يعرض 1 - 20 نتائج من 42 نتيجة بحث عن '"С. И. Куцев"', وقت الاستعلام: 0.82s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The search and analytical work were carried out using the personal funds of the authors’ team., Поисково-аналитическая работа проведена на личные средства авторского коллектива.

    المصدر: Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice; № 4 (2024); 82-96 ; Качественная клиническая практика; № 4 (2024); 82-96 ; 2618-8473 ; 2588-0519

    وصف الملف: application/pdf

    Relation: https://www.clinvest.ru/jour/article/view/765/731; How Orphan Drugs Came to Be Called “Orphan” [Электронный ресурс] // FDA Law Blog. URL: https://www.thefdalawblog.com/2015/02/how-orphan-drugs-came-to-be-called-orphan/ (Дата обращения: 28.09.2023).; Федеральный закон от 21.11.2011 N 323-ФЗ (ред. от 28.12.2022) “Об основах охраны здоровья граждан в Российской Федерации”. [Federal Law of Russian Federation of 21 November 2011 №323-FZ. “Ob osnovakh okhrany zdorov'ya grazhdan v Rossijskoj FederaciI”. (In Russ).] Доступно по: https://minzdrav.gov.ru/documents/7025-federalnyy-zakon-323-fz-ot-21-noyabrya-2011-g. Ссылка активна на 18.03.2024.; Rare diseases [Электронный ресурс]. URL: https://research-and-innovation.ec.europa.eu/research-area/health/rare-diseases_en (Дата обращения: 04.09.2023).; Rare Diseases at FDA [Электронный ресурс] // FDA, 2022. URL: https:// www.fda.gov/patients/rare-diseases-fda (Дата обращения: 04.09.2023).; Overview of Orphan Drug/Medical Device Designation System [Электронный ресурс]. URL: https://www.mhlw.go.jp/english/po-licy/health-medical/pharmaceuticals/orphan_drug.html (Дата обращения: 03.06.2024).; Указ Президента РФ от 05.01.2021 № 16 "О создании Фонда поддержки детей с тяжелыми жизнеугрожающими и хроническими заболеваниями, в том числе редкими (орфанными) заболеваниями, “Круг добра”. Доступно по: http://publication.pravo.gov.ru/Document/View/0001202101060001. Ссылка активна на 18.03.2024.; Постановление Правительства РФ от 28 декабря 2023 г. № 2353 “О Программе государственных гарантий бесплатного оказания гражданам медицинской помощи на 2024 год и на плановый период 2025 и 2026 годов”. Доступно по: http://static.government.ru/media/files/vB0TvgWlcYbdAUFJomenUk3B0sjTuLA8.pdf. Ссылка активна на 18.03.2024; Haendel M, Vasilevsky N, Unni D, et al. How many rare diseases are there? Nat Rev Drug Discov. 2020;19(2):77–78. doi: https://doi.org/10.1038/d41573-019-00180-y.; Boycott KM, Rath A, Chong JX, et al. International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. Am J Hum Genet. 2017;100(5):695–705. doi: https://doi.org/10.1016/j.ajhg.2017.04.003.; Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database: 2. Eur J Hum Genet. Nature Publishing Group, 2020;28(2):165–173. doi: https://doi.org/10.1038/s41431-019-0508-0.; Greene D, Pirri D, Frudd K, et al. Genetic association analysis of 77,539 genomes reveals rare disease etiologies: 3. Nat Med. Nature Publishing Group, 2023;29(3):679–688. doi: https://doi.org/10.1038/s41591-023-02211-z.; Brotman RG, Moreno-Escobar MC, Joseph J, et al. Amyotrophic Lateral Sclerosis // StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.; Pahal P, Sharma S. Idiopathic Pulmonary Artery Hypertension // StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.; Schaefer J, Lehne M, Schepers J, et al. The use of machine learning in rare diseases: a scoping review. Orphanet Journal of Rare Diseases. 2020;15(1):145. doi: https://doi.org/10.1186/s13023-020-01424-6.; Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038–1040. doi: https://doi.org/10.1038/s41587-019-0224-x.; Zanello G, Garrido-Estepa M, Crespo A, et al. Targeting shared molecular etiologies to accelerate drug development for rare diseases. EMBO Molecular Medicine. 2023;15(7):e17159. doi: https://doi.org/10.15252/emmm.202217159.; Adachi T, El-Hattab AW, Jain R, et al. Enhancing Equitable Access to Rare Disease Diagnosis and Treatment around the World: A Review of Evidence, Policies, and Challenges. Int J Environ Res Public Health. 2023;20(6):4732. doi: https://doi.org/10.3390/ijerph20064732.; Воробьев П.А. Редкие заболевания у взрослых. Проблемы стандартизации в здравоохранении. 2016;3–4:3–9. [Vorobyov PA. Redkie zabolevaniya u vzroslykh. Problemy standartizacii v zdravookhranenii. 2016;3-4:3-9 (In Russ)].; Groft SC, Gopal-Srivastava R, Dellon E., et al. How to Advance Research, Education, and Training in the Study of Rare Diseases. Gastroenterology. 2019;157(4):917–921. doi: https://doi.org/10.1053/j.gastro.2019.08.010.; Legrand MA, Bagouet F, Merle B, et al. Value of rare diseases reference centers: impact on diagnosis and access to specialized care in fibrous dysplasia of bone. European Journal of Medical Genetics. 2023;66(11):104849. doi: https://doi.org/10.1016/j.ejmg.2023.104849.; Vinkšel M, Writzl K, Maver A, et al. Improving diagnostics of rare genetic diseases with NGS approaches. J Community Genet. 2021;12(2):247– 256. doi: https://doi.org/10.1007/s12687-020-00500-5.; Hsieh T-C, Bar-Haim A, Moosa S, et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nature Genetics. 2022;54(3):349–357. doi: https://doi.org/10.1038/s41588-021-01010-x.; Heart Disease Prevalence - Health, United States [Электронный ресурс]. 2023. URL: https://www.cdc.gov/nchs/hus/topics/heart-disease-prevalence.htm (Дата обращения: 04.09.2023).; Gavin P. The importance of natural histories for rare diseases. Expert Opinion on Orphan Drugs. Taylor & Francis, 2015;3(8):855–857. doi: https://doi.org/10.1517/21678707.2015.1063415.; Garbade SF, Zielonka M, Komatsuzaki S, et al. Quantitative retrospective natural history modeling for orphan drug development. J Inherit Metab Dis. 2021;44(1):99–109. doi: https://doi.org/10.1002/jimd.12304.; Dupont AG, Van Wilder PB. Access to orphan drugs despite poor quality of clinical evidence. British Journal of Clinical Pharmacology. 2011;71(4):488–496. doi: https://doi.org/10.1111/j.1365-2125.2010.03877.x.; Mucopolysaccharidoses. Diagnostic Imaging: Pediatrics (Third Edition) / ed. Merrow A.C. et al. Elsevier. 2017:950–953. doi: https://doi.org/10.1016/B978-0-323-44306-7.50335-2.; Crisafulli S, Sultana J, Ingrasciotta Y, et al. Role of healthcare databases and registries for surveillance of orphan drugs in the real-world setting: the Italian case study. Expert Opinion on Drug Safety. 2019;18(6):497–509. doi: https://doi.org/10.1080/14740338.2019.1614165.; Bell SA, Tudur Smith C. A comparison of interventional clinical trials in rare versus non-rare diseases: an analysis of ClinicalTrials.gov. Orphanet J Rare Dis. 2014;9(1):170. doi: https://doi.org/10.1186/s13023-014-0170-0.; Logviss K, Krievins D, Purvina S. Characteristics of clinical trials in rare vs. common diseases: A register-based Latvian study. PLoS ONE / ed. Rosenkranz G. 2018;13(4):e0194494. doi: https://doi.org/10.1371/journal.pone.0194494.; Jayasundara K, Hollis A, Krahn M, et al. Estimating the clinical cost of drug development for orphan versus non-orphan drugs. Orphanet J Rare Dis. 2019;14(1):12. doi: https://doi.org/10.1186/s13023-018-0990-4.; Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Statistics in Medicine. 2012;31(25):2973–2984. doi: https://doi.org/10.1002/sim.5403.; Ou F-S, Michiels S, Shyr Y, et al. Biomarker Discovery and Validation: Statistical Considerations. Journal of Thoracic Oncology. 2021;16(4):537– 545. doi: https://doi.org/10.1016/j.jtho.2021.01.1616.; Ciani O, Grigore B, Blommestein H, et al. Validity of Surrogate Endpoints and Their Impact on Coverage Recommendations: A Retrospective Analysis across International Health Technology Assessment Agencies. Med Decis Making. 2021;41(4):439–452. doi: https://doi.org/10.1177/0272989X21994553.; Feng J, Gao Z, Shi Z, et al. Patient-reported outcomes in Gaucher’s disease: a systematic review. Orphanet J Rare Dis. 2023;18(1):244. doi: https://doi.org/10.1186/s13023-023-02844-w.; Slade A, Isa F, Kyte D, et al. Patient reported outcome measures in rare diseases: a narrative review. Orphanet J Rare Dis. 2018;13(1):61. doi: https://doi.org/10.1186/s13023-018-0810-x.; Neul JL, Percy AK, Benke TA, et al. Trofinetide for the treatment of Rett syndrome: a randomized phase 3 study. Nat Med. 2023;29(6):1468–1475. doi: https://doi.org/10.1038/s41591-023-02398-1.; Percy A, Ryther R, Marsh E, et al. Trofinetide for the treatment of Rett syndrome: an open-label study in girls 2 to 4 years of age (P13-9.005). Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology, 2023;100(17),Supplement 2. doi: https://doi.org/10.1212/WNL.0000000000201897.; Clinical Review. Информация о лекарственном препарате, размещенная на сайте Управления по контролю качества пищевых продуктов и лекарственных средств США (англ. Food and Drug Administration, FDA) [Электронный ресурс]. URL: https://www.access-data.fda.gov/drugsatfda_docs/nda/2023/217026Orig1s000MedR.pdf. Дата обращения: 30.07.2023; DAYBUETM (trofinetide) oral solution [Электронный ресурс]. URL: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/217026s000lbl.pdf. Дата обращения: 30.07.2023; Drug Trials Snapshots: XURIDEN [Электронный ресурс]. URL: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-xuriden. Дата обращения: 30.07.2023; Newton W. Drug development for ultra-rare diseases: What happens when N=1? [Электронный ресурс] // Clinical Trials Arena. 2022. URL: https://www.clinicaltrialsarena.com/features/drug-development-for-ultra-rare-diseases-what-happens-when-n1/ (Дата обращения: 27.07.2023).; Anzelewicz S, Garnier H, Rangaswami A, et al. Cultural, geographical and ethical questions when looking to enroll pediatric patients in rare disease clinical trials. Expert Opinion on Orphan Drugs. 2017;5(8):613– 621. doi: https://doi.org/10.1080/21678707.2017.1348293.; Bertha A, Alaj R, Bousnina I, et al. Incorporating digitally derived endpoints within clinical development programs by leveraging prior work. NPJ Digit Med. 2023 Aug 10;6(1):139. doi:10.1038/s41746-023-00886-9.; Bill Byrom P. Utilizing DHTs for Clinical Trial Endpoints. Applied Clinical Trials. 2021;30(5).; Gaasterland CMW, van der Weide MCJ, du Prie – Olthof MJ, et al. The patient’s view on rare disease trial design – a qualitative study. Orphanet J Rare Dis. 2019;14(1):31. doi: https://doi.org/10.1186/s13023-019-1002-z.; Locatelli F, Jordan MB, Allen C, et al. Emapalumab in Children with Primary Hemophagocytic Lymphohistiocytosis. New England Journal of Medicine. 2020;382(19):1811–1822. doi: https://doi.org/10.1056/NEJMoa1911326.; 48. Multicentre Study to Assess Safety Tolerability Pharmacokinetics and Efficacy of i.v. Administrations of NI-0501 an Anti-IFNγ mAb in Paediatric Patients With Primary Haemophagocytic Lymphohistiocytosis: Clinical trial registration NCT01818492. clinicaltrials.gov, 2023.; Орфанная настороженность при диспансеризации детей. Педиатрическая фармакология. 2021;18(2):156-157.; Auvin S, Avbersek A, Bast T, et al. Drug Development for Rare Paediatric Epilepsies: Current State and Future Directions. Drugs. 2019;79(18):1917– 1935. doi: https://doi.org/10.1007/s40265-019-01223-9.; Alfonso Farnós I, Alcalde Bezhold G. Clinical research in rare diseases: New challenges, opportunities and ethical issues. An Pediatr (Engl Ed). 2020;93(4):219–221. doi: https://doi.org/10.1016/j.anpede.2020.06.001.; Hasford J, Koch A. Erratum to: Ethical aspects of clinical trials in rare diseases. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2017 Aug;60(8):893. English. doi:10.1007/s00103-017-2588-8. Erratum for: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2017 May;60(5):556-562. doi:10.1007/s00103-017-2537-6.; Приказ Министерства здравоохранения РФ от 10 июля 2015 г. N 435н “Об Этическом комитете Министерства здравоохранения Российской Федерации”. Доступно по: https://minzdrav.gov.ru/documents/9209-prikaz-ministerstva-zdravoohraneniya-rf-ot-10-iyulya-2015-g-435n-ob-eticheskom-komitete-ministerstva-zdravoohraneniya-rossiyskoy-federatsii. Ссылка активна на 18.03.2024.; Rare Diseases: Natural History Studies for Drug Development. Draft Guidance for Industry [Электронный ресурс]. 2019. URL: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development (Дата обращения: 01.12.2023).; Bratton E, Holt C, Kromrey S, et al. Natural History Studies for Rare Diseases: Development Strategies for External Comparator Arms Leveraging Real World Insights [Электронный ресурс]. URL: https://www.iqvia.com/library/white-papers/natural-history-studies-for-rare-diseases (Дата обращения: 01.12.2023).; Как «Геном Эксперт» комплексно решает задачи генетиков? [Электронный ресурс]. 2023. URL: https://bars.group/press-center/meropriyatiya/kak-genom-ekspert-kompleksno-reshaet-zadachi-genetikov/ (Дата обращения: 30.11.2023).; FDA approves first treatment for a form of Batten disease [Электронный ресурс] // FDA. 2020. URL: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-form-batten-disease (Дата обращения: 15.08.2023).; Pizzamiglio C, Vernon HJ, Hanna MG, et al. Designing clinical trials for rare diseases: unique challenges and opportunities. Nat Rev Methods Primers. 2022;2(1):s43586-022-00100–00102. https://doi.org/10.1038/s43586-022-00100-2.; Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89-95. doi:10.1067/mcp.2001.113989.; FDA Approves First Gene Therapy for Treatment of Certain Patients with Duchenne Muscular Dystrophy [Электронный ресурс] // FDA. 2023. URL: https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapy-treatment-certain-patients-duchenne-muscular-dystrophy (Дата обращения: 18.08.2023).; van der Sluis IM, de Groot-Kruseman H, te Loo M, et al. Efficacy and safety of recombinant E. coli asparaginase in children with previously untreated acute lymphoblastic leukemia: A randomized multicenter study of the Dutch Childhood Oncology Group. Pediatr Blood Cancer. 2018;65(8):e27083. doi: https://doi.org/10.1002/pbc.27083.; Jiang J, Batra S, Zhang J. Asparagine: A Metabolite to Be Targeted in Cancers. Metabolites. 2021;11(6):402. doi: https://doi.org/10.3390/metabo11060402.; Shah KK, Kogut S, Slitt A. Challenges in Evaluating Safety and Efficacy in Drug Development for Rare Diseases: A Review for Pharmacists. J Pharm Pract. 2021;34(3):472–479. doi: https://doi.org/10.1177/0897190020930972.; Pallmann P, Bedding AW, Choodari-Oskooei B, et al. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Medicine. 2018;16(1):29. doi: https://doi.org/10.1186/s12916-018-1017-7.; Adaptive Design Clinical Trials for Drugs and Biologics Guidance for Industry [Электронный ресурс]. FDA, 2020. URL: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry (Дата обращения: 11.09.2023).; Stallard N, Todd S. Seamless phase II/III designs. Stat Methods Med Res. 2011;20(6):623–634. doi: https://doi.org/10.1177/0962280210379035.; Chow S-C, Chang M. Adaptive design methods in clinical trials – a review. Orphanet J Rare Dis. 2008;3:11. doi: https://doi.org/10.1186/1750-1172-3-11.; Collette L. Sample Size Re-Estimation as an Adaptive Design. Applied Clinical Trials. 2021;30(9).; Introduction to N-of-1 Trials: Indications and Barriers (Chapter 1) %7C Effective Health Care (EHC) Program [Электронный ресурс]. URL: https://effectivehealthcare.ahrq.gov/products/n-1-trials/research-20144#toc-1 (Дата обращения: 12.09.2023).; Feldman B, Wang E, Willan A, Szalai JP. The randomized placebo-phase design for clinical trials. J Clin Epidemiol. 2001 Jun;54(6):550-7. doi:10.1016/s0895-4356(00)00357-7.; Abrahamyan L, Feldman BM, Tomlinson G, et al. Alternative designs for clinical trials in rare diseases. American Journal of Medical genetics. Part C, Seminars in Medical Genetics. 2016 Dec;172(4):313-331. DOI:10.1002/ajmg.c.31533.; Spineli LM, Jenz E, Großhennig A, et al. Critical appraisal of arguments for the delayed-start design proposed as alternative to the parallel-group randomized clinical trial design in the field of rare disease. Orphanet J Rare Dis. 2017;12(1):140. doi: https://doi.org/10.1186/s13023-017-0692-3.; Cornu C, Kassai B, Fisch R, et al. Experimental designs for small randomised clinical trials: an algorithm for choice. Orphanet J Rare Dis. 2013;8(1):48. doi: https://doi.org/10.1186/1750-1172-8-48.; Baiardi P, Giaquinto C, Girotto S et al. Innovative study design for paediatric clinical trials. Eur J Clin Pharmacol. 2011;67(S1):109–115. doi: https://doi.org/10.1007/s00228-011-0990-y.; Fetro C, Scherman D. Drug repurposing in rare diseases: Myths and reality. Therapie. 2020;75(2):157–160. doi: https://doi.org/10.1016/j.therap.2020.02.006.; Rana P, Chawla S. Orphan drugs: trends and issues in drug development. J Basic Clin Physiol Pharmacol. 2018;29(5):437–446. doi: https://doi.org/10.1515/jbcpp-2017-0206.; Колбин А.С., Гапешин Р.А., Малышев С.М. Современные проблемы обеспечения орфанными лекарственными средствами и пути их решения. Вопросы современной педиатрии. 2016;15(4):344-351. https://doi.org/10.15690/vsp.v15i4.1584; https://www.clinvest.ru/jour/article/view/765

  2. 2
    Academic Journal

    المساهمون: The article was prepared with the financial support of Solopharm, Статья подготовлена при финансовой поддержке компании Solopharm

