, et al. HLA alleles associated with asparaginase hypersensitivity in childhood ALL: a report from the DFCI Consortium. Pharmacogenomics. 2020;21(8):541–547. doi: https://doi.org/10.2217/pgs-2019-0195; https://www.pedpharma.ru/jour/article/view/2528

  2. 2
    Academic Journal

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 1 (2024); 100-109 ; Вестник анестезиологии и реаниматологии; Том 21, № 1 (2024); 100-109 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/934/695; Григорьев Е. В., Лебединский К. М., Щеголев А. В. и др. Реанимация и интенсивная терапия при острой массивной кровопотере у взрослых пациентов // Анестезиология и реаниматология. – 2020. – Т. 1. – С. 5–24. DOI:10.17116/anaesthesiology20200115.; Кострыгин А. К., Рябов А. Б., Хомяков В. М. и др. Результаты хирургического лечения пациентов с десмоидными фибромами абдоминальной локализации // Онкология. – Журнал им. П. А. Герцена. – 2018. – Т. 7, № 2. – С. 4–15. DOI:10.17116/onkolog2018724-15.; Пимахина Е. В., Пимахин А. А., Вишников Н. В. и др. Сравнение эффективности переливания и реинфузии крови // Журнал физики. – 2021. – Т. 2086, № 1. – DOI:10.1088/17426596/2086/1/012119.; Ageron F. X., Gayet-Ageron A., Ker K. et al. Antifibrinolytics trials collaboration. effect of tranexamic acid by baseline risk of death in acute bleeding patients: a meta-analysis of individual patient-level data from 28333 patients // Br J Anaesth. – 2020. – Vol. 124, № 6 . – P. 676–683. DOI:10.1016/j.bja.2020.01.020.; Cannon J. W. Hemorrhagic shock // N Engl J Med. – 2018. – Vol. 378. – P. 370–379.; Chang Z. G., Chu X., Chen W. et al. Use of low-dose recombinant factor VIIa for uncontrolled perioperative bleeding // Dose Response. – 2020. – Vol. 18, № 4. – 1559325820969569. DOI:10.1177/1559325820969569.; Dias J. D., Sauaia A., Achneck H. E. et al. Thromboelastography-guided therapy improves patient blood management and certain clinical outcomes in elective cardiac and liver surgery and emergency resuscitation: A systematic review and analysis // J Thromb Haemost. – 2019. – Vol. 17, № 6. – P. 984–994. DOI:10.1111/jth.14447; Dzik W. S., Ziman A., Cohn C. et al. Biomedical excellence for safer transfusion collaborative. Survival after ultramassive transfusion: a review of 1360 cases // Transfusion. – 2016. – Vol. 56, № 3. – P. 558–563. DOI:10.1111/trf.13370.; Frietsch T., Steinbicker A. U., Horn A. et al. Safety of intraoperative cell salvage in cancer surgery: an updated meta-analysis of the current literature // Transfus Med Hemother. – 2022. – Vol. 49, № 3. – P. 143–157. DOI:10.1159/000524538.; Green L., Bolton-Maggs P., Beattie C. et al. British Society of Haematology Guidelines on the spectrum of fresh frozen plasma and cryoprecipitate products: their handling and use in various patient groups in the absence of major bleeding // Br J Haematol. – 2018. – Vol. 181. – P. 54–67. DOI:10.1111/bjh.15167.; Gruen D. S., Brown J. B., Guyette F. X. et al. Prehospital plasma is associated with distinct biomarker expression following injury // JCI Insight. – 2020. – Vol. 5, № 8. – P. e135350.; Jennings L. K., Watson S. Massive transfusion // StatPearls. – Treasure Island (FL): StatPearls Publishing, 2022. PMID: 29763104. URL: https://pubmed.ncbi.nlm.nih.gov/29763104/ (accessed: 20.12.23).; Kwon Y. S., Kim H., Lee H. et al. Effect of intra- and post-operative fluid and blood volume on postoperative pulmonary edema in patients with intraoperative massive bleeding // J Clin Med. – 2021. – Vol. 10, № 18. – P. 4224. DOI:10.3390/jcm10184224.; Lier H., Fries D. Emergency blood transfusion for trauma and perioperative resuscitation: standard of care // Transfus Med Hemother. – 2021. – Vol. 48, № 6. – P. 366–376. DOI:10.1159/000519696.; Mazzeffi M. A., Chriss E., Davis K. et al. Optimal plasma transfusion in patients undergoing cardiac operations with massive transfusion // Ann Thorac Surg. – 2017. – Vol. 104, № 1. – P. 153–160. DOI:10.1016/j.athoracsur.2016.09.071.; Narayan S., Poles D. On behalf of the serious hazards of transfusion (SHOT) Steering Group. The 2020 Annual SHOT Report (2021). 2021. ISBN978-1-9995968-3-5.; NICE guidance. Intraoperative blood cell salvage in obstetrics. Interventional procedures guidance [IPG144]. 2005. URL: https://www.nice.org.uk/guidance/ipg144 (accessed: 20.12.23).; Rajasekhar A., Gowing R., Zarychanski R. et al. Survival of trauma patients after massive red blood cell transfusion using a high or low red blood cell to plasma transfusion ratio // Critical Care Medicine. – 2011. – Vol. 39, № 6. –P. 1507–1513. DOI:10.1097/CCM.0b013e31820eb517.; Spahn D. R., Bouillon B., Cerny V. et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition //Crit Care. – 2019. – Vol. 23, № 1. – P. 98. DOI:10.1186/s13054-019-2347-3.; Stone M. E. Jr., Kalata S., Liveris A. et al. End-tidal CO2 on admission is associated with hemorrhagic shock and predicts the need for massive transfusion as defined by the critical administration threshold: A pilot study //Injury. – 2017. – Vol. 48, № 1. – P. 51–57. DOI:10.1016/j.injury.2016.07.007.; Taeuber I., Weibel S., Herrmann E. et al. Association of intravenous tranexamic acid with thromboembolic events and mortality: a systematic review, meta-analysis, and meta-regression // JAMA Surg. – 2021. – Vol. 156, № 6. – P. e210884. DOI:10.1001/jamasurg.2021.0884.; Tanaka H., Matsunaga S., Yamashita T. et al. A systematic review of massive transfusion protocol in obstetrics // Taiwan J Obstet Gynecol. – 2017. – Vol. 56, № 6. – P. 715–718. DOI:10.1016/j.tjog.2017.10.001.; Turan A., Yang D., Bonilla A. et al. Morbidity and mortality after massive transfusion in patients undergoing non-cardiac surgery // Can J Anaesth. – 2013. – Vol. 60, № 8. – P. 761–770. DOI:10.1007/s12630-013-9937-3.; Woolley T., Thompson P., Kirkman E. et al. Trauma hemostasis and oxygenation research (THOR) network position paper on the role of hypotensive resuscitation as part of remote damage control resuscitation // J Trauma Acute Care Surg. – 2018. – Vol. 84, № 6S. – S3–S13. DOI:10.1097/TA.0000000000001856.; https://www.vair-journal.com/jour/article/view/934

  3. 3
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 1 (2024); 36-43 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 1 (2024); 36-43 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1017/891; Wilson L.M., Draper G.J. Neuroblastoma, its natural history and prognosis: a study of 487 cases. Br Med J. 1974;3:301–7. doi:10.1136/bmj.3.5926.301.; Punia R.S., Mundi I., Kundu R., Jindal G., Dalal U., Mohan H. Spectrum of nonhematological pediatric tumors: a clinicopathologic study of 385 cases. Indian J Med Paediatr Oncol. 2014;35(2):170–4. doi:10.4103/0971-5851.138995.; Brodeur G.M., Castleberry R.P. Neuroblastoma. In: Principles and practices of pediatric oncology. Pizzo P.A., Poplack D.G., eds. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2006. Pp. 933–70.; Ren J., Fu Z., Zhao Y. Clinical value of 18F-FDG PET/CT to predict MYCN gene, chromosome 1p36 and 11q status in pediatric neuroblastoma and ganglioneuroblastoma. Front Oncol. 2023;13:1099290. doi:10.3389/fonc.2023.1099290.; Sharp S.E., Shulkin B.L., Gelfand M.J., Salisbury S., Furman W.L. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50(8):1237–43. doi:10.2967/jnumed.108.060467.; Nakajo M., Shapiro B., Copp J., Kalff V., Gross M.D., Sisson J.C., Beierwaltes W.H. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguanidine (I-131 MIBG) in man: evaluation by scintigraphy. J Nucl Med. 1983;24(8):672–82. PMID: 6135764.; Wang Y., Xu Y., Kan Y., Wang W., Yang J. Diagnostic Value of Seven Diff erent Imaging Modalities for Patients with Neuroblastic Tumors: A Network Meta-Analysis. Contrast Media Mol Imaging. 2021;2021:5333366. doi:10.1155/2021/5333366.; Zhang H., Huang R., Cheung N.K., Guo H., Zanzonico P.B., Thaler H.T., Lewis J.S., Blasberg R.G. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20(8):2182–91. doi:10.1158/1078-0432.CCR-13-1153.; Dhull V.S., Sharma P., Patel C., Kundu P., Agarwala S., Bakhshi S., Bhatnagar V., Bal C., Kumar R. Diagnostic value of 18F-FDG PET/CT in paediatric neuroblastoma: comparison with 131I-MIBG scintigraphy. Nucl Med Commun. 2015;36(10):1007–13. doi:10.1097/MNM.0000000000000347.; Beijst C., de Keizer B., Lam M.G.E.H., Janssens G.O., Tytgat G.A.M., de Jong H.W.A.M. A phantom study: Should 124I-mIBG PET/CT replace 123I-mIBG SPECT/CT? Med Phys. 2017;44(5):1624–31. doi:10.1002/mp.12202.; Bar-Sever Z., Biassoni L., Shulkin B., Kong G., Hofman M.S., Lopci E., Manea I., Koziorowski J., Castellani R., Boubaker A., Lambert B., Pfl uger T., Nadel H., Sharp S., Giammarile F. Guidelines on nuclear medicine imaging in neuroblastoma. Eur J Nucl Med Mol Imaging. 2018;45(11):2009–24. doi:10.1007/s00259-018-4070-8.; Ambrosini V., Morigi J.J., Nanni C., Castellucci P., Fanti S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga] tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015;59(1):58–69. PMID: 25677589.; Sait S., Modak S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev Anticancer Ther. 2017;17(10):889–904. doi:10.1080/14737140.2017.1364995.; Chan G.C., Chan C.M. Anti-GD2 Directed Immunotherapy for High- Risk and Metastatic Neuroblastoma. Biomolecules. 2022;12(3):358. doi:10.3390/biom12030358.; Kroiss A., Putzer D., Uprimny C., Decristoforo C., Gabriel M., Santner W., Kranewitter C., Warwitz B., Waitz D., Kendler D., Virgolini I.J. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging. 2011;38(5):865–73. doi:10.1007/s00259-010-1720-x.; Del Olmo-Garcia M.I., Prado-Wohlwend S., Andres A., Soriano J.M., Bello P., Merino-Torres J.F. Somatostatin and Somatostatin Receptors: From Signaling to Clinical Applications in Neuroendocrine Neoplasms. Biomedicines. 2021;9(12):1810. doi:10.3390/biomedicines9121810.; Bădan M.I., Piciu D. Immunohistochemical markers and SPECT/CT somatostatin-receptor (99mTc-tektrotyd) uptake in well and moderately diff erentiated neuroendocrine tumors. Acta Endocrinol (Buchar). 2022;18(4):523–30. doi:10.4183/aeb.2022.523.; Клинические рекомендации. Нейробластома. Национальное общество детских гематологов и онкологов, 2020.; Ben-Sellem D., Ben-Rejeb N. Does the Incremental Value of 123I-Metaiodobenzylguanidine SPECT/CT over Planar Imaging Justify the Increase in Radiation Exposure? Nucl Med Mol Imaging. 2021;55(4):173–80. doi:10.1007/s13139-021-00707-5.; Bleeker G., Tytgat G.A., Adam J.A., Caron H.N., Kremer L.C., Hooft L., Dalen E.C. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev. 2015;(9):CD009263. doi:10.1002/14651858.CD009263.pub2.; Kroiss A.S. Current status of functional imaging in neuroblastoma, pheochromocytoma, and paraganglioma disease. Wien Med Wochenschr. 2019;169:25–32. doi:10.1007/s10354-018-0658-7.; Emami-Ardekani A., Mirzabeigi A., Fard-Esfahani A., Fallahi B., Beiki D., Hassanzadeh-Rad A., Geramifar P., Eftekhari M. Comparing diagnostic performance of 131I-metaiodobenzylguanidine (131I-MIBG) and 99mTc-hydrazinonicotinyl-Tyr3-Octreotide (99mTc-HYNIC-TOC) in diagnosis and localization of pheochromocytoma and neuroblastoma. Iran J Nucl Med. 2018;26(2):68–75.; Alexander N., Marrano P., Thorner P., Naranjo A., Van Ryn C., Martinez D., Batra V., Zhang L., Irwin M.S., Baruchel S. Prevalence and Clinical Correlations of Somatostatin Receptor-2 (SSTR2) Expression in Neuroblastoma. J Pediatr Hematol Oncol. 2019;41(3):222–7. doi:10.1097/MPH.0000000000001326.; Zhou Z., Wang G., Qian L., Liu J., Yang X., Zhang S., Zhang M., Kan Y., Wang W., Yang J. Evaluation of iodine-123-labeled metaiodobenzylguanidine single-photon emission computed tomography/computed tomography based on the International Society of Pediatric Oncology Europe Neuroblastoma score in children with neuroblastoma. Quant Imaging Med Surg. 2023;13(6):3841–51. doi:10.21037/qims-22-1120.; Limouris G.S., Giannakopoulos V., Stavraka A., Toubanakis N., Vlahos L. Comparison of In-111 pentetreotide, Tc-99m (V)DMSA and I-123 mlBG scintimaging in neural crest tumors. Anticancer Res. 1997;17(3B):1589–92. PMID: 9179199.; https://classic.clinicaltrials.gov/ct2/show/NCT04023331 [Электронный ресурс]. Дата обращения: 22.10.2023.; https://journal.nodgo.org/jour/article/view/1017

