يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"С. К. Жармухамедов"', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This work was supported by the Russian Science Foundation No. 14-14-00039 (to SIA). BDB and NGB acknowledge support from TN-SCORE, a multidisciplinary research program sponsored by NSF-EPSCoR (EPS-1004083). NGB and BDB acknowledge support from the UTK BCMB Department and from the Gibson Family Foundation, Работа выполнена при финансовой поддержке Российского научного фонда (Грант РНФ № 14-14-00039). Б.Д. Брюс и Н.Г. Брэди выражают признательность Национальной научной организации США за частичное финансирование в рамках экспериментальной программы стимулирования конкурентных исследований TN-SCORE (EPS1004083), а также кафедре биохимии, клеточной и молекулярной биологии (UTK BCMB) Университета Теннеси и Семейному Фонду Гибсон

    المصدر: Alternative Energy and Ecology (ISJAEE); № 34-36 (2019); 12-25 ; Альтернативная энергетика и экология (ISJAEE); № 34-36 (2019); 12-25 ; 1608-8298

    وصف الملف: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1844/1584; Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K., Hou H., Shen J.-R., Allakhverdiev S.I. Components of natural photosynthetic apparatus in solar cells. In: Najafpour M.M., editor. Applied photosynthesise new progress. Rijeka, Croatia: InTech; 2016; p. 161–88; http://dx.doi.org/10.5772/62238.; Gratzel M. Photovoltaic and photoelectrochemical conversion of solar energy. Phil Trans R Soc A, 2007;365:993–1005.; Rokesh K., Pandikumar A., Jothivenkatachalam K. Dye sensitized solar cell: a summary. Mater. Sci. Forum, 2014;771:1–24; http://dx.doi.org/10.4028/www.scientific.net/MSF.771.1.; Gratzel M. Photoelectrochemical cells. Nature, 2001;414:338–44.; Gratzel M. Recent advances in sensitized mesoscopic solar cells. Accounts Chem. Res., 2009;42(11):1788–98; http://dx.doi.org/10.1021/ar900141yCCC.; Martineau D. Dye solar cells for real/the assembly guide for making your own solar cells. Solaronix SA, 2012; http://www.solaronix.com/documents/dye_solar_cells_for_real.pdf.; Gratzel M. Review dye-sensitized solar cells. J. Photochem.Photobiol. C PhotochemRev., 2003;4:145– 53; http://dx.doi.org/10.1016/S1389-5567(03)00026-1.; Falsgraf E.S. Biologically-derived dye-sensitized solar cells: a cleaner alternative for solar energy. Pomona Senior Theses., 2012; p. 61.; Hamann T.W., Jensen R.A., Martinson A.B.F., Ryswyk H.V., Hupp J.T. Advancing beyond current generation dye sensitized solar cells. Energy Environ Sci., 2008;1:66–78; http://dx.doi.org/10.1039/b809672d.; Peng E., Berberoglu H. Temperature and irradiance dependence of a dye sensitized solar cell with acetonitrile based electrolyte. J. Sol. Energy Eng, 2012;134:1–7.; Suait M.S., Ahmad A., Badri K.H., Mohamed N.S., Rahman M.Y.A., Azanza Ricardo C.L., et al. The potential of polyurethane biobased solid polymer electrolyte for photoelectrochemical cell application. Int. J. Hydrogen Energy, 2014;39(6):3005–17; http://dx.doi.org/10.1016/j.ijhydene.2013.08.117.; Jasim K.E. Dye sensitized solar cells e working principles, challenges and opportunities. In: Kosyachenko L.A., editor. Solar cells e dye-sensitized devices. InTech: 2011; p. 171–204.; Martinson A.B.F., Hamann T.W., Pellin M.J., Hupp J.T. New architectures for dye-sensitized solar cells. ChemEur J., 2008;14:4458–67; http://dx.doi.org/10.1002/chem.200701667.; Bisquert J., Zaban A., Greenshtein M., Mora-Sero I. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am ChemSoc., 2004;126(41):13550–9; http://dx.doi.org/10.1021/ja047311k.; Hassan H.C., Abidin Z.H.Z., Chowdhury F.I., Arof A.K.A. Highefficiency chlorophyll sensitized solar cell with quasi solid PVA based electrolyte. Int J Photoenergy, 2016:1–9; http://dx.doi.org/10.1155/2016/3685210.; Alhamed M., Issa A.S., Doubal A.W. Studying of natural dyes properties as photo-sensitizer for dye sensitized solar cells(DSSC). J Electron Devices, 2012;16:1370–83.; Smestad G.P., Gratzel M. Demonstrating electron transfer and nanotechnology: a natural dye sensitized nanocrystalline energy converter. J ChemEduc., 1998;75:752–6.; Maksimov E.G., Lukashev E.P., Seifullina N.Kh., Nizova G.V., Pashchenko V.Z. Photophysical properties of hybrid complexes of quantum dots and reaction centers of purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films. Nanotechnol Russ, 2013;8(7):423–31; http://dx.doi.org/10.1134/.; Kavadiya S., Chadha T.S., Liu H., Shah V.B., Blankenship R.E., Biswas P. Directed assembly of thylakoid membrane on nanostructured TiO2 for a photoelectrochemical cell. Nanoscale, 2016;8:1868–72; http://dx.doi.org/10.1039/C5NR08178E.; Mershin A., Matsumoto K., Kaiser L., Yu D., Vaughn M., Nazeeruddin M.K., et al. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep., 2012;2:1–7; http://dx.doi.org/10.1038/srep00234.; Voloshin R.A., Kreslavski V.D., Zharmukhamedov S.K., Bedbenov V.S., Ramakrishna S., Allakhverdiev S.I. Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res J., 2015;6:227–35.; Scheer H. An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B., Porra R.J., Rudiger W., Scheer H., editors. Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Dordrecht: Springer; 2006; p. 4–11.; Allakhverdiev S.I., Kreslavski V.D., Zharmukhamedov S.K., Voloshin R.A., Korol’kova D.V., Tomo T., et al. Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry (Moscow), 2016;81:201–12; http://dx.doi.org/10.1134/S0006297916030020.; Berginc M., Krasovec U.O., Jankovec M., Topic M. The effect of temperature on the performance of dyesensitized solar cells based on a propyl-methylimidazolium iodide electrolyte. Sol Energy Mater Sol Cells, 2007;91(9):821–8.; Xue G., Guo Y., Yu T., Guan J., Yu X., Zhang J., et al. Degradation mechanisms investigation for longterm thermal stability of dye-sensitized solar cells. Int J Electrochem Sci., 2012;7:1496–511.; Yaakoubi H., Hamdani S., Bekalé L., Carpentier R. Protective action of spermine and spermidine against photoinhibitionof photosystem I in isolated thylakoid membranes. PLoS One, 2014;9(11): e112893; http://dx.doi.org/10.1371/journal.pone.0112893.; Novakova A.A., Khval'kovskaya E.A., Aleksandrov A.Y., Kiseleva T.Y., Davletshina L.N., Semin B.K., et al. Comparative study of thermal degradation of ironsulfur proteins in spinach chloroplasts and membranes of thermophilic cyanobacteria: mössbauer spectroscopy. Biochemistry (Moscow), 2001;66:520–3.; Dobrikova A.G., Apostolova E.L. Damage and protection of the photosynthetic apparatus from UV-B radiation. II. Effect of quercetin at different pH. J Plant Physiol., 2015;184:98–105; http://dx.doi.org/10.1016/j.jplph.2015.06.008.; Yua Z., Lia F., Sun L. Recent advances in dyesensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ Sci., 2015;8:760–75; http://dx.doi.org/10.1039/C4EE03565H.; GOST (GОСТ) 9411-91. Optical color filters. Мoscow, 1992.; Dean R.L. Measuring light-dependent proton translocation in isolated thylakoids. J Lab ChemEduc., 2014;2(3):33–43.; Jensen K.F., Brandt H., Im C., Wilde J., Hinsch A. Stability of UV Illuminated dye sensitized solar cells (Dsc) studied by photoinduced absorption in the second range. 28th European PV solar energy conference and exhibition. Paris, French; 2013. p. 6.; https://www.isjaee.com/jour/article/view/1844