    المصدر: PULMONOLOGIYA; Том 34, № 2 (2024); 158-174 ; Пульмонология; Том 34, № 2 (2024); 158-174 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4474/3637; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4474/2501; Laennec R.T.H. A treatise on the disease of the chest: with plates. New York: Academy Medicine; 1962. Available at: https://archive.org/details/treatiseondiseas0000laen/page/n1/mode/2up; Cole P.J. Inflammation: a two-edged sword – the model of bronchiectasis. Eur .J. Respir. Dis. Suppl. 1986; 147: 6–15.; Pembridge T., Chalmers J.D. Precision medicine in bronchiectasis. Breathe (Sheff). 2021; 17 (4): 210119. DOI:10.1183/20734735.0119-2021.; Рачинский С.В., Таточенко В.К., ред. Болезни органов дыхания у детей. М.: Медицина; 1988.; Розинова Н.Н., Мизерницкий Ю.Л., ред. Хронические заболевания легких у детей. М.: Практика; 2011.; Таточенко В.К., ред. Болезни органов дыхания у детей. М.: Педиатръ, 2012.; Eber E., Midulla F., eds. ERS handbook paediatric respiratory medicine. 2nd Edn. Sheffield: ERS; 2021. DOI:10.1183/9781849841313.eph01.; Lowe D.M., Hurst J.R. Primary immunodeficiency. In: Chalmers J.D., Polverino E., Aliberti S., eds. Bronchiectasis. Sheffield: ERS; 2018: 153–166. DOI:10.1183/2312508X.10015917.; Polverino E., Goeminne P.C., McDonnell M.J. et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017; 50 (3): 1700629. DOI:10.1183/13993003.00629-2017.; Chang A.B., Fortescue R., Grimwood K. et al. European Respiratory Society guidelines for the management of children and adolescents with bronchiectasis. Eur. Respir. J. 2021; 58 (2): 2002990. DOI:10.1183/13993003.02990-2020.; Weycker D., Edelsberg J., Oster G., Tino G. Prevalence and economic burden of bronchiectasis. Clin. Pulm. Med. 2005; 12 (4): 205–209. DOI:10.1097/01.cpm.0000171422.98696.ed.; Feng J., Sun L., Sun X. et al. Increasing prevalence and burden of bronchiectasis in urban Chinese adults, 2013-2017: a nationwide population-based cohort study. Respir. Res. 2022; 23 (1): 111. DOI:10.1186/s12931-022-02023-8.; Bilton D., Jones A.L. Bronchiectasis: epidemiology and causes. In: Floto R.A., Haworth C.S., eds. Bronchiectasis (out of print). Sheffield: ERS; 2011. Vol. 52: 1–10. DOI:10.1183/1025448x.erm5210.; Flume P.A., Chalmers J.D., Olivier K.N. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet. 2018; 392 (10150): 880–890. DOI:10.1016/S0140-6736(18)31767-7.; Contarini M., Finch S., Chalmers J.D. Bronchiectasis: a case-based approach to investigation and management. Eur. Respir. Rev. 2018; 27 (149): 180016. DOI:10.1183/16000617.0016-2018.; Altenburg J., Wortel K., van der Werf T.S., Boersma W.G. Non-cystic fibrosis bronchiectasis: clinical presentation, diagnosis and treatment, illustrated by data from a Dutch Teaching Hospital. Neth. J. Med. 2015; 73 (4): 147–154. Available at: https://www.njmonline.nl/article.php?a=1561&d=1036&i=182; Smith M.P. Diagnosis and management of bronchiectasis. CMAJ. 2017; 189 (24): E828–835. DOI:10.1503/cmaj.160830.; Ullmann N., Porcaro F., Petreschi F. et al. Noncystic fibrosis bronchiectasis in children and adolescents: Follow-up over a decade. Pediatr. Pulmonol. 2021; 56 (9): 3026–3034. DOI:10.1002/ppul.25553.; Pasteur M.C., Bilton D., Hill A.T.; British Thoracic Society Bronchiectasis non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010; 65 (7): 577. DOI:10.1136/thx.2010.142778.; Красовский С.А., Старинова А.Ю., Воронкова Е.Л. и др., ред. Регистр больных муковисцидозом в Российской Федерации. 2021 год. СПб: Благотворительный фонд «Острова»; 2023. Доступно на: https://mukoviscidoz.org/doc/registr/registr_systicfibrosis_brochure_19_10.pdf; King P.T., Holdsworth S.R., Freezer N.J. et al. Microbiologic follow-up study in adult bronchiectasis. Respir. Med. 2007; 101 (8): 1633–1638. DOI:10.1016/j.rmed.2007.03.009.; Cummings S., Nelson A., Purcell P. et al. A comparative study of polymicrobial diversity in CF and non-CF bronchiectasis. Thorax. 2010; 65 (4): A13–A14. DOI:10.1136/thx.2010.150912.23.; Foweraker J.E., Wat D. Microbiology of non-CF bronchiectasis. In: Floto R.A., Haworth C.S., eds. Bronchiectasis (out of print). Sheffield: ERS; 2011. Vol. 52: 68–96. DOI:10.1183/1025448x.10003610.; Finch S., McDonnell M.J., Abo-Leyah H. et al. A Comprehensive analysis of the impact of pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann. Am. Thorac. Soc. 2015; 12 (11): 1602–1611. DOI:10.1513/AnnalsATS.201506-333OC.; Pasteur M.C., Helliwell S.M., Houghton S.J. et al. An investigation into causative factors in patients with bronchiectasis. Am. J. Respir. Crit. Care Med. 2000; 162 (4, Pt 1): 1277–1284. DOI:10.1164/ajrccm.162.4.9906120.; Reid L.M. Reduction in bronchial subdivision in bronchiectasis. Thorax. 1950; 5 (3): 233–247. DOI:10.1136/thx.5.3.233.; Angrill J., Agusti C., De Celis R. et al. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am. J. Respir. Crit. Care Med. 2001; 164 (9): 1628–1632. DOI:10.1164/ajrccm.164.9.2105083.; Chang A.B., Masel J.P., Boyce N.C. et al. Non-CF bronchiectasis: clinical and HRCT evaluation. Pediatr. Pulmonol. 2003; 35 (6): 477–483. DOI:10.1002/ppul.10289.; Remy Jardin M., Amara A., Campistron P. et al. Diagnosis of bronchiectasis with multislice spiral CT: accuracy of 3-mm-thick structured sections. Eur. Radiol. 2003; 13 (5): 1165–1171. DOI:10.1007/s00330-003-1821-z.; Naidich D.P., McCauley D.I., Khouri N.F. et al. Computed tomography of bronchiectasis. J. Comput. Assist. Tomogr. 1982; 6 (3): 437–444. DOI:10.1097/00004728-198206000-00001.; Hill T.A., Sullivan L.A., Chalmers D.J. et al. British Thoracic Society Guideline for bronchiectasis in adults. Thorax. 2019; 74 (Suppl. 1): 1–69. DOI:10.1136/thoraxjnl-2018-212463.; UpToDate. Barker A.F. Clinical manifestations and diagnosis of bronchiectasis in adults. 2023. Available at: https://www.uptodate.com/contents/clinical-manifestations-and-diagnosis-of-bronchiectasis-in-adults/print [Accessed: December 05, 2023].; Martinez-Garcia M.Á., Oscullo G., Garcia-Ortega A. Towards a new definition of non-cystic fibrosis bronchiectasis. J. Bras. Pneumol. 2022; 48 (1): e20220023. DOI:10.36416/1806-3756/e20220023.; Hill A.T., Haworth C.S., Aliberti S. et al. Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur. Respir. J. 2017; 49 (6): 1700051. DOI:10.1183/13993003.00051-2017.; Castellani C., Simmonds N.J. Identifying undiagnosed cystic fibrosis in adults with bronchiectasis. In: Chalmers J.D., Polverino E., Aliberti S., eds. Bronchiectasis. Sheffield: ERS; 2018: 29–44. DOI:10.1183/2312508X.10015317.; Patel I.S., Viahos I., Wilkinson T.M. et al. Bronchiectasis, exacerbation indices and inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004; 170 (4): 400–407. DOI:10.1164/rccm.200305-648oc.; Ellis D.A., Thornley P.E., Wightman A.J. et al. Present outlook in bronchiectasis: clinical and social study and review of factors influencing prognosis. Thorax. 1981; 36 (9): 659–664. DOI:10.1136/thx.36.9.659.; Martínez-García M.Á., de Gracia J., Vendrell Relat M. et al. Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score. Eur. Respir. J. 2014; 43 (5): 1357–1367. DOI:10.1183/09031936.00026313.; Lee A.L., Burge A.T., Holland A.E. Airway clearance techniques for bronchiectasis. Cochrane Database Syst. Rev. 2015; 2015 (11): CD008351. DOI:10.1002/14651858.cd008351.pub3.; Мизерницкий Ю.Л., Новак А.А., Шудуева А.Р. Опыт ингаляционного применения гипертонического раствора в пульмонологии детского возраста. Медицинский Совет. 2022; 16 (12): 36–39. DOI:10.21518/2079-701X-2022-16-12-36-39.; Nicolson C.H., Stirling R.G., Borg B.M. et al. The long term effect of inhaled hypertonic saline 6% in non-cystic fibrosis bronchiectasis. Respir. Med. 2012; 106 (5): 661–667. DOI:10.1016/j.rmed.2011.12.021.; Gao Y.H., Guan W.J., Xu G. et al. Macrolide therapy in adults and children with non-cystic fibrosis bronchiectasis: a systematic review and meta-analysis. PLoS One. 2014; 9 (3): e90047. DOI:10.1371/journal.pone.0090047.; White L., Mirrani G., Grover M. et al. Outcomes of Pseudomonas eradication therapy in patients with non-cystic fibrosis bronchiectasis. Respir. Med. 2012; 106 (3): 356–360. DOI:10.1016/j.rmed.2011.11.018.; Polverino E., Perez-Miranda J. Antibiotic management and resistance. In: Chalmers J.D., Polverino E., Aliberti S., eds. Bronchiectasis. Sheffield: ERS; 2018. Vol. 81: 312–330. DOI:10.1183/2312508x.erm8118.; UpToDate. Goyal V., Chang A.B. Bronchiectasis in children without cystic fibrosis: Management. Available at: https://www.uptodate.com/contents/management-of-bronchiectasis-in-children-without-cystic-fibrosis [Accessed: September 21, 2021].; Shapiro A.J., Zariwala M.A., Ferkol T. et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr. Pulmonol. 2016; 51 (2): 115–132. DOI:10.1002/ppul.23304.; Brodt A.M., Stovold E., Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur. Respir. J. 2014; 44 (2): 382–393. DOI:10.1183/09031936.00018414.; Choi S.H., Kim E.Y., Kim Y.J. Systemic use of fluoroquinolone in children. Korean J. Pediatr. 2013; 56 (5): 196–201. DOI:10.3345/kjp.2013.56.5.196.; Gardner R.A., Davis S.D., M. Rosenfeld M. et al. Therapies used for primary ciliary dyskinesia in North American children. Am. J. Respir. Crit. Care Med. 2021; 203: A3380. DOI:10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A3380.; Мизерницкий Ю.Л., Мельникова И.М. Роль комбинированной муколитической терапии при инфекционно-воспалительных заболеваниях органов дыхания у детей. Медицинский совет. 2019; (11): 56–59. DOI:10.21518/2079-701X-2019-11-56-59.; Белевский А.С., Княжеская Н.П. Тиамфеникола глицинат ацетилцистеинат: некоторые аспекты применения при острых и хронических легочных заболеваниях. Практическая пульмонология. 2017; (3): 123–126. Доступно на: https://atmosphere-ph.ru/modules/Magazines/articles/pulmo/pp_3_2017_122.pdf; Tarrant B.J., Le Maitre C., Romero L. et al. Mucoactive agents for chronic, non-cystic fibrosis lung disease: a systematic review and meta-analysis. Respirology. 2017; 22 (6): 1084–1092. DOI:10.1111/resp.13047.; Kellett F., Robert N.M. Nebulised 7% hypertonic saline improves lung function and quality of life in bronchiectasis. Respir. Med. 2011; 105 (12): 1831–1835. DOI:10.1016/j.rmed.2011.07.019.; Herrero-Cortina B., Alcaraz V., Vilaro J. et al. Impact of hypertonic saline solutions on sputum expectoration and their safety profile in patients with bronchiectasis: a randomized crossover trial. J. Aerosol Med. Pulm. Drug Deliv. 2018; 31 (5): 281–289. DOI:10.1089/jamp.2017.1443.; Daviskas E., Anderson S.D., Gonda I. et al. Inhalation of hypertonic saline aerosol enhances mucociliary clearance in asthmatic and healthy subjects. Eur. Respir. J. 1996; 9 (4): 725–732. DOI:10.1183/09031936.96.09040725.; Elkins M.R., Robinson M., Rose B.R. et al. A controlled trial of longterm inhaled hypertonic saline in patients with cystic fibrosis. N. Engl. J. Med. 2006; 354 (3): 229–240. DOI:10.1056/NEJMoa043900.; Wark P., McDonald V.M. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst Rev. 2018; (9): CD001506. DOI:10.1002/14651858.CD001506.pub4.; Michon A.L., Jumas-Bilak E., Chiron R. et al. Advances toward the elucidation of hypertonic saline effects on Pseudomonas aeruginosa from cystic fibrosis patients. PLoS One. 2014; 9 (2): e90164. DOI:10.1371/journal.pone.0090164.; Garantziotis S., Brezina M., Castelnuovo P., Drago L. The role of hyaluronan in the pathobiology and treatment of respiratory disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2016; 310 (9): L785–795. DOI:10.1152/ajplung.00168.2015.; Qi Q., Ailiyaer Y., Liu R. et al. Effect of N-acetylcysteine on exacerbations of bronchiectasis (BENE): a randomized controlled trial. Respir. Res. 2019; 20 (1): 73. DOI:10.1186/s12931-019-1042-x.; Hart A., Sugumar K., Milan S.J. et al. Inhaled hyperosmolar agents for bronchiectasis. Cochrane Database Syst. Rev. 2014; (5): CD002996. DOI:10.1002/14651858.CD002996.pub3.; Wilkinson M., Sugumar K., Milan S.J. et al. Mucolytics for bronchiectasis. Cochrane Database Syst. Rev. 2014 (5): CD001289. DOI:10.1002/14651858.CD001289.pub2.; Wills P., Greenstone M. Inhaled hyperosmolar agents for bronchiectasis. Cochrane Database Syst. Rev. 2002; (1): CD002996. DOI:10.1002/14651858.cd002996.; Redding G.J. Bronchiectasis in children. Pediatr. Clin. North Am. 2009; 56 (1): 157–171. DOI:10.1016/j.pcl.2008.10.014.; Chalmers J.D., Polverino E., Crichton M.L. et al. Bronchiectasis in Europe: data on disease characteristics from the European Bronchiectasis registry (EMBARC). Lancet Respir. Med. 2023; 11 (7): 637–649. DOI:10.1016/S2213-2600(23)00093-0.; Jayaram L., King P.T., Hunt J. et al. Evaluation of high dose N-acetylcysteine on airway inflammation and quality of life outcomes in adults with bronchiectasis: a randomised placebo-controlled pilot study. Pulm. Pharmacol. Ther. 2023; 84: 102283. DOI:10.1016/j.pupt.2023.102283.; Minov J., Stoleski S., Petrova T. et al. Effects of a long-term use of carbocysteine on frequency and duration of exacerbations in patients with bronchiectasis. Open Access Maced. J. Med. Sci. 2019; 7 (23): 4030–4035. DOI:10.3889/oamjms.2019.697.; Liao Y., Wu Y., Zi K. et al. The effect of N-acetylcysteine in patients with non-cystic fibrosis bronchiectasis (NINCFB): study protocol for a multicentre, double-blind, randomised, placebo-controlled trial. BMC Pulm. Med. 2022; 22 (1): 401. DOI:10.1186/s12890-022-02202-9.; Bradley J.M., Anand R., O’Neill B. et al. A 2 × 2 factorial, randomised, open-label trial to determine the clinical and cost-effectiveness of hypertonic saline (HTS 6%) and carbocisteine for airway clearance versus usual care over 52weeks in adults with bronchiectasis: a protocol for the CLEAR clinical trial. Trials. 2019; 20 (1): 747. DOI:10.1186/s13063-019-3766-9.; Chang A.B., Morgan L.C., Duncan E.L. et al. Reducing exacerbations in children and adults with primary ciliary dyskinesia using erdosteine and/or azithromycin therapy (REPEAT trial): study protocol for a multicentre, double-blind, double-dummy, 2×2 partial factorial, randomised controlled trial. BMJ Open Respir. Res. 2022; 9 (1): e001236. DOI:10.1136/bmjresp-2022-001236.; Serra A., Schito G.C., Nicoletti G., Fadda G. A therapeutic approach in the treatment of infections of the upper airways: thiamphenicol glycinate acetylcysteinate in sequential treatment (systemic-inhalatory route). Int. J. Immunopathol. Pharmacol. 2007; 20 (3): 607–617. DOI:10.1177/039463200702000319.; Blasi F., Page C., Rossolini G.M. et al. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir Med. 2016; 117: 190–197. DOI:10.1016/j.rmed.2016.06.015.; Olofsson A.C., Hermansson M., Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl. Environ. Microbiol. 2003; 69 (8): 4814–4822. DOI:10.1128/aem.69.8.4814-4822.2003.; Иванчик Н.В., Сухорукова М.В., Чагарян А.Н. и др. In vitro активность тиамфеникола в отношении клинических изолятов Haemophilus influenzae, Streptococcus pneumoniae и Streptococcus pyogenes. Клиническая микробиология и антимикробная химиотерапия. 2021; 23 (1): 92–99. DOI:10.36488/cmac.2021.1.92-99.; Bilton D., Tino G., Barker A.F. et al. Inhaled mannitol for non-cystic fibrosis bronchiectasis: a randomised, controlled trial. Thorax. 2014; 69 (12): 1073–1079. DOI:10.1136/thoraxjnl-2014-205587.; Lee A.L., Gordon C.S., Osadnik C.R. Exercise training for bronchiectasis. Cochrane Database Syst. Rev. 2021; 4 (4): CD013110. DOI:10.1002/14651858.cd013110.pub2.; Etienne T., Spiliopoulos A., Megevand R. [Bronchiectasis: indication and timing for surgery]. Ann. Chir. 1993; 47 (8): 729–735 (in French).; Yu J.A., Pomerantz M., Bishop A. et al. Lady windermere revisited: treatment with thoracoscopic lobectomy/segmentectomy for right middle lobe and lingular bronchiectasis associated with non-tuberculous mycobacterial disease. Eur. J. Cardiothorac. Surg. 2011; 40 (3): 671–675. DOI:10.1016/j.ejcts.2010.12.028.; Weill D., Benden C., Corris P.A. et al. A consensus document for the selection of lung transplant candidates: 2014 – an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2015; 34 (1): 1–15. DOI:10.1016/j.healun.2014.06.014.; Fujimoto T., Hillejan L., Stamatis G. Current strategy for surgical management of bronchiectasis. Ann. Thorac Surg. 2001; 72 (5): 1711–1715. DOI:10.1016/s0003-4975(01)03085-5.; Kutlay H., Cangir A.K., Enon S. et al. Surgical treatment in bronchiectasis: analysis of 166 patients. Eur. J. Cardiothorac. Surg. 2002; 21 (4): 634–637. DOI:10.1016/s1010-7940(02)00053-2.; Leard L.E., Holm A.M., Valapour M. et al. Consensus document for the selection of lung transplant candidates: An update from the International Society for heart and lung transplantation. J. Heart Lung Transplant. 2021; 40 (11): 1349–1379. DOI:10.1016/j.healun.2021.07.005.; https://journal.pulmonology.ru/pulm/article/view/4474

  3. 3
    Academic Journal

    المصدر: Neuromuscular Diseases; Том 14, № 2 (2024); 25‑37 ; Нервно-мышечные болезни; Том 14, № 2 (2024); 25‑37 ; 2413-0443 ; 2222-8721

    وصف الملف: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/600/382; Coste B., Mathur J., Schmidt M. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010; 330(6000):55–60. DOI:10.1126/science.1193270; Coste B., Xiao B., Santos J.S. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 2012;483(7388):176–81. DOI:10.1038/nature10812; Wang L., Zhou H., Zhang M. et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 2019;573(7773):225–9. DOI:10.1038/s41586-019-1505-8; Guo Y.R., MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife 2017;6:e33660. DOI:10.7554/eLife.33660; Kefauver J.M., Ward A.B., Patapoutian A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020;587(7835):567–76. DOI:10.1038/s41586-020-2933-1; Felsenthal N., Zelzer E. Mechanical regulation of musculoskeletal system development. Development 2017;144:4271–83. DOI:10.1242/dev.151266; McMillin M.J., Beck A.E., Chong J.X. et al. Mutations in PIEZO2 cause Gordon syndrome, Marden–Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet 2014;94(5):734–44.; Desai D., Stiene D., Song T., Sadayappan S. Distal arthrogryposis and lethal congenital contracture syndrome – an overview. Front Physiol 2020;11:689. DOI:10.3389/fphys.2020.00689; Coste B., Houge G., Murray M.F. et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal athrogryposis. Proc Natl Acad Sci USA 2013;110(12):4667–72. DOI:10.1073/pnas.1221400110; Маркова Т.В., Дадали Е.Л., Никитин С.С. и др. Клинико-генетические характеристики дистальных артрогрипозов, обусловленных мутациями в гене PIEZO2. Нервно-мышечные болезни 2021;11(2):48–55. DOI:10.17650/2222-8721-2021-11-2-48-55; Sherlaw-Sturrock C.A., Willis T., Kiely N. et al. PIEZO2-related distal arthrogryposis type 5: Longitudinal follow-up of a threegeneration family broadens phenotypic spectrum, complications, and health surveillance recommendations for this patient group. Am J Med Genet A 2022;188(9):2790–5. DOI:10.1002/ajmg.a.62868; Xiong H., Yang J., Guo J. et al. Mechanosensitive Piezo channels mediate the physiological and pathophysiological changes in the respiratory system. Respir Res 2022;23(1):196. DOI:10.1186/s12931-022-02122-6; Ma Y., Zhao Y., Cai Z., Hao X. Mutations in PIEZO2 contribute to Gordon syndrome, Marden–Walker syndrome, and distal arthrogryposis: A bioinformatics analysis of mechanisms. Exp Ther Med 2019; 17(5):3518–24. DOI:10.3892/etm.2019.7381; Monies D., Abouelhoda M., Assoum M. et al. Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet 2019;104(6):1182–201. DOI:10.1016/j.ajhg.2019.04.011; Haliloglu G., Becker K., Temucin C. et al. Recessive PIEZO2 stop mutation causes distal arthrogryposis with distal muscle weakness, scoliosis and proprioception defects. J Hum Genet 2017;62(4):497–501. DOI:10.1038/jhg.2016.153; Delle Vedove A., Storbeck M., Heller R. et al. Biallelic loss of proprioception-related PIEZO2 causes muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Am J Hum Genet 2016;99(5):1206–16. DOI:10.1016/j.ajhg.2016.09.019; https://nmb.abvpress.ru/jour/article/view/600

  4. 4
    Academic Journal

    المساهمون: The study was supported by a government assignment from the Ministry of Science and Higher Education, Исследование выполнено при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания

    المصدر: Medical Genetics; Том 23, № 1 (2024); 3-18 ; Медицинская генетика; Том 23, № 1 (2024); 3-18 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2406/1763; Sridharan R., Monisha B., Kumar P.S., Gayathri K.V. Carbon nanomaterials and its applications in pharmaceuticals : A brief review. Chemosphere. 2022;294:133731.; Xu P.Y., Li X.Q., Chen W.G., et al. Progress in antiviral fullerene research. Nanomaterials (Basel). 2022;12(15):2547; Tian H.-R., Chen M.-M., Wang K., et al. An unconventional hydrofullerene C 66 H 4 with symmetric heptagons retrieved in low-pressure combustion. J. Am. Chem. Soc. 2019;141(16):6651-6657.; Zhang H.-G., Zhuo Y.-Q., Zhang X.-M., et al. Synthesis of fullerenes from a nonaromatic chloroform through a newly developed ultrahigh-temperature flash vacuum pyrolysis apparatus. Nanomaterials. 2021;11(11):3033.; Kornev A.B., Khakina E.A., Troyanov S.I., et al. Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C60Cl6 as a precursor. Chem. Commun. 2012;48(44):5461-3; Mashino T. [Development of Bio-active Fullerene Derivatives Suitable for Drug]. Yakugaku Zasshi. 2022;142(2):165-179. (In Japanese); Dellinger A., Zhou Z., Connor J., et al. Application of fullerenes in nanomedicine: An update. Nanomedicine. 2013;8(7):1191-208.; McEwen C.N., McKay R.G., Larsen BS. C 60 as a radical sponge. J. Am. Chem. Soc 1992;114:4412-4.; Maas M. Carbon nanomaterials as antibacterial colloids. Materials. 2016 Jul 25;9(8):617.; Yang B., Chen Y., Shi J. Reactive oxygen species (ROS)-based nano-medicine. Chem. Rev. 2019;119(8):4881-4985.; Li L., Zhen M., Wang H., et al. Functional gadofullerene nanoparticles trigger robust cancer immunotherapy based on rebuilding an immunosuppressive tumor microenvironment. Nano Lett. 2020;20(6):4487-4496.; Zhou Y., Li J., Ma H., et al. Biocompatible [60]/[70] fullerenols: potent defense against oxidative injury induced by reduplicative chemotherapy. ACS Appl. Mater. Interfaces. 2017;9(41):35539-35547; Norton S.K., Wijesinghe D.S., Dellinger A., et al. Epoxyeicosatrienoic acids are involved in the C70 fullerene derivative–induced control of allergic asthma. J. Allergy Clin. Immunol. 2012;130(3):761-769.e2.; Zhou Z., Lenk R.P., Dellinger A., Wilson S.R., Sadler R., Kepley C.L. Liposomal formulation of amphiphilic fullerene antioxidants. Bioconjugate Chem. 2010;21(9):1656-61.; Basso A.S., Frenkel D., Quintana F.J., et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J. Clin. Investig. 2008;118(4):1532-43.; Tokuyama H., Yamago S., Nakamura E., Shiraki T., Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J. Am. Chem. Soc. 1993;115:7918-9.; Dugan L.L., Turetsky D.M., Du C., et al. Carboxyfullerenes as neuroprotective& agents. Proc. Natl. Acad. Sci. USA. 1997; 94(17): 9434-9.; Wong C.-W., Zhilenkov A.V., Kraevaya O.A., Mischenko D.V., Troshin P.A., Hsu S.-H. Toward understanding the anti-tumor effects of water-soluble fullerene derivatives on lung cancer cells: apoptosis or autophagy pathways? J. Med. Chem. 2019;62(15):7111-7125.; Sigwalt D., Holler M., Iehl J., Nierengarten J.-F., Nothisen M., Morin E., Remy J.-S. Gene delivery with polycationic fullerene hexakis-adducts. Chem. Commun. 2011;47(16):4640-2.; Fan J., Fang G., Zeng F., Wang X., Wu S. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small. 2013;9(4):613-21.; Sengupta J., Hussain C.M. The emergence of carbon nanomaterials as effective nano-avenues to fight against COVID-19. Materials (Basel). 2023;16(3):1068.; Panda M., Purohit P., Wang Y., Meher B.R. Functionalized carbon nanotubes as an alternative to traditional anti-HIV-1 protease inhibitors: An understanding towards Nano-medicine development through MD simulations. J Mol Graph Model. 2022;117:108280.; Katin K.P., Kochaev A.I., Kaya S., El-Hajjaji F., Maslov M.M. Ab initio insight into the interaction of metal-decorated fluorinated carbon fullerenes with Anti-COVID drugs. Int J Mol Sci. 2022;23(4):2345.; Křížová I., Dostálková A., Castro E., Prchal J., Hadravová R., Kaufman F., Hrabal, Ruml T., Llano M., Echegoyen L., Rumlová M. Fullerene derivatives prevent packaging of viral genomic RNA into HIV-1 particles by binding nucleocapsid protein. Viruses. 2021;13(12):2451.; Yao C., Xiang F., Xu Z. Metal oxide nanocage as drug delivery systems for Favipiravir, as an effective drug for the treatment of COVID-19: a computational study. J Mol Model. 2022;28(3):64.; Zhu S., Luo F., Zhu B., Ling F., Wang E.L., Liu T.Q., Wang G.X. A nanobody-mediated virus-targeting drug delivery platform for the central nervous system viral disease therapy. Microbiol Spectr. 2021;9(3):e0148721.; Friedman S.H., DeCamp D.L., Sijbesma R.P., Srdanov G., Wudl F., Kenyon G.L. Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification. J. Am. Chem. Soc. 1993;115:6506-9.; Mashino T., Shimotohno K., Ikegami N., et al. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 2005;15(4):1107-9.; Tollas S., Bereczki I., Borbás A., Batta G., Vanderlinden E., Naesens L., Herczegh P. Synthesis of a cluster-forming si-alylthio-d-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuram-inidase. Bioorg. Med. Chem. Lett. 2014;24(11):2420-3.; Muñoz A., Sigwalt D., Illescas B.M., et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus in-fection. Nat. Chem. 2016;8(1):50-7.; Fedorova N.E., Klimova R.R., Tulenev Y.A., et al.Carboxylic fullerene C 60 derivatives: efficient microbicides against herpes simplex virus and cytomegalovirus infections in vitro. Mendeleev Commun. 2012;22:254-6.; Fiorito S., Serafino A., Andreola F., Togna A., Togna G. Toxicity and biocompatibility of carbon nanoparticles. J Nanosci Nanotechnol. 2006;6(3):591-9.; Stern S.T., McNeil S.E. Nanotechnology safety concerns revisited. Toxicol Sci. 2008;101(1):4-21.; Lehto M., Karilainen T., Róg T., et al. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals. PLoS One. 2014;9(12):e114490.; Ruan H., Zhang X., Yuan J., Fang X. Effect of water-soluble fullerenes on macrophage surface ultrastructure revealed by scanning ion conductance microscopy. RSC Adv. 2022;12(34):22197-22201.; Park E.J., Kim H., Kim Y., Yi J., Choi K., Park K. Carbon fullerenes (C 60s ) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol. 20105;244(2):226-33.; Sayes C.M., Gobin A.M., Ausman K.D., Mendez J., West J.L., Colvin V.L. Nano-C 60 cytotoxicity is due to lipid peroxidation. Biomaterials. 2005;26(36):7587-95.; Sinegubova E.O., Kraevaya O.A., Volobueva A.S., et al. Water-soluble fullerene C 60 derivatives are effective inhibitors of influenza virus reproduction. Microorganisms. 2023;11(3):681.; Ershova E.S., Sergeeva V.A., Tabakov V.J., et al. Functionalized fullerene increases NF-kappaB activity and blocks genotoxic effect of oxidative stress in serum-starving human embryo lung diploid fibroblasts. Oxid. Med. Cell. Longev. 2016;2016:9895245.; Ershova E.S., Sergeeva V., Chausheva A.I., et al. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis. 2016;805:46-57.; Kostyuk S.V., Proskurnina E.V., Savinova E.A., et al. Effects of functionalized fullerenes on ROS homeostasis determine their cytoprotective or cytotoxic properties. Nanomaterials (Basel). 2020;10(7):1405.; Sergeeva V., Kraevaya O., Ershova E., et al. Antioxidant properties of fullerene derivatives depend on their chemical structure: a study of two fullerene derivatives on HELFs. Oxid Med Cell Longev. 2019;2019:4398695; Kostyuk S.V., Proskurnina E.V., Ershova E.S., et al. The phosphonate derivative of C 60 fullerene induces differentiation towards the myogenic lineage in human adipose-derived mesenchymal stem cells. Int J Mol Sci. 2021;22(17):9284.; Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008;4(5):278-86; Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21(7):363-383.; Dinkova-Kostova A.T., Copple I.M. Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol Sci. 2023;44(3):137-149.; Innocenzi P., Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci. 2020;11(26):6606-6622.; Xu T., Lai J., Su J., Chen D., Zhao M., Li Y., Zhu B. Inhibition of H 3 N 2 influenza virus induced apoptosis by selenium nanoparticles with chitosan through ROS-mediated signaling pathways. ACS Omega. 2023;8(9):8473-8480.; Hasan A., Devi Ms.S., Sharma G., et al. Vathasura Kudineer, an Andrographis based polyherbal formulation exhibits immunomodulation and inhibits chikungunya virus (CHIKV) under invitro conditions. J Ethnopharmacol. 2023;302(Pt A):115762.; Skariyachan S., Gopal D., Deshpande D., Joshi A., Uttarkar A., Niranjan V. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infect Genet Evol. 2021;96:105155.; Kobayashi T., Yasuno T., Takahashi K., Nakamura S., Mashino T., Ohe T. Novel pyridinium-type fullerene derivatives as multitargeting inhibitors of HIV-1 reverse transcriptase, HIV-1 protease, and HCV NS5B polymerase. Bioorg Med Chem Lett. 2021;49:128267.; Hurmach V.V., Platonov M.O., Prylutska S.V., Scharff P., Prylutskyy Y.I., Ritter U. C 60 fullerene against SARS-CoV-2 coronavirus: an in silico insight. Sci Rep. 2021;11(1):17748.; Riley P.R., Narayan R.J. Recent advances in carbon nanomaterials for biomedical applications: A review. Curr Opin Biomed Eng. 2021;17:100262.; https://www.medgen-journal.ru/jour/article/view/2406

  5. 5
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 61, No 5 (2023); 608-617 ; Научно-практическая ревматология; Vol 61, No 5 (2023); 608-617 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3445/2324; Ассоциация детских ревматологов. Клинические рекомендации. Юношеский артрит. 2017:1-116.; Mortier GR, Chapman K, Leroy JL, Briggs MD. Clinical and radiographic features of multiple epiphyseal dysplasia not linked to the COMP or type IX collagen genes. Eur J Hum Genet. 2001;9(8):606-612. doi:10.1038/sj.ejhg.5200690.; Anthony S, Munk R, Skakun W, Masini M. Multiple epiphyseal dysplasia. J Am Acad Orthop Surg. 2015;23(3):164-172. doi:10.5435/JAAOS-D-13-00173; Dennis EP, Greenhalgh-Maychell PL, Briggs MD. Multiple epiphyseal dysplasia and related disorders: Molecular genetics, disease mechanisms, and therapeutic avenues. Dev Dyn. 2021;250(3):345-359. doi:10.1002/dvdy.221; Markova T, Kenis V, Melchenko E, Alieva A, Nagornova T, Orlova A, et al. Clinical and genetic characteristics of multiple epiphyseal dysplasia type 4. Genes (Basel). 2022;13(9):1512. doi:10.3390/genes13091512; Маркова ТВ, Кенис ВМ, Никитин СС, Мельченко ЕВ, Нагорнова ТC, Осипова ДВ, и др. Дифференциальная диагностика миопатии и множественной эпифизарной дисплазии, обусловленной мутациями в гене COMP, в детском возрасте. Нервно-мышечные болезни. 2022;12(2):37-46. doi:10.17650/2222-8721-2022-12-2-37-46; Kozhevnikov A, Pozdeeva NA, Melchenko EV, Konev M, Kenis VM, Afonichev KA, et al. Recessive multiple epiphyseal dysplasia in differential diagnosis of juvenile arthritis. Proceedings of the 25th European Paediatric Rheumatology Congress (PReS 2018). Paediatric Rheumatology. 2018;16(Suppl 2):61.; DNARecommendations. Version 2.15.11. URL: http://varnomen.hgvs.org/recommendations/DNA (Accessed: 23th October 2023).; Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi:10.1038/gim.2015.30; Halász K, Kassner A, Mörgelin M, Heinegård D. COMP acts as a catalyst in collagen fibrillogenesis. J Biol Chem. 2007;282(43):31166-31173. doi:10.1074/jbc.M705735200; Tan K, Duquette M, Joachimiak A, Lawler J. The crystal structure of the signature domain of cartilage oligomeric matrix protein: implications for collagen, glycosaminoglycan and integrin binding. FASEB J. 2009;23(8):2490-2501. doi:10.1096/fj.08-128090; Chen TL, Posey KL, Hecht JT, Vertel BM. COMP mutations: Domain-dependent relationship between abnormal chondrocyte trafficking and clinical PSACH and MED phenotypes. J Cell Biochem. 2008;103(3):778-787. doi:10.1002/jcb.21445; Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, Perälä M, Carter L, et al. A mutation in COL9A1 causes multiple epiphyseal dysplasia: Further evidence for locus heterogeneity. Am J Hum Genet. 2001;69(5):969-980. doi:10.1086/324023; Posey KL, Coustry F, Veerisetty AC, Hossain MG, Gambello MJ, Hecht JT. Novel mTORC1 mechanism suggests therapeutic targets for COMPopathies. Am J Pathol. 2019;189(1):132-146. doi:10.1016/j.ajpath.2018.09.008; Piróg KA, Briggs MD. Skeletal dysplasias associated with mild myopathy – A clinical and molecular review. J Biomed Biotechnol. 2010;2010:686457. doi:10.1155/2010/686457; Bönnemann CG, Cox GF, Shapiro F, Wu JJ, Feener CA, Thompson TG, et al. A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy. Proc Natl Acad Sci U S A. 2000;97(3):1212-1217. doi:10.1073/pnas.97.3.1212; Jackson GC, Marcus-Soekarman D, Stolte-Dijkstra I, Verrips A, Taylor JA, Briggs MD. Type IX collagen gene mutations can result in multiple epiphyseal dysplasia that is associated with osteochondritis dissecans and a mild myopathy. Am J Med Genet A. 2010;152A(4):863-869. doi:10.1002/ajmg.a.33240; Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, ReeveDaly MP, Daly M, et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 1994;78(6):1073-1087. doi:10.1016/0092-8674(94)90281-x; Härkönen H, Loid P, Mäkitie O. SLC26A2-associated diastrophic dysplasia and rMED-clinical features in affected finnish children and review of the literature. Genes (Basel). 2021;12(5):714. doi:10.3390/genes12050714; Rossi A, Superti-Furga A. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance. Hum Mutat. 2001;17(3):159-171. doi:10.1002/humu.1; Unger S, Bonafé L, Superti-Furga A. Multiple epiphyseal dysplasia: Clinical and radiographic features, differential diagnosis and molecular basis. Best Pract Res Clin Rheumatol. 2008;22(1):19-32. doi:10.1016/j.berh.2007.11.009; Unger SL, Briggs MD, Holden P, Zabel B, Ala-Kokko L, Paassilta P, et al. Multiple epiphyseal dysplasia: Radiographic abnormalities correlated with genotype. Pediatr Radiol. 2001;31(1):10-18. doi:10.1007/s002470000362; https://rsp.mediar-press.net/rsp/article/view/3445

  6. 6
    Academic Journal

    المساهمون: The study did not have direct financial support, Спонсорская поддержка исследования отсутствовала