  4. 4
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 1 (2024); 64-71 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 1 (2024); 64-71 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1021/895; Marconi B., Bobyr I., Campanati A., Molinelli E., Consales V., Brisigotti V., Scarpelli M., Racchini S., Offi dani A. Pseudoxanthoma elasticum and skin: clinical manifestations, histopathology, pathomechanism, perspectives of treatment. Intractable Rare Dis Res. 2015;4(3):113–22. doi:10.5582/irdr.2015.01014.; Legrand A., Cornez L., Samkari W., Mazzella J.M., Venisse A., Boccio V., Auribault K., Keren B., Benistan K., Germain D.P., Frank M., Jeunemaitre X., Albuisson J. Mutation spectrum in the ABCC6 gene and genotype-phenotype correlations in a French cohort with pseudoxanthoma elasticum. Genet Med. 2017;19(8):909–17. doi:10.1038/gim.2016.213.; Bergen A.A. Pseudoxanthoma elasticum: the end of the autosomal dominant segregation myth. J Invest Dermatol. 2006;126(4):704–5. doi:10.1038/sj.jid.5700129.; Plümers R., Lindenkamp C., Osterhage M.R., Knabbe C., Hendig D. Matrix Metalloproteinases Contribute to the Calcifi cation Phenotype in Pseudoxanthoma Elasticum. Biomolecules. 2023;13(4):672. doi:10.3390/biom13040672.; Pomozi V., Julian C.B., Zoll J., Pham K., Kuo S., Tőkési N., Martin L., Váradi A., Le Saux O. Dietary Pyrophosphate Modulates Calcifi cation in a Mouse Model of Pseudoxanthoma Elasticum: Implication for Treatment of Patients. J Invest Dermatol. 2019;139(5):1082–8. doi:10.1016/j.jid.2018.10.040.; Germain D.P. Pseudoxanthoma elasticum. Orphanet J Rare Dis. 2017;12(1):85. doi:10.1186/s13023-017-0639-8.; Calonje E., Brenn T., McKee P.H. McKee’s Pathology of the Skin. Elsevier Saunders, 2011.; Zineb K. Ophthalmologic manifestations of pseudoxanthoma elasticum. Oman J Ophthalmol. 2018;11(1):88–9. doi:10.4103/ojo.OJO_123_2016.; Risseeuw S., Ossewaarde-van Norel J., Klaver C.C.W., Colijn J.M., Imhof S.M., van Leeuwen R. Visual acuity in pseudoxanthoma elasticum. Retina. 2019;39(8):1580–7. doi:10.1097/IAE.0000000000002173.; Ziegler S.G., Gahl W.A., Ferreira C.R. Generalized Arterial Calcifi cation of Infancy. In: Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle, 1993–2024. PMID: 25392903.; Волнухин В.А., Бобров М.А., Кочетков М.А., Демченкова Е.В. Среднедермальный эластолиз – редкое заболевание кожи с поражением эластической ткани. Клиническая дерматология и венерология. 2022;21(3):304–11. doi:10.17116/klinderma202221031304.; Шеланкова А.В., Будзинская М.В. Применение анти-VEGF-терапии при лечении неоваскуляризации вследствие ангиоидных полос (клиническое наблюдение). Вестник офтальмологии. 2020;136(4):219–25. doi:10.17116/oftalma2020136042219.; Raming K., Pfau M., Herrmann P., Holz F.G., Pfau K. Anti-VEGF Treatment in Pseudoxanthoma Elasticum-Risk factors and Visual Outcome. Investigative Ophthalmology and Visual Science. 2023;64(8):985.; Iwanaga A., Utani A., Koike Y., Okubo Y., Kuwatsuka Y., Endo Y., Tanizaki H., Wataya-Kaneda M., Hatamochi A., Minaga K., Ogi T., Yamamoto Y., Ikeda S., Tsuiki E., Tamura H., Maemura K., Kitaoka T., Murota H. Clinical practice guidelines for pseudoxanthoma elasticum (2017): Clinical Practice Guidelines for Pseudoxanthoma Elasticum Drafting Committee. J Dermatol. 2022;49(3):e91–8. doi:10.1111/1346-8138.16301.; Kranenburg G., Baas A.F., de Jong P.A., Asselbergs F.W., Visseren F.L.J., Spiering W.; SMART study-group. The prevalence of pseudoxanthoma elasticum: revised estimations based on genotyping in a high vascular risk cohort. Eur J Med Genet. 2019;62(2):90–2. doi:10.1016/j.ejmg.2018.05.020.; Favre G., Laurain A., Aranyi T., Szeri F., Fulop K., Le Saux O., Duranton C., Kauff enstein G., Martin L., Lefthériotis G. The ABCC6 transporter: a new player in biomineralization. Int J Mol Sci. 2017;18:1941. doi:10.3390/ijms18091941.; https://journal.nodgo.org/jour/article/view/1021

  5. 5
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 4 (2023); 49-60 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 4 (2023); 49-60 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1002/882; Голубев Н.А., Огрызко Е.В., Шелепова Е.А., Залевская О.В. Заболеваемость детей болезнями эндокринной системы, расстройствами питания и нарушениями обмена веществ в рамках национального проекта «Здравоохранение» Российской Федерации. Современные проблемы здравоохранения и медицинской статистики. 2019;3:376–89.; Национальное руководство «Детская хирургия». Под ред. чл.-корр. РАН А.Ю. Разумовского, 2-е издание, переработанное и дополненное. М.: «ГЭОТАР Медиа», 2021. С. 1175.; Долгушин Б.И., Поляков В.Г., Гелиашвили Т.М., Гаджиева Э.Х. Рак щитовидной железы у детей: ключевые рекомендации. Педиатрия сегодня. 2022;6(25):6–7.; Caroleo A.M., De Ioris M.A., Boccuto L., Alessi I., Del Baldo G., Cacchione A., Agolini E., Rinelli M., Serra A., Carai A., Mastronuzzi A. DICER1 Syndrome and Cancer Predisposition: From a Rare Pediatric Tumor to Lifetime Risk. Front Oncol. 2021;10:614541. doi:10.3389/fonc.2020.614541.; González I.A., Stewart D.R., Schultz K.A.P., Field A.P., Hill D.A., Dehner L.P. DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma. Mod Pathol. 2022;35(1):4–22. doi:10.1038/s41379-021-00905-8.; Schultz K.A.P., Stewart D.R., Kamihara J., Bauer A.J., Merideth M.A., Stratton P., Laryssa A.H., Harris A.K., Doros L., Field A., Carr A.G., Dehner L.P., Messinger Y., Ashley D.H. DICER1 Tumor Predisposition. In: Adam M.P., Feldman J., Mirzaa G.M., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle, 1998–2023.; Kim J., Field A., Schultz K.A.P., Hill D.A., Stewart D.R. The prevalence of DICER1 pathogenic variation in population databases. Int J Cancer. 2017;141(10):2030–6. doi:10.1002/ijc.30907.; Thunders M., Delahunt B. Gene of the month: DICER1: ruler and controller. J Clin Pathol. 2021;74 (2):69–72. doi:10.1136/jclinpath-2020-207203.; Klein S.D., Martinez-Agosto J.A. Hotspot Mutations in DICER1 Causing GLOW Syndrome-Associated Macrocephaly via Modulation of Specifi c microRNA Populations Result in the Activation of PI3K/ATK/ mTOR Signaling. Microrna. 2020;9(1):70–80. doi:10.2174/2211536608666190624114424.; Darbinyan A., Morotti R., Cai G., Prasad M.L., Christison-Lagay E., Dinauer C., Adeniran A.J. Cytomorphologic features of thyroid disease in patients with DICER1 mutations: A report of cytology-histopathology correlation in 7 patients. Cancer Cytopathol. 2020;128(10):746–56. doi:10.1002/cncy.22329.; Khan N.E., Bauer A.J., Schultz K.A.P., Doros L., Decastro R.M., Ling A., Lodish M.B., Harney L.A., Kase R.G., Carr A.G., Rossi C.T., Field A., Harris A.K., Williams G.M., Dehner L.P., Messinger Y.H., Hill D.A., Stewart D.R. Quantifi cation of Thyroid Cancer and Multinodular Goiter Risk in the DICER1 Syndrome: A Family-Based Cohort Study. J Clin Endocrinol Metab. 2017;102(5):1614–22. doi:10.1210/jc.2016-2954.; Cameselle-Teijeiro J.M., Mete O., Asa S.L., LiVolsi V. Inherited Follicular Epithelial-Derived Thyroid Carcinomas: From Molecular Biology to Histological Correlates. Endocr Pathol. 2021;32(1):77–101. doi:10.1007/s12022-020-09661-y.; Oliver-Petit I., Bertozzi A.I., Grunenwald S., Gambart M., PigeonKerchiche P., Sadoul J.L., Caron P.J., Savagner F. Multinodular goitre is a gateway for molecular testing of DICER1 syndrome. Clin Endocrinol (Oxf). 2019;91(5):669–75. doi:10.1111/cen.14074.; Canberk S., Ferreira J.C., Pereira L., Batısta R., Vieira A.F., Soares P., Sobrinho Simões M., Máximo V. Analyzing the Role of DICER1 Germline Variations in Papillary Thyroid Carcinoma. Eur Thyroid J. 2021;9(6):296–303. doi:10.1159/000509183.; Darbinyan A., Morotti R., Cai G. Cytomorphologic features of thyroid disease in patients with DICER1 mutations: A report of cytologyhistopathology correlation in 7 patients. Cancer Cytopathol. 2020;128(10):746–56. doi:10.1002/cncy.22329.; van der Tuin K., de Kock L., Kamping E.J., Hannema S.E., Pouwels M.M., Niedziela M., van Wezel T., Hes F.J., Jongmans M.C., Foulkes W.D., Morreau H. Clinical and Molecular Characteristics May Alter Treatment Strategies of Thyroid Malignancies in DICER1 Syndrome. J Clin Endocrinol Metab. 2019;104(2):277–84. doi:10.1210/jc.2018-00774.; Peiling Yang S., Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer. 2016;23(12):577–95. doi:10.1530/ERC-16-0067.; Шульц К.Э.П., Вилльямс Г.М., Качанов Д.Ю., Варфоломеева С.Р., Хилл Э.Д., Денер Л.П., Мессингер Й.Г. DICER1-синдром и плевропульмональная бластома: отчет международного регистра плевропульмональной бластомы. Российский журнал детской гематологии и онкологии (РЖДГиО). 2017;4(4):13–9. doi:10.17650/2311-1267-2017-4-4-13-19.; Altaraihi M., Hansen T.V.O., Santoni-Rugiu E., Rossing M., Rasmussen Å.K., Gerdes A.M., Wadt K. Prevalence of Pathogenic Germline DICER1 Variants in Young Individuals Thyroidectomised Due to Goitre - A National Danish Cohort. Front Endocrinol (Lausanne). 2021;12:727970. doi:10.3389/fendo.2021.727970.; Bakhuizen J.J., Hanson H., van der Tuin K., Lalloo F., Tischkowitz M., Wadt K., Jongmans M.C.J.; SIOPE Host Genome Working Group; CanGene-CanVar Clinical Guideline Working Group; Expert Network Members. Surveillance recommendations for DICER1 pathogenic variant carriers: a report from the SIOPE Host Genome Working Group and CanGene-CanVar Clinical Guideline Working Group. Fam Cancer. 2021;20(4):337–48. doi:10.1007/s10689-021-00264-y.; Niedziela M., Muchantef K., Foulkes W.D. Ultrasound features of multinodular goiter in DICER1 syndrome. Sci Rep. 2022;12(1):15888. doi:10.1038/s41598-022-19709-0.; Nagasaki K., Shibata N., Nyuzuki H., Sasaki S., Ogawa Y., Soda S., Kogai T., Hishinuma A. A Japanese Family with DICER1 Syndrome Found in Childhood-Onset Multinodular Goitre. Horm Res Paediatr. 2020;93(7–8):477–82. doi:10.1159/000511140.; Rio Frio T., Bahubeshi A., Kanellopoulou C., Hamel N., Niedziela M., Sabbaghian N., Pouchet C., Gilbert L., O’Brien P.K., Serfas K., Broderick P., Houlston R.S. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli–Leydig cell tumors. JAMA. 2011;305(1): 68–77. doi:10.1001/jama.2010.1910.; Foulkes W.D., Bahubeshi A., Hamel N., Pasini B., Asioli S., Baynam G., Choong C.S., Charles A., Frieder R.P., Dishop M.K., Graf N., Ekim M., Bouron-Dal Soglio D., Arseneau J., Young R.H., Sabbaghian N., Srivastava A., Tischkowitz M.D., Priest J.R. Extending the phenotypes associated with DICER1 mutations. Hum Mutat. 2011;32(12):1381–4. doi:10.1002/humu.21600.; Schultz K.A.P., Williams G.M., Kamihara J., Stewart D.R., Harris A.K., Bauer A.J., Turner J., Shah R., Schneider K., Schneider K.W., Carr A.G., Harney L.A., Baldinger S., Frazier A.L., Orbach D., Schneider D.T., Malkin D., Dehner L.P., Messinger Y.H., Hill D.A. DICER1 and Associated Conditions: Identifi cation of At-risk Individuals and Recommended Surveillance Strategies. Clin Cancer Res. 2018;24(10):2251–61. doi:10.1158/1078-0432.CCR-17-3089.; https://journal.nodgo.org/jour/article/view/1002

  6. 6
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 4 (2023); 44-48 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 4 (2023); 44-48 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1001/881; Гуркин Ю.А. Гинекология подростков. СПб.: ООО «Издательство Фолиант», 2000. 574 с.; Высоцкая И.В., Летягин В.П., Воротников И.К., Ким Е.А., Кирсанов В.Ю., Поликарпова С.Б. Очаговая патология молочных желез у девочек подросткового возраста. Вопросы современной педиатрии. 2020;19(4):304–8. doi:10.15690/vsp.v19i4.2139.; Kidambi T.D., Kohli D.R., Samadder N.J., Singh A. Hereditary Polyposis Syndromes. Curr Treat Options Gastroenterol. 2019;17(4):650–65. doi:10.1007/s11938-019-00251-4.; Bouys L., Bertherat J. Management of endocrine disease: Carney complex: clinical and genetic update 20 years after the identifi cation of the CNC1 (PRKAR1A) gene. Eur J Endocrinol. 2021;184(3):R99– R109. doi:10.1530/EJE-20-1120.; Vohra L.M., Ali D., Hashmi S.A., Angez M. Breast cancer in a teenage girl with BRCA mutation: A case report from a low middle-income country. Int J Surg Case Rep. 2022;98:107513. doi:10.1016/j.ijscr.2022.107513.; Mayer S., Gosemann J.H., Ure B.M., Metzelder M.L. Breast Disorders in Children and Adolescents. In: Pediatric Surgery. Puri P., Höllwarth M.E. (eds.). Springer, Cham, 2003. doi:10.1007/978-3-030-81488-5_32.; Lozada J.R., Burke K.A., Maguire A. Myxoid fi broadenomas diff er from conventional fi broadenomas: a hypothesis-generating study. Histopathology. 2017;71(4):626–34. doi:10.1111/his.13258.; Im C.J., Miller A., Balassanian R., Mukhtar R.A. Early onset, multiple, bilateral fi broadenomas of the breast: a case report. BMC Womens Health. 2021;21(1):170. doi:10.1186/s12905-021-01311-7.; Amary M.F., Damato S., Halai D. Ollier disease and Maff ucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet. 2011;43(12):1262–5. doi:10.1038/ng.994.; Fernández-Aguilar S., Buxant F., Noël J.C. Benign phyllodes tumor associated with Maff ucci’s syndrome. Breast. 2004;13(3):247–9. doi:10.1016/j.breast.2003.06.001.; Cubitt J., Tungotyo M., Galiwango G. Maff ucci’s syndrome and fi broadenoma of the breast: a case report. Eur J Plast Surg. 2012;35:475–7. doi:10.1007/s00238-011-0588-8.; Pansuriya T.C., Kroon H.M., Bovée J.V. Enchondromatosis: insights on the diff erent subtypes. Int J Clin Exp Pathol. 2010;3(6):557–69. PMID: 20661403.; Burdick D., Prior J.T. Peutz–Jeghers syndrome. A clinicopathologic study of a large family with a 27-year follow-up. Cancer. 1982;50(10):2139–46. doi:10.1002/1097-0142(19821115)50:103.0.co;2-k.; Poh M.M., Ballard T.N., Wendel J.J. Beckwith–Wiedemann syndrome and juvenile fi broadenoma: a case report. Ann Plast Surg. 2010;64(6):803–6. doi:10.1097/sap.0b013e3181b025f6.; Raine P.A., Noblett H.R., Houghton-Allen B.W., Campbell P.E. Breast fi broadenoma and cardiac anomaly associated with EMG (Beckwith– Wiedemann) syndrome. J Pediatr. 1979;94(4):633–4. doi:10.1016/s0022-3476(79)80039-6.; Sokolova A., Johnstone K.J., McCart Reed A.E., Simpson P.T., Lakhani S.R. Hereditary breast cancer: syndromes, tumour pathology and molecular testing. Histopathology. 2023;82(1):70–82. doi:10.1111/his.14808.; Cavazos T.B., Kachuri L., Graff R.E. Assessment of genetic susceptibility to multiple primary cancers through whole-exome sequencing in two large multi-ancestry studies. BMC Med. 2022;20(1):332. doi:10.1186/s12916-022-02535-6.; https://journal.nodgo.org/jour/article/view/1001

  7. 7
    Academic Journal

    المساهمون: The study was performed without external funding., Исследование проведено без спонсорской поддержки.

