-
1Academic Journal
المؤلفون: M. V. Yarmolich, N. A. Kalanda, A. V. Petrov, D. A. Kiselev, O. Yu. Ponomareva, T. N. Vershinina, N. A. Bosak, S. K. Lazarouk, D. Sangaa, S. Munkhtsetseg, М. В. Ярмолич, Н. А. Каланда, А. В. Петров, Д. А. Киселев, О. Ю. Пономарева, Т. Н. Вершинина, Н. А. Босак, С. К. Лазарук
المساهمون: The authors are grateful for the support of this research within the framework of the BRFFR projects No. F23ME-025 and No. F24MN-009., Авторы работы признательны за поддержку данного исследования в рамках проектов БРФФИ № Ф23МЭ-025 и № Ф24МН-009.
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 2 (2024) ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 2 (2024) ; 2413-6387 ; 1609-3577
مصطلحات موضوعية: намагниченность, lanthanum strontium ferromolybdate, ferrimagnetic, superstructural ordering of Fe/Mo cations, sequence of phase transformations, thermogravimetric analysis, X-ray phase analysis, magnetization, ферромолибдат лантана-стронция, ферримагнетик, сверхструктурное упорядочение катионов Fe/Mo, последовательность фазовых превращений, термогравиметрический анализ, рентгенофазовый анализ
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/572/447; https://met.misis.ru/jour/article/downloadSuppFile/572/218; https://met.misis.ru/jour/article/downloadSuppFile/572/219; https://met.misis.ru/jour/article/downloadSuppFile/572/220; https://met.misis.ru/jour/article/downloadSuppFile/572/221; https://met.misis.ru/jour/article/downloadSuppFile/572/222; https://met.misis.ru/jour/article/downloadSuppFile/572/223; Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., Von Molnar S., Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronic vision for the future. Science. 2001; 294(5546): 1488—1495. https://doi.org/10.1126/science.1065389; Zutic I., Fabian J., Das Sarma S. Spintronics: fundamentals and applications. Reviews of Modern Physics. 2004; 76(2): 323—410. https://doi.org/10.1103/RevModPhys.76.323; Kalanda N., Bobrikov I., Yarmolich M., Kuts V., Huang L., Hwang C., Kim D.-H. Interrelation among superstructural ordering, oxygen nonstoichiometry and lattice strain of double perovskite Sr2FeMoO6-δ materials. Journal of Materials Science. 2021; 56: 11698—11710. https://doi.org/10.1007/s10853-021-06072-0; Jungwirth T., Sinova J., Masek J., Kucera J., MacDonald A.H. Theory of ferromagnetic (III, Mn)V semiconductors. Reviews of Modern Physics. 2006; 78(3): 809—864. https://doi.org/10.1103/RevModPhys.78.809; Serrate D., DeTeresa J.M., Ibarra M.R. Double perovskites with ferromagnetism above room temperature. Journal of Physics: Condensed Matter. 2007; 19(2): 023201. https://doi.org/10.1088/0953-8984/19/2/023201; Topwal D., Sarma D.D., Kato H., Tokura Y.; Avignon M. Structural and magnetic properties of; Sr2Fe1+xMo1-xO6 (-1 ⩽ x ⩽ 0.25). Physical Review B. 2006; 73(9): 0944191. https://doi.org/10.1103/PhysRevB.73.094419; Karki S.B., Ramezanipour F. Magnetic and electrical properties of BaSrMMoO6 (M = Mn, Fe, Co, and Ni). Materials Today Chemistry. 2019; 13: 25—33. https://doi.org/10.1016/j.mtchem.2019.04.002; Balcells L., Navarro J., Bibes M., Roig A., Martinez B., Fontcuberta J. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Applied Physics Letters. 2001; 78(6): 14. https://doi.org/10.1063/1.1346624; Allub R., Navarro O., Avignon M., Alascio B. Effect of disorder on the electronic structure of the double perovskite Sr2FeMoO6. Physica B: Condensed Matter. 2002; 320(1–4): 13—17. https://doi.org/10.1016/S0921-4526(02)00608-7; Park B., Han H., Kim J., Kim Y.J., Kim C.S., Lee B.W. Correlation between anti-site disorder and magnetic properties in ordered perovskite Sr2FeMoO6. Journal of Magnetism and Magnetic Materials. 2004; 272–276(Pt 3): 1851—1852. https://doi.org/10.1016/j.jmmm.2003.12.429; Menéndez N., Garcia-Hernandez M., Sanchez D., Tornero J.D., Martinez J.L., Alonso J.A. Charge transfer and disorder in double perovskites. American Chemical Society. 2004; 16(18): 3565—3572. https://doi.org/10.1021/cm049305t; Sarma D.D. A new class of magnetic materials; Sr2FeMoO6 and related compounds. Current Opinion in Solid State and Materials Science. 2001; 5(4): 261—268. https://dx.doi.org/10.1016/S1359-0286(01)00014-6; Szotek Z., Temmerman W.M., Svane A., Petit L., Winter H. Electronic structure of half-metallic double perovskites. Physical Review B. 2003; 68(10): 104411. https://doi.org/10.1103/PhysRevB.68.104411; Sarma D.D., Mahadevan P., Saha-Dasgupta T., Ray S., Kumar A. Electronic structure of Sr2FeMoO6. Physical Review Letters. 