    المصدر: PULMONOLOGIYA; Том 33, № 2 (2023); 151-169 ; Пульмонология; Том 33, № 2 (2023); 151-169 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4223/3507; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4223/1805; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4223/1806; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4223/1811; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4223/1812; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4223/1813; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4223/1818; Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Таргетная терапия при муковисцидозе. Пульмонология. 2021; 31 (2): 226—236. DOI:10.18093/0869-0189-2021-31-2-226-236. /; Клинические рекомендации: Кистозный фиброз (муковис-цидоз). 2021. Доступно на: https://mukoviscidoz.org/doc/%D0%9A%D0%A0372.pdf/; Кондратьева Е.И., Каширская Н.Ю., Капранов Н.И., ред. Национальный консенсус «Муковисцидоз: определение, диагностические критерии, терапия». М.: Боргес; 2016. Доступно на: https://mukoviscidoz.org/doc/konsensus/CF_consensus_2017.pdf/; Castellani C., Cuppens H., Macek M.Jr. et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J. Cyst. Fibros. 2008; 7 (3): 179-196. DOI:10.1016/j.jcf.2008.03.009.; Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17 (5): 405-424. DOI:10.1038/gim.2015.30.; Иващенко Т.Э., Баранов В.С. Биохимические и молекулярногенетические основы патогенеза муковисцидоза. СПб: Интермедика; 2002. /; Айламазян Э.К., Баранов В.С., ред. Пренатальная диагностика наследственных и врожденных болезней. 2-е изд. М. МЕДпресс-информ; 2007. Доступно на: https://akusher-lib.ru/wp-content/uploads/2018/11/Prenatalnaya-diagnostika-nasledstvennyh-i-vrozhdennyh-boleznej.pdf; Harper J.C., Wilton L., Traeger-Synodinos J. et al. The ESHRE PGD Consortium: 10 years of data collection. Hum. Reprod. Update. 2012; 18 (3): 234-247. DOI:10.1093/humupd/dmr052.; Shapiro A.J., Zariwala M.A., Ferkol T. et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr. Pulmonol. 2016; 51 (2): 115-132. DOI:10.1002/ppul.23304.; Knowles M.R., Daniels L.A., Davis S.D. et al. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 2013; 188 (8): 913-922. DOI:10.1164/rccm.201301-0059CI.; Miravitlles M., Dirksen A., Ferrarotti I. et al. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in aj-antitrypsin deficiency. Eur. Respir. J. 2017; 50 (5): 1700610. DOI: 101.1183/13993003.00610-2017.; Faughnan M.E., Mager J.J., Hetts S.W. et al. Second International Guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. Ann. Intern. Med. 2020; 173 (12): 989-1001. DOI:10.7326/M20-1443.; McDonald J., Stevenson D.A. Hereditary hemorrhagic telangiectasia. [Updated: 2021]. In: Adam M.P. Everman D.B., Mirzaa G.M. et al., eds. GeneReviews®. Seattle (WA): University ofWashington; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1351/; Sattler E.C., Steinlein O.K. Birt-Hogg-Dubd syndrome. [Updated: 2020]. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993-2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1522/; Boone P.M., Scott R.M., Marciniak S.J. et al. The genetics of pneumothorax. Am. J. Respir. Crit. Care Med. 2019; 199 (11): 1344-1357. DOI:10.1164/rccm.201807-1212CI.; Garcia C.K., Talbert J.L. Pulmonary fibrosis predisposition overview. [Updated: 2022]. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., eds. GeneReviews® [Internet]. Seattle (WA): University ofWashington; 1993-2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1230/; Kropski J.A., Young L.R., Cogan J.D. et al. Genetic evaluation and testing of patients and families with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2017; 195 (11): 1423-1428. DOI:10.1164/rccm.201609-1820PP.; Northrup H., Koenig M.K., Pearson D.A., Au K.S. Tuberous sclerosis complex. [Updated: 2021]. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., eds. GeneReviews® [Internet]. Seattle (WA): University ofWashington; 1993-2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1220/; Huizing M., Malicdan M.C.V., Gochuico B.R., Gahl W.A. Her-mansky-Pudlak syndrome. [Updated: 2021]. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993-2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1287/; Gatti R., Perlman S. Ataxia-telangiectasia. [Updated: 2016]. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993-2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK26468/; Smith C.E., Berglof A. X-linked agammaglobulinemia. [Updated: 2016]. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993-2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1453/; Allenspach E.J., Rawlings D.J., Petrovic A. et al. X-linked severe combined immunodeficiency. [Updated: 2021]. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993-2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1410/; Shearer W.T., Dunn E., Notarangelo L.D. et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the primary immune deficiency treatment consortium experience. J. Allergy Clin. Immunol. 2014; 133 (4): 1092-1098. DOI:10.1016/j.jaci.2013.09.044.; Мизерницкий Ю.Л., Царегородцев А.Д., ред. Пульмонология детского возраста: проблемы и решения. Вып. 12. М.: Мед-практика-М; 2012. Доступно на: https://pedklin.ru/images/images/uploads/pages/v12.pdf; Кобринский Б.А., Подольная М.А., Богорад А.Е. и др. Регистр редких хронических заболеваний легких у детей. Врач и информационные технологии. 2015; (3): 64-69. Доступно на: https://cyberleninka.ru/article/n/registr-redkih-hronicheskih-zabolevaniy-legkih-u-detey?ysclid=lewvn975rj382571824; Капранов Н.И., Каширская Н.Ю., ред. Муковисцидоз. М.: Медпрактика-М; 2014. /; Каширская Н.Ю., Капранов Н.И., Кондратьева Е.И., ред. Муковисцидоз. 2-е изд. М.: Медпрактика-М; 2021. Доступно на: http://www.medpractika.ru/books/new/?id=316/; Petrova N, Balinova N., Marakhonov A. et al. Ethnic differences in the frequency of CFTR gene mutations in populations of the European and North Caucasian part of the Russian Federation. Front. Genet. 2021; 12: 678374. DOI:10.3389/fgene.2021.678374.; Ильенкова Н.А., Чикунов В.В., Кондратьева Е.И. Особенности спектра патогенных генетических вариантов гена CFTR у больных муковисцидозом в Красноярском крае. Медицинский вестник Северного Кавказа. 2020; 15 (2): 178-181. https://doi.org/10.14300/mnnc.2020.15043; Шадрина В.В., Кондратьева Е.И., Фурман Е.Г. и др. Основная клинико-лабораторная и генетическая характеристика пациентов с муковисцидозом, проживающих на территории Пермского края, других регионов Приволжского федерального округа и Центрального федерального округа России. Пермский медицинский журнал. 2020; 37 (1): 48-62. https://doi.org/10.17816/pmj37148-62; Кондратьева Е.И., Петрова Н.В., Воронкова А.Ю. и др. Многообразие протяженных перестроек в гене CFTR у российских больных муковисцидозом. Медицинская генетика. 2020; 19 (2): 28-34. https://doi.org/10.25557/2073-7998.2020.02.28-34; Петрова Н.В., Марахонов А.Ю., Васильева Т.А. и др. Особенности спектра мутаций, выявленных при комплексном исследовании гена CFTR у российских больных муковисцидозом. Альманах клинической медицины. 2019; 47 (1): 38-46. https://doi.org/10.18786/2072-0505-2019-47-004; Кондратьева Е.И., Красовский С.А., Старинова М.А. и др., ред. Регистр пациентов с муковисцидозом в Российской Федерации. 2020 год. М.: Медпрактика-М; 2022. Доступно на: https://api.med-gen.ru/site/assets/files/51107/site_registre_2020.pdf; Castellani C., Duff A.J.A., Bell S.C. et al. ECFS best practice guidelines: the 2018 revision. J. Cyst. Fibros. 2018; 17 (2): 153-178. DOI:10.1016/j.jcf.2018.02.006.; Кондратьева Е.И., Амелина Е.Л., Чернуха М.Ю. и др. Обзор клинических рекомендаций «Кистозный фиброз (муковисцидоз)» (2020). Пульмонология. 2021; 31 (2): 135-146. https://doi.org/10.18093/0869-0189-2021-31-2-135-146; Lucas J.S., Barbato A., Collins S.A. et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2017; 49 (1): 1601090. DOI:10.1183/13993003.01090-2016.; Lieberman J., Winter B., Sastre A. Alphaj-antitrypsin Pi-types in 965 COPD patients. Chest. 1986; 89 (3): 370-373. DOI:10.1378/chest.89.3.370.; Журкова Н.В., Кондакова О.Б., Строкова Т.В. и др. Недостаточность aj-антитрипсина у детей с патологией печени. Педиатрия. 2008; 87 (3): 138-141. Доступно на: https://cyberleninka.ru/article/n/nedostatochnost-1-antitripsina-u-detey-s-patologiey-pecheni; Stoller J.K., Hupertz V., Aboussouan L.S. Alpha-1 antitrypsin deficiency. [Updated: 2020]. In: Adam M.P., Everman D.B., Mir-zaa G.M. et al., eds. GeneReviews® [Internet]. Seattle (WA): University ofWashington; 1993-2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1519/; Диагностика и лечение легочной патологии при дефиците альфа-1-антитрипсина: доклад Европейского респираторного общества. Пульмонология. 2018; 28 (3): 273-295. DOI:10.18093/0869-0189-2018-28-3-273-295. /; Страхов С.Н., Розинова Н.Н., Соколова Л.В. и др. Болезнь Ослера-Рандю-Вебера с поражением легких у детей. Российский вестник перинатологии и педиатрии. 1994; 39 (4): 31-33. /; Kuhnel T., Wirsching K., Wohlgemuth W. et al. Hereditary hemorrhagic telangiectasia. Otolaryngol. Clin. North Am. 2018; 51 (1): 237-254. DOI:10.1016/j.otc.2017.09.017.; van Gent M.W., Post M.C., Snijder R.J. et al. Real prevalence of pulmonary right-to-left shunt according to genotype in patients with hereditary hemorrhagic telangiectasia: a transthoracic contrast echocardiography study. Chest. 2010; 138 (4): 833-839. DOI:10.1378/chest.09-1849.; Blivet S., Cobarzan D., Beauchet A. et al. Impact of pulmonary arteriovenous malformations on respiratory-related quality of life in patients with hereditary haemorrhagic telangiectasia. PLoS One. 2014; 9 (3): e90937. DOI:10.1371/journal.pone.0090937.; Shovlin C.L., Chamali B., Santhirapala V. et al. Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets. PLoS One. 2014; 9 (2): e88812. DOI:10.1371/journal.pone.0088812.; Al-Samkari H. Hereditary hemorrhagic telangiectasia: systemic therapies, guidelines, and an evolving standard of care. Blood. 2021; 137 (7): 888-895. DOI:10.1182/blood.2020008739.; Menko F.H., van Steensel M.A., Giraud S. et al. Birt-Hogg-Dubd syndrome: diagnosis and management. Lancet Oncol. 2009; 10 (12): 1199-1206. DOI:10.1016/S1470-2045(09)70188-3.; Gunji Y., Akiyoshi T., Sato T. et al. Mutations of the Birt-Hogg-Dube gene in patients with multiple lung cysts and recurrent pneumothorax. J. Med. Genet. 2007; 44 (9): 588-593. DOI:10.1136/jmg.2007.049874.; Schmidt L.S., Nickerson M.L., Warren M.B. et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dubd syndrome. Am. J. Hum. Genet. 2005; 76 (6): 1023-1033. DOI:10.1086/430842.; Graham R.B., Nolasko M., Peterlin B., Garcia C.K. Nonsense mutations in folliculin presenting as isolated familial spontaneous pneumothorax in adults. Am. J. Respir. Crit. Care Med. 2005; 172 (1): 39-44. DOI:10.1164/rccm.200501-143OC.; Toro J.R., Wei M.H., Glenn G.M. et al. BHD mutations, clinial and molecular genetic investigations of Birt-Hogg-Dubd syndrome: a new series of 50 families and a review of published reports. J. Med. Genet. 2008; 45 (6): 321-331. DOI:10.1136/jmg.2007.054304.; Misago N., Joh K., Yatsuki H. et al. A BHD germline mutation identified in an Asian family with Birt-Hogg-Dubd syndrome. Acta Derm. Venereol. 2008; 88 (4): 423-425. DOI:10.2340/00015555-0439.; Frohlich B.A., Zeitz C., Mdtyds G. et al. Novel mutations in the folliculin gene associated with spontaneous pneumothorax. Eur. Respir. J. 2008; 32 (5): 1316-1320. DOI:10.1183/09031936.00132707.; Leter E.M., Koopmans A.K., Gille J.J. et al. Birt-Hogg-Dubd syndrome: clinical and genetic studies of 20 families. J. Invest. Dermatol. 2008; 128 (1): 45-49. DOI:10.1038/sj.jid.5700959.; Woodward E.R., Ricketts C., Killick P. et al. Familial non-VHL clear cell (conventional) renal cell carcinoma: clinical features, segregation analysis, and mutation analysis of FLCN. Clin. Cancer Res. 2008; 14 (18): 5925-5930. DOI:10.1158/1078-0432.CCR-08-0608.; Butnor K.J., Guinee D.G. Jr. Pleuropulmonary pathology of Birt-Hogg-Dubd syndrome. Am. J. Surg. Pathol. 2006; 30 (3): 395-399. DOI:10.1097/01.pas.0000183571.17011.06.; Ayo D.S., Aughenbaugh G.L., Yi E.S. et al. Cystic lung disease in Birt-Hogg-Dube syndrome. Chest. 2007; 132 (2): 679-684. DOI:10.1378/chest.07-0042.; Graham R.B., Nolasco M., Peterlin B., Garcia C.K. Nonsense mutations in folliculin presenting as isolated familial spontaneous pneumothorax in adults. Am. J. Respir. Crit. Care Med. 2005; 172 (1): 39-44. DOI:10.1164/rccm.200501-143OC.; Furuya M., Nakatani Y. Birt-Hogg-Dube syndrome: clinicopath-ological features of the lung. J. Clin. Pathol. 2013; 66 (3): 178-186. DOI:10.1136/jclinpath-2012-201200.; Zbar B., Alvord W.G., Glenn G. et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dubd syndrome. Cancer Epidemiol. Biomarkers Prev. 2002; 11 (4): 393-400. Available at: https://aacrjournals.org/cebp/article/11/4/393/166608/Risk-of-Renal-and-Colonic-Neoplasms-and; Toro J.R., Pautler S.E., Stewart L. et al. Lung cysts, spontaneous pneumothorax, and genetic associations in 89 families with Birt-Hogg-Dubd syndrome. Am. J. Respir. Crit. Care Med. 2007; 175 (10): 1044-1053. DOI:10.1164/rccm.200610-1483OC.; Davis A.M, Wensley D.F, Phelan P.D. Spontaneous pneumothorax in paediatric patients. Respir. Med. 1993; 87 (7): 531-534. DOI:10.1016/0954-6111(93)90009-o.; Berlin R. Familial occurrence of pneumothorax simplex. Acta Med. Scand. 1950; 137 (4): 268-275. DOI:10.1111/j.0954-6820.1950.tb11378.x.; Boyd D.H. Familial spontaneous pneumothorax. Scott. Med. J. 1957; 2 (5): 220-221. DOI:10.1177/003693305700200506.; Ren H.Z, Zhu C.C, Yang C. et al. Mutation analysis of the FLCN gene in Chinese patients with sporadic and familial isolated primary spontaneous pneumothorax. Clin. Genet. 2008; 74 (2): 178-183. DOI:10.1111/j.1399-0004.2008.01030.x.; Bourneville D.M. Sclerose tubereuse des circonvolutions cerebrales: idiotie et epilepsie hemiplegique. Arch. Neurol. (Paris). 1880; 1: 81-91.; Orlova K.A., Crino P.B. The tuberous sclerosis complex. Ann. N.Y. Acad. Sci. 2010; 1184: 87-105. DOI:10.1111/j.1749-6632.2009.05117.x.; Crino P.B., Nathanson K.L., Henske E.P. The tuberous sclerosis complex. N. Engl. J. Med. 2006; 355 (13): 1345-1356. DOI:10.1056/NEJMra055323.; Franz D.N., Brody A., Meyer C. et al. Mutational and radiographic analysis of pulmonary disease consistent with lymphangioleiomyo-matosis and micronodular pneumocyte hyperplasia in women with tuberous sclerosis. Am. J. Respir. Crit. Care Med. 2001; 164: 661-668. DOI:10.1164/ajrccm.164.4.2011025.; Costello L.C., Hartman T.E., Ryu J.H. High frequency of pulmonary lymphangioleiomyomatosis in women with tuberous sclerosis complex. Mayo Clin. Proc. 2000; 75 (6): 591-594. DOI:10.4065/75.6.591.; Bissler J.J., McCormack F.X., Young L.R. et al. Sirolimus for an-giomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 2008; 358 (2): 140-151. DOI:10.1056/NEJMoa063564.; Goldberg H.J., Harari S., Cottin V. et al. Everolimus for the treatment of lymphangioleiomyomatosis: a phase II study. Eur. Respir. J. 2015; 46 (3): 783-794. DOI:10.1183/09031936.00210714.; Бойцова Е.В., Овсянников Д.Ю., Беляшова М.А. Интерстициальные заболевания легких у детей. Вестник современной клинической медицины. 2014; 7 (6): 71-76. Доступно на: http://vskmjournal.org/images/Files/Issues_Archive/2014/Issue_6/VSKM_2014_N_6_p71-76.pdf; Авдеев С.Н. Идиопатический фиброз легких: новая парадигма. Терапевтический архив. 2017; 89 (1): 112-122. https://doi.org/10.17116/terarkh2017891112-122; Авдеев С.Н. Гиперчувствительный пневмонит. Пульмонология. 2021; 31 (1): 88-99. https://doi.org/10.18093/0869-0189-2021-31-1-88-99; Российское респираторное общество. Клинические рекомендации: Идиопатический легочный фиброз. 2021. Доступно на: https://spulmo.ru/upload/kr/ILF_2021.pdf/; Vancheri C., Failla M., Crimi N., Raghu G. Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur. Respir. J. 2010; 35 (3): 496-504. DOI:10.1183/09031936.00077309.; Newton C.A., Molyneaux P.L., Oldham J.M. Clinical genetics in interstitial lung disease. Front. Med. (Lausanne). 2018; 5: 116. DOI:10.3389/fmed.2018.00116.; Martinez F.J., de Andrade J.A., Anstrom K.J. et al. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014; 370 (22): 2093-2101. DOI:10.1056/NEJMoa1401739.; Raghu G., Anstrom K.J., King T.E. Jr et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 2012; 366 (21): 1968-1977. DOI:10.1056/NEJMoa1113354.; Oldham J.M., Ma S.F., Martinez F.J. et al. TOLLIP, MUC5B, and the response to N-acetylcysteine among Individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2015; 192 (12): 1475-1482. DOI:10.1164/rccm.201505-1010OC.; Raghu G., Remy-Jardin M., Richeldi L. et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 2022; 205 (9): e18-47. DOI:10.1164/rc-cm.202202-0399ST.; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Диагностика и лечение идиопатического легочного фиброза. Федеральные клинические рекомендации. Пульмонология. 2016; 26 (4): 399-419. DOI:10.18093/0869-0189-2016-26-4-399-419. /; Huizing M., Malicdan M.C.V., Wang J.A. et al. Hermansky-Pudlak syndrome: mutation update. Hum. Mutat. 2020; 41: 543-580. DOI:10.1002/humu.23968.; El-Chemaly S., Young L.R. Hermansky-Pudlak syndrome. Clin. Chest Med. 2016; 37 (3): 505-511. DOI:10.1016/j.ccm.2016.04.012.; Vicary G.W., Vergne Y., Santiago-Cornier A. et al. Pulmonary fibrosis in Hermansky-Pudlak syndrome. Ann. Am. Thorac. Soc. 2016; 13 (10): 1839-1846. DOI:10.1513/AnnalsATS.201603-186FR.; Harada T., Ishimatsu Y., Nakashima S. et al. An autopsy case of Hermansky-Pudlak syndrome: a case report and review of the literature on treatment. Intern. Med. 2014; 53 (23): 2705-2709. DOI:10.2169/internalmedicine.53.2239.; Bin Saeedan M., Faheem Mohammed S., Mohammed T.L. Hermansky-Pudlak syndrome: high-resolution computed tomography findings and literature review. Curr. Probl. Diagn. Radiol. 2015; 44 (4): 383-385. DOI:10.1067/j.cpradiol.2015.01.003.; O’Brien K.J., Introne W.J., Akal O. et al. Prolonged treatment with open-label pirfenidone in Hermansky-Pudlak syndrome pulmonary fibrosis. Mol. Genet. Metab. 2018; 125 (1-2): 168-173. DOI:10.1016/j.ymgme.2018.07.012.; El-Chemaly S., O’Brien K.J., Nathan S.D. et al. Clinical management and outcomes of patients with Hermansky-Pudlak syndrome pulmonary fibrosis evaluated for lung transplantation. PLoS One. 2018; 13 (3): e0194193. DOI:10.1371/journal.pone.0194193.; Авдеев С.Н., Айсанов З.Р., Белевский А.С. и др. Идиопатический легочный фиброз: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022; 32 (3): 473-495. DOI:10.18093/0869-0189-2022-32-3-473-495. /; Шамсутдинова Н.Г., Нуруллина Г.И., Ильинский В.И. и др. Редкие заболевания легких, связанные с накоплением. Практическая медицина. 2018; 16 (7-2): 109-112. Доступно на: https://cyberleninka.ru/article/n/redkie-zabolevaniya-legkih-svyazannye-s-nakopleniem /; Bourke S.J. Interstitial lung disease: progress and problems. Postgrad. Med. J. 2006; 82 (970): 494-499. DOI:10.1136/pgmj.2006.046417.; Castellana G., Castellana G., Gentile M. et al. Pulmonary alveolar microlithiasis: review of the 1022 cases reported worldwide. Eur. Respir. Rev. 2015; 24 (138): 607-620. DOI:10.1183/16000617.0036-2015.; Saito A., McCormack F.X. Pulmonary alveolar microlithiasis. Clin. Chest Med. 2016; 37 (3): 441-448. DOI:10.1016/j.ccm.2016.04.007.; Овсянников Д.Ю., Бойцова У.В., Жесткова М.А. и др. Неонатальная пульмонология. М.; 2022. Доступно на: https://kingmed.info/media/book/5/4700.pdf/; Cole F.S, Hamvas A., Rubinstein P. et al. Population-based estimates of surfactant protein B deficiency. Pediatrics. 2000; 105 (3, Pt 1): 538-541. DOI:10.1542/peds.105.3.538.; Hamvas A., Trusgnich M., Brice H. et al. Population-based screening for rare mutations: high-throughput DNA extraction and molecular amplification from Guthrie cards. Pediatr. Res. 2001; 50 (5): 666-668. DOI:10.1203/00006450-200111000-00021.; Овсянников Д. Ю., Беляшова М.А., Крушельницкий А.А. Врожденный дефицит белков сурфактанта. Неонатология: новости, мнения, обучение. 2014; (1 (3)): 80-90. Доступно на: https://cyberleninka.ru/article/n/vrozhdennyy-defitsit-belkov-surfaktanta/viewer /; Floros J., Fan R. Surfactant protein A and B genetic variants and respiratory distress syndrome, allele interactions. Biol. Neonate. 2001; 80 (Suppl. 1): 22-25. DOI:10.1159/000047173.; Kurland G., Deterding R.R., Hagood J.S. et al. An official American Thoracic Society clinical practice guideline: Classification, evaluation, and management of childhood interstitial lung disease in infancy. Am. J. Respir. Crit. Care Med. 2013; 188 (3): 376-394. DOI:10.1164/rccm.201305-0923ST.; Tangye S.G., Al-Herz W., Bousfiha A. et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2020; 40 (1): 24-64. DOI: m.m07/s10875-019-00737-x.; Chinn I.K., Chan A.Y., Chen K. et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma and Immunology. J. Allergy Clin. Immunol. 2020; 145 (1): 46-69. DOI:10.1016/j.jaci.2019.09.009.; Leonardi L., Rivalta B., Cancrini C. et al. Update in primary immunodeficiencies. Acta Biomed. 2020; 91 (11, Suppl.): e2020010. DOI:10.23750/abm.v91i11-S.10314.; Swift M., Morrell D., Cromartie E. et al. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am. J. Hum. Genet. 1986; 39 (5): 573-583. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1684065/; Bott L., Lebreton J., Thumerelle C. et al. Lung disease in ataxia-telangiectasia. Acta Paediatr. 2007; 96 (7): 1021-1024. DOI:10.1111/j.1651-2227.2007.00338.x.; Nowak-Wegrzyn A., Crawford T.O., Winkelstein J.A. et al. Immunodeficiency and infections in ataxia-telangiectasia. J. Pediatr. 2004; 144 (4): 505-511. DOI:10.1016/j.jpeds.2003.12.046.; Schroeder S.A., Swift M., Sandoval C., Langston C. Interstitial lung disease in patients with ataxia-telangiectasia. Pediatr. Pulmonol. 2005; 39 (6): 537-543. DOI:10.1002/ppul.20209.; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019; 18 (2): 3-23. DOI:10.25557/2073-7998.2019.02.3-23. /; Аникаев А.Ю., Ломоносов А.М. Применение секвенирования нового поколения (NGS) в клинической практике. Лабораторная служба. 2014; 3 (1): 32-36. Доступно на: https://www.mediasphera.ru/issues/laboratornaya-sluzhba/2014/1/032305-2198201415; Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17 (5): 405-424. DOI:10.1038/gim.2015.30.; Воинова В.Ю., Николаева Е.А., Щербакова Н.В., Яблонская М.И. Высокопроизводительное секвенирование ДНК для идентификации генетически детерминированных заболеваний в педиатрической практике. Российский вестник перинатологии и педиатрии. 2019; 64 (1): 103-109. https://doi.org/10.21508/1027-4065-2019-64-1-103-109; https://journal.pulmonology.ru/pulm/article/view/4223

  7. 7
    Academic Journal

    المساهمون: The authors did not declare any conflicts of interests, Статья подготовлена при финансовой поддержке компании Solopharm

    المصدر: PULMONOLOGIYA; Том 33, № 2 (2023); 171-181 ; Пульмонология; Том 33, № 2 (2023); 171-181 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4209/3508; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4209/1750; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4209/1751; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4209/1788; Кондратьева Е.И., Красовский С.А., Старинова МА. и др., ред. Регистр пациентов с муковисцидозом в Российской Федерации. 2020 год. М.: Медпрактика-М; 2022. Доступно на: https://api.med-gen.ru/site/assets/files/51107/site_registre_2020.pdf [Дата обращения: 05.12.22].; European Cystic Fibrosis Society. ECFS patient registry. Updated: February 13, 2019. Available at: https://www.ecfs.eu/projects/ecfs-patient-registry/project [Accessed: December 12, 2022].; Salvatore D., Buzzetti R., Mastella G. An overview of international literature from cystic fibrosis registries. Part 5: Update 2012-2015 on lung disease. Pediatr. Pulmonol. 2016; 51 (11): 1251-1263. DOI:10.1002/ppul.23473.; Vongthilath R., Richaud Thiriez B., Dehillotte C. et al. Clinical and microbiological characteristics of cystic fibrosis adults never colonized by pseudomonas aeruginosa: analysis of the french CF registry. PLoS One. 2019; 14 (1): e0210201. DOI:10.1371/journal.pone.0210201.; McKone E.F., Ariti C., Jackson A. et al. Survival estimates in European cystic fibrosis patients and the impact of socioeconomic factors: a retrospective registry cohort study. Eur. Respir. J. 2021; 58 (3): 2002288. DOI:10.1183/13993003.02288-2020.; European Cystic Fibrosis Society. ECFS patient registry annual data report. 2020. Available at: https://www.ecfs.eu/sites/default/files/ECFSPR_Report_2020_v1.0%20%2807Jun2022%29_website.pdf [Accessed: December 10, 2022].; Красовский С.А., Амелина Е.Л., Черняк А.В. и др. Роль регистра московского региона в ведении больных муковисцидозом. Пульмонология. 2013; (2): 27-32. DOI:10.18093/0869-0189-2013-0-2-27-32.; Ашерова И.К., Капранов Н.И. Регистр как средство улучшения качества медицинской помощи больным муковисцидозом. Педиатрическая фармакология. 2012; 9 (3): 96-100. DOI:10.15690/pf.v9i3.330.; Кондратьева Е.И., Воронкова А.Ю., Бобровничий В.И. и др. Клинико-генетическая и микробиологическая характеристика больных муковисцидозом, проживающих в Московском регионе и Республике Беларусь. Пульмонология. 2018; 28 (3): 296-306. DOI:10.18093/0869-0189-2018-28-3-296-306.; Красовский С.А., Черняк А.В., Воронков А.Ю. и др. (ред.). Регистр больных муковисцидозом в Российской Федерации. 2016. М.: Медпрактика-М; 2018. Доступно на: https://mukoviscidoz.org/doc/registr/Registre_2016%20ctp.pdf [Дата об -ращения: 05.12.22].; Кистозный фиброз (муковисцидоз). Клинические рекомендации. 2021. Доступно на: https://mukoviscidoz.org/doc/%D0%9A%D0%A0372.pdf [Дата обращения: 10.12.22].; Castellani C., Duff A.J.A., Bell S.C. et al. ECFS best practice guidelines: the 2018 revision. J. Cyst. Fibres. 2018; 17 (2): 153-178. DOI:10.1016/j.jcf.2018.02.006.; European Cystic Fibrosis Society. Patient Registry. 2021. Available at: https://www.cff.org/medical-professionals/patient-registry [Accessed: December 10, 2022].; Michon A.L., Jumas-Bilak E., Chiron R. et al. Advances toward the elucidation of hypertonic saline effects on Pseudomonas aeruginosa from cystic fibrosis patients. PLoS One. 2014; 9 (2): e90164. DOI:10.1371/journal.pone.0090164.; Thorarinsdottir H.R., Kander T., Holmberg A. et al. Biofilm formation on three different endotracheal tubes: a prospective clinical trial. Crit. Care. 2020; 24 (1): 382. DOI:10.1186/s13054-020-03092-1.; Mitra S., Schiller D., Anderson C. et al. Hypertonic saline attenuates the cytokine-induced pro-inflammatory signature in primary human lung epithelia. PLoS One. 2017; 12 (12): e0189536. DOI:10.1371/journal.pone.0189536.; Buonpensiero P., De Gregorio F., Sepe A. et al. Hyaluronic acid improves “pleasantness” and tolerability of nebulized hypertonic saline in a cohort of patients with cystic fibrosis. Adv. Ther. 2010; 27 (11): 870-878. DOI:10.1007/s12325-010-0076-8.; Семивеличенко Е.Д., Ивкин Д.Ю., Оковитый С.В., Карев В.Е. Эффективность медицинского изделия на основе гипертонического раствора натрия хлорида (7 %) и натрия гиалуроната (0,1 %) на модели экспериментального фиброза легких. Фарматека. 2022; 29 (10): 31-36. DOI:10.18565/pharmateca.2022.10.31-36.; https://journal.pulmonology.ru/pulm/article/view/4209