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 2 (2024); 12-20 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 2 (2024); 12-20 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1035/924; Chang H.R., Cordon-Cardo C., Houghton A.N., Cheung N.K., Brennan M.F. Expression of disialogangliosides GD2 and GD3 on human soft tissue sarcomas. Cancer. 1992;70:633–8. doi:10.1002/1097-0142(19920801)70:33.0.co;2-f.; Dobrenkov K., Ostrovnaya I., Gu J., Cheung I. Y., Cheung N.-K.V. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer. 2016;63(10):1780–5. doi:10.1002/pbc.26097.; Fredman P., Hedberg K., Brezicka T. Gangliosides as Therapeutic Targets for Cancer. Bio Drugs. 2003;17:155–67. doi:10.2165/00063030-200317030-00002.; Sorokin M., Kholodenko I., Kalinovsky D., Shamanskaya T., Doronin I., Konovalov D., Mironov A., Kuzmin D., Nikitin D., Deyev S. RNA Sequencing-Based Identifi cation of Ganglioside GD2- Positive Cancer Phenotype. Biomedicines. 2020;8:142. doi:10.3390/biomedicines8060142.; Slatnick L., Jimeno A., Gore L., Macy M. Naxitamab: A humanized anti-glycolipid disialoganglioside (anti-GD2) monoclonal antibody for treatment of neuroblastoma. Drugs Today. 2021;57:677–88. doi:10.1358/dot.2021.57.11.3343691.; Nazha B., Inal C., Owonikoko T.K. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front Oncol. 2020;10:1000. doi:10.3389/fonc.2020.01000.; Aixinjueluo W., Furukawa K., Zhang Q., Hamamura K., Tokuda N., Yoshida S. Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: roles of anoikis. J Biol Chem. 2005;280:29828–36. doi:10.1074/jbc.M414041200.; Carr A., Mullet A., Mazorra Z., Vázquez A.M., Alfonso M., Mesa C., Rengifo E., Pérez R., Fernández L.E. A Mouse IgG1 Monoclonal Antibody Specifi c for N-Glycolyl GM3 Ganglioside Recognized Breast and Melanoma Tumors. Hybridoma. 2000;19:241–7. doi:10.1089/02724570050109639.; Edelman M.J., Dvorkin M., Laktionov K., Navarro A., Juan-Vidal O., Kozlov V., Golden G., Jordan O., Deng C., Bentsion D. Randomized phase 3 study of the anti-disialoganglioside antibody dinutuximab and irinotecan vs irinotecan or topotecan for second-line treatment of small cell lung cancer. Lung Cancer. 2022;166:135–42. doi:10.1016/j.lungcan.2022.03.003.; Wingerter A., El Malki K., Sandhoff R., Seidmann L., Wagner D.-C., Lehmann N., Vewinger N., Frauenknecht K., Sommer C., Traub F. Exploiting Gangliosides for the Therapy of Ewing’s Sarcoma and H3K27M-Mutant Diff use Midline Glioma. Cancers. 2021;13:520. doi:10.3390/cancers13030520.; Van Tilburg C.M., Pfaff E., Pajtler K.W., Langenberg K.P., Fiesel P., Jones B.C., Balasubramanian G.P., Stark S., Johann P.D., BlattnerJohnson M. The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefi t for Patients with Very High-Evidence Targets. Cancer Discov. 2021;11:2764–79. doi:10.1158/2159-8290.CD-21-0094.; https://journal.nodgo.org/jour/article/view/1035

  8. 8
    Academic Journal

    المساهمون: The study was performed without external funding., Исследование проведено без спонсорской поддержки.

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 2 (2024); 28-39 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 2 (2024); 28-39 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1037/906; Israr M., Zahir K.K., Khattak A., Khattak I.U., Gul N. Etiology of white pupillary refl ex in pediatric age group. Rom J Ophthalmol. 2022;66(1):32–5. doi:10.22336/rjo.2022.8.; Ghassemi F., Bazvand F., Makateb A. Lesions Simulating Retinoblastoma at a Tertiary Care Center. J Ophthalmic Vis Res. 2015;10(3):316–9. doi:10.4103/2008-322X.170351.; Shields C.L., Schoenberg E., Kocher K., Shukla S.Y., Kaliki S., Shields J.A. Lesions simulating retinoblastoma (pseudoretinoblastoma) in 604 cases: results based on age at presentation. Ophthalmology. 2013;120(2):311–6. doi:10.1016/j.ophtha.2012.07.067.; Яровой А.А., Яровая В.А., Володин Д.П., Котельникова А.В., Котова Е.С., Городецкая Ю.Б. Псевдоретинобластомы: спектр патологии и частота в различных возрастных группах. Анализ 14-летнего опыта. Российская детская офтальмология. 2021;38(2):9–14. doi:10.25276/2307-6658-2021-2-9-14.; Egbert P.R., Chan C.C., Winter F.C. Flat preparations of the retinal vessels in Coats’ disease. J Pediatr Ophthalmol. 1976;13(6):336–9. PMID: 798026.; Campbell F.P. Coats’ disease and congenital vascular retinopathy. Trans Am Ophthalmol Soc. 1976;74:365–424. PMID: 325857.; Яровой А.А., Котова Е.С., Котельникова А.В., Яровая В.А. Дифференциальная диагностика ретинита Коатса и ретинобластомы. Медицинский вестник Башкортостана. 2020;15(4):44–7.; Folk J.C., Genovese F.N., Biglan A.W. Coats’ disease in a patient with Cornelia de Lange syndrome. Am J Ophthalmol. 1981;91(5):607–10. doi:10.1016/0002-9394(81)90059-3.; Schuman J.S., Lieberman K.V., Friedman A.H., Berger M., Schoeneman M.J. Senior-Loken syndrome (familial renal-retinal dystrophy) and Coats’ disease. Am J Ophthalmol. 1985;100(6):822–7. doi:10.1016/s0002-9394(14)73374-4.; Артеменко Ю.В., Панферова Т.Р., Михайлова Е.В., Кюн Ю., Ушакова Т.Л., Поляков В.Г. Методы визуализации в дифференциальной диагностике ретинобластомы, болезни Коатса и первичного персистирующего гиперпластического стекловидного тела. Российский журнал детской гематологии и онкологии (РЖДГиО). 2022;9(1):11–20. doi:10.21682/2311-1267-2022-9-1-11-20.; Son A.I., Sheleg M., Cooper M.A., Sun Y., Kleiman N.J., Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5-/- mice. Invest Ophthalmol Vis Sci. 2014;55(3):1594–606. doi:10.1167/iovs.13-12706.; Prasov.L, Masud T., Khaliq S., Mehdi S.Q., Abid A., Oliver E.R., Silva E.D., Lewanda A., Brodsky M.C., Borchert M., Kelberman D., Sowden J.C., Dattani M.T., Glaser T. ATOH7 mutations cause autosomal recessive persistent hyperplasia of the primary vitreous. Hum Mol Genet. 2012;21(16):3681–94. doi:10.1093/hmg/dds197.; Калиниченко Р.В., Арестова Н.Н., Егиян Н.С. Патология стекловидного тела у детей. Возможности инструментальной и лазерной хирургии. Российская педиатрическая офтальмология. 2018;13(2):87–98. doi:10.18821/1993-1859-2018-13-2-87-98.; Zahavi A., Weinberger D., Snir M., Ron Y. Management of severe persistent fetal vasculature: case series and review of the literature. Int Ophthalmol. 2019;39(3):579–87. doi:10.1007/s10792-018-0855-9.; Судовская Т.В. Синдром первичного персистирующего гиперпластического стекловидного тела у детей: особенности диагностики, клиники и хирургического лечения. Российский офтальмологический журнал. 2010;1:29–36.; Jain T.P. Bilateral persistent hyperplastic primary vitreous. Ind J Ophthalmol. 2009;57(1):53–4. doi:10.4103/0301-4738.44487.; Tartarella M.B., Takahagi R.U., Braga A.P., Fortes Filho J.B. Persistent fetal vasculature: ocular features, management of cataract and outcomes. Arq Bras Oftalmol. 2013;76(3):185–8. doi:10.1590/s0004-27492013000300011.; Morales M.S., Tartarella M.B., Gouveia E.B., Mandello M.H., Allemann N. Ophthalmic Doppler in persistent hyperplastic primary vitreous atypical presentation: case report. Arq Bras Oftalmol. 2015;78(5):320–2. doi:10.5935/0004-2749.20150084.; Иойлева Е.Э., Кабанова Е.А., Маркова Е.Ю., Серегина Т.В. Патология зрительного нерва: учебное пособие. М.: ГЭОТАР-Медиа, 2022.; Иойлева Е.Э., Марченкова Т.Е. Способ дифференциальной диагностики друз диска зрительного нерва и застойного диска зрительного нерва. Патент РФ No RU2203000C2 от 27 апреля 2003 г.; Allegrini D., Pagano L., Ferrara M., Borgia A., Sorrentino T., Montesano G., Angi M., Romano M.R. Optic disc drusen: a systematic review. Int Ophthalmol. 2020;40(8):2119–27. doi:10.1007/s10792-020-01365-w.; Davis P.L., Jay W.M. Optic nerve head drusen. Semin Ophthalmol. 2003;18(4):222–42. doi:10.1080/08820530390895244.; Hamann S., Malmqvist L., Costello F. Optic disc drusen: understanding an old problem from a new perspective. Acta Ophthalmol. 2018;96(7):673–84. doi:10.1111/aos.13748.; Седова Т.Г., Елькин В.Д., Коберник М.Ю., Жукова А.А. Туберозный склероз: обзор литературы и описание клинического случая (ретроспективный анализ 15-летнего наблюдения). Клиническая дерматология и венерология. 2021;20(1):136–44. doi:10.17116/klinderma202120011136; Northrup H., Krueger D.A.; International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):243–54. doi:10.1016/j.pediatrneurol.2013.08.001.; Singh A.D., Kaiser P.K., Sears J.E. Choroidal hemangioma. Ophthalmol Clin North Am. 2005;18(1):151–61, ix. doi:10.1016/j.ohc.2004.07.004.; https://journal.nodgo.org/jour/article/view/1037