2000; 85(12): 2549—2552. https://doi.org/10.1103/PhysRevLett.85.2549; Navarro J., Frontera C., Balcells LI., Martinez B., Fontcuberta J. Raising the Curie temperature in; Sr2FeMoO6 double perovskites by electron doping. Physical Review B. 2001; 64(9): 09241. https://doi.org/10.1103/PhysRevB.64.092411; Zhong W., Wu X.L., Tang N.J., Liu W., Chen W., Au C.T., Du Y.W. Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry. The European Physical Journal B – Condensed Matter and Complex Systems. 2004; 41: 213—217. https://doi.org/10.1140/epjb/e2004-00312-9; Zhong W., Tang N.J., Wu X.L., Liu W., Chen W., Jiang H.Y., Du Y.W. Magnetocaloric effect above room temperature in the ordered double-perovskite Ba2Fe1+xMo1-xO6. Journal of Magnetism and Magnetic Materials. 2004; 282: 151—155. https://doi.org/10.1016/j.jmmm.2004.04.036; Tomioka Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.-I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Physical Review B. 2000; 61(1): 422. https://doi.org/10.1103/PhysRevB.61.422; Dhahri A., Dhahri J., Zemni S., Oumezzine M., Vincent H. Structural, magnetic and magnetocaloric effect in double perovskite Ba2CrMo1-xWxO6. Journal of Alloys and Compounds. 2006; 420(1–2): 15—19. https://doi.org/10.1016/j.jallcom.2005.10.030; Moritomo Y., Xu S., Akimoto T., Machida A., Hamada N., Ohoyama K., Nishibori E., Takata M., Sakata M. Electron doping effects in conducting Sr2FeMoO6. Physical Review B. 2000; 62(21): 14224. https://doi.org/10.1103/PhysRevB.62.14224; Garcia-Hernandez M., Martinez J.L., Martinez-Lope M.J., Casais M.T., Alonso J.A. Finding universal correlations between cationic disorder and low field magnetoresistance in FeMo double perovskite series. Physical Review Letters. 2001; 86(11–12): 2443. https://doi.org/10.1103/PhysRevLett.86.2443; Navarro J., Nogues J., Munoz J.S., Fontcuberta J. Antisites and electron-doping effects on the magnetic transition of Sr2FeMoO6 double perovskite. Physical Review B. 2003; 67(17): 174416. https://doi.org/10.1103/PhysRevB.67.174416; Kahoul A., Aziz A., Colis S., Stoelfer D., Moubah R., Schmerber G., Leuvrey C. Effect of La doping on the properties of Sr2-xLaxFeMoO6 double perovskite. Journal of Applied Physics. 2008; 104(12): 123903. https://doi.org/10.1063/1.3043586; Jana S., Meneghini C., Sanyal P., Sarkar S., Saha-Dasgupta T., Karis O., Ray S. Signature of an antiferromagnetic metallic ground state in heavily electron-doped Sr2FeMoO6. Physical Review B. 2012; 86(5): 054433. https://doi.org/10.1103/PhysRevB.86.054433; Sanyal P., Das H., Saha-Dasgupta T. Evidence of kinetic-energy-driven antiferromagnetism in double perovskites: a first-principles study of La-doped Sr2FeMoO6. Physical Review B. 2009; 80(22): 224412. https://doi.org/10.1103/PhysRevB.80.224412; Fang, T.-T., Lin J.-C. Formation kinetics; of Sr2FeMoO6 double perovskite. Journal of Materials Science. 2005; 40(1): 683—686. https://doi.org/10.1007/s10853-005-6307-8; Yarmolich M., Kalanda N., Demyanov S., Terryn H., Ustarroz J., Silibin M., Gorokh G. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6-x nanopowders formed by the citrate-gel method. Beilstein Journal of. Nanotechnology. 2016; 7: 1202—1207. https://doi.org/10.3762/bjnano.7.111; Cernea M., Vasiliu F., Bartha C., Plapcianu C., Merconiu I., Characterization of ferromagnetic double perovskite Sr2FeMoO6 prepared by various methods. Ceramics International. 2014; 40(8 Pt A): 11601—11609. https://doi.org/10.1016/j.ceramint.2014.03.142; Kalanda N.A., Gurskii A.L., Yarmolich M.V., Petrov A.V., Bobrikov I.A., Ivanshina O.Yu., Sumnikov S.V., Maia F., Zhaludkevich A.L., Demyanov S.E. Sequence of phase transformations at the formation of the stronitum chrome-molybdate compound. Modern Electronic Materials. 2019; 5(2): 69—75. https://doi.org/10.3897/j.moem.5.2.50758; Jurca B., Berthon J., Dragoe N., Berthet P., Influence of successive sintering treatments on high ordered Sr2FeMoO6 double perovskite properties. Journal of Alloys and Compounds. 2009; 474(1–2): 416—423. https://doi.org/10.1016/j.jallcom.2008.06.100; Kraus W., Nolze G. POWDERCELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996; 29: 301—303. https://doi.org/10.1107/S0021889895014920; Rodríguez-Carvajal J. Recent developments of the program FULLPROF in Commission on Powder Diffraction (IUCr). Newsletter. 2001; 26: 12—19.; https://met.misis.ru/jour/article/view/572