  8. 8
    Academic Journal

    المساهمون: The work was carried out under the state task of the Ministry of Science and Higher Education of the Russian Federation for the Federal State Budgetary Scientific Institution “Research Centre for Medical Genetics”, Ministry of Science and Higher Education of the Russian Federation, on the topic: “Comprehensive analysis of geno-phenotypic correlations in cystic fibrosis and primary ciliary dyskinesia” No.122032300396-1, Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации для Федерального государственного бюджетного научного учреждения «Медико-генетический научный центр имени академика Н.П.Бочкова» Министерства науки и высшего образования Российской Федерации по теме «Комплексный анализ генофенотипических корреляций при муковисцидозе и первичной цилиарной дискинезии» № 122032300396-1

    المصدر: PULMONOLOGIYA; Том 33, № 2 (2023); 189-197 ; Пульмонология; Том 33, № 2 (2023); 189-197 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4213/3510; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4213/1919; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4213/1920; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4213/1921; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4213/1922; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4213/1923; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4213/1924; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4213/1925; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4213/1926; Veit G., Avramescu R.G., Chiang A.N. et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell. 2016; 27 (3): 424-433. DOI:10.1091/mbc.E14-04-0935.; Koch C., Hoiby N. Pathogenesis of cystic fibrosis. Lancet. 1993; 341 (8852): 1065-1069. DOI:10.1016/0140-6736(93)92422-p.; Cain C. Cystic fibrosis two-step. SciBX. 2012; 5 (8): 192. https://doi.org/10.1038/scibx.2012.192; Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Таргетная терапия при муковисцидозе. Пульмонология. 2021; 31 (2): 226-237. DOI:10.18093/0869-0189-2021-31-2-226-236.; Van Goor F., Hadida S., Grootenhuis P.D. et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. USA. 2011; 108 (46): 18843-18848. DOI:10.1073/pnas.1105787108.; Southern K.W., Patel S., Sinha I.P., Nevitt S.J. Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis. Cochrane Database Syst. Rev. 2018; 8 (8): CD010966. DOI:10.1002/14651858.cd010966.pub2.; Zaher A., Saygh J.E., Elsori D. et al. A review of Trikafta: triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Cureus. 2021; 13 (7): e16144. DOI:10.7759/cureus.16144; Кондратьева Е.И., Одинаева Н.Д., Шерман В.Д. и др. Первые результаты терапии двумя CFTR-модуляторами при муковисцидозе в детском возрасте. Педиатрия. Журнал имени Г.Н.Сперанского. 2022; 101 (3): 98-105. DOI:10.24110/0031-403X-2022-101-3-98-105.; Middleton P.G., Mall M.A., Drevinek P. et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single phe508del allele. N. Engl. J. Med. 2019; 381 (19): 1809-1819. https://doi.org/10.1056/NEJMoa1908639; Fajac I., Daines C., Durieu I. et al. Non-respiratory health-related quality of life in people with cystic fibrosis receiving elexacaftor/ tezacaftor/ivacaftor. J. Cyst. Fibros. 2022; 13: S1569-1993(22)00655-5. DOI:10.1016/j.jcf.2022.08.018.; Минздрав Российской Федерации. Клинические рекомендации: Кистозный фиброз (муковисцидоз). 2021. Доступно на: https://mukoviscidoz.org/doc/%D0%9A%D0%A0372.pdf; Donaldson S.H., Laube B.L., Mogayzel P. et al. Effect of luma-caftor-ivacaftor on mucociliary clearance and clinical outcomes in cystic fibrosis: results from the PROSPECT MCC sub-study. J. Cyst. Fibros. 2022; 21 (1): 143-145. DOI:10.1016/j.jcf.2021.05.004.; Carter S.C., Kearns S., Grogan B. et al. Effects of lumacaftor/iva-caftor in patients homozygous for F508del mutation with very advanced lung disease. J. Cyst. Fibros. 2017; 16 (Suppl. 1): S76. DOI:10.1016/S1569-1993(17)30412-5.; Cai Z.W., Liu J, Li H.Y., Sheppard D.N. Targeting F508del-CFTR to develop rational new therapies for cystic fibrosis. Acta Pharmacol. Sin. 2011; 32 (6): 693-701. DOI:10.1038/aps.2011.71.; Taylor-Cousar J.L., Mall M.A., Ramsey B.W. et al. Clinical development of triple-combination CFTR modulators for cystic fibrosis patients with one or two F508del alleles. ERJ Open Res. 2019; 5 (2): 00082-2019. DOI:10.1183/23120541.00082-2019.; Heijerman H.G., McKone E.F., Downey D.G. et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019; 394 (10212): 1940-1948. DOI:10.1016/S0140-6736(19)32597-8.; https://journal.pulmonology.ru/pulm/article/view/4213

  9. 9
    Academic Journal

    المؤلفون: Inga V. Anisimova, Svetlana B. Artemyeva, Elena D. Belousova, Nato D. Vashakmadze, Dmitriy V. Vlodavets, Tatiana A. Gremyakova, Olga S. Groznova, Valentina I. Guzeva, Elena V. Gusakova, Lyudmila M. Kuzenkova, Alexey L. Kurenkov, Sergey I. Kutsev, Svetlana V. Mikhaylova, Lyudmila P. Nazarenko, Sergey S. Nikitin, Artem Yu. Novikov, Tatiana V. Podkletnova, Elena V. Polevichenko, Alexander V. Polyakov, Gennady G. Prokopyev, Dmitry I. Rudenko, Svetlana A. Repina, Evgeniia V. Romanenko, Sergey O. Ryabykh, Gul’zhan E. Sakbaeva, Elena Yu. Sapego, Liliia R. Selimzyanova, Andrey A. Stepanov, Dmitry M. Subbotin, Vasiliy M. Suslov, Elena V. Tozliyan, Dmirty A. Feklistov, Nadezhda I. Shakhovskaya, Ekaterina V. Shreder, И. В. Анисимова, С. Б. Артемьева, Е. Д. Белоусова, Н. Д. Вашакмадзе, Д. В. Влодавец, Т. А. Гремякова, О. С. Грознова, В. И. Гузева, Е. В. Гусакова, Л. М. Кузенкова, А. Л. Куренков, С. И. Куцев, С. В. Михайлова, Л. П. Назаренко, С. С. Никитин, А. Ю. Новиков, Т. В. Подклетнова, Е. В. Полевиченко, А. В. Поляков, Г. Г. Прокопьев, Д. И. Руденко, С. А. Репина, Е. В. Романенко, С. О. Рябых, Г. Е. Сакбаева, Е. Ю. Сапего, Л. Р. Селимзянова, А. А. Степанов, Д. М. Субботин, В. М. Суслов, Е. В. Тозлиян, Д. А. Феклистов, Н. И. Шаховская, Е. В. Шредер