  9. 9
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Current Pediatrics; Том 22, № 4 (2023); 331-342 ; Вопросы современной педиатрии; Том 22, № 4 (2023); 331-342 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3271/1316; Vyas M, Yang X, Zhang X. Gastric Hamartomatous Polyps-Review and Update. Clin Med Insights Gastroenterol. 2016;9:3–10. doi: https://doi.org/10.4137/CGast.S38452; Kidambi TD, Kohli DR, Samadder NJ, Singh A. Hereditary Polyposis Syndromes. Curr Treat Options Gastroenterol. 2019;17(4): 650–665. doi: https://doi.org/10.1007/s11938-019-00251-4; Pachler FR, Byrjalsen A, Karstensen JG, Jelsig AM. Hereditary polyposis syndromes remain a challenging disease entity: Old dilemmas and new insights. World J Gastrointest Surg. 2023;15(1): 1–8. doi: https://doi.org/10.4240/wjgs.v15.i1.1; Latchford A, Cohen S, Auth M, et al. Management of Peutz-Jeghers Syndrome in Children and Adolescents: A Position Paper From the ESPGHAN Polyposis Working Group. J Pediatr Gastroenterol Nutr. 2019;68(3):442–452. doi: https://doi.org/10.1097/MPG.0000000000002248; Tacheci I, Kopacova M, Bures J. Peutz-Jeghers syndrome. Curr Opin Gastroenterol. 2021;37(3):245–254. doi: https://doi.org/10.1097/MOG.0000000000000718; Gammon A, Jasperson K, Kohlmann W, Burt RW. Hamartomatous polyposis syndromes. Best Pract Res Clin Gastroenterol. 2009;23(2): 219–231. doi: https://doi.org/10.1016/j.bpg.2009.02.007; Jass JR. Colorectal polyposes: from phenotype to diagnosis. Pathol Res Pract. 2008;204(7):431–447. doi: https://doi.org/10.1016/j.prp.2008.03.008; Wu M, Krishnamurthy K. Peutz-Jeghers Syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.; Burke CA, Santisi J, Church J, Levinthal G. The utility of capsule endoscopy small bowel surveillance in patients with polyposis. Am J Gastroenterol. 2005;100(7):1498–1502. doi: https://doi.org/10.1111/j.1572-0241.2005.41506.x; Mata A, Llach J, Castells A, et al. A prospective trial comparing wireless capsule endoscopy and barium contrast series for small-bowel surveillance in hereditary GI polyposis syndromes. Gastrointest Endosc. 2005;61(6):721–725. doi: https://doi.org/10.1016/s0016-5107(05)00289-0; Soares J, Lopes L, Vilas Boas G, Pinho C. Wireless capsule endoscopy for evaluation of phenotypic expression of small-bowel polyps in patients with Peutz-Jeghers syndrome and in symptomatic first-degree relatives. Endoscopy. 2004;36(12):1060–1066. doi: https://doi.org/10.1055/s-2004-826038; Hruban RH, Canto MI, Yeo CJ. Prevention of pancreatic cancer and strategies for management of familial pancreatic cancer. Dig Dis. 2001;19(1):76–84. doi: https://doi.org/10.1159/000050656; Lam-Himlin D, Park JY, Cornish TC, et al. Morphologic characterization of syndromic gastric polyps. Am J Surg Pathol. 2010;34(11):1656–1662. doi: https://doi.org/10.1097/PAS.0b013e3181f2b1f1; Brosens LA, Wood LD, Offerhaus GJ, et al. Pathology and Genetics of Syndromic Gastric Polyps. Int J Surg Pathol. 2016;24(3): 185–199. doi: https://doi.org/10.1177/1066896915620013; Kato M, Mizuki A, Hayashi T, et al. Cowden’s disease diagnosed through mucocutaneous lesions and gastrointestinal polyposis with recurrent hematochezia, unrevealed by initial diagnosis. Intern Med. 2000;39(7):559–563. doi: https://doi.org/10.2169/internalmedicine.39.559; McGarrity TJ, Wagner Baker MJ, Ruggiero FM, et al. GI polyposis and glycogenic acanthosis of the esophagus associated with PTEN mutation positive Cowden syndrome in the absence of cutaneous manifestations. Am J Gastroenterol. 2003;98(6):1429–1434. doi: https://doi.org/10.1111/j.1572-0241.2003.07496.x; Garofola C, Jamal Z, Gross GP. Cowden Disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.; Heald B, Mester J, Rybicki L, et al. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139(6): 1927–1933. doi: https://doi.org/10.1053/j.gastro.2010.06.061; Coriat R, Mozer M, Caux F, et al. Endoscopic findings in Cowden syndrome [published correction appears in Endoscopy. 2011;43(12):1096. Endoscopy. 2011;43(8):723–726. doi: https://doi.org/10.1055/s-0030-1256342; Chung DC, Adar T. Juvenile polyposis syndrome. In: UpToDate. Available online: https://www.uptodate.com/contents/juvenile-polyposis-syndrome. Accessed on August 20, 2923.; van Hattem WA, Langeveld D, de Leng WW, et al. Histologic variations in juvenile polyp phenotype correlate with genetic defect underlying juvenile polyposis. Am J Surg Pathol. 2011;35(4): 530–536. doi: https://doi.org/10.1097/PAS.0b013e318211cae1; Jass JR, Williams CB, Bussey HJ, Morson BC. Juvenile polyposis — a precancerous condition. Histopathology. 1988;13(6):619–630. doi: https://doi.org/10.1111/j.1365-2559.1988.tb02093.x; Kang B, Hwang SK, Choi S, et al. Case report of juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome: first report in Korea with a novel mutation in the SMAD4 gene. Transl Pediatr. 2021;10(5):1369–1376. doi: https://doi.org/10.21037/tp-21-12; Upadhyaya VD, Gangopadhyaya AN, Sharma SP, et al. Juvenile polyposis syndrome. J Indian Assoc Pediatr Surg. 2008;13(4): 128–131. doi: https://doi.org/10.4103/0971-9261.44762; Schreibman IR, Baker M, Amos C, McGarrity TJ. The hamartomatous polyposis syndromes: a clinical and molecular review. Am J Gastroenterol. 2005;100(2):476–490. doi: https://doi.org/10.1111/j.1572-0241.2005.40237.x; Zbuk KM, Eng C. Hamartomatous polyposis syndromes. Nat Clin Pract Gastroenterol Hepatol. 2007;4(9):492–502. doi: https://doi.org/10.1038/ncpgasthep0902; Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22. doi: https://doi.org/10.1186/1750-1172-4-22; Aelvoet AS, Buttitta F, Ricciardiello L, Dekker E. Management of familial adenomatous polyposis and MUTYH-associated polyposis; new insights. Best Pract Res Clin Gastroenterol. 2022;58-59: 101793. doi: https://doi.org/10.1016/j.bpg.2022.101793; Carr S, Kasi A. Familial Adenomatous Polyposis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.; Hayashi N, Tanaka S, Hewett DG, et al. Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (NICE) classification. Gastrointest Endosc. 2013;78(4):625–632. doi: https://doi.org/10.1016/j.gie.2013.04.185; Coffey A, Patel K, Quintanilla N, et al. Fundic Gland Polyps in the Pediatric Population: Clinical and Histopathologic Studies. Pediatr Dev Pathol. 2017;20(6):482–489. doi: https://doi.org/10.1177/1093526617706816; Guarinos C, Juárez M, Egoavil C, et al. Prevalence and characteristics of MUTYH-associated polyposis in patients with multiple adenomatous and serrated polyps. Clin Cancer Res. 2014;20(5):1158–1168. doi: https://doi.org/10.1158/1078-0432.CCR-13-1490; McGuigan A, Whitworth J, Andreou A, et al. Multilocus Inherited Neoplasia Allele Syndrome (MINAS): an update. Eur J Hum Genet. 2022;30(3):265–270. doi: https://doi.org/10.1038/s41431-021-01013-6; Ferlitsch M, Moss A, Hassan C, et al. Colorectal polypectomy and endoscopic mucosal resection (EMR): European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy. 2017;49(3):270–297. doi: https://doi.org/10.1055/s-0043-102569; Rebuzzi F, Ulivi P, Tedaldi G. Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int J Mol Sci. 2023;24(3):2137. doi: https://doi.org/10.3390/ijms24032137; Yalcintepe S, Gurkan H, Demir S, et al. Targeted next-generation sequencing as a diagnostic tool in gastrointestinal system cancer/polyposis patients. Tumori. 2020;106(6):510–517. doi: https://doi.org/10.1177/0300891620919171; Wang D, Liang S, Zhang X, et al. Targeted next-generation sequencing approach for molecular genetic diagnosis of hereditary colorectal cancer: Identification of a novel single nucleotide germline insertion in adenomatous polyposis coli gene causes familial adenomatous polyposis. Mol Genet Genomic Med. 2019;7(1):e00505. doi: https://doi.org/10.1002/mgg3.505; https://vsp.spr-journal.ru/jour/article/view/3271

  10. 10
    Academic Journal

    المصدر: Advances in Molecular Oncology; Том 10, № 2 (2023); 100-107 ; Успехи молекулярной онкологии; Том 10, № 2 (2023); 100-107 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-2

    مصطلحات موضوعية: сыворотка крови, sEMMPRIN/CD147, blood serum

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/545/304; Crosnier C., Bustamante L.Y., Bartholdson S.J. et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 2011;480(7378):534–7. DOI:10.1038/nature10606; Zeng W., Su J., Wu L. et al. CD147 promotes melanoma progression through hypoxia-induced MMP2 activation. Curr Mol Med 2014;14(1):163–73. DOI:10.2174/15665240113136660077; Kong L.M., Liao C.G., Zhang Y. et al. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res 2014;74(14):3764–78. DOI:10.1158/0008-5472.CAN-13-3555; Kong L.M., Yao L., Lu N. et al. Interaction of KLF6 and Sp1 regulates basigin-2 expression mediated proliferation, invasion and metastasis in hepatocellular carcinoma. Oncotarget 2016;7(19):27975–87. DOI:10.18632/oncotarget.8564; Grass G.D., Toole B.P. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 2015;36(1):e00283. DOI:10.1042/BSR20150256; Pinheiro C., Garcia E.A., Morais-Santos F. et al. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer 2015;15:835. DOI:10.1186/s12885-015-1842-4; Li S., Nguyen T.T., Bonanno J.A. CD147 required for corneal endothelial lactate transport. Invest Ophthalmol Vis Sci 2014;55(7):4673–81. DOI:10.1167/iovs.14-14386; Xin X., Zeng X., Gu H. et al. CD147/EMMPRIn overexpression and prognosis in cancer: a systematic review and meta-analysis. Sci Rep 2016;6:32804. DOI:10.1038/srep32804; Berditchevski F., Chang S., Bodorova J., Hemler M.E. Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/ OX47/M6. J Biol Chem 1997;272(46):29174–80. DOI:10.1074/jbc.272.46.29174; Egawa N., Koshikawa N., Tomari T. et al. J Biol Chem 2006;281(49):37576–85. DOI:10.1074/jbc.M606993200; Sidhu S.S., Mengistab A.T., Tauscher A.N. et al. The microvesicle as a vehicle for EMMPRIn in tumor-stromal interactions. Oncogene 2004;23(4):956–63. DOI:10.1038/sj.onc.1207070; Kim H.-S., Kim H.J., Lee M.R., Han I. EMMPRIn expression is associated with metastatic progression in osteosarcoma. BMC Cancer 2021;21(1):1059. DOI:10.1186/s12885-021-08774-9; Lu Q., Lv G., Kim A. et al. Expression and clinical significance of extracellular matrix metalloproteinase inducer, EMMPRIN/ CD147, in human osteosarcoma. Oncol Lett 2013;5(1):201–7. DOI:10.3892/ol.2012.981; Wu J., Hao Z.W., Zhao Y.X. et al. Full-length soluble CD147 promotes MMP-2 expression and is a potential serological marker in detection of hepatocellular carcinoma. J Transl Med 2014;12:190. DOI:10.1186/1479-5876-12-190; Taylor P.M., Woodfield R.J., Hodgkin M.N. et al. Breast cancer cell-derived EMMPRIn stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 2002;21(37):5765–72. DOI:10.1038/sj.onc.1205702; Hanata K., Yamaguchi N., Yoshikawa K. et al. Soluble EMMPRIn (extra-cellular matrix metalloproteinase inducer) stimulates the migration of HEp-2 human laryngeal carcinoma cells, accompanied by increased MMP-2 production in fibroblasts. Arch Histol Cytol 2007;70(5):267–77. DOI:10.1679/aohc.70.267; Koga K., Nabeshima K., Aoki M. et al. Emmprin in epithelioid sarcoma: expression in tumor cell membrane and stimulation of MMP-2 production in tumor-associated fibroblasts. Int J Cancer 2007;120(4):761–8. DOI:10.1002/ijc.22412; Kong L.M., Liao C.G., Chen L. et al. Promoter hypomethylation up-regulates CD147 expression through increasing Sp1 binding and associates with poor prognosis in human hepatocellular carcinoma. J Cell Mol Med 2011;15(6):1415–28. DOI:10.1111/j.1582-4934.2010.01124.x; Hakuma N., Betsuyaku T., Kinoshita I. et al. High incidence of extracellular matrix metalloproteinase inducer expression in non-small cell lung cancers. Association with clinicopathological parameters. Oncology 2007;72(3–4):197–204. DOI:10.1159/000112826; Yoshioka Y., Kosaka N., Konishi Y. et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun 2014;5:3591. DOI:10.1038/ncomms4591; Qiao X., Gu Y., Yu J. et al. The combination of CD147 and MMP-9 Serum levels is identified as novel chemotherapy response markers of advanced non-small-cell lung cancer. Dis Markers 2020;2020:8085053. DOI:10.1155/2020/8085053; https://umo.abvpress.ru/jour/article/view/545

  11. 11
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Pediatric pharmacology; Том 20, № 4 (2023); 303-308 ; Педиатрическая фармакология; Том 20, № 4 (2023); 303-308 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2345/1523; Hunger SP. Glucocorticoid selection for pediatric ALL. Blood. 2016;127(17):2049-2051. doi: https://doi.org/10.1182/blood-2016-02-701664; Jing D, Bhadri VA, Beck D, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood. 2015;125(2):273-283. doi: https://doi.org/10.1182/blood-2014-05-576470; Inaba H, Pui CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010;11(11):1096-1106. doi: https://doi.org/10.1016/S1470-2045(10)70114-5; Gruber G, Carlet M, Turtscher E, et al. Levels of glucocorticoid receptor and its ligand determine sensitivity and kinetics of glucocorticoid-induced leukemia apoptosis. Leukemia. 2009;23(4):820-823. doi: https://doi.org/10.1038/leu.2008.360; Gross KL, Lu NZ, Cidlowski JA. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol Cell Endocrinol. 2009;300(1-2):7-16. doi: https://doi.org/10.1016/j.mce.2008.10.001; Carlet M, Janjetovic K, Rainer J, et al. Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells. BMC Cancer. 2010;10:638. doi: https://doi.org/10.1186/1471-2407-10-638; Vandewalle J, Luypaert A, De Bosscher K, Libert C. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol Metab. 2018;29(1):42-54. doi: https://doi.org/10.1016/j.tem.2017.10.010; Catts VS, Farnsworth ML, Haber M, et al. High level resistance to glucocorticoids, associated with a dysfunctional glucocorticoid receptor, in childhood acute lymphoblastic leukemia cells selected for methotrexate resistance. Leukemia. 2001;15(6):929-935. doi: https://doi.org/10.1038/sj.leu.2402128; Sun F, Zhou JL, Wei SX, et al. Glucocorticoids induce osteonecrosis of the femoral head in rats via PI3K/AKT/FOXO1 signaling pathway. PeerJ. 2022;10:e13319. doi: https://doi.org/10.7717/peerj.13319; Schmidt S, Rainer J, Ploner C, et al. Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ. 2004;11(Suppl 1):S45-S55. doi: https://doi.org/10.1038/sj.cdd.4401456; Ausserlechner MJ, Obexer P, Bock G, et al. Cyclin D3 and c-MYC control glucocorticoid-induced cell cycle arrest but not apoptosis in lymphoblastic leukemia cells. Cell Death Differ. 2004;11(2):165-174. doi: https://doi.org/10.1038/sj.cdd.44013281; Mansha M, Carlet M, Ploner C, et al. Functional analyses of Src-like adaptor (SLA), a glucocorticoid-regulated gene in acute lymphoblastic leukemia. Leuk Res. 2010;34(4):529-534. doi: https://doi.org/10.1016/j.leukres.2009.06.029; Gardner JP, Zhang L. Glucocorticoid modulation of Ca2+ homeostasis in human B lymphoblasts. J Physiol. 1999;514(Pt 2):385-396. doi: https://doi.org/10.1111/j.1469-7793.1999.385ae.x; Durmaz B, Bagca BG, Cogulu O, et al. Antileukemic Effects of Anti-miR-146a, Anti-miR-155, Anti-miR-181a, and Prednisolone on Childhood Acute Lymphoblastic Leukemia. Biomed Res Int. 2021;2021:3207328. doi: https://doi.org/10.1155/2021/3207328; Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ. 2002;9(1):6-19. doi: https://doi.org/10.1038/sj.cdd.4400969; Schmidt S, Rainer J, Riml S, et al. Identification of glucocorticoidresponse genes in children with acute lymphoblastic leukemia. Blood. 2006;107(5):2061-2069. doi: https://doi.org/10.1182/blood-2005-07-2853; Orkin SH, Fisher DE, Ginsburg D, et al. Nathan and Oskis Hematology and Oncology of Infancy and Childhood. 8th edition. Elsevier Saunders, 2015, 2752p; https://www.pedpharma.ru/jour/article/view/2345

  12. 12
    Academic Journal

    المصدر: Pediatric pharmacology; Том 20, № 2 (2023); 134–140 ; Педиатрическая фармакология; Том 20, № 2 (2023); 134–140 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2284/1475; Алиев Т.З., Мачнева Е.Б., Сидорова Н.В. и др. Поражение кожных покровов при трансплантации гемопоэтических стволовых клеток. Обзор литературы // Вопросы гематологии/ онкологии и иммунопатологии в педиатрии. — 2020. — Т. 19. — № 2. — С. 184–192. — doi: https://doi.org/10.24287/1726-1708-2020-19-2-184-192; Белышева Т.С., Алиев Т.З., Валиев Т.Т. и др. Клинические особенности кожной формы острой реакции «трансплантат против хозяина» при аллогенной трансплантации гемопоэтических стволовых клеток у детей с онкогематологическими заболеваниями // Вопросы современной педиатрии. 2020;19(6):500–508. doi: https://doi.org/10.15690/vsp.v19i6.2148; Bolognia JL, Cooper DL, Glusac EJ. Toxic erythema of chemotherapy: a useful clinical term. J Am Acad Dermatol. 2008;59(3):524–529. doi: https://doi.org/10.1016/j.jaad.2008.05.018; Horn TD, Beveridge RA, Egorin MJ, et al. Observations and proposed mechanism of N,N′,N′′-triethyl-enethiophosphoramide (thiotepa)-induced hyperpigmenta-tion. Arch Dermatol. 1989;125(4):524–527.; Summary of Product Characteristics. Thiotepa. In: Electronic medicines compendium. Available online: https://www.medicines.org.uk/emc/product/12717/smpc#gref. Accessed on Marth 29, 2023.; Tepadina®, Thiotepa for injection, product monograph including patient medication information. Available online: https://methapharm.com/wp-content/uploads/2021/05/00056680-TepadinaPM-EN_June15-2020.pdf. Accessed on Marth 29, 2023.; Rosman IS, Lloyd BM, Hayashi RJ, et al. Cutaneous effects of thiotepa in pediatric patients receiving high-dose chemotherapy with autologous stem cell transplantation. J Am Acad Dermatol. 2008;58(4):575–578. doi: https://doi.org/10.1016/j.jaad.2007.12.037; Koppel RA, Boh EE. Cutaneous reactions to chemotherapeutic agents. Am J Med Sci. 2001;321(5):327–335. doi: https://doi.org/10.1097/00000441-200105000-00005; Beyer J, Grabbe J, Lenz K, et al. Cutaneous toxicity of high-dose carboplatin, etoposide and ifosfamide followed by autologous stem cell reinfusion. Bone Marrow Transplant. 1992;10(6):491–494.; Lucidarme N, Valteau-Couanet D, Oberlin O, et al. Phase II study of high-dose thiotepa and hematopoietic stem cell transplantation in children with solid tumors. Bone Marrow Transplant. 1998;22(6):535–540. doi: https://doi.org/10.1038/sj.bmt.1701395; Wise M, Maroon M, Fussell N. Cutaneous toxicity associated with tiotepa before autologous stem cell transplant. JAAD. 2010;62(3 Suppl 1):AB48. doi: https://doi.org/10.1016/j.jaad.2009.11.239; Van Schandevyl G, Bauters T. Thiotepa-induced cutaneous toxicity in pediatric patients: Case report and implementation of preventive care guidelines. J Oncol Pharm Pract. 2019;25(3):689–693. doi: https://doi.org/10.1177/1078155218796905; US Food and Drug Administration. Full prescribing information Tepadina. Reference ID: 4046754. Available online: www.accessdata.fda.gov/drugsatfda_docs/label/2017/208264s000lbl.pdf. Accessed on May 24, 2018.; Белышева Т.С., Валиев Т.Т., Алиев Т.З. Дерматологическая токсичность и мукозиты при лечении злокачественных опухолей у детей // Противоопухолевая лекарственная терапия: национальное руководство / под ред. В.А. Горбуновой, М.Б. Стениной. — М.: ГЭОТАР-Медиа; 2022. — С. 686–692. — doi: https://doi.org/10.33029/9704-6897-5-ATDT-2022-1-708; Balsat M, Pillet S, Tavernier E, et al. Human Herpesvirus 6 Infection after Autologous Stem Cell Transplantation: A Multicenter Prospective Study in Adult Patients. J Infect. 2019;79(1):36–42. doi: https://doi.org/10.1016/j.jinf.2019.05.001; Miura T, Kikuchi N, Ohtsuka M, Yamamoto T. Varicella in a patient with drug-induced hypersensitivity syndrome developed after autologous peripheral stem cell transplantation. Int J Dermatol. 2018;57(9):e71–e73. doi: https://doi.org/10.1111/ijd.14091; https://www.pedpharma.ru/jour/article/view/2284

  13. 13
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 3 (2023); 70-81 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 3 (2023); 70-81 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/965/849; Zhang S., Li Y., Wang R., Song B. Ewing’s sarcoma/primitive neuroectodermal tumor of the kidney: a case report and literature review. Transl Androl Urol. 2019;8(5):562–6. doi:10.21037/tau.2019.09.46.; Ellinger J., Bastian P.J., Hauser S., Biermann K., Müller S.C. Primitive neuroectodermal tumor: Rare, highly aggressive diff erential diagnosis in urologic malignancies. Urology. 2006;68:257–62. doi:10.1016/j.urology.2006.02.037.; Seemayer T., Thelmo W., Bolande R. Peripheral neuroectodermal tumors. Perspect Pediatr Pathol. 1975;2:151–72. PMID: 1129029.; Романцова О.М., Хестанов Д.Б., Дзампаев А.З., Хайруллова В.В., Ефимова М.М., Горбунова Т.В., Киргизов К.И., Варфоломеева С.Р. Костная и внескелетная саркома Юинга: сравнительная характеристика особенностей течения и исходов заболевания (опыт НИИ детской онкологии и гематологии им. Л.А. Дурнова). Педиатрия. Журнал им. Г.Н. Сперанского. 2023;102(3):41–50. doi:10.24110/0031-403X-2023-102-3-41-50.; Choi J.H., Ro J.Y. The 2020 WHO Classification of Tumors of Soft Tissue: Selected Changes and New Entities Adv Anathomy Pathor. 2021;28(1):44–58. doi:10.1097/PAP.0000000000000284.; Welsch T., Mechtersheimer G., Aulmann S., Mueller S.A., Buechler M.W., Schmidt J., Kienle P. Huge primitive neuroectodermal tumor of the pancreas: Report of a case and review of the literature. World J Hastroenterol. 2006;12(37):6070–3. doi:10.3748/wjg.v12.i37.6070.; Нисиченко О.А., Долгополов И.С., Нисиченко Д.В., Малахова А.А., Романцова О.М., Хестанов Д.Б., Дзампаев А.З. Определение стратегии лечения детей и подростков с саркомой Юинга при первичном поражении костей таза. Саркомы костей, мягких тканей и опухоли кожи. 2020;12(2–3):45–53. doi:10.17650/2070-9781-2020-21-3-45-53.; Tarek N., Said R., Andersen C.R., Suki T.S., Foglesong J., Herzog C.E., Tannir N.M., Patel S., Ratan R., Ludwig J.A., Daw N.C. Primary Ewing Sarcoma Primitive Neoriectodermal Tumor of the Kidney: The MD Anderson Cancer Center Expirience Cancers (Basel), 2020. doi:10.3390/cancers12102927.; Cheng L., Xu Y., Song H., Huang H., Zhuo D. A rare entity of Primary Ewing sarcoma in kidney. BMC Surg. 2020;20(1):280. doi:10.1186/s12893-020-00948-9.; Alghamdi M.H.A., Alawad S.A., Alharbi M.G., Alabdulsalam A.K., Almodhen F., Alasker A. A rare case of Ewing’s sarcoma of the kidney. Urol Case Rep. 2019:29:101094. doi:10.1016/j.eucr.2019.101094.; Brown H.K., Schiavone K., Gouin F., Heymann M.F., Heymann D. Biology of Bone Sarcomas and New Therapeutic Developments. Calcif Tissue Int. 2018;102(2):174–95. doi:10.1007/s00223-017-0372-2.; Thyavihally Y.B., Tongaonkar H.B., Gupta S., Kurkure P.A., Amare P., Muckaden M.A., Desai S.B. Primitive Neuroectodermal Tumor of the Kidney: A Single Institute Series of 16 Patients. Urology. 2008;71:292–6. doi:10.1016/j.urology.2007.09.051.; Karpate A., Menon S., Basak R., Yuvaraja T.B., Tongaonkar H.B., Desai S.B. Ewing sarcoma/primitive neuroectodermal tumor of the kidney: Clinicopathologic analysis of 34 cases. Ann Diagn Pathol 2012;16:267–74. doi:10.1016/j.anndiagpath.2011.07.011.; Hakky T.S., Gonzalvo A.A., Lockhart J.L., Rodriguez A.R. Primary Ewing sarcoma of the kidney: A symptomatic presentation and review of the literature. Ther Adv Urol. 2012;5:153–9. doi:10.1177/1756287212471095.; Applebaum M.A., Worch J., Matthay K.K., Goldsby R., Neuhaus J., West D.C., Dubois S.G. Clinical features and outcomes in patients with extraskeletal ewing sarcoma. Cancer. 2011;117:3027–32. doi:10.1002/cncr.25840.; Miller R.W. Contrasting epidemiology of childhood osteosarcoma, Ewing’s tumor, and rhabdomyosarcoma. Natl Cancer Inst Monogr. 1981;56:9–15. PMID: 7029300.; Cotterill S., Ahrens S., Paulussen M., Jürgens H., Voûte P., Gadner H., Craft A. Prognostic Factors in Ewing’s Tumor of Bone: Analysis of 975 Patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol. 2000;18:3108–14. doi:10.1200/JCO.2000.18.17.3108.; Rodriguez-Galindo C., Liu T., Krasin M.J., Wu J., Billups C.A., Daw N.C., Spunt S.L., Rao B.N., Santana V.M., Navid F. Analysis of prognostic factors in ewing sarcoma family of tumors. Cancer. 2007;110:375–84. doi:10.1002/cncr.22821.; Risi E., Iacovelli R., Altavilla A., Alesini D., Palazzo A., Mosillo C., Trenta P., Cortesi E. Clinical and Pathological Features of Primary Neuroectodermal Tumor/Ewing Sarcoma of the Kidney. Urology. 2013;82:382–6. doi:10.1016/j.urology.2013.04.015.; Rowe R.G., Thomas D., Schuetze S.M., Hafez K.S., Lawlor E.R., Chugh R. Ewing Sarcoma of the Kidney: Case Series and Literature Review of an Often Overlooked Entity in the Diagnosis of Primary Renal Tumors. Urololgy. 2013;81:347–53. doi:10.1016/j.urology.2012.10.016.; Zöllner S., Dirksen U., Jürgens H., Ranft A. Renal Ewing tumors. Ann Oncol. 2013;24:2455–61. doi:10.1093/annonc/mdt215.; Валиев Т.Т., Панферова Т.Р., Кошечкина Н.А., Захарова Е.В., Михайлова Е.В., Каминская И.В. Поражение почек при неходжкинских лимфомах у детей. Современная онкология. 2014;16(1):53–9.; Huang J., Zhang J., Dong B., Clien Y., Kong W., Liu Q. Primitive neuroectodermal tumor of the kidney: a single-institute series of six patients from China. Urol Int. 2013;90:174–8. doi:10.1159/000342647.; Rodriguez-Galindo C., Marina N.M., Fletcher B.D., Parham D.M., Bodner S.M., Meyer W.H. Is primitive neuroectodermal tumor of the kidney a distinct entity? Cancer. 1997;79:2243–50. doi:10.1002/(SICI)1097-0142(19970601)79:113.0.CO;2-V.; Grier H.E., Krailo M.D., Tarbell N.J., Link M.P., Fryer C.J.H., Pritchard D.J., Gebhardt M.C., Dickman P.S., Perlman E.J., Meyers P.A., Donaldson S.S., Moore S., Rausen A.R., Vietti T.J., Miser J.S. Addition of Ifosfamide and Etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348(8):694–701. doi:10.1056/NEJMoa020890.; Womer R.B., West D.C., Krailo M.D., Dickman P.S., Pawel B.R., Grier H.E., Marcus K., Sailer S., Healey J.H., Dormans J.P., Weiss A.R. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Childrenʼs Oncology Group. J Clin Oncol. 2012;30(33):4148–54. doi:10.1200/JCO.2011.41.5703.; Juergens C., Weston C., Lewis I., Whelan J., Paulussen M., Oberlin O., Michon J., Zoubek A., Juergens H., Craft A. Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EUROE.W.I.N.G. 99 clinical trial. Pediatr Blood Cancer. 2006;47(1):22–9. doi:10.1002/pbc.20820.; Wagner M.J., Ravi V., Livingston J.A., Conley A.P., Araujo D., Somaiah N., Zarzour M.A., Ratan R., Wang W.-L., Patel S.R., Lazar A., Ludwig J.A., Benjamin R.S. Vincristine, ifosfamide, and doxorubicin for initial treatment of Ewing sarcoma in adults. Oncologist. 2017;22(10):1271–7. doi:10.1634/theoncologist.2016-0464.; Chakrabarti N., Dewasi N., Das S., Bandyopadhyay A., Bhadure N. Primary Ewing’ s sarcoma/primitive neuroectodermal tumor of kidney – a diagnostic dilemma. Iran J Cancer Prev. 2015;8(2):129–33. PMID: 25960853.; Kuczynski A.P., Gugelmin E.S., Netto R.A.S. Primitive neuroectodermal tumor of the kidney in children. J Pediatia. 2001;77(1):49–51. doi:10.2223/JPED.111.; https://journal.nodgo.org/jour/article/view/965