    المساهمون: Not specified, Отсутствует

    المصدر: Pediatric pharmacology; Том 20, № 5 (2023); 427-453 ; Педиатрическая фармакология; Том 20, № 5 (2023); 427-453 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2348/1529; Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9(1):77–93. doi: https://doi.org/10.1016/S1474-4422(09)70271-6; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251–267. doi: https://doi.org/10.1016/S1474-4422(18)30024-3; Emery AEH, Muntoni F, Quinlivan R. Duchenne Muscular Dystrophy. 4th ed. Oxford, UK: Oxford University Press; 2015.; Song TJ, Lee KA, Kang SW, et al. Three cases of manifesting female carriers in patients with Duchenne muscular dystrophy. Yonsei Med J. 2011;52(1):192–195. doi: https://doi.org/10.3349/ymj.2011.52.1.192; Ferlini A, Neri M, Gualandi F. The medical genetics of dystrophinopathies: molecular genetic diagnosis and its impact on clinical practice. Neuromuscul Disord. 2013;23(1):4–14. doi: https://doi.org/10.1016/j.nmd.2012.09.002; Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev. 2002;82(2):291–329. doi: https://doi.org/10.1152/physrev.00028.2001; Doorenweerd N, Mahfouz A, van Putten M, et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci Rep. 2017;7(1):12575. doi: https://doi.org/10.1038/s41598-017-12981-5; Jones H, De Vivo DC, Darras BT. Neuromuscular disorders of infancy, childhood and adolescence. A clinician’s approach. Oxford: Butterworth-Heinemann; 2003.; Romitti PA, Zhu Y, Puzhankara S, et al. Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics. 2015;135(3):513–521. doi: https://doi.org/10.1542/peds.2014-2044; Mah JK, Korngut L, Dykeman J, et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord. 2014;24(6):482–491. doi: https://doi.org/10.1016/j.nmd.2014.03.008; Moat SJ, Bradley DM, Salmon R, et al. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013;21(10):1049–1053. doi: https://doi.org/10.1038/ejhg.2012.301; Gloss D, Moxley RT 3rd, Ashwal S, Oskoui M. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(5):465–472. doi: https://doi.org/10.1212/WNL.0000000000002337; Baydur A, Gilgoff I, Prentice W, et al. Decline in respiratory function and experience with long-term assisted ventilation in advanced Duchenne’s muscular dystrophy. Chest. 1990;97(4):884–889. doi: https://doi.org/10.1378/chest.97.4.884; Fayssoil A, Abasse S, Silverston K. Cardiac Involvement Classification and Therapeutic Management in Patients with Duchenne Muscular Dystrophy. J Neuromuscul Dis. 2017;4(1):17–23. doi: https://doi.org/10.3233/JND-160194; Feingold B, Mahle WT, Auerbach S, et al. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association. Circulation. 2017;136(13):e200–e231. doi: https://doi.org/10.1161/CIR.0000000000000526; Грознова О.С., Влодавец Д.В., Артемьева С.Б. Поражение сердечно-сосудистой системы при прогрессирующей мышечной дистрофии Дюшенна: особенности диагностики, наблюдения и лечения // Педиатрия. Журнал им. Г.Н. Сперанского. — 2020. — Т. 99. — №3. — С. 95–102.; McNally EM, Kaltman JR, Benson DW, et al. Contemporary cardiac issues in Duchenne muscular dystrophy. Working Group of the National Heart, Lung, and Blood Institute in collaboration with Parent Project Muscular Dystrophy. Circulation. 2015;131(18):1590–1598. doi: https://doi.org/10.1161/CIRCULATIONAHA.114.015151; Грознова О.С., Чечуро В.В. Лечение кардиомиопатий у больных прогрессирующими мышечными дистрофиями // Российский вестник перинатологии и педиатрии. — 2011. — Т. 56. — № 2. — С. 58–62.; Matsumura T. Beta-blockers in Children with Duchenne Cardiomyopathy. Rev Recent Clin Trials. 2014;9(2):76–81. doi: https://doi.org/10.2174/1574887109666140908123856; Mavrogeni SI, Markousis-Mavrogenis G, Papavasiliou A, et al. Cardiac Involvement in Duchenne Muscular Dystrophy and Related Dystrophinopathies. Methods Mol Biol. 2018;1687:31–42. doi: https://doi.org/10.1007/978-1-4939-7374-3_3; Thomas TO, Morgan TM, Burnette WB, Markham LW. Correlation of heart rate and cardiac dysfunction in Duchenne muscular dystrophy. Pediatr Cardiol. 2012;33(7):1175–1179. doi: https://doi.org/10.1007/s00246-012-0281-0; Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–2200. doi: https://doi.org/10.1093/eurheartj/ehw128; Raman SV, Hor KN, Mazur W, et al. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(2):153–161. doi: https://doi.org/10.1016/S1474-4422(14)70318-7; Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112(12):e154–235. doi: https://doi.org/10.1161/CIRCULATIONAHA.105.167586; Грознова О.С., Тренева М.С. Применение ингибитора ангиотензинпревращающего фермента и -блокатора у больных миопатией Дюшенна в длительном катамнезе // Российский вестник перинатологии и педиатрии. — 2012. — Т. 57. — № 4-1. — С. 87–89.; Tay SK, Ong HT, Low PS. Transaminitis in Duchenne’s muscular dystrophy. Ann Acad Med Singap. 2000;29(6):719–722.; Perloff JK. Cardiac rhythm and conduction in Duchenne’s muscular dystrophy: a prospective study of 20 patients. J Am Coll Cardiol. 1984;3(5):1263–1268. doi: https://doi.org/10.1016/s0735-1097(84)80186-2; Chenard AA, Becane HM, Tertrain F, et al. Ventricular arrhythmia in Duchenne muscular dystrophy: prevalence, significance and prognosis. Neuromuscul Disord. 1993;3(3):201–206. doi: https://doi.org/10.1016/0960-8966(93)90060-w; Suresh S, Wales P, Dakin C, et al. Sleep-related breathing disorder in Duchenne muscular dystrophy: disease spectrum in the paediatric population. J Paediatr Child Health. 2005;41(9-10):500–503. doi: https://doi.org/10.1111/j.1440-1754.2005.00691.x; Leibowitz D, Dubowitz V. Intellect and behaviour in Duchenne muscular dystrophy. Dev Med Child Neurol. 1981;23(5):577–590. doi: https://doi.org/10.1111/j.1469-8749.1981.tb02039.x; Anderson JL, Head SI, Rae C, Morley JW. Brain function in Duchenne muscular dystrophy. Brain. 2002;125(Pt 1):4–13. doi: https://doi.org/10.1093/brain/awf012; McDonald DG, Kinali M, Gallagher AC, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44(10):695–698. doi: https://doi.org/10.1017/s0012162201002778; Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20(1):71–74.; Rutkove SB, Kapur K, Zaidman CM, et al. Electrical impedance myography for assessment of Duchenne muscular dystrophy. Ann Neurol. 2017;81(5):622–632. doi: https://doi.org/10.1002/ana.24874; Куренков А.Л., Кузенкова Л.М., Пак Л.А. и др. Дифференциальный диагноз мышечной дистрофии Дюшенна // Неврологический журнал имени Л.О. Бадаляна. — 2021. — Т. 2. — № 3. — С. 159–166. — doi: https://doi.org/10.46563/2686-8997-2021-2-3-159-166; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–361. doi: https://doi.org/10.1016/S1474-4422(18)30025-5; Sansović I, Barišić I, Dumić K. Improved detection of deletions and duplications in the DMD gene using the multiplex ligationdependent probe amplification (MLPA) method. Biochem Genet. 2013;51(3-4):189–201. doi: https://doi.org/10.1007/s10528-012-9554-9; Deconinck N, Goemans N. Management of Neuromuscular Disorders in Children: A Multidisciplinary Approach to Management. 1st ed. Mac Keith Press; 2019. pp. 166–187.; Ciafaloni E, Fox DJ, Pandya S, et al. Delayed diagnosis in Duchenne muscular dystrophy: data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). J Pediatr. 2009;155(3):380–385. doi: https://doi.org/10.1016/j.jpeds.2009.02.007; Ankala A, da Silva C, Gualandi F, et al. A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol. 2015;77(2):206–214. doi: https://doi.org/10.1002/ana.24303; Wonkam-Tingang E, Nguefack S, Esterhuizen AI, et al. DMD-related muscular dystrophy in Cameroon: Clinical and genetic profiles. Mol Genet Genomic Med. 2020;8(8):e1362. doi: https://doi.org/10.1002/mgg3.1362; Karaiev T, Tkachenko O, Kononets O, Lichman L. A family history of Duchenne muscular dystrophy. Georgian Med News. 2020;(303):79–85.; Kononets O, Karaiev T, Tkachenko O, Lichman L. Renal, hepatic and immune function indices in patients with Duchenne muscular dystrophy. Georgian Med News. 2020;(309):64–71.; Rosales XQ, Chu ML, Shilling C, et al. Fidelity of gammaglutamyl transferase (GGT) in differentiating skeletal muscle from liver damage. J Child Neurol. 2008;23(7):748–751. doi: https://doi.org/10.1177/0883073808314365; Matsumura T, Takahashi M, Nakamori M, et al. Erythrocyte from Duchenne muscular dystrophy is fragile. Rinsho Shinkeigaku. 2004;44(10):695–698.; Braat E, Hoste L, De Waele L, et al. Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul Disord. 2015;25(5):381387. doi: https://doi.org/10.1016/j.nmd.2015.01.005; Phillips MF, Quinlivan RC, Edwards RH, Calverley PM. Changes in spirometry over time as a prognostic marker in patients with Duchenne muscular dystrophy. Am J Respir Crit Care Med. 2001;164(12):2191–2194. doi: https://doi.org/10.1164/ajrccm.164.12.2103052; Rideau Y, Jankowski LW, Grellet J. Respiratory function in the muscular dystrophies. Muscle Nerve. 1981;4(2):155–164. doi: https://doi.org/10.1002/mus.880040213; Inkley SR, Oldenburg FC, Vignos PJ Jr. Pulmonary function in Duchenne muscular dystrophy related to stage of disease. Am J Med. 1974;56(3):297–306. doi: https://doi.org/10.1016/0002-9343(74)90611-1; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17(5):445–455. doi: https://doi.org/10.1016/S1474-4422(18)30026-7; Birnkrant DJ, Bushby KM, Amin RS, et al. The respiratory management of patients with Duchenne muscular dystrophy: a DMD care considerations working group specialty article. Pediatr Pulmonol. 2010;45(8):739–748. doi: https://doi.org/10.1002/ppul.21254; Finder JD, Birnkrant D, Carl J, et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am J Respir Crit Care Med. 2004;170(4):456–465. doi: https://doi.org/10.1164/rccm.200307-885ST; Polavarapu K, Manjunath M, Preethish-Kumar V, et al. Muscle MRI in Duchenne muscular dystrophy: Evidence of a distinctive pattern. Neuromuscul Disord. 2016;26(11):768–774. doi: https://doi.org/10.1016/j.nmd.2016.09.002; Руденко Д.И., Поздняков А.В., Суслов В.М. Методы визуализации мышечной дистрофии Дюшенна (литературный обзор) // Международный неврологический журнал. — 2017. — № 2. — С. 84–92. — doi: https://doi.org/10.22141/2224-0713.2.88.2017.100199; Sbrocchi AM. Dietary Reference Intakes for Calcium and Vitamin D. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross AC, Taylor CL, Yaktine AL, Del Valle HB, eds. Washington (DC): National Academies Press (US); 2011.; Sbrocchi AM, Rauch F, Jacob P, et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int. 2012;23(11):2703–2711. doi: https://doi.org/10.1007/s00198-012-1911-3; Stücker R, Stücker S, Mladenov K. Spinal deformity in Duchenne muscular dystrophy. Orthopade. 2021;50(8):638–642. doi: https://doi.org/10.1007/s00132-021-04127-3; Waldrop MA, Flanigan KM. Update in Duchenne and Becker muscular dystrophy. Curr Opin Neurol. 2019;32(5):722–727. doi: https://doi.org/10.1097/WCO.0000000000000739; Lee JS, Kim K, Jeon YK, et al. Effects of Traction on Interpretation of Lumbar Bone Mineral Density in Patients with Duchenne Muscular Dystrophy: A New Measurement Method and Diagnostic Criteria Based on Comparison of Dual-Energy X-Ray Absorptiometry and Quantitative Computed Tomography. J Clin Densitom. 2020;23(1):53–62. doi: https://doi.org/10.1016/j.jocd.2018.07.006; Leroy-Willig A, Willig TN, Henry-Feugeas MC, et al. Body composition determined with MR in patients with Duchenne muscular dystrophy, spinal muscular atrophy, and normal subjects. Magn Reson Imaging. 1997;15(7):737–744. doi: https://doi.org/10.1016/s0730-725x(97)00046-5; McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10101):1489–1498. doi: https://doi.org/10.1016/S0140-6736(17)31611-2; Gordon KE, Dooley JM, Sheppard KM, et al. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics. 2011;127(2):e353–e358. doi: https://doi.org/10.1542/peds.2010-1666; Janisch M, Buchholtz SN, Haden MV. Pediatric palliative care of Duchenne muscular dystrophy in Germany. Neuropediatrics. 2018;49(S 02):S1–S69. doi: https://doi.org/10.1055/s-0038-1675922; Sadasivan A, Warrier MG, Polavarapu K, et al. Palliative care in Duchenne muscular dystrophy: A study on parents’ understanding. Indian J Palliat Care. 2021;27(1):146–151. doi: https://doi.org/10.4103/IJPC.IJPC_259_20; Engel JM, Kartin D, Carter GT, et al. Pain in youths with neiromuscular disease. Am J Hosp Palliat Care. 2009;26(5):405–412. doi: https://doi.org/10.1177/1049909109346165; McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve. 2010;41(4):500–510. doi: https://doi.org/10.1002/mus.21544; McDonald CM. Timed function tests have withstood the test of time as clinically meaningful and responsive endpoints in Duchenne muscular dystrophy. Muscle Nerve. 2018;58(5):614–617. doi: https://doi.org/10.1002/mus.26334; Henricson E, Abresch R, Han JJ, et al. The 6-Minute Walk Test and Person-Reported Outcomes in Boys with Duchenne Muscular Dystrophy and Typically Developing Controls: Longitudinal Comparisons and Clinically-Meaningful Changes Over One Year. PLoS Curr. 2013;5:ecurrents.md.9e17658b007eb79fcd6f723089f79e06. doi: https://doi.org/10.1371/currents.md.9e17658b007eb79fcd6f723089f79e06; McDonald CM, Henricson EK, Abresch RT, et al. The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve. 2013;48(3):343–356. doi: https://doi.org/10.1002/mus.23902; McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test in Duchenne/Becker muscular dystrophy: longitudinal observations. Muscle Nerve. 2010;42(6):966–974. doi: https://doi.org/10.1002/mus.21808; Pandya S, Florence JM, King WM, et al. Reliability of goniometric measurements in patients with Duchenne muscular dystrophy. Phys Ther. 1985;65(9):1339–1342. doi: https://doi.org/10.1093/ptj/65.9.1339; Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9(2):177–189. doi: https://doi.org/10.1016/S1474-4422(09)70272-8; Mercuri E, Muntoni F, Osorio AN, et al. Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study. J Comp Eff Res. 2020;9(5):341–360. doi: https://doi.org/10.2217/cer-2019-0171; Finkel RS, Flanigan KM, Wong B, et al. Phase 2a study of atalurenmediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One. 2013;8(12):e81302. doi: https://doi.org/10.1371/journal.pone.0081302; Трансларна®: инструкция по применению. Регистрационное удостоверение № ЛП-006596. Дата регистрации: 24.11.2020 // Государственный реестр лекарственных средств: официальный сайт. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=0a1cb70a-0f00-4d41-b4b2-9ac96aac4cca. Ссылка активна на 17.08.2023.; Kinnett K, Noritz G. The PJ Nicholoff Steroid Protocol for Duchenne and Becker Muscular Dystrophy and Adrenal Suppression. PLoS Curr. 2017;9:ecurrents.md.d18deef7dac96ed135e0dc8739917b6e. doi: https://doi.org/10.1371/currents.md.d18deef7dac96ed135e0dc8739917b6e; Mercuri E, Muntoni F, Buccella F, et al. Age at loss of ambulation in patients with DMD from the STRIDE Registry and the CINRG Duchenne Natural History Study: a matched cohort analysis. Neuromuscular Disorders. 2022;32(Suppl 1):S52. doi: https://doi.org/10.1016/j.nmd.2022.07.045; Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008;(1):CD003725. doi: https://doi.org/10.1002/14651858.CD003725.pub3; Moxley RT 3rd, Ashwal S, Pandya S, et al. Practice parameter: corticosteroid treatment of Duchenne dystrophy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2005;64(1):13–20. doi: https://doi.org/10.1212/01.WNL.0000148485.00049.B7; Marden JR, Freimark J, Yao Z, et al. Real-world outcomes of long-term prednisone and deflazacort use in patients with Duchenne muscular dystrophy: experience at a single, large care center. J Comp Eff Res. 2020;9(3):177–189. doi: https://doi.org/10.2217/cer-2019-0170; Angelini C, Peterle E. Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol. 2012;31(1):9–15.; Гремякова Т.А., Суслов В.М., Сакбаева Г.Е., Степанов А.А. Витамин D в профилактике и терапии коморбидных состояний при мышечной дистрофии Дюшенна // Неврологический журнал им. Л.О. Бадаляна. — 2021. — Т. 2. — № 1. — С. 38–50. — doi: https://doi.org/10.46563/2686-8997-2021-2-1-38-50; Allington N, Vivegnis D, Gerard P. Cyclic administration of pamidronate to treat osteoporosis in children with cerebral palsy or a neuromuscular disorder: a clinical study. Acta Orthop Belg. 2005;71(1):91–97.; Wood CL, Cheetham TD, Guglieri M, et al. Testosterone Treatment of Pubertal Delay in Duchenne Muscular Dystrophy. Neuropediatrics. 2015;46(6):371–376. doi: https://doi.org/10.1055/s-0035-1563696; Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–2559. doi: https://doi.org/10.1210/jc.2009-2354; Wood CL, Straub V, Guglieri M, et al. Short stature and pubertal delay in Duchenne muscular dystrophy. Arch Dis Child. 2016;101(1):101–106. doi: https://doi.org/10.1136/archdischild-2015-308654; Bianchi ML, Biggar D, Bushby K, et al. Endocrine aspects of Duchenne muscular dystrophy. Neuromuscul Disord. 2011;21(4):298–303. doi: https://doi.org/10.1016/j.nmd.2011.02.006; Martigne L, Seguy D, Pellegrini N, et al. Efficacy and tolerance of gastrostomy feeding in Duchenne muscular dystrophy. Clin Nutr. 2010;29(1):60–64. doi: https://doi.org/10.1016/j.clnu.2009.06.009; McKim DA, Katz SL, Barrowman N, et al. Lung volume recruitment slows pulmonary function decline in Duchenne muscular dystrophy. Arch Phys Med Rehabil. 2012;93(7):1117–1122. doi: https://doi.org/10.1016/j.apmr.2012.02.024; Stehling F, Bouikidis A, Schara U, Mellies U. Mechanical insufflation/exsufflation improves vital capacity in neuromuscular disorders. Chron Respir Dis. 2015;12(1):31–35. doi: https://doi.org/10.1177/1479972314562209; Chiou M, Bach JR, Jethani L, Gallagher MF. Active lung volume recruitment to preserve vital capacity in Duchenne muscular dystrophy. J Rehabil Med. 2017;49(1):49–53. doi: https://doi.org/10.2340/16501977-2144; Archer JE, Gardner AC, Roper HP, et al. Duchenne muscular dystrophy: the management of scoliosis. J Spine Surg. 2016;2(3):185–194. doi: https://doi.org/10.21037/jss.2016.08.05; Alexander WM, Smith M, Freeman BJ, et al. The effect of posterior spinal fusion on respiratory function in Duchenne muscular dystrophy. Eur Spine J. 2013;22(2):411–416. doi: https://doi.org/10.1007/s00586-012-2585-4; Takaso M, Nakazawa T, Imura T, et al. Surgical management of severe scoliosis with high risk pulmonary dysfunction in Duchenne muscular dystrophy: patient function, quality of life and satisfaction. Int Orthop. 2010;34(5):695–702. doi: https://doi.org/10.1007/s00264-010-0957-0; Cullom C, Vo V, McCabe MD. Orthotopic Heart Transplantation in Manifesting Carrier of Duchenne Muscular Dystrophy. J Cardiothorac Vasc Anesth. 2022;36(8 Pt A):2593–2599. doi: https://doi.org/10.1053/j.jvca.2021.09.047; Hayes J, Veyckemans F, Bissonnette B. Duchenne muscular dystrophy: an old anesthesia problem revisited. Paediatr Anaesth. 2008;18(2):100–106. doi: https://doi.org/10.1111/j.1460-9592.2007.02302.x; Sepulveda C, Marlin A, Yoshida T, Ullrich A. Palliative care: the World Health Organization’s global perspective. J Pain Symptom Manage. 2002;24(2):91–96. doi: https://doi.org/10.1016/s0885-3924(02)00440-2; Pastrana T, Junger S, Ostgathe C, et al. A matter of definition — key elements identified in a discourse analysis of definitions of palliative care. Palliat Med. 2008;22(3):222–232. doi: https://doi.org/10.1177/0269216308089803; Жданова Л.В., Лебедева О.А., Колмакова В.В., Русинова Т.А. Развитие амбулаторной паллиативной помощи детям и подросткам в Республике Бурятия // Вестник Бурятского государственного университета. Медицина и фармация. — 2019. — Вып. 1. — С. 39–43. — doi: https://doi.org/10.18101/2306-1995-2019-1-39-43; Минаева Н.В., Исламова Р.И., Баженова М.И. Выездная патронажная паллиативная медицинская помощь детям: двухлетний опыт работы некоммерческой благотворительной организации // Вопросы современной педиатрии. — 2020. — Т. 9. — № 1. — С. 46–56. — doi: https://doi.org/10.15690/vsp.v19i1.2085; Соколова М.Г., Никишина О.А. Использование искусственной вентиляции легких у тяжелобольных детей в домашних условиях // Здоровье — основа человеческого потенциала: проблемы и пути их решения. — 2013. — Т. 8. — № 1. — С. 262–263.; Rehabilitation & physical therapy. In: Parent Project Muscular Dystrophy: Official website. Available online: https://www.parent-projectmd.org/care/care-guidelines/by-area/physical-therapy-and-stretching. Accessed on August 18, 2023.; Gianola S, Castellini G, Pecoraro V, et al. Effect of Muscular Exercise on Patients With Muscular Dystrophy: A Systematic Review and Meta-Analysis of the Literature. Front Neurol. 2020;11:958. doi: https://doi.org/10.3389/fneur.2020.00958; Sacks D, Baxter B, Campbell BCV, et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke. 2018;13(6):612–632. doi: https://doi.org/10.1177/1747493018778713; Case LE, Apkon SD, Eagle M, et al. Rehabilitation Management of the Patient With Duchenne Muscular Dystrophy. Pediatrics. 2018;142(Suppl 2):S17–S33. doi: https://doi.org/10.1542/peds.2018-0333D; Association of Paediatric Chartered Physiotherapists. Guidance for Paediatric Physiotherapists Managing Neuromuscular Disorders. Published: March 2017. Review: March 2020. Available online: https://apcp.csp.org.uk/system/files/guidance_for_paediatric_physiotherapists_managing_neuromuscular_disorders_-_2017.pdf. Accessed on August 18, 2023.; Uttley L, Carlton J, Woods HB, Brazier J. A review of quality of life themes in Duchenne muscular dystrophy for patients and carers. Health Qual Life Outcomes. 2018;16(1):237. doi: https://doi.org/10.1186/s12955-018-1062-0; Pandya S, Andrews J, Campbell K, Meaney FJ. Rehabilitative technology use among individuals with Duchenne/Becker muscular dystrophy. J Pediatr Rehabil Med. 2016;9(1):45–53. doi: https://doi.org/10.3233/PRM-160356; Pardo AC, Do T, Ryder T, et al. Combination of steroids and ischial weight-bearing knee ankle foot orthoses in Duchenne’s muscular dystrophy prolongs ambulation past 20 years of age — a case report. Neuromuscul Disord. 2011;21(11):800–802. doi: https://doi.org/10.1016/j.nmd.2011.06.006; Garralda ME, Muntoni F, Cunniff A, Caneja AD. Knee-ankle-foot orthosis in children with Duchenne muscular dystrophy: user views and adjustment. Eur J Paediatr Neurol. 2006;10(4):186–191. doi: https://doi.org/10.1016/j.ejpn.2006.07.002; Aydin Yağcioğlu G, Alemdaroğlu Gürbüz İ, Karaduman A, et al. Kinesiology Taping in Duchenne Muscular Dystrophy: Acute Effects on Performance, Gait Characteristics, and Balance. Dev Neurorehabil. 2021;24(3):199–204. doi: https://doi.org/10.1080/17518423.2020.1839805; Abresch RT, Carter GT, Han JJ, McDonald CM. Exercise in neuromuscular diseases. Phys Med Rehabil Clin N Am. 2012;23(3):653–673. doi: https://doi.org/10.1016/j.pmr.2012.06.001; Alemdaroğlu I, Karaduman A, Yilmaz ÖT, Topaloğlu H. Different types of upper extremity exercise training in Duchenne muscular dystrophy: effects on functional performance, strength, endurance, and ambulation. Muscle Nerve. 2015;51(5):697–705. doi: https://doi.org/10.1002/mus.24451; Hind D, Parkin J, Whitworth V, et al. Aquatic therapy for children with Duchenne muscular dystrophy: a pilot feasibility randomised controlled trial and mixed-methods process evaluation. Health Technol Assess. 2017;21(27):1–120. doi: https://doi.org/10.3310/hta21270; Bulut N, Karaduman A, Alemdaroğlu-Gürbüz İ, et al. The effect of aerobic training on motor function and muscle architecture in children with Duchenne muscular dystrophy: A randomized controlled study. Clin Rehabil. 2022;36(8):1062–1071. doi: https://doi.org/10.1177/02692155221095491; Jansen M, van Alfen N, Geurts AC, de Groot IJ. Assisted bicycle training delays functional deterioration in boys with Duchenne muscular dystrophy: the randomized controlled trial “no use is disuse”. Neurorehabil Neural Repair. 2013;27(9):816–827. doi: https://doi.org/10.1177/1545968313496326; Darmahkasih AJ, Rybalsky I, Tian C, et al. Neurodevelopmental, Behavioral, and Emotional Symptoms Common in Duchenne Muscular Dystrophy. Muscle Nerve. 2020;61(4):466–474. doi: https://doi.org/10.1002/mus.26803; Araujo APQC, Nardes F, Fortes CPDD, et al. Brazilian consensus on Duchenne muscular dystrophy. Part 2: rehabilitation and systemic care. Arq Neuropsiquiatr. 2018;76(7):481–489. doi: https://doi.org/10.1590/0004-282X20180062; Chen H. A Mini-Review on The Rehabilitation of Duchenne Muscular Dystrophy. EPMR. 2021;3(2):000560. doi: https://doi.org/10.31031/EPMR.2021.03.000560; Richardson M, Frank AO. Electric powered wheelchairs for those with muscular dystrophy: problems of posture, pain and deformity. Disabil Rehabil Assist Technol. 2009;4(3):181–188. doi: https://doi.org/10.1080/17483100802543114; Pedlow K, McDonough S, Lennon S, et al. Assisted standing for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2019;10(10):CD011550. doi: https://doi.org/10.1002/14651858.CD011550.pub2; Saito T, Ohfuji S, Matsumura T, et al. Safety of a Pandemic Influenza Vaccine and the Immune Response in Patients with Duchenne Muscular Dystrophy. Intern Med. 2015;54(10):1199–1205. doi: https://doi.org/10.2169/internalmedicine.54.1186; Vaccination recommendations. In: Parent Project Muscular Dystrophy: Official website. Available online: https://www.parentpro-jectmd.org/site/PageServer?pagename=Care_area_vaccinations. Accessed on August 18, 2023.; Mochizuki H, Okahashi S, Ugawa Y, et al. Heart rate variability and hypercapnia in Duchenne muscular dystrophy. Intern Med. 2008;47(21):1893–1897. doi: https://doi.org/10.2169/internalmedicine.47.1118; Takasugi T, Ishihara T, Kawamura J, et al. Blood gas changes in Duchenne type muscular dystrophy. Nihon Kyobu Shikkan Gakkai Zasshi. 1995;33(1):17–22.; West NA, Yang ML, Weitzenkamp DA, et al. Patterns of growth in ambulatory males with Duchenne muscular dystrophy. J Pediatr. 2013;163(6):1759–1763.e1. doi: https://doi.org/10.1016/j.jpeds.2013.08.004; Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign, IL: Human Kinetic Books; 1988.; van Bockel EA, Lind JS, Zijlstra JG, et al. Cardiac assessment of patients with late stage Duchenne muscular dystrophy. Neth Heart J. 2009;17(6):232–237. doi: https://doi.org/10.1007/BF03086253; Martins E, Silva-Cardoso J, Silveira F, et al. Left ventricular function in adults with muscular dystrophies: genotype-phenotype correlations. Rev Port Cardiol. 2005;24(1):23–35.; Cummings EA, Ma J, Fernandez CV, et al. Incident Vertebral Fractures in Children With Leukemia During the Four Years Following Diagnosis. J Clin Endocrinol Metab. 2015;100(9):3408–3417. doi: https://doi.org/10.1210/JC.2015-2176; Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep. 2010;8(4):198–204. doi: https://doi.org/10.1007/s11914-010-0031-2; Janisch M, Boehme K, Thiele S, et al. Tasks and interfaces in primary and specialized palliative care for Duchenne muscular dystrophy — A patients’ perspective. Neuromuscul Disord. 2020;30(12):975–985. doi: https://doi.org/10.1016/j.nmd.2020.09.031; Arias R, Andrews J, Pandya S, et al. Palliative care services in families of males with Duchenne muscular dystrophy. Muscle Nerve. 2011;44(1):93–101. doi: https://doi.org/10.1002/mus.22005; https://www.pedpharma.ru/jour/article/view/2348

  10. 10
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Pediatric pharmacology; Том 20, № 4 (2023); 318-336 ; Педиатрическая фармакология; Том 20, № 4 (2023); 318-336 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2343/1521; Whyte MP. Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12(4):233-246. doi: https://doi.org/10.1038/nrendo.2016.14; Millan JL, Whyte MP. Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int. 2016;98(4):398-416. doi: https://doi.org/10.1007/s00223-015-0079-1; Mornet E, Yvard A, Taillandier A, et al. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet. 2011;75(3):439-445. doi: https://doi.org/10.1111/j.1469-1809.2011.00642.x; Гуркина Е.Ю., Воинова В.Ю., Кузенкова Л.М. и др. Гипофосфатазия. Обзор клинических случаев, опубликованных в РФ // РМЖ. — 2021. — № 2. — С. 42-48.; Tsang T, Raghuwanshi MP. Hypophosphatasia Misdiagnosed as Osteoporosis in a Young Girl. J Endocr Soc. 2021;5(Suppl 1):A201-A202. doi: https://doi.org/10.1210/jendso/bvab048.409; Whyte MP, Zhang F, Wenkert D, et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone. 2015;75:229-239. doi: https://doi.org/10.1016/j.bone.2015.02.022; Bishop N, Munns CF, Ozono K. Transformative therapy in hypophosphatasia. Arch Dis Child. 2016;101(6):514-515. doi: https://doi.org/10.1136/archdischild-2015-309579; Anderson HC, Harmey D, Camacho NP, et al. Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am J Pathol. 2005;166(6):1711-1720. doi: https://doi.org/10.1016/S0002-9440(10)62481-9; Braunstein NA. Multiple fractures, pain, and severe disability in a patient with adult-onset hypophosphatasia. Bone Rep. 2016;4:1-4. doi: https://doi.org/10.1016/j.bonr.2015.10.005; Whyte M. Hypophosphatasia. In: Genetics of bone biology and skeletal disease. Thakker RV, Whyte MP, Eisman J, Igarashi T, eds. London: Academic Press; 2013. pp. 337-360.; Whyte MP, Coburn SP, Ryan LM, et al. Hypophosphatasia: Biochemical hallmarks validate the expanded pediatric clinical nosology. Bone. 2018;110:96-106. doi: https://doi.org/10.1016/j.bone.2018.01.022; Rush ET. Childhood hypophosphatasia: to treat or not to treat. Orphanet J Rare Dis. 2018;13(1):116. doi: https://doi.org/10.1186/s13023-018-0866-7; Simon S, Resch H, Klaushofer K, et al. Hypophosphatasia: From Diagnosis to Treatment. Curr Rheumatol Rep. 2018;20(11):69. doi: https://doi.org/10.1007/s11926-018-0778-5; Khan AA, Josse R, Kannu P, et al. Hypophosphatasia: Canadian update on diagnosis and management. Osteoporos Int. 2019;30(9):1713-1722. doi: https://doi.org/10.1007/s00198-019-04921-y; Mornet E. Hypophosphatasia. Metabolism. 2018;82:142-155. doi: https://doi.org/10.1016/j.metabol.2017.08.013; Briot K, Roux C. Adult hypophosphatasia. Arch Pediatr. 2017;24(5S2):5S71-5S73. doi: https://doi.org/10.1016/S0929-693X(18)30018-6; Kishnani PS, Rush ET, Arundel P, et al. Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab. 2017;122(1-2):4-17. doi: https://doi.org/10.1016/j.ymgme.2017.07.010; Michigami T, Ohata Y, Fujiwara M, et al. Clinical Practice Guidelines for Hypophosphatasia. Clin Pediatr Endocrinol. 2020;29(1):9-24. doi: https://doi.org/10.1297/cpe.29.9; Estey MP, Cohen AH, Colantonio DA, et al. CLSI-based transference of the CALIPER database of pediatric reference intervals from Abbott to Beckman, Ortho, Roche and Siemens Clinical Chemistry Assays: direct validation using reference samples from the CALIPER cohort. Clin Biochem. 2013;46(13-14):1197-1219. doi: https://doi.org/10.1016/j.clinbiochem.2013.04.001; Ройтман А.П., Мамедов И.С., Сухоруков В.С. Референтные интервалы активности щелочной фосфатазы у детей в сыворотке крови. Лабораторная диагностика гипофосфатазии // Лабораторная служба. — 2015. — Т. 4. — № 1. — С. 35-41. — doi: https://doi.org/10.17116/labs20154135-41; Whyte MP, Leung E, Wilcox W, et al. Hypophosphatasia: a retrospective natural history study of the severe perinatal and infantile forms. In: Poster presented at the 2014 Pediatric Academic Societies and Asian Society for Pediatric Research Joint Meeting. Vancouver, B.C., Canada, May 5, 2014. Abstract 752416.; Villa-Suarez JM, Garci'a-Fontana C, Andujar-Vera F, et al. Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int J Mol Sci. 2021;22(9):4303. doi: https://doi.org/10.3390/ijms22094303; Christine Hofmann C, Girschick H, Mornet E, et al. Unexpected high intrafamilial phenotypic variability observed in hypophosphatasia. Eur J Hum Genet. 2914;22(10):1160-1164. doi: https://doi.org/10.1038/ejhg.2014.10; Mornet E. Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations. Subcell Biochem. 2015;76:25-43. doi: https://doi.org/10.1007/978-94-017-7197-9_2; Ishiguro T, Sugiyama Y, Ueda K, et al. Findings of amplitude-integrated electroencephalogram recordings and serum vitamin B6 metabolites in perinatal lethal hypophosphatasia during enzyme replacement therapy. Brain Dev. 2019;41(8):721-725. doi: https://doi.org/10.1016/j.braindev.2019.03.015; Martos-Moreno GA, Calzada J, Couce ML, Argente J. Hypophosphatasia: Clinical manifestations, diagnostic recommendations and therapeutic options. An Pediatr (Engl Ed). 2018;88(6):356. e1-356.e11. doi: https://doi.org/10.1016/j.anpedi.2017.06.004; Fukazawa M, Tezuka J, Sasazuki M, et al. Infantile hypophosphatasia combined with vitamin B6-responsive seizures and reticular formation lesions on magnetic resonance imaging: A case report. Brain Dev. 2018;40(2):140-144. doi: https://doi.org/10.1016/j.braindev.2017.07.015; Di Rocco F, Baujat G, Cormier-Daire V, et al. Craniosynostosis and hypophosphatasia. Arch Pediatr. 2017;24(5S2):5S89-5S92. doi: https://doi.org/10.1016/S0929-693X(18)30022-8; Vogt M, Girschick H, Schweitzer T, et al. Pediatric hypophos-phatasia: lessons learned from a retrospective single-center chart review of 50 children. Orphanet J Rare Dis. 2020;15(1):212. doi: https://doi.org/10.1186/s13023-020-01500-x; Collmann H, Mornet E, Gattenlohner S, et al. Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst. 2009;25(2):217-223. doi: https://doi.org/10.1007/s00381-008-0708-3; Graham BL, Steenbruggen I, Miller MR, et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med. 2019;200(8):e70-e88. doi: https://doi.org/10.1164/rccm.201908-1590ST; Beydon N, Davis SD, Lombardi E, et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007;175(12):1304-1345. doi: https://doi.org/10.1164/rccm.200605-642ST; Kamran A, Jennings RW. Tracheomalacia and Tracheobronchomalacia in Pediatrics: An Overview of Evaluation, Medical Management, and Surgical Treatment. Front Pediatr. 2019;7:512. doi: https://doi.org/10.3389/fped.2019.00512; Nunes ME. Hypophosphatasia. In: GeneReviews® [Internet]. Adam MP, Everman DB, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993-2022.; Whyte MP, Rockman-Greenberg C, Ozono K, et al. Asfotase Alfa Treatment Improves Survival for Perinatal and Infantile Hypophosphatasia. J Clin Endocrinol Metab. 2016;101(1):334-342. doi: https://doi.org/10.1210/jc.2015-3462; Vislobokova E, Kiselnikova L, Voinova V, Sholokhova N. Dental findings in patients with hypophosphatasia. Scientific Abstracts of the 14th Congress of the European Academy of Paediatric Dentistry (EAPD) Palazzo dei Congressi, Lake Lugano, Switzerland 20th to 23rd June 2018. Eur Arch Paediatr Dent. 2019;20:152. doi: https://doi.org/10.1007/s40368-018-0390-4; Whyte MP, Greenberg CR, Salman NJ, et al. Enzymereplacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012;366(10):904-913. doi: https://doi.org/10.1056/NEJMoa1106173; Kitaoka T, Tajima T, Nagasaki K, et al. Safety and efficacy of treatment with asfotase alfa in patients with hypophosphatasia: Results from a Japanese clinical trial. Clin Endocrinol (Oxf). 2017;87(1):10-19. doi: https://doi.org/10.1111/cen.13343; Yamamoto H, Sasamoto Y, Miyamoto Y, et al. A successful treatment with pyridoxal phosphate for West syndrome in hypophosphatasia. Pediatr Neurol. 2004;30(3):216-218. doi: https://doi.org/10.1016/j.pediatrneurol.2003.08.003; de Roo MGA, Abeling NGGM, Majoie CB, et al. Infantile hypophosphatasia without bone deformities presenting with severe pyridoxine-resistant seizures. Mol Genet Metab. 2014;111(3):404-407. doi: https://doi.org/10.1016/j.ymgme.2013.09.014; Belachew D, Kazmerski T, Libman I, et al. Infantile hypophosphatasia secondary to a novel compound heterozygous mutation presenting with pyridoxine-responsive seizures. JIMD Rep. 2013;11:17-24. doi: https://doi.org/10.1007/8904_2013_217; Taketani T. Neurological Symptoms of Hypophosphatasia. Subcell Biochem. 2015;76:309-322. doi: https://doi.org/10.1007/978-94-017-7197-9_14; Nunes ML, Mugnol F, Bica I, Fiori RM. Pyridoxine-dependent seizures associated with hypophosphatasia in a newborn. J Child Neurol. 2002;17(3):222-224. doi: https://doi.org/10.1177/088307380201700314; Girschick HJ, Schneider P, Haubitz I, et al. Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J Rare Dis. 2006;1:24. doi: https://doi.org/10.1186/1750-1172-1-24; Bianchi ML, Bishop NJ, Guanabens N, et al. Hypophosphatasia in adolescents and adults: overview of diagnosis and treatment. Osteoporos Int. 2020 31(8):1445-1460. doi: https://doi.org/10.1007/s00198-020-05345-9; Correa Marquez RR, Behari G. Hypophosphatasia (HPP) Treatment & Management. In: Medscape. Updated: Jun 05, 2023. Available online: https://emedicine.medscape.com/article/945375-treatment#d6. Accessed on July 15, 2023.; Miyashita S, Ochiai S, Sakamoto С, et al. VP13.10: Prenatal ultrasound findings in a survived case of perinatal lethal hypophosphatasia with enzyme replacement therapy started early in life. Ultrasound Obstet Gynecol. 2020;56(S1):104-104. doi: https://doi.org/10.1002/uog.22519; Yang Y, Liu Z, Wei L, et al. Prosthodontic Rehabilitation of a Patient with Hypophosphatasia Using Dental Implants: A Case Report with Seven Years Follow-Up. J Prosthodont. 2021;30(9):742-746. doi: https://doi.org/10.1111/jopr.13419; Tournis S, Yavropoulou MP, Polyzos SA, Doulgeraki A. Hypophosphatasia. J Clin Med. 2021;10(23):5676. doi: https://doi.org/10.3390/jcm10235676; Linglart A, Biosse-Duplan M. Hypophosphatasia. Curr Osteoporos Rep. 2016;14(3):95-105. doi: https://doi.org/10.1007/s11914-016-0309-0; Simon S, Resch H. Treatment of hypophosphatasia. Wien Med Wochenschr. 2020;170(5-6):112-115. doi: https://doi.org/10.1007/s10354-020-00736-3; Коняхина Г.П., Захарова Н.А. Лечебная физкультура для детей с ограниченными возможностями здоровья: учебно-методическое пособие. — Челябинск; 2019. — 81 с.; Медико-психологическая помощь детям с нарушением психического развития в системе комплексной реабилитации: методические рекомендации. — М.: ДЗМ; 2018. — № 83. — 28 с.; Leung EC, Mhanni AA, Reed M, et al. Outcome of perinatal hypophosphatasia in manitoba mennonites: a retrospective cohort analysis. JIMD Rep. 2013;11:73-78. doi: https://doi.org/10.1007/8904_2013_224; https://www.pedpharma.ru/jour/article/view/2343