  14. 14
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 3 (2023); 55-62 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 3 (2023); 55-62 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/963/847; Алиев Т.З., Мачнева Е.Б., Сидорова Н.В., Белышева Т.С., Валиев Т.Т., Киргизов К.И. Поражение кожных покровов при трансплантации гемопоэтических стволовых клеток. Обзор литературы. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(2):184–92. doi:10.24287/1726-1708-2020-19-2- 184-192.; Белышева Т.С., Алиев Т.З., Валиев Т.Т., Мачнева Е.Б., Сидорова Н.В., Мурашкин Н.Н., Киргизов К.И., Варфоломеева С.Р. Клинические особенности кожной формы острой реакции «трансплантат против хозяина» при аллогенной трансплантации гемопоэтических стволовых клеток у детей с онкогематологическими заболеваниями. Вопросы современной педиатрии. 2020;19(6):500–8. https://doi.org/10.15690/vsp.v19i6.2148.; Bolognia J.L., Cooper D.L., Glusac E.J. Toxic erythema of chemotherapy: a useful clinical term. J Am Acad Dermatol. 2008;59(3):524–9. doi:10.1016/j.jaad.2008.05.018.; Jagasia M.H., Greinix H.T., Arora M., Williams K.M., Wolff D., Cowen E.W., Palmer J., Weisdorf D., Treister N.S., Cheng G.S., Kerr H., Stratton P., Duarte R.F., McDonald G.B., Inamoto Y., Vigorito A., Arai S., Datiles M.B., Jacobsohn D., Heller T., Kitko C.L., Mitchell S.A., Martin P.J., Shulman H., Wu R.S., Cutler C.S., Vogelsang G.B., Lee S.J., Pavletic S.Z., Flowers M.E.D. National Institutes of Health Consensus Development Project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389–401.e1. doi:10.1016/j.bbmt.2014.12.001.; Epstein J.B., Schubert M.M. Oropharyngeal mucositis in cancer therapy. Review of pathogenesis, diagnosis, and management. Oncology (Williston Park). 2003;17(12):1767–79; discussion 1779–82, 1791–2. PMID: 14723014.; Carreras E., Dufour C., Mohty M., Kröger N., eds. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies [Internet]. 7th ed. Cham (CH): Springer, 2019. PMID: 32091673.; Wachowiak J., Sykora K.W., Cornish J., Chybicka A., Kowalczyk J.R., Gorczyńska E., Choma M., Grund G., Peters C.; EBMT Pediatric Diseases Working Party. Treosulfan-based preparative regimens for allo-HSCT in childhood hematological malignancies: a retrospective study on behalf of the EBMT pediatric diseases working party. Bone Marrow Transplant. 2011;46(12):1510–8. doi:10.1038/bmt.2010.343.; Główka F.K., Romański M., Wachowiak J. High-dose treosulfan in conditioning prior to hematopoietic stem cell transplantation. Expert Opin Investig Drugs. 2010;19(10):1275–95. doi:10.1517/13543784.2010.517744. PMID: 20836619.; Wachowiak J., Sykora K.W., Cornish J., Chybicka A., Kowalczyk J.R., Gorczynska E., Choma M., Grund G., Peters C. Treosulfan-based preparative regimens for allo-HSCT in childhood hematological malignancies: a retrospective study on behalf of the EBMT Pediatric Diseases Working Party. Bone Marrow Transplant. 2011;46:1510–8. doi:10.1038/bmt.2010.343.; Slatter M.A., Boztug H., Pötschger U., Sykora K.-W., Lankester A., Yaniv I., Sedlacek P., Glogova E., Veys P., Gennery A.R., Peters C., Inborn Errors EBMT, Parties PDW. Treosulfan-based conditioning regimens for allogeneic haematopoietic stem cell transplantation in children with non-malignant diseases. Bone Marrow Transplant. 2015;50:1536–41. doi:10.1038/bmt.2015.171.; Morillo-Gutierrez B., Beier R., Rao K., Burroughs L., Schulz A., Ewins A.M., Gibson B., Sedlacek P., Krol L., Strahm B., Zaidman I., Kalwak K., Talano J.A., Woolfrey A., Fraser C., Meyts I., Müller I., Wachowiak J., Bernardo M.E., Veys P., Sykora K.W., Gennery A.R., Slatter M. Treosulfan-based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience. Blood. 2016;128(3):440–8. doi:10.1182/ blood-2016-03-704015. Erratum in: Blood. 2016;128(21):2585. PMID: 27216217.; Ten Brink M.H., Zwaveling J., Swen J.J., Bredius R.G., Lankester A.C., Guchelaar H.J. Personalized busulfan and treosulfan conditioning for pediatric stem cell transplantation: the role of pharmacogenetics and pharmacokinetics. Drug Discov Today. 2014;19(10):1572–86. doi:10.1016/j.drudis.2014.04.005.; Van der Stoep M.Y.E.C., Bertaina A., Ten Brink M.H., Bredius R.G., Smiers F.J., Wanders D.C.M., Moes D.J.A.R., Locatelli F., Guchelaar H.J., Zwaveling J., Lankester A.C. High interpatient variability of treosulfan exposure is associated with early toxicity in paediatric HSCT: a prospective multicentre study. Br J Haematol. 2017;179(5):772–80. doi:10.1111/bjh.14960.; Kearns G.L., Abdel-Rahman S.M., Alander S.W., Blowey D.L., Leeder J.S., Kauff man R.E. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67. doi:10.1056/NEJMra035092.; Scheulen M.E., Hilger R.A., Oberhoff C., Casper J., Freund M., Josten K.M., Bornhäuser M., Ehninger G., Berdel W.E., Baumgart J., Harstrick A., Bojko P., Wolf H.H., Schindler A.E., Seeber S. Clinical phase I dose escalation and pharmacokinetic study of high-dose chemotherapy with treosulfan and autologous peripheral blood stem cell transplantation in patients with advanced malignancies. Clin Cancer Res. 2000;6(11):4209–16. PMID: 11106234.; Rosman I.S., Lloyd B.M., Hayashi R.J, Bayliss S.J. Cutaneous effects of thiotepa in pediatric patients receiving high-dose chemotherapy with autologous stem cell transplantation. J Am Acad Dermatol. 2008;58(4):575–8. doi:10.1016/j.jaad.2007.12.037.; Tkachenko P.E., Ivashkin V.T., Maevskaya M.V. Clinical guidelines for the correction of hepatotoxicity induced by anticancer therapy. Malignant tumors. 2020;10(3s2-2):52–65. doi:10.18027/2224-5057-2020-10-3s2-40.; Иваников И.О., Виноградова Н.Н., Крашенков О.П., Коцелапова Э.Ю., Григорьева Ю.В., Мясникова Е.В., Пикунова И.Н. Острые повреждения печени вследствие химиотерапии и возможности их лечения. Доказательная гастроэнтерология. 2020;9(4):7–15. doi:10.17116/dokgastro202090417.; Levi M., Stemmer S.M., Stein J., Shalgi R., Ben-Aharon I. Treosulfan induces distinctive gonadal toxicity compared with busulfan. Oncotarget. 2018;9(27):19317–27. doi:10.18632/oncotarget.25029.; Feit P.W., Rastrup-Andersen N., Matagne R. Studies on epoxide formation from (2S,3S)-threitol 1,4-bismethanesulfonate. The preparation and biological activity of (2S,3S)-1,2-epoxy-3,4- butanediol 4-methanesulfonate. J Med Chem. 1970;13(6):1173–5. doi:10.1021/jm00300a034. PMID: 5479859.; Romański M., Ratajczak W., Główka F. Kinetic and mechanistic study of the pH-dependent activation (epoxidation) of prodrug treosulfan including the reaction inhibition in a borate buff er. J Pharm Sci. 2017;106:1917–22. doi:10.1016/j.xphs.2017.03.018.; https://journal.nodgo.org/jour/article/view/963

  15. 15
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 2 (2023); 117-130 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 2 (2023); 117-130 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/944/831; https://journal.nodgo.org/jour/article/view/944/832; Сагоян Г.Б., Клецкая И.С., Имянитов Е.Н., Мареева Ю.М., Жуков Н.В., Хагуров Р.А., Сулейманова А.М. Спектр синдромов избыточного роста, связанных с мутацией PIK3CA. Обзор литературы. Российскийжурнал детской гематологии и онкологии. 2022;9(1):29–44. doi:10.21682/2311-1267-2022-9-1-29-44.; Canaud G., Hammill A.M., Adams D., Vikkula M., Keppler-Noreuil K.M. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306. doi:10.1186/s13023-021-01929-8.; Nunnery S.E., Mayer I.A. Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer Drugs. 2020;80:1685–97. doi:10.1007/s40265-020-01394-w.; Madsen R.R., Vanhaesebroeck B., Semple R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol Med. 2018;24(10):856–70. doi:10.1016/j.molmed.2018.08.003.; Douzgou S., Rawson M., Baselga E., Danielpour M., Faivre L., Kashanian A., Keppler-Noreuil K.M., Kuentz P., Mancini G.M.S., Maniere M.C., Martinez-Glez V., Parker V.E., Semple R.K., Srivastava S., Vabres P., De Wit M.Y., Graham J.M. Jr, Clayton-Smith J., Mirzaa G.M., Biesecker L.G. A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clin Genet. 2022;101(1):32–47. doi:10.1111/cge.14027.; Mirzaa G., Graham J.M. Jr, Keppler-Noreuil K.M. PIK3CA-Related Overgrowth Spectrum. In: Adam M.P., Everman D.B., Mirzaa G.M., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023.; Keppler-Noreuil K.M., Rios J.J., Parker V.E., Semple R.K., Lindhurst M.J., Sapp J.C., Alomari A., Ezaki M., Dobyns W., Biesecker L.G. PIK3CArelated overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, diff erential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287–95. doi:10.1002/ajmg.a.36836.; Canaud G., López Gutiérrez J.C., Irvine A., Ankrah N., Ridolfi A., Adams D.M. LBA23 EPIK-P1: Retrospective chart review study of patients (pts) with PIK3CA-related Overgrowth Spectrum (PROS) who have received alpelisib (ALP) as part of a compassionate use programme. Dev Ther. 2021;32(Suppl 5):S1297. doi:10.1016/j.annonc.2021.08.2097.; Garreta Fontelles G., Pardo Pastor J., Grande Moreillo C. Alpelisib to treat CLOVES syndrome, a member of the PIK3CA-related overgrowth syndrome spectrum. Br J Clin Pharmacol. 2022;88(8):3891–5. doi:10.1111/bcp.15270.; Morin G., Degrugillier-Chopinet C., Vincent M., Fraissenon A., Aubert H., Chapelle C., Hoguin C., Dubos F., Catteau B., Petit F., Mezel A., Domanski O., Herbreteau G., Alesandrini M., Boddaert N., Boutry N., Broissand C., Kevin Han T., Branle F., Sarnacki S., Blanc1 T., Guibaud L., Canaud G. Treatment of two infants with PIK3CA-related overgrowth spectrum by alpelisib. J Exp Med. 2022;219(3):e20212148. doi:10.1084/jem.20212148.; Madsen R.R., Semple R.K. PIK3CA-related overgrowth: silver bullets from the cancer arsenal? Trends Mol Med. 2022;28(4):255–7. doi:10.1016/j.molmed.2022.02.009.; Parker V.E.R., Keppler-Noreuil K.M., Faivre L., Luu M., Oden N.L., De Silva L., Sapp J.C., Andrews K., Bardou M., Chen K.Y., Darling T.N., Gautier E., Goldspiel B.R., Hadj-Rabia S., Harris J., Kounidas G., Kumar P., Lindhurst M.J., Loff roy R., Martin L., Phan A., Rother K.I., Widemann B.C., Wolters P.L., Coubes C., Pinson L., Willems M., Vincent-Delorme C.; PROMISE Working Group; Vabres P., Semple R.K., Biesecker L.G. Safety and efficacy of low-dose sirolimus in the PIK3CArelated overgrowth spectrum. Genet Med. 2019;21(5):1189–98. doi:10.1038/s41436-018-0297-9.; https://journal.nodgo.org/jour/article/view/944

  16. 16
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 1 (2023); 73-80 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 1 (2023); 73-80 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/924/818; Schneider D.T., Calaminus G., Göbel U. Diagnostic value of alpha 1-fetoprotein and beta-human chorionic gonadotropin in infancy and childhood. Pediatr Hematol Oncol. 2001;18(1):11–26. doi:10.1080/088800101750059828.; Maeyama T., Ichikawa C., Okada Y. Beta-human chorionic gonadotropin-producing neuroblastoma: an unrecognized cause of gonadotropin-independent precocious puberty. Endocr J. 2022;69(3):313–8. doi:10.1507/endocrj.EJ21-0366.; Onyema M.C., Drakou E.E., Dimitriadis G.K. Endocrine abnormality in paraneoplastic syndrome. Best Pract Res Clin Endocrinol Metab. 2022;36(3):101621. doi:10.1016/j.beem.2022.101621.; Williams H.C., Dellavalle R.P., Garner S. Acne vulgaris. Lancet. 2012;379(9813):361–72. doi:10.1016/S0140-6736(11)60321-8.; Elsaie M.L. Hormonal treatment of acne vulgaris: an update. Clin Cosmet Investig Dermatol. 2016;9:241–8. doi:10.2147/CCID.S114830.; Yeung H., Kahn B., Ly B.C. Dermatologic Conditions in Transgender Populations. Endocrinol Metab Clin North Am. 2019;48(2):429–40. doi:10.1016/j.ecl.2019.01.005.; Chen W., Thiboutot D., Zouboulis C.C. Cutaneous androgen metabolism: basic research and clinical perspectives. J Invest Dermatol. 2002;119(5):992–1007. doi:10.1046/j.1523-1747.2002.00613.x.; Gollnick H.P. From new findings in acne pathogenesis to new approaches in treatment. J Eur Acad Dermatol Venereol. 2015;29 Suppl. 5:1–7. doi:10.1111/jdv.13186.; Shaikh F., Murray M.J., Amatruda J.F. Paediatric extracranial germcell tumours. Lancet Oncol. 2016;17(4):e149–62. doi:10.1016/S1470-2045(15)00545-8.; Dubey D., Kryzer T., Guo Y. Leucine Zipper 4 Autoantibody: A Novel Germ Cell Tumor and Paraneoplastic Biomarker. Ann Neurol. 2021;89(5):1001–10. doi:10.1002/ana.26050.; Mercolini F., Battisti L., Sainati L. Paraneoplastic Cytopenia in Ovarian Germ Cell Tumor: A Novel Presentation. J Pediatr Hematol Oncol. 2018;40(7):e432–4. doi:10.1097/MPH.0000000000001057.; Shindo K., Tsuchiya M., Koh K. Paraneoplastic sensorimotor neuropathy associated with mediastinal germ cell tumor: favorable outcome after high-dose intravenous immunoglobulin therapy. Neurol Sci. 2020;41(3):723–5. doi:10.1007/s10072-019-04078-w.; Dimitriadis G.K., Kaltsas G., Ghobara T. Hypertestosteronemia and Infertility from a Mediastinal Extragonadal Germ Cell Tumor. Am J Med. 2017;130(6):e261–3. doi:10.1016/j.amjmed.2017.01.010.; DeLellis R.A., Xia L. Paraneoplastic endocrine syndromes: a review. Endocr Pathol. 2003;14(4):303–17. doi:10.1385/ep:14:4:303.; Oshrine B.R., Sullivan L.M., Balamuth N.J. Ectopic production of β-hCG by osteosarcoma: a case report and review of the literature. J Pediatr Hematol Oncol. 2014;36(3):e202–6. doi:10.1097/MPH.0000000000000037.; Wong Y.P., Tan G.C., Aziz S. Beta-human Chorionic Gonadotropinsecreting Lung Adenocarcinoma. Malays J Med Sci. 2015;22(4):76–80. PMID: 26715912.; Scholl P.D., Jurco S., Austin J.R. Ectopic production of beta-HCG by a maxillary squamous cell carcinoma. Head Neck. 1997;19(8):701–5. doi:10.1002/(sici)1097-0347(199712)19:83.0.co;2-9.; Sato S., Nishizuka M., Asano M. RNA interference-mediated knockdown of the mouse gene encoding potassium channel subfamily K member 10 inhibits hormone-induced differentiation of 3T3-L1 preadipocytes. Comp Biochem Physiol B Biochem Mol Biol. 2010;157(1):46–53. doi:10.1016/j.cbpb.2010.04.015.; Forst T., Beyer J., Cordes U. Gynaecomastia in a patient with a hCG producing giant cell carcinoma of the lung. Case report. Exp Clin Endocrinol Diabetes. 1995;103(1):28–32. doi:10.1055/s-0029-1211326.; Dimitriadis G.K., Angelousi A., Weickert M.O. Paraneoplastic endocrine syndromes. Endocr Relat Cancer. 2017;24(6):R173–90. doi:10.1530/ERC-17-0036.; https://journal.nodgo.org/jour/article/view/924

  17. 17
    Academic Journal

    المساهمون: The study was performed without external funding, Исследование проведено без спонсорской поддержки