  11. 11
    Academic Journal

    المؤلفون: Inga V. Anisimova, Marina B. Albegova, Madlena E. Bagaeva, Galina V. Baidakova, Aleksandr A. Baranov, Nato D. Vashakmadze, Elena A. Vishneva, Olga S. Gundobina, Anna V. Degtiareva, Marat V. Ezhov, Maria S. Zharkova, Nataliia V. Zhurkova, Ekaterina Yu. Zaharova, Vladimir T. Ivashkin, Elena A. Kamenets, Sergey I. Kutzev, Alla E. Lavrova, Irina A. Matinian, Svetlana V. Mikhailova, Leyla S. Namazova-Baranova, Irina E. Pashkova, Elena E. Petriaykina, Tatiana M. Pervunina, Nataliia L. Pechatnikova, Nelia S. Pogosian, Svetlana A. Repina, Lilia R. Selimzianova, Tamara A. Skvortsova, Tatiana V. Strokova, Dmitriy M. Subbotin, Andrey N. Surkov, Elena L. Tumanova, Ekaterina G. Tzimbalova, И. В. Анисимова, М. Б. Албегова, М. Э. Багаева, Г. В. Байдакова, А. А. Баранов, Н. Д. Вашакмадзе, Е. А. Вишнева, О. С. Гундобина, А. В. Дегтярева, М. В. Ежов, М. С. Жаркова, Н. В. Журкова, Е. Ю. Захарова, В. Т. Ивашкин, Е. А. Каменец, С. И. Куцев, А. Е. Лаврова, И. А. Матинян, С. В. Михайлова, Л. С. Намазова-Баранова, И. Е. Пашкова, Е. Е. Петряйкина, Т. М. Первунина, Н. Л. Печатникова, Н. С. Погосян, С. А. Репина, Л. Р. Селимзянова, Т. А. Скворцова, Т. В. Строкова, Д. М. Субботин, А. Н. Сурков, Е. Л. Туманова, Е. Г. Цимбалова

    المساهمون: Not specified., Отсутствует.

    المصدر: Pediatric pharmacology; Том 20, № 4 (2023); 337-354 ; Педиатрическая фармакология; Том 20, № 4 (2023); 337-354 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2342/1520; Valayannopoulos V, Mengel E, Brassier A, Grabowski G. Lysosomal acid lipase deficiency: Expanding differential diagnosis. Mol Genet Metab. 2017;120(1-2):62-66. doi: https://doi.org/10.1016/j.ymgme.2016.11.002; Bernstein DL, Hulkova H, Bialer MG, Desnick RJ. Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol. 2013;58(6):1230-1243. doi: https://doi.org/10.1016/j.jhep.2013.02.014; Grabowski GA, Charnas L, Du H. Lysosomal acid lipase deficiencies: the Wolman disease/cholesteryl ester storage disease spectrum. In: Metabolic and molecular bases of inherited disease — OMMBID. Scriver Valle D, Beaudet AL, Vogelstein B, et al., eds. New York: McGraw-Hill; 2014.; Fouchier SW, Defesche JC. Lysosomal acid lipase A and the hyper-cholesterolaemic phenotype. Curr Opin Lipidol. 2013;24(4):332-338. doi: https://doi.org/10.1097/MOL.0b013e328361f6c6; Pericleous M, Kelly C, Wang T, et al. Wolman's disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol. 2017;2(9):670-679. doi: https://doi.org/10.1016/S2468-1253(17)30052-3; Santos Silva E, Klaudel-Dreszler M, Bakula A, et al. Early onset lysosomal acid lipase deficiency presenting as secondary hemophagocytic lymphohistiocytosis: Two infants treated with sebelipase alfa. Clin Res Hepatol Gastroenterol. 2018;42(5):e77-e82. doi: https://doi.org/10.1016/j.clinre.2018.03.012; Sadhukhan M, Saha A, Vara R, Bhaduri B. Infant case of lysosomal acid lipase deficiency: Wolman's disease. BMJ Case Rep. 2014;2014:bcr2013202652. doi: https://doi.org/10.1136/bcr-2013-202652; Каменец Е.А., Печатникова Н.Л., Какаулина В.С. и др. Дефицит лизосомной кислой липазы у российских больных: молекулярная характеристика и эпидемиология // Медицинская генетика. — 2019. — Т. 18. — № 8. — С. 3-16. — doi: https://doi.org/10.25557/2073-7998.2019.08.3-16; Witeck CDR, Schmitz AC, de Oliveira JMD, et al. Lysosomal acid lipase deficiency in pediatric patients: a scoping review. J Pediatr (Rio J). 2022;98(1):4-14. doi: https://doi.org/10.1016/j.jped.2021.03.003; Дегтярева А.В., Пучкова А.А., Жданова С.И., Дегтярев Д.Н. Болезнь Вольмана — тяжелая младенческая форма дефицита лизосомной кислой липазы // Неонатология: новости, мнения, обучение. — 2019. — Т. 7. — № 2. — С. 42-51. — doi: https://doi.org/10.24411/2308-2402-2019-12003; Jones SA, Valayannopoulos V, Schneider E, et al. Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants. Genet Med. 2016;18(5):452-458. doi: https://doi.org/10.1038/gim.2015.108; Маевская М.В., Ивашкин В.Т., Жаркова М.С. и др. Редкие формы неалкогольной жировой болезни печени: наследственный дефицит лизосомной кислой липазы. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. — 2016. — Т. 26. — № 3. — С. 41-51. — doi: https://doi.org/10.22416/1382-4376-2016-26-3-41-51; Desai PK, Astrin KH, Thung SN, et al. Cholesteryl ester storage disease: pathologic changes in an affected fetus. Am J Med Genet. 1987;26(3):689-698. doi: https://doi.org/10.1002/ajmg.1320260324; Decarlis S, Agostoni C, Ferrante F, et al. Combined hyperlipidaemia as a presenting sign of cholesteryl ester storage disease. J Inherit Metab Dis. 2009;32 Suppl 1:S11-S13. doi: https://doi.org/10.1007/s10545-008-1027-2; Riva S, Spada M, Sciveres M, et al. Hepatocarcinoma in a child with cholesterol ester storage disease. Dig Liver Dis. 2008;40(9):784. doi: https://doi.org/10.1016/j.dld.2008.01.009; Hamilton J, Jones I, Srivastava R, Galloway P. A new method for the measurement of lysosomal acid lipase in dried blood spots using the inhibitor Lalistat 2. Clin Chim Acta. 2012;413(15-16):1207-1210. doi: https://doi.org/10.1016/j.cca.2012.03.019; Lukacs Z, Barr M, Hamilton J. Best practice in the measurement and interpretation of lysosomal acid lipase in dried blood spots using the inhibitor Lalistat 2. Clin Chim Acta. 2017;471:201-205. doi: https://doi.org/10.1016/j.cca.2017.05.027; Hoffman EP, Barr ML, Giovanni MA, et al. Lysosomal Acid Lipase Deficiency. 2015 Jul 30 [Updated 2016 Sep 1]. In: GeneReviews® [Internet]. Adam MP, Ardinger HH, Pagon RA, et al., eds. Seattle (WA): University of Washington, Seattle; 1993-2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK305870. Accessed on July 13, 2023.; Quinn AG, Burton B, Deegan P, et al. Sustained elevations in LDL cholesterol and serum transaminases from early childhood are common in lysosomal acid lipase deficiency. Mol Genet Metab. 2014;111(2):S89. doi: https://doi.org/10.1016/j.ymgme.2013.12.215; Cohen JL, Burfield J, Valdez-Gonzalez K, et al. Early diagnosis of infantile-onset lysosomal acid lipase deficiency in the advent of available enzyme replacement therapy. Orphanet J Rare Dis. 2019;14(1):198. doi: https://doi.org/10.1186/s13023-019-1129-y; Al Essa M, Nounou R, Sakati N, et al. Wolman's disease: The King Faisal Specialist Hospital and Research Centre experience. Ann Saudi Med. 1998;18(2):120-124. doi: https://doi.org/10.5144/0256-4947.1998.120; Карпищенко А.И., Москалев А.В., Кузнецов В.В., Жерегеля С.Н. Клиническая лабораторная диагностика заболеваний печени и желчевыводящих путей: руководство для врачей / под ред. А.И. Карпищенко. — М.: ГЭОТАР-Медиа; 2020. — 464 c. — doi: https://doi.org/10.33029/9704-5256-1-LIV-2020-1-464; Tolar J, Petryk A, Khan K, et al. Long-term metabolic, endocrine, and neuropsychological outcome of hematopoietic cell transplantation for Wolman disease. Bone Marrow Transplant. 2009;43(1):21-27. doi: https://doi.org/10.1038/bmt.2008.273; Kohli R, Ratziu V, Fiel MI, et al. Initial assessment and ongoing monitoring of lysosomal acid lipase deficiency in children and adults: Consensus recommendations from an international collaborative working group. Mol Genet Metab. 2020;129(2):59-66. doi: https://doi.org/10.1016/j.ymgme.2019.11.004; Hulkova H, Elleder M. Distinctive histopathological features that support a diagnosis of cholesterol ester storage disease in liver biopsy specimens. Histopathology. 2012;60(7):1107-1113. doi: https://doi.org/10.1111/j.1365-2559.2011.04164.x; Harrison SA. Management of Lysosomal Acid Lipase Deficiency for the Gastroenterologist and Hepatologist. Gastroenterol Hepatol (N Y). 2016;12(5):331-333.; Jones SA, Rojas-Caro S, Quinn AG, et al. Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: an open-label, multicenter, dose-escalation study. Orphanet J Rare Dis. 2017;12(1):25. doi: https://doi.org/10.1186/s13023-017-0587-3; Burton BK, Balwani M, Feillet F, et al. A Phase 3 Trial of Sebelipase Alfa in Lysosomal Acid Lipase Deficiency. N Engl J Med. 2015;373(11):1010-1020. doi: https://doi.org/10.1056/NEJMoa1501365; Abel F, Arnoux JB, Kostyleva M, et al. Benefit of Sebelipase Alfa in Children and Adults With Lysosomal Acid Lipase Deficiency Based on Analysis of Efficacy Overall and by Baseline Alanine Aminotransferase Level. J Hepatol. 2016;64(2):298-299. doi: https://doi.org/10.1016/S0168-8278(16)00382-2; Su K, Donaldson E, Sharma R. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa. Appl Clin Genet. 2016;9:157-167. doi: https://doi.org/10.2147/TACG.S86760; Valayannopoulos V, Malinova V, Honzík T, et al. Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J Hepatol. 2014;61(5):1135-1142. doi: https://doi.org/10.1016/j.jhep.2014.06.022; Maciejko JJ. Managing Cardiovascular Risk in Lysosomal Acid Lipase Deficiency. Am J Cardiovasc Drugs. 2017;17(3):217-231. doi: https://doi.org/10.1007/s40256-017-0216-5; Strebinger G, Muller E, Feldman A, Aigner E. Lysosomal acid lipase deficiency — early diagnosis is the key. Hepat Med. 2019;11:79-88. doi: https://doi.org/10.2147/HMER.S201630; Dixon DB. Non-Invasive Techniques in Pediatric Dyslipidemia. In: Endotext. Feingold KR, Anawalt B, Boyce A, et al., eds. South Dartmouth (MA): MDText.com, Inc.; 2020.; Zharkova M, Nekrasova T, Ivashkin V, et al. Fatty Liver and Systemic Atherosclerosis in a Young, Lean Patient: Rule Out Lysosomal Acid Lipase Deficiency. Case Rep Gastroenterol. 2019;13(3):498-507. doi: https://doi.org/10.1159/000504646; Erwin AL. The role of sebelipase alfa in the treatment of lysosomal acid lipase deficiency. Therap Adv Gastroenterol. 2017;10(7):553-562. doi: https://doi.org/10.1177/1756283X17705775; Венозный доступ: методические руководства. — Минздрав России; 2019. — 82 с. Доступно по: https://msestra.ru/download/file.php?id=4763. Ссылка активна на 18.07.2023.; Себелипаза альфа. Регистрационное удостоверение № ЛП-004513. Дата регистрации: 31.10.2017 // Государственный реестр лекарственных средств: официальный сайт. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=1eaa9c5e-20c6-4a75-a48c-44f5271fcf4d. Ссылка активна на 14.07.2023.; Jones SA, AlSayed M, Broomfield AA, et al. Management guidelines for infantile onset lysosomal acid lipase deficiency (LALD). Mol Genet Metab. 2018;123(2):S72-S73. doi: https://doi.org/10.1016/j.ymgme.2017.12.180; Malinova V, Balwani M, Sharma R, et al. Sebelipase alfa for lysosomal acid lipase deficiency: 5-year treatment experience from a phase 2 open-label extension study. Liver Int. 2020;40(9):2203-2214. doi: https://doi.org/10.1111/liv.14603; Attachment 2 KANUMA — Sebelipase — Alexion Pharmaceuticals Australia Pty Ltd — PM-2016-01313-1-3 — Extract from the CER FINAL 14 June 2018. Available online: https://www.tga.gov.au/sites/default/files/auspar-sebelipase-alfa-180614-cer.pdf. Accessed on July 13, 2023.; Pastores GM, Hughes DA. Lysosomal Acid Lipase Deficiency: Therapeutic Options. Drug Des Devel Ther. 2020;14:591-601. doi: https://doi.org/10.2147/DDDT.S149264; Gramatges MM, Dvorak CC, Regula DP, et al. Pathological evidence of Wolman's disease following hematopoietic stem cell transplantation despite correction of lysosomal acid lipase activity. Bone Marrow Transplant. 2009;44(7):449-450. doi: https://doi.org/10.1038/bmt.2009.57; Stein J, Garty BZ, Dror Y, et al. Successful treatment of Wolman disease by unrelated umbilical cord blood transplantation. Eur J Pediatr. 2007;166(7):663-666. doi: https://doi.org/10.1007/s00431-006-0298-6; Yanir A, Allatif MA, Weintraub M, Stepensky P. Unfavorable outcome of hematopoietic stem cell transplantation in two siblings with Wolman disease due to graft failure and hepatic complications. Mol Genet Metab. 2013;109(2):224-226. doi: https://doi.org/10.1016/j.ymgme.2013.03.007; Лобанова Е.В., Лаврова А.Е., Коновалова Е.Ю. и др. Дефицит лизосомной кислой липазы у ребенка 5 лет // Педиатрия. Журнал им. Г.Н. Сперанского. — 2017. — Т. 96. — № 6. — С. 183-186.; Kale AS, Ferry GD, Hawkins EP. End-stage renal disease in a patient with cholesteryl ester storage disease following successful liver transplantation and cyclosporine immunosuppression. J Pediatr Gastroenterol Nutr. 1995;20(1):95-97. doi: https://doi.org/10.1097/00005176-199501000-00016; Ambler GK, Hoare M, Brais R, et al. Orthotopic liver transplantation in an adult with cholesterol ester storage disease. JIMD Rep. 2013;8:41-46. doi: https://doi.org/10.1007/8904_2012_155; Bernstein DL, Lobritto S, Iuga A, et al. Lysosomal acid lipase deficiency allograft recurrence and liver failure- clinical outcomes of 18 liver transplantation patients. Mol Genet Metab. 2018;124(1):11-19. doi: https://doi.org/10.1016/j.ymgme.2018.03.010; https://www.pedpharma.ru/jour/article/view/2342

  12. 12
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 2 (2023); 117-130 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 2 (2023); 117-130 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/944/831; https://journal.nodgo.org/jour/article/view/944/832; Сагоян Г.Б., Клецкая И.С., Имянитов Е.Н., Мареева Ю.М., Жуков Н.В., Хагуров Р.А., Сулейманова А.М. Спектр синдромов избыточного роста, связанных с мутацией PIK3CA. Обзор литературы. Российскийжурнал детской гематологии и онкологии. 2022;9(1):29–44. doi:10.21682/2311-1267-2022-9-1-29-44.; Canaud G., Hammill A.M., Adams D., Vikkula M., Keppler-Noreuil K.M. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306. doi:10.1186/s13023-021-01929-8.; Nunnery S.E., Mayer I.A. Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer Drugs. 2020;80:1685–97. doi:10.1007/s40265-020-01394-w.; Madsen R.R., Vanhaesebroeck B., Semple R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol Med. 2018;24(10):856–70. doi:10.1016/j.molmed.2018.08.003.; Douzgou S., Rawson M., Baselga E., Danielpour M., Faivre L., Kashanian A., Keppler-Noreuil K.M., Kuentz P., Mancini G.M.S., Maniere M.C., Martinez-Glez V., Parker V.E., Semple R.K., Srivastava S., Vabres P., De Wit M.Y., Graham J.M. Jr, Clayton-Smith J., Mirzaa G.M., Biesecker L.G. A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clin Genet. 2022;101(1):32–47. doi:10.1111/cge.14027.; Mirzaa G., Graham J.M. Jr, Keppler-Noreuil K.M. PIK3CA-Related Overgrowth Spectrum. In: Adam M.P., Everman D.B., Mirzaa G.M., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023.; Keppler-Noreuil K.M., Rios J.J., Parker V.E., Semple R.K., Lindhurst M.J., Sapp J.C., Alomari A., Ezaki M., Dobyns W., Biesecker L.G. PIK3CArelated overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, diff erential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287–95. doi:10.1002/ajmg.a.36836.; Canaud G., López Gutiérrez J.C., Irvine A., Ankrah N., Ridolfi A., Adams D.M. LBA23 EPIK-P1: Retrospective chart review study of patients (pts) with PIK3CA-related Overgrowth Spectrum (PROS) who have received alpelisib (ALP) as part of a compassionate use programme. Dev Ther. 2021;32(Suppl 5):S1297. doi:10.1016/j.annonc.2021.08.2097.; Garreta Fontelles G., Pardo Pastor J., Grande Moreillo C. Alpelisib to treat CLOVES syndrome, a member of the PIK3CA-related overgrowth syndrome spectrum. Br J Clin Pharmacol. 2022;88(8):3891–5. doi:10.1111/bcp.15270.; Morin G., Degrugillier-Chopinet C., Vincent M., Fraissenon A., Aubert H., Chapelle C., Hoguin C., Dubos F., Catteau B., Petit F., Mezel A., Domanski O., Herbreteau G., Alesandrini M., Boddaert N., Boutry N., Broissand C., Kevin Han T., Branle F., Sarnacki S., Blanc1 T., Guibaud L., Canaud G. Treatment of two infants with PIK3CA-related overgrowth spectrum by alpelisib. J Exp Med. 2022;219(3):e20212148. doi:10.1084/jem.20212148.; Madsen R.R., Semple R.K. PIK3CA-related overgrowth: silver bullets from the cancer arsenal? Trends Mol Med. 2022;28(4):255–7. doi:10.1016/j.molmed.2022.02.009.; Parker V.E.R., Keppler-Noreuil K.M., Faivre L., Luu M., Oden N.L., De Silva L., Sapp J.C., Andrews K., Bardou M., Chen K.Y., Darling T.N., Gautier E., Goldspiel B.R., Hadj-Rabia S., Harris J., Kounidas G., Kumar P., Lindhurst M.J., Loff roy R., Martin L., Phan A., Rother K.I., Widemann B.C., Wolters P.L., Coubes C., Pinson L., Willems M., Vincent-Delorme C.; PROMISE Working Group; Vabres P., Semple R.K., Biesecker L.G. Safety and efficacy of low-dose sirolimus in the PIK3CArelated overgrowth spectrum. Genet Med. 2019;21(5):1189–98. doi:10.1038/s41436-018-0297-9.; https://journal.nodgo.org/jour/article/view/944

  13. 13
    Academic Journal

    المساهمون: The research was conducted within the framework of the state assignment of the Ministry of Education and Science of Russia., Исследование выполнено в рамках государственного задания Минобрнауки России.