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 9, № 4 (2022); 107-113 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 9, № 4 (2022); 107-113 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/890/787; Castaneda Puglianini O., Papadantonakis N. Early precursor T-cell acute lymphoblastic leukemia: current paradigms and evolving concepts. Ther Adv Hematol. 2020; 11: 2040620720929475. doi:10.1177/2040620720929475.; Федюкова Ю. Г. Острый лимфобластный лейкоз из ранних предшественников Т-клеток: диагностика и клинические исходы / Ю. Г. Федюкова [и др.] // Евразийский Союз Ученых. – 2018. – 7 (52): 56–60.; Wang C., Oshima M., Sato D., Matsui H., Kubota S., Aoyama K., Nakajima-Takagi Y., Koide S., Matsubayashi J., Mochizuki-Kashio M., Nakano-Yokomizo T., Bai J., Nagao T., Kanai A., Iwama A., Sashida G. EZH2 loss propagates hypermethylation at T cell differentiation-regulating genes to promote leukemic transformation. J Clin Invest. 2018; 128 (9): 3872–86. doi:10.1172/JCI94645.; Booth C. A. G., Barkas N., Neo W. H., Boukarabila H., Soilleux E. J., Giotopoulos G., Farnoud N., Giustacchini A., Ashley N., Carrelha J., Jamieson L., Atkinson D., Bouriez-Jones T., Prinjha R. K., Milne T. A., Teachey D. T., Papaemmanuil E., Huntly B., Jacobsen S., Mead A. J. EZH2 and RUNX1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors. Cancer Cell. 2018; 33 (2): 274–91.e8. doi:10.1016/j.ccell.2018.01.006.; Bernt K. M., Hunger S. P., Neff T. The functional role of PRC2 in Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) – mechanisms and opportunities. Front Pediatr. 2016; 4 (49): 1–7. doi:10.3389/fped.2016.00049.; Zhang J., Ding L., Holmfeldt L., Wu G., Heatley S. L., Payne-Turner D., Easton J., Chen X., Wang J., Rusch M., Lu C., Chen S. C., Wei L., Collins-Underwood J. R., Ma J., Roberts K. G., Pounds S. B., Ulyanov A., Becksfort J., Gupta P., Mullighan C. G. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012; 481 (7380): 157–63. doi:10.1038/nature10725.; Шарлай А. С. Иммунофенотипическая характеристика острого лимфобластного лейкоза из ранних Т-клеточных предшественников / А. С. Шарлай [и др.] // Вопросы гематологии / онкологии и иммунопатологии в педиатрии. – 2019. – 18 (2): 66–74. doi:10.24287/1726-1708-2019-18-2-66-74.; Sin C. F., Man P. M. Early T-Cell Precursor Acute Lymphoblastic Leukemia: Diagnosis, Updates in Molecular Pathogenesis, Management, and Novel Therapies. Front Oncol. 2021; 11: 750789. doi:10.3389/fonc.2021.750789.; Wang X. X., Wu D., Zhang L. Clinical and molecular characterization of early T-cell precursor acute lymphoblastic leukemia: Two cases report and literature review. Medicine (Baltimore). 2018; 97 (52): e13856. doi:10.1097/MD.0000000000013856.; Jain N., Lamb A. V., O’Brien S., Ravandi F., Konopleva M., Jabbour E., Zuo Z., Jorgensen J., Lin P., Pierce S., Thomas D., Rytting M., Borthakur G., Kadia T., Cortes J., Kantarjian H. M., Khoury J. D. Early T-cell precursor acute lymphoblastic leukemia / lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016; 127 (15): 1863–9. doi:10.1182/blood-2015-08-661702.; Conter V., Valsecchi M. G., Parasole R., Putti M. C., Locatelli F., Barisone E., Lo Nigro L., Santoro N., Aricò M., Ziino O., Pession A., Testi A. M., Micalizzi C., Casale F., Zecca M., Casazza G., Tamaro P., La Barba G., Notarangelo L. D., Silvestri D., Basso G. Childhood high-risk acute lymphoblastic leukemia in first remission: results after chemotherapy or transplant from the AIEOP ALL 2000 study. Blood. 2014; 123 (10): 1470–8. doi:10.1182/blood-2013-10-532598.; Pui C. H., Sandlund J. T., Pei D., Campana D., Rivera G. K., Ribeiro R. C., Rubnitz J. E., Razzouk B. I., Howard S. C., Hudson M. M., Cheng C., Kun L. E., Raimondi S. C., Behm F. G., Downing J. R., Relling M. V., Evans W. E.; Total Therapy Study XIIIB at St. Jude Children’s Research Hospital. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St. Jude Children’s Research Hospital. Blood 2004; 104 (9): 2690–6. doi:10.1182/blood-2004-04-1616.; Manabe A., Ohara A., Hasegawa D., Koh K., Saito T., Kiyokawa N., Kikuchi A., Takahashi H., Ikuta K., Hayashi Y., Hanada R., Tsuchida M.; Tokyo Children’s Cancer Study Group. Significance of the complete clearance of peripheral blasts after 7 days of prednisolone treatment in children with acute lymphoblastic leukemia: the Tokyo Children’s Cancer Study Group Study L99-15. Haematologica. 2008; 93 (8): 1155–60. doi:10.3324/haematol.12365.; Vora А., Goulden N., Mitchell C., Hancock J., Hough R., Rowntree C., Moorman A. V., Wade R. Augmented post-remission therapy for a minimal residual disease-defi ned high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014; 15 (8): 809–18. doi:10.1016/S1470-2045(14)70243-8.; Колбин А. С. Фармакоэкономический анализ применения гилтеритиниба в лечении взрослых пациентов с рецидивами и рефрактерным течением острых миелоидных лейкозов с мутацией гена FLT3 / А. С. Колбин [и др.] // Клиническая онкогематология. – 2022. – 15 (1): 85–96.; Gutierrez A., Dahlberg S. E., Neuberg D. S., Zhang J., Grebliunaite R., Sanda T., Protopopov A., Tosello V., Kutok J., Larson R. S., Borowitz M. J., Loh M. L., Ferrando A. A., Winter S. S., Mullighan C. G., Silverman L. B., Chin L., Hunger S. P., Sallan S. E., Look A. T. Absence of biallelic TCRgamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol. 2010; 28 (24): 3816–23. doi:10.1200/JCO.2010.28.3390.; McEwan A., Pitiyarachchi O., Viiala N. Relapsed/Refractory ETP-ALL Successfully Treated With Venetoclax and Nelarabine as a Bridge to Allogeneic Stem Cell Transplant. Hemasphere. 2020; 4 (3): e379. doi:10.1097/HS9.0000000000000379.; Lato M. W., Przysucha A., Grosman S., Zawitkowska J., Lejman M. The New Therapeutic Strategies in Pediatric T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci. 2021; 22 (9): 4502. doi:10.3390/ijms22094502.; Dai H. P., Cui W., Cui Q. Y., Zhu W. J., Meng H. M., Zhu M. Q., Zhu X. M., Yang L., Wu D. P., Tang X. W. Haploidentical CD7 CAR T-cells induced remission in a patient with TP53 mutated relapsed and refractory early T-cell precursor lymphoblastic leukemia / lymphoma. Biomark Res. 2022; 10 (1): 6. doi:10.1186/s40364-022-00352-w.; Punatar S., Gokarn A., Nayak L., Bonda A., Chichra A., Mirgh S., Bagal B., Tembhare P., Subramanian P., Khattry N. Long term outcome of a patient with relapsed refractory early thymic precursor acute lymphoblastic leukemia treated with daratumumab. Am J Blood Res. 2021; 11 (5): 528–33. PMID: 34824885.; https://journal.nodgo.org/jour/article/view/890

  18. 18
    Academic Journal
  19. 19
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 1 (2023); 57-67 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 1 (2023); 57-67 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/922/816; Ditschkowski M., Elmaagacli A., Trenschel R., Gromke T., Steckel N., Koldehoff M., Beelen D. Dynamic international prognostic scoring system scores, pre-transplant therapy and chronic graft-versus-host disease determine outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis. Haematologica. 2012;97:1574–81. doi:10.3324/haematol.2011.061168.; Saudemont A., Madrigal J.A. Allogeneic T cells: Maestro in the co-ordination of the immune response after hematopoietic stem cell transplantation. Haematologica. 2014;99:203–5. doi:10.3324/haematol.2013.101295.; Corre E., Carmagnat M., Busson M., Peffault de Latour R., Robin M., Ribaud P., Toubert A., Rabian C., Socié G. Long-term immune deficiency after allogeneic stem cell transplantation: B-cell deficiency is associated with late infections. Haematologica. 2010;95:1025–9. doi:10.3324/haematol.2009.018853.; Moake J.L., Byrnes J.J. Thrombotic microangiopathies associated with drugs and bone marrow transplantation. Hematol Oncol Clin North Am. 1996;10(2):485–97. doi:10.1016/s0889-8588(05)70348-8.; George J.N., Li X., McMinn J., Terrell D., Vesely S., Selby G. Thrombotic thrombocytopenic purpurahemolytic uremic syndrome following allogeneic HPC transplantation: a diagnostic dilemma. Transfusion. 2004;44(2):294–304. doi:10.1111/j.1537-2995.2004.00700.x.; Dervenoulas J., Tsirigotis P., Bollas G., Pappa V., Xiros N., Economopoulos T., Pappa M., Mellou S., Kostourou A., Papageorgiou E., Raptis S.A. Thrombotic thrombocytopenic purpura/ hemolytic uremic syndrome (TTP/HUS): treatment outcome, relapses, prognostic factors. A single-center experience of 48 cases. Ann Hematol. 2000;79(2):66–72. doi:10.1007/s002770050012.; Ruggenenti P., Noris M., Remuzzi G. Thrombotic microangiopathies. In: Wilcox C.S., editor. Therapy in nephrology & hypertension: a companion to Brenner & Rector’s the kidney. 3rd edition. Philadelphia: Saunders, 2008. Pp. 294–312.; Ariceta G., Besbas N., Johnson S., Karpman D., Landau D., Licht C., Loirat C., Pecoraro C., Taylor M., van de Kar N., Vandewalle J., Zimmerhackl L.B. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol. (Berlin, Germany) 2009;24(4):687–96. doi:10.1007/s00467-008-0964-1.; Willems E., Baron F., Seidel L., Frère P., Fillet G., Beguin Y. Comparison of thrombotic microangiopathy after allogeneic hematopoietic cell transplantation with high-dose or nonmyeloablative conditioning. Bone Marrow Transplant. 2010;45:689–93. doi:10.1038/bmt.2009.230.; Rosenthal J., Powlowska A., Bolotin E., Cervantes C., Maroongroge S., Thomas S., Forman S.J. Transplant-associated thrombotic microangiopathy in pediatric patients treated with sirolimus and tacrolimus. Pediatr Blood Cancer. 2011;57:142–6. doi:10.1002/pbc.22861.; Rodriguez R., Nakamura R., Palmer J.M., Parker P., Shayani S., Nademanee A., Snyder D., Pullarkat V., Kogut N., Rosenthal J., Smith E., Karanes C., O’Donnell M., Krishnan A., Senitzer D., Forman S.J. A phase II pilot study of tacrolimus/sirolimus GVHD prophylaxis for sibling donor hematopoietic stem cell transplantation using 3 conditioning regimens. Blood. 2010;115:1098–105. doi:10.1182/blood-2009-03-207563.; Changsirikulchai S., Myerson D., Guthrie K.A., McDonald G.B., Alpers C.E., Hingorani S.R. Renal thrombotic microangiopathy after hematopoietic cell transplant: Role of GVHD in pathogenesis. Clin J Am Soc Nephrol. 2009;4:345–53. doi:10.2215/CJN.02070508.; Biedermann B.C. Vascular endothelium and graft-versus-host disease. Best Pract Res Clin Haematol. 2008;21:129–38. doi:10.1016/j.beha.2008.02.003.; George J.N., Selby G.B. Thrombotic microangiopathy after allogeneic bone marrow transplantation: a pathologic abnormality associated with diverse clinical syndromes. Bone Marrow Transplant. 2004;33:1073–4. doi:10.1038/sj.bmt.1704513.; Ho V., Cutler C., Carter S., Martin P., Adams R., Horowitz M., Ferrara J., Soiffer R., Giralt S. Blood and Marrow Transplant Clinical Trials Network Toxicity Committee consensus summary: thrombotic microangiopathy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11:571–5. doi:10.1016/j.bbmt.2005.06.001.; Batts E.D., Lazarus H.M. Diagnosis and treatment of transplantationassociated thrombotic microangiopathy: Real progress or are we still waiting? Bone Marrow Transplant. 2007;40:709–19. doi:10.1038/sj.bmt.1705758.; Chang A., Hingorani S., Kowalewska J., Flowers M.E.D., Aneja T., Smith K.D., Meehan S.M., Nicosia R.F., Alpers C.E. Spectrum of renal pathology in hematopoietic cell transplantation: a series of 20 patients and review of the literature. Clin J Am Soc Nephrol. 2007;2:1014–23. doi:10.2215/CJN.01700407.; Uderzo C., Bonanomi S., Busca A., Renoldi M., Ferrari P., Iacobelli M., Morreale G., Lanino E., Annaloro C., Volpe A.D., Alessandrino P., Longoni D., Locatelli F., Sangalli H., Rovelli A. Risk factors and severe outcome in thrombotic microangiopathy after allogeneic hematopoietic stem cell transplantation. Transplantation. 2006;82:638–44. doi:10.1097/01.tp.0000230373.82376.46.; Lopes da Silva R., Ferreira I., Teixeira G., Cordeiro D., Mafra M., Costa I., Bravo Marques J.M., Abecasis M. BK virus encephalitis with thrombotic microangiopathy in an allogeneic hematopoietic stem cell transplant recipient. Transpl Infect Dis. 2011;13:161–7. doi:10.1111/j.1399-3062.2010.00581.x.; Nürnberger W., Michelmann I., Burdach S., Göbel U. Endothelial dysfunction after bone marrow transplantation: Increase of soluble thrombomodulin and PAI-1 in patients with multiple transplant related complications. Ann Hematol. 1998;76:61–5. doi:10.1007/s002770050364.; Takatsuka H., Takemoto Y., Yamada S., Wada H., Tamura S., Fujimori Y., Okamoto T., Suehiro A., Kanamaru A., Kakishita E. Complications after bone marrow transplantation are manifestations of systemic inflammatory response syndrome. Bone Marrow Transplant. 2000;26:419–26. doi:10.1038/sj.bmt.1702517.; Jodele S., Dandoy C.E., Myers K.C., El-Bietar J., Nelson A., Wallace G., Laskin B.L. New approaches in the diagnosis, pathophysiology, and treatment of pediatric hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Transfus Apher Sci. 2016;54(2):181–90. doi:10.1016/j.transci.2016.04.007.; Jodele S., Laskin B.L., Dandoy C.E., Myers K.C., El-Bietar J., Davies S.M., Goebel J., Dixon B. A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev. 2014;29(3):191–204. doi:10.1016/j.blre.2014.11.001.; Young J.A., Pallas C.R., Knovich M.A. Transplant-associated thrombotic microangiopathy: theoretical considerations and a practical approach to an unrefined diagnosis. Bone Marrow Transplant. 2021;56(8):1805–17. doi:10.1038/s41409-021-01283-0.; Jodele S., Dandoy C.E., Lane A., Laskin B.L., Teusink-Cross A., Myers K.C. Complement blockade for TA-TMA: lessons learned from a large pediatric cohort treated with eculizumab. Blood. 2020;135:1049–57. doi:10.1182/blood.2019004218.; Jodele S., Fukuda T., Vinks A., Mizuno K., Laskin B.L., Goebel J. Eculizumab therapy in children with severe hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Biol Blood Marrow Transplant. 2014;20:518–25. doi:10.1016/j.bbmt.2013.12.565.; Jodele S., Fukuda T., Mizuno K., Vinks A.A., Laskin B.L., Goebel J. Variable eculizumab clearance requires pharmacodynamic monitoring to optimize therapy for thrombotic microangiopathy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22:307–15. doi:10.1016/j.bbmt.2015.10.002.; Khaled S.K., Kwong Y.L., Smith M., Metjian A., Whitaker S. Early Results of Phase II Study Using OMS721 in Patients with Hematopoietic Stem Cell Transplant-Associated Thrombotic Microangiopathy (HCT-TMA). Biol Blood Marrow Transplant. 2017;23:S282–3. doi:10.1016/j.bbmt.2016.12.192.; Carreras E., Dufour C., Mohty M., Kröger N. Тhe EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 2019. 688 р.; Aversa F., Terenzi A., Tabilio A., Falzetti F., Carotti A., Ballanti S. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54. doi:10.1200/JCO.2005.09.117.; Luznik L., O’Donnell P.V., Symons H.J., Chen A.R., Leffell M.S., Zahurak M., Gooley T.A., Piantadosi S., Kaup M., Ambinder R.F., Huff C.A., Matsui W., Bolaños-Meade J., Borrello I., Powell J.D., Harrington E., Warnock S., Flowers M., Brodsky R.A., Sandmaier B.M., Storb R.F., Jones R.J., Fuchs E.J. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50. doi:10.1016/j.bbmt.2008.03.005.; Wang Y., Liu D.H., Liu K.Y., Xu L.P., Zhang X.H., Han W. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia: nine years of experience at a single center. Cancer. 2013;119:978–85. doi:10.1002/cncr.27761.; Olsson R.F., Logan B.R., Chaudhury S., Zhu X., Akpek G., Bolwell B.J. Primary graft failure after myeloablative allogeneic hematopoietic cell transplantation for hematologic malignancies. Leukemia. 2015;29:1754–62. doi:10.1038/leu.2015.75.; Uccelli A., Moretta L., Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36. doi:10.1038/nri2395.; Muguruma Y., Yahata T., Miyatake H., Tadayuki S., Tomoko U., Jobu I., Shunichi K., Mamoru I., Tomomitsu H., Kiyoshi A. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood. 2006;107:1878–87. doi:10.1182/blood-2005-06-2211.; Kiel M.J., Morrison S.J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008;8:290–301. doi:10.1038/nri2279.; Скоробогатова Е.В., Киргизов К.И., Пристанскова Е.А., Благонравова О.Л., Осипова Е.Ю., Пономарева Н.И., Пурбуева Б.Б., Буря А.Е., Константинова В.В., Филина О.А., Мачнева Е.Б., Ольхова Л.В., Мезенцева А.В., Антошин М.М., Сидорова Н.В. Внутрикостное введение мезенхимальных стволовых клеток в терапии рефрактерной реакции «трансплантат против хозяина» с гипофункцией трансплантата. Педиатрия. Журнал им. Г.Н. Сперанского. 2019;98(4):8–14.; Muroi K., Miyamura K., Ohashi K. Unrelated allogeneic bone marrow-derived mesenchymal stem cells for steroid-refractory acute graft-versus-host disease: a phase I/II study. Int J Hematol. 2013;98:206–13. doi:10.1007/s12185-013-1399-4.; Muroi K., Miyamura K., Okada M., Yamashita T., Murata M., Ishikawa T., Uike N., Hidaka M., Kobayashi R., Imamura M., Tanaka J., Ohashi K., Taniguchi S., Ikeda T., Eto T., Mori M., Yamaoka M., Ozawa K. Bone marrow-derived mesenchymal stem cells (JR-031) for steroid-refractory grade III or IV acute graft-versushost disease: a phase II/III study. Int J Hematol. 2016;103:243–50. doi:10.1007/s12185-015-1915-9.; Ankrum J.A., Ong J.F., Karp J.M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252–60. doi:10.1038/nbt.2816.; Kulagin A., Ptushkin V., Lukina E., Davydkin I., Korobkin A., Shamrai V., Konstantinova T., Kaporskaya T., Mitina T., Ksenzova T., Zuev E., Markova O., Gapchenko E., Kudlay D. Randomized multicenter noninferiority phase III clinical trial of the first biosimilar of eculizumab. Ann Hematol. 2021;100(11):2689–98. doi:10.1007/s00277-021-04624-7.; Kulagin A., Ptushkin V., Lukina E., Gapchenko E., Markova O., Zuev E., Kudlay D. Phase III clinical trial of Elizaria® and Soliris® in adult patients with paroxysmal nocturnal hemoglobinuria: results of comparative analysis of effi cacy, safety, and pharmacological data. Blood. 2019;134(Suppl. 1):3748. doi:10.1182/blood-2019-125693.; Птушкин В.В., Кулагин А.Д., Лукина Е.А., Давыдкин И.Л., Константинова Т.С., Шамрай В.С., Минаева Н.В., Кудлай Д.А., Гапченко Е.В., Маркова О.А., Борозинец А.Ю. Результаты открытого многоцентрового клинического исследования Ib фазы по оценке безопасности, фармакокинетики и фармакодинамики первого биоаналога экулизумаба у нелеченых пациентов с пароксизмальной ночной гемоглобинурией в фазе индукции терапии. Терапевтический архив. 2020;92(7):77–84. doi:10.26442/00403660. 2020.07.000818.; Мачнева Е.Б., Болохонова М.А., Алиев Т.З., Шевцов Д.В., Сулейманова А.М., Сидорова Н.В., Османов Е.А., Киргизов К.И., Варфоломеева С.Р. Тромботическая микроангиопатия, ассоциированная с трансплантацией гемопоэтических стволовых клеток: общая характеристика и пример из клинической практики. Российский журнал детской гематологии и онкологии. 2020;7(3):86–93. doi:10.21682/2311-1267-2020-7-3-86-93.; Эмирова Х.М., Орлова О.М., Музуров А.Л., Генералова Г.А., Панкратенко Т.Е., Абасеева Т.Ю., Шаталов П.А., Козина А.А., Ильинский В.В., Шустер А.М., Кудлай Д.А. Опыт применения Элизарии® при атипичном гемолитико-уремическом синдроме. Педиатрия. Журнал им. Г.Н. Сперанского. 2019;98(5):225–9.; Rasmusson I., Ringdén O., Sundberg B., Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76:1208–13. doi:10.1097/01.TP.0000082540.43730.80.; Kiselevskiy M., Vlasenko R., Reshetnikova V., Chikileva I., Shubina I., Osmanov E., Valiev T., Sidorova N., Batmanova N., Stepanyan N., Kirgizov K., Varfolomeeva S. Potential use of mesenchymal multipotent cells for hemopoietic stem cell transplantation: pro and contra. J Pediatr Hematol Oncol. 2021;43(3):90–4. doi:10.1097/MPH.0000000000002065.; Киселевский М.В., Власенко Р.Я., Степанян Н.Г., Шубина И.Ж., Ситдикова С.М., Киргизов К.И., Варфоломеева С.Р. Секрет мезенхимных стволовых клеток костного мозга: иммуносупрессивный или провоспалительный? Клеточные технологии в биологии и медицине. 2021;3:171–5. doi:10.47056/1814-3490-2021-3-171-175.; https://journal.nodgo.org/jour/article/view/922

  20. 20
    Academic Journal

    المساهمون: The study was performed without external funding, Исследование проведено без спонсорской поддержки

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 9, № 4 (2022); 27-36 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 9, № 4 (2022); 27-36 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/880/777; Sultan I., Qaddoumi I., Yaser S., Rodriguez-Galindo C., Ferrari A. Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2, 600 patients. J Clin Oncol. 2009; 27: 3391–7. doi:10.1200/JCO.2008.19.7483.; Bisogno G., Ferrari A., Bien E., Brecht I. B., Brennan B., Cecchetto G., Godzinski J., Orbach D., Reguerre Y., Stachowicz-Stencel T., Schneider D. T. Rare cancers in children – The EXPeRT Initiative: a report from the European Cooperative Study Group on Pediatric Rare Tumors. Klin Padiatr. 2012; 224 (6): 416–20. doi:10.1055/s-0032-1327608.; Raney R. B., Meza J., Anderson J. R., Fryer C. J., Donaldson S. S., Breneman J. C., Fitzgerald T. J., Gehan E. A., Michalski J. M., Ortega J. A., Qualman S. J., Sandler E., Wharam M. D., Wiener E. S., Maurer H. M., Crist W. M. Treatment of children and adolescents with localized parameningeal sarcoma: experience of the Intergroup Rhabdomyosarcoma Study Group protocols IRS-II through -IV, 1978–1997. Med Pediatr Oncol. 2002; 38 (1): 22–32. doi:10.1002/mpo.1259.; Boyle R., Thomas M., Adams J. H. Diffuse involvement of the leptomeninges by tumour – a clinical and pathological study of 63 cases. Postgrad Med J. 1980; 56 (653): 149–58. doi:10.1136/pgmj.56.653.149.; Sanger B. Uber Hirnsymptome bei Karzinomatose. Neurol Zbl. 1900. Рp. 280–281.; Pette H. H. Über diffuse Karzinose der weichen Hirn- und Rückenmarkshäute. Deutsche Zeitschrift f. Nervenheilkunde. 1922; 74: 226–34. doi:10.1007/BF02306977.; Chamberlain M. C., Nolan C., Abrey L. E. Leukemic and lymphomatous meningitis: incidence, prognosis and treatment. J Neurooncol. 2005; 75 (1): 71–83. doi:10.1007/s11060-004-8100-y.; Chowdhary S., Chamberlain M. Leptomeningeal metastases: current concepts and management guidelines. J Natl Compr Canc Netw. 2005; 3 (5): 693–703. doi:10.6004/jnccn.2005.0039.; Littman P., Raney B., Zimmerman R., Handler S., Nelson L., Diamond G., Bilaniuk L. Softtissue sarcomas of the head and neck in children. Int J Radiat Oncol Biol Phys. 1983; 9 (9): 1367–71. doi:10.1016/0360-3016(83)90269-9.; Kramer K., Kushner B., Heller G., Cheung N. K. Neuroblastoma metastatic to the central nervous system. The Memorial Sloankettering Cancer Center Experience and A Literature Review. Cancer. 2001; 91 (8): 1510–9.; Wiens A. L., Hattab E. M. The pathological spectrum of solid CNS metastases in the pediatric population. J Neurosurg Pediatr. 2014; 14 (2): 129–35. doi:10.3171/2014.5.PEDS13526.; Kaplan J. G., DeSouza T. G., Farkash A., Shafran B., Pack D., Rehman F., Fuks J., Portenoy R. Leptomeningeal metastases: comparison of clinical features and laboratory data of solid tumors, lymphomas and leukemias. J Neurooncol. 1990; 9 (3): 225–9. doi:10.1007/BF02341153.; Kokkoris C. P. Leptomeningeal carcinomatosis. How does cancer reach the piaarachnoid? Cancer. 1983; 51 (1): 154–60. doi:10.1002/1097-0142(19830101)51:13.0.co;2-k.; Postovsky S., Ash S., Ramu I. N., Yaniv Y., Zaizov R., Futerman B., Elhasid R., Ben Barak A., Halil A., Ben Arush M. W. Central nervous system involvement in children with sarcoma. Oncology. 2003; 65 (2): 118–24. doi:10.1159/000072336.; Capitini C. M., Derdak J., Hughes M. S., Love C. P., Baird K., Mackall C. L., Fry T. J. Unusual sites of extraskeletal metastases of Ewing sarcoma after allogeneic hematopoietic stem cell transplantation. J Pediatr Hematol Oncol. 2009; 31 (2): 142–4. doi:10.1097/MPH.0b013e31819146e5.; Mack F., Baumert B. G., Schäfer N., Hattingen E., Scheffler B., Herrlinger U., Glas M. Therapy of leptomeningeal metastasis in solid tumors. Cancer Treat Rev. 2016; 43: 83–91. doi:10.1016/j.ctrv.2015.12.004.; Егоров А. И. Диффузный карциноматоз мягких мозговых оболочек / А. И. Егоров // Журнал невропатологии и психиатрии. – 1970. – 5: 654–9.; Wasserstrom W. R., Glass J. P., Posner J. B. Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer. 1982; 49 (4): 759–72. doi:10.1002/1097-0142(19820215)49:43.0.co;2-7.; Grossman S. A., Krabak M. J. Leptomeningeal carcinomatosis. Cancer Treat Rev. 1999; 25 (2): 103–19. doi:10.1053/ctrv.1999.0119.; Бабчина И. П. Диффузный карциноматоз мозговых оболочек : Автореф. дис. … канд. мед. наук / И. П. Бабчина. – Ленинград, 1963. – 22 с.; Кугоев А. И. Карциноматоз оболочек головного мозга: сложности дифференциальной диагностики / А. И. Кугоев [и др.] // Неврологический журнал. – 1999. – 6: 35–9.; Boogerd W., Dorresteijn L. D., van Der Sande J. J., de Gast G. C., Bruning P. F. Response of leptomeningeal metastases from breast cancer to hormonal therapy. Neurology. 2000; 55 (1): 117–9. doi:10.1212/wnl.55.1.117.; Enting R. H. Leptomeningeal neoplasia: epidemiology, clinical presentation, CSF analysis and diagnostic imaging. Cancer Treat Res. 2005; 125: 17–30. doi:10.1007/0-387-24199-x_2.; Цветанова Е. М. Клетки опухоли в ликворе и в кистозном содержимом у пациентов с первичными и вторичными мозговыми опухолями / Е. М. Цветанова, Х. Ц. Цеков // Журнал неврологии и психиатрии. – 1990. – 12: 38–42.; Quinn J. L. 3 rd . TC-99m pertechnetate for brain scanning. Radiology. 1965; 84: 354–5. doi:10.1148/84.2.354.; Gleissner B., Chamberlain M. C. Neoplastic meningitis. Lancet Neurol. 2006; 5 (5): 443–52. doi:10.1016/S1474-4422(06)70443-4.; Herrlinger U., Förschler H., Küker W., Meyermann R., Bamberg M., Dichgans J., Weller M. Leptomeningeal metastasis: survival and prognostic factors in 155 patients. J Neurol Sci. 2004; 223 (2): 167–78. doi:10.1016/j.jns.2004.05.008.; Oechsle K., Lange-Brock V., Kruell A., Bokemeyer C., de Wit M. Prognostic factors and treatment options in patients with leptomeningeal metastases of different primary tumors: a retrospective analysis. J Cancer Res Clin Oncol. 2010; 136 (11): 1729–35. doi:10.1007/s00432-010-0831-x.; Blasberg R. G., Patlak C., Fenstermacher J. D. Intrathecal chemotherapy: brain tissue profi les after ventriculocisternal perfusion. J Pharmacol Exp Ther. 1975; 195 (1): 73–83. PMID: 810575.; Sause W. T., Crowley J., Eyre H. J., Rivkin S. E., Pugh R. P., Quagliana J. M., Taylor S. A., Molnar B. Whole brain irradiation and intrathecal methotrexate in the treatment of solid tumor leptomeningeal metastases – a Southwest Oncology Group study. J Neurooncol. 1988; 6 (2): 107–12. doi:10.1007/BF02327385.; Сидоренко Ю. Новая интегральная нейроонкологическая служба на Юге России : Материалы IV Съезда нейрохирургов России (Москва, 18–22 июня 2006 г.). – М., 2006. – С. 216.; Ruggiero A., Conter V., Milani M., Biagi E., Lazzareschi I., Sparano P., Riccardi R. Intrathecal chemotherapy with antineoplastic agents in children. Paediatr Drugs. 2001; 3 (4): 237–46. doi:10.2165/00128072-200103040-00001.; Nakagawa H., Murasawa A., Kubo S., Nakajima S., Nakajima Y., Izumoto S., Hayakawa T. Diagnosis and treatment of patients with meningeal carcinomatosis. J Neurooncol. 1992; 13 (1): 81–9. doi:10.1007/BF00172949.; Pentheroudakis G., Pavlidis N. Management of leptomeningeal malignancy. Expert Opin Pharmacother. 2005; 6 (7): 1115–25. doi:10.1517/14656566.6.7.1115.; Blaney S. M., Balis F. M., Berg S., Arndt C. A., Heideman R., Geyer J. R., Packer R., Adamson P. C., Jaeckle K., Klenke R., Aikin A., Murphy R., McCully C., Poplack D. G. Intrathecal mafosfamide: a preclinical pharmacology and phase I trial. J Clin Oncol. 2005; 23 (7): 1555–63. doi:10.1200/JCO.2005.06.053.; Ritchey A. K., Pollock B. H., Lauer S. J., Andejeski Y., Barredo J., Buchanan G. R. Improved survival of children with isolated CNS relapse of acute lymphoblastic leukemia: a pediatric oncology group study. J Clin Oncol. 1999; 17 (12): 3745–52. doi:10.1200/JCO.1999.17.12.3745.; https://journal.nodgo.org/jour/article/view/880