    المصدر: Neuromuscular Diseases; Том 13, № 3 (2023); 25-32 ; Нервно-мышечные болезни; Том 13, № 3 (2023); 25-32 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-3

    وصف الملف: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/556/356; FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality. FDA, 24 May 2019.; Влодавец Д.В., Харламов Д.А., Артемьева С.Б. и др. Федеральные клинические рекомендации (протоколы) по диагностике и лечению спинальных мышечных атрофий у детей. Доступно по: http://ulgb3.ru/doc/211218_10-58.pdf.; Селиверстов Ю.А., Клюшников С.А., Иллариошкин С.Н. Спинальные мышечные атрофии: понятие, дифференциальная диагностика, перспективы лечения. Нервные болезни 2015;(3):9–17.; Приказ Минздравсоцразвития РФ от 22.03.2006 № 185 «О массовом обследовании новорожденных детей на наследственные заболевания» (вместе с «Положением об организации проведения массового обследования новорожденных детей на наследственные заболевания», «Рекомендациями по забору образцов крови при проведении массового обследования новорожденных детей на наследственные заболевания»). Доступно по: https://legalacts.ru/doc/prikaz-minzdravsotsrazvitijarf-ot-22032006-n-185/.; Исследование носительства СМА и муковисцидоза становится более доступным. Доступно по: https://f-sma.ru/genetika/issledovanie-nositelstva-sma-i-mukoviscidoza-stanovitsja-boleedostupnym/.; Колбин А.С., Влодавец Д.В., Курылев А.А. и др. Анализ социально-экономического бремени спинальной мышечной атрофии в Российской Федерации. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология 2020;13 (4): 337–54. DOI:10.17749/2070-4909/farmakoekonomika.2020.068; Клинические рекомендации «Проксимальная спинальная мышечная атрофия 5q». Доступно по: https://cr.minzdrav.gov.ru/recomend/593_3.; Приказ МЗ РФ от 01.09.2021 № 895н «Стандарт медицинской помощи детям при проксимальной мышечной атрофии 5Q». Доступно по: https://docs.cntd.ru/document/608935369.; Приложение № 6 к Тарифному соглашению на 2023 г. от 30 декабря 2022 г. Доступно по: https://www.mgfoms.ru/medicinskieorganizacii/tarifi/2023.; Государственный реестр предельных отпускных цен. Доступно по: https://grls.rosminzdrav.ru/Default.aspx.; Портал Государственных закупок РФ. Доступно по: https://zakupki.gov.ru/epz/main/public/home.html.; Германенко О.Ю. Спинальная мышечная атрофия 2021: Актуальные вопросы организации помощи. Доклад на VI конференции СМА 29.10.2021.; Kulikov A.Yu., Komarov I.A., Pochuprina A.A. Budget impact analysis of belimumab in the treatment of patients with systemic lupus erythematosus in Russian Federation. Value in Health 2014;17(7):A525–A526. DOI:10.1016/j.jval.2014.08.1656; Нагибин О.А., Манухина Е.В., Комаров И.А. Нормативно-правовое регулирование льготного лекарственного обеспечения в Российской Федерации. Российский медико-биологический вестник им. акад. И.П. Павлова 2019;27(4):520–9. DOI:10.23888/PAVLOVJ2019274520-529; Куликов А.Ю., Комаров И.А. Фармакоэкономическое исследование применения бронхорасширяющих средств группы М-холиноблокаторов (Спирива® и Атровент®) в лечении хронической обструктивной болезни легких. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология 2012;(3):20–6.; Куликов А.Ю., Комаров И.А. Анализ эффективности применения церебролизина при терапии острого нарушения мозгового кровообращения по ишемическому типу на основе оценки реальной клинической практики в условиях РФ. Современная организация лекарственного обеспечения 2013;(2):31–7.; Куликов А.Ю., Комаров И.А. Фармакоэкономический анализ лекарственного средства Бейодайм (пертузумаб + трастузумаб [набор]) в лечении метастатического рака молочной железы у больных с HER2+ формой заболевания. Фармакоэкономика: теория и практика 2015;3(2):32–9.; Колбин А.С., Курылев А.А., Балыкина Ю.Е. и др. Фармакоэкономическая оценка лекарственного препарата рисдиплам у пациентов со спинальной мышечной атрофией. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология 2021;14(3):299–310. DOI:10.17749/2070-4909/farmakoekonomika.2021.101; Федеральный закон № 181-ФЗ от 24.11.1995 «О социальной защите инвалидов в Российской Федерации.; Федеральная служба государственной статистики. Рынок труда, занятость и заработная плата. Доступно по: https://rosstat.gov.ru/labor_market_employment_salaries.; Федеральная служба государственной статистики. Росстат представляет данные о естественном движении населения в декабре 2022 года. Доступно по: https://rosstat.gov.ru/folder/313/document/197667.; Droege M., Droege, Sproule D., Arjunjiet R. et al. Economic burden of spinal muscular atrophy in the United States: a contemporary assessment. J Med Econ 2020;23(1):70–9. DOI:10.1080/13696998.2019.1646263; McMillan, H.J., Gerber B., Cowling T. et al. Burden of spinal muscular atrophy (SMA) on patients and caregivers in Canada. J Neuromusc Dis 2021;8(4):553–68. DOI:10.3233/JND-200610; Chan S.H.S., Wong C.K.H., Wu T. et al. Significant healthcare burden and life cost of spinal muscular atrophy: real-world data. Eur J Health Econ 2022:1–10. DOI:10.1007/s10198-022-01548-5; Shih S., Farrar M.A., Wiley V., Chambers G. Newborn screening for spinal muscular atrophy with disease-modifying therapies: a cost-effectiveness analysis. J Neurol Neurosurg Psychiatry 2021;92(12):1296–304. DOI:10.1136/jnnp-2021-326344; Dangouloff T., Botty C., Beaudart C. et al. Systematic literature review of the economic burden of spinal muscular atrophy and economic evaluations of treatments. Orpht J Rare Dis 2021;16(1):1–16. DOI:10.1186/s13023-021-01695-7; Dean R., Jensen I., Cyr P. et al. An updated cost-utility model for onasemnogene abeparvovec (Zolgensma®) in spinal muscular atrophy type 1 patients and comparison with evaluation by the Institute for Clinical and Effectiveness Review (ICER). J Mark Access Health Policy 2021;9(1):1889841. DOI:10.1080/20016689.2021.1889841; Overview of the ZOLGENSMA clinical studies. Available at: https://www.zolgensma.com/clinical-studies.; De Vivo D.C., Bertini E., Swoboda K.J. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul Disord 2019;29(11):842–56. DOI:10.1016/j.nmd.2019.09.007; Минздрав разрешил применять Эврисди для терапии СМА у новорожденных. Доступно по: https://vademec.ru/news/2023/01/31/minzdrav-razreshil-primenyat-evrisdi-dlya-terapii-sma-u-novorozhdennykh/.; European Medicines Agency. Assessment report, 2020. Available at: https://www.ema.europa.eu/en/documents/assessment-report/zolgensma-epar-public-assessment-report_en.pdf.; https://nmb.abvpress.ru/jour/article/view/556

  14. 14
    Academic Journal

    المساهمون: The work was supported by the state task of the Ministry of Science and Higher Education for Research Centre for Medical Genetics., Государственное задание Министерства науки и высшего образования для ФГБНУ МГНЦ.

    المصدر: Medical Genetics; Том 22, № 6 (2023); 12-23 ; Медицинская генетика; Том 22, № 6 (2023); 12-23 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2317/1718; Гинтер Е.К., Зинченко Р.А. Наследственные болезни в российских популяциях. Информационный вестник ВОГиС. 2006; 10(1): 106-125.; Зинченко Р.А., Куцев С.И., Александрова О.Ю., Гинтер Е.К. Основные методологические подходы к выявлению и диагностике моногенных наследственных заболеваний и проблемы в организации медицинской помощи и профилактических программ. Проблемы социальной гигиены, здравоохранения и истории медицины. 2019; 27(5): 865-7 https://doi.org/10.32687/0869-866X-2019-27-5-865-877; Методология генетико-эпидемиологического изучения наследственных болезней и врожденных пороков развития. Учебно-методическое пособие под редакцией Зинченко Р.А., Амелиной С.С., Куцева С.И., Гинтера Е.К. – Белгород: «ПОЛИТЕРРА», 2020:569с.; Петрин А.Н., Гинтер Е.К., Руденская Г.И. и др. Медико-генетическое изучение населения Костромской области. Сообщение 4. Отягощенность и разнообразие наследственной патологии в 5 районах области. Генетика. 1988; 24(1): 151-155.; Мамедова Р.А., Ельчинова Г.И., Старцева Е.А. и др. Генетическая структура и груз наследственных болезней в пяти популяциях Архангельской области. Генетика. 1996; 32(6): 837-841.; Мамедова Р.А., Кадошникова М.Ю., Брусинцева О.В. и др. Медико-генетическое описание населения двух районов Краснодарского края. Генетика. 1999; 35(1): 68-73.; Зинченко Р.А., Ельчинова Г.И., Руденская Г.Е. и др. Комплексное популяционно- и медико-генетическое изучение двух районов Тверской области. Генетика. 2004; 40(5):667-676 https://doi.org/10.1023/B:RUGE.0000029157.14539.10; Зинченко Р.А., Ельчинова Г.И., Гинтер Е.К. Факторы, определяющие распространение наследственных болезней в российских популяциях. Медицинская генетика. 2009; 8,12(90): 7-23.; Zinchenko R.A., Makaov A.Kh., Marakhonov A.V. et al. Epidemiology of hereditary diseases in Karachay-Cherkess Republic. International Journal of Molecular Sciences. 2020; 21(1): 325. https://doi.org/10.3390/ijms21010325; Гетоева З.К., Кадышев В.В., Джаджиева М.Ю. и др. Медико-генетическое изучение населения Республики Северная Осетия Алания. II. Нозологический спектр наследственной патологией в трех районах. Медицинская генетика. 2020;19(10):10-18. https://doi.org/10.25557/2073-7998.2020.10.10-18; Zinchenko R.A., Ginter E.K., Marakhonov A.V., et al. Epidemiology of rare hereditary diseases in European part of Russia: point and cumulative prevalence. Frontiers in Genetics. 2021: 678957. https://doi.org/10.3389/fgene.2021.678957; Кадышев В.В., Гинтер Е.К., Куцев С.И., Оганезова Ж.Г., Зинченко Р.А. Эпидемиология наследственных болезней органа зрения в популяциях Российской Федерации. Клиническая офтальмология. 2022; 22(2): 69-79 https://doi.org/10.32364/2311-7729-2022-22-2-69-79; Козлова С.И., Семанова Е., Демикова Н.С., Блинникова О.Е. Наследственные синдромы и медико-генетическое консультирование. Справочник. – Л.: Медицина, – 1987. – 320с.; Зинченко Р.А., Ельчинова Г.И., Нурбаев С.Д., Гинтер Е.К. Разнообразие аутосомно-доминантных заболеваний в российских популяциях. Генетика. 2001; 37(3):373-385.; Зинченко Р.А., Ельчинова Г.И., Козлова С.И., и др. Эпидемиология наследственных болезней в республике ЧувашиЯ. Медицинская генетика. 2002; 1(1):24-33.; Мамедова Р.А., Гинтер Е.К., Петрин А.Н., и др. Структура и разнообразие наследственной патологии в Кировской области. Генетика. 1993; 29(7): 1186-1195.; Гинтер Е.К., Зинченко Р.А. Ельчинова Г.И., и др. Генетико-эпидемиологическое изучение трех районов республики Чувашия. Генетика. 2001; 37(6): 840-847.; Morton N.E. Genetic tests under incomplete ascertainment. Am J Hum Genet. 1959;11(1):1-16.; Cavalli-Sforza L.L., Bodmer W.F. The genetics of human populations. Courier Corporation; 1999.; Животовский Л.А. Популяционная биометрия. М.: Наука, 1991:128-130.; https://www.medgen-journal.ru/jour/article/view/2317

  15. 15
    Academic Journal

    المصدر: Modern Rheumatology Journal; Том 17, № 6 (2023); 92-101 ; Современная ревматология; Том 17, № 6 (2023); 92-101 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1509/1425; https://mrj.ima-press.net/mrj/article/view/1509/1431; Beck DB, Ferrada MA, Sikora KA, et al. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease. N Engl J Med. 2020 Dec 31;383(27):2628- 2638. doi:10.1056/NEJMoa2026834. Epub 2020 Oct 27.; Poulter JA, Savic S. Genetics of somatic auto-inflammatory disorders. Semin Hematol. 2021 Oct;58(4):212-217. doi:10.1053/j.seminhematol.2021.10.001. Epub 2021 Oct 9.; Georgin-Lavialle S, Terrier B, Guedon AF, et al. Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients. Br J Dermatol. 2022 Mar; 186(3):564-574. doi:10.1111/bjd.20805. Epub 2021 Nov 28.; Barba T, Jamilloux Y, Durel CA, et al. VEXAS syndrome in a woman. Rheumatology (Oxford). 2021 Nov 3;60(11):e402-e403. doi:10.1093/rheumatology/keab392.; Stubbins RJ, McGinnis E, Johal B, et al. VEXAS syndrome in a female patient with constitutional 45,X (Turner syndrome). Haematologica. 2022 Apr 1;107(4):1011-1013. doi:10.3324/haematol.2021.280238.; Beck DB, Bodian DL, Shah V, et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA. 2023 Jan 24;329(4):318-324. doi:10.1001/jama.2022.24836.; Bruno A, Gurnari C, Alexander T, et al; Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Autoimmune manifestations in VEXAS: Opportunities for integration and pitfalls to interpretation. J Allergy Clin Immunol. 2023 May;151(5):1204-1214. doi:10.1016/j.jaci.2023.02.017. Epub 2023 Mar 21.; Ferrada MA, Savic S, Cardona DO, et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood. 2022 Sep 29;140(13):1496-1506. doi:10.1182/blood.2022016985.; Poulter JA, Collins JC, Cargo C, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood. 2021 Jul 1;137(26):3676-3681. doi:10.1182/blood.2020010286.; Sterling D, Duncan ME, Philippidou M, et al. VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) for the dermatologist. J Am Acad Dermatol. 2023 Dec;89(6):1209-1214. doi:10.1016/j.jaad.2022.01.042. Epub 2022 Feb 2.; Lacombe V, Beucher A, Urbanski G, et al. Distinction between clonal and paraclonal cutaneous involvements in VEXAS syndrome. Exp Hematol Oncol. 2022 Feb 16;11(1):6. doi:10.1186/s40164-022-00262-5.; Zakine E, Schell B, Battistella M, et al. UBA1 Variations in Neutrophilic Dermatosis Skin Lesions of Patients With VEXAS Syndrome. JAMA Dermatol. 2021 Nov 1;157(11): 1349-1354. doi:10.1001/jamadermatol.2021.3344.; Gurnari C, Mannion P, Pandit I, et al. UBA1 Screening in Sweet Syndrome With Hematological Neoplasms Reveals a Novel Association Between VEXAS and Chronic Myelomonocytic Leukemia. Hemasphere. 2022 Sep 27;6(10):e775. doi:10.1097/HS9. 0000000000000775. eCollection 2022 Oct.; Borie R, Debray MP, Guedon AF, et al. Pleuropulmonary Manifestations of Vacuoles, E1 Enzyme, X-Linked, Autoinflammatory, Somatic (VEXAS) Syndrome. Chest. 2023 Mar;163(3):575-585. doi:10.1016/j.chest.2022.10.011. Epub 2022 Oct 20.; Watanabe R, Kiji M, Hashimoto M. Vasculitis associated with VEXAS syndrome: A literature review. Front Med (Lausanne). 2022 Aug 15:9:983939. doi:10.3389/fmed.2022.983939. eCollection 2022.; Kouranloo K, Ashley A, Zhao SS, Dey M. Pulmonary manifestations in VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome: a systematic review. Rheumatol Int. 2023 Jun;43(6):1023-1032. doi:10.1007/s00296-022-05266-2. Epub 2023 Jan 8.; Lacombe V, Kosmider O, Prevost M, et al. Severe Joint Involvement in VEXAS Syndrome: A Case Report. Ann Intern Med. 2021 Jul;174(7):1025-1027. doi:10.7326/L21-0023. Epub 2021 Mar 30.; Magnol M, Couvaras L, Degboe Y, et al. VEXAS syndrome in a patient with previous spondyloarthritis with a favourable response to intravenous immunoglobulin and anti-IL17 therapy. Rheumatology (Oxford). 2021 Sep 1; 60(9):e314-e315. doi:10.1093/rheumatology/keab211.; Bourbon E, Heiblig M, Gerfaud Valentin M, et al. Therapeutic options in VEXAS syndrome: insights from a retrospective series. Blood. 2021 Jul 1;137(26):3682-3684. doi:10.1182/blood.2020010177.; van der Made CI, Potjewijd J, Hoogstins A, et al. Adult-onset autoinflammation caused by somatic mutations in UBA1: A Dutch case series of patients with VEXAS. J Allergy Clin Immunol. 2022 Jan;149(1): 432-439.e4. doi:10.1016/j.jaci.2021.05.014. Epub 2021 May 25.; Kucharz EJ. VEXAS syndrome: a newly discovered systemic rheumatic disorder. Reumatologia. 2023;61(2):123-129. doi:10.5114/reum/163090. Epub 2023 May 10.; Itagane M, Teruya H, Kato T, et al. Clinical images: VEXAS syndrome presenting as treatment-refractory polyarteritis nodosa. Arthritis Rheumatol. 2022 Nov;74(11): 1863-1864. doi:10.1002/art.42257. Epub 2022 Sep 29.; Muratore F, Marvisi C, Castrignanт P, et al. VEXAS Syndrome: A Case Series From a Single-Center Cohort of Italian Patients With Vasculitis. Arthritis Rheumatol. 2022 Apr;74(4):665-670. doi:10.1002/art.41992. Epub 2022 Mar 3.; Meyts I, Aksentijevich I. Deficiency of Adenosine Deaminase 2 (DADA2): Updates on the Phenotype, Genetics, Pathogenesis, and Treatment. J Clin Immunol. 2018 Jul; 38(5):569-578. doi:10.1007/s10875-018- 0525-8. Epub 2018 Jun 27; Wang Y, Wang F, Zhang X. STING-associated vasculopathy with onset in infancy: a familial case series report and literature review. Ann Transl Med. 2021 Jan;9(2):176. doi:10.21037/atm-20-6198.; Ferrada MA, Sikora KA, Luo Y, et al. Somatic Mutations in UBA1 Define a Distinct Subset of Relapsing Polychondritis Patients With VEXAS. Arthritis Rheumatol. 2021 Oct;73(10):1886-1895. doi:10.1002/art. 41743. Epub 2021 Aug 31.; Khitri MY, Guedon AF, Georgin-Lavialle S, et al. Comparison between idiopathic and VEXAS-relapsing polychondritis: analysis of a French case series of 95 patients. RMD Open. 2022 Jul;8(2):e002255. doi:10.1136/rmdopen-2022-002255.; Vitale A, Caggiano V, Bimonte A, et al. VEXAS syndrome: a new paradigm for adult onset monogenic autoinflammatory diseases. Intern Emerg Med. 2023 Apr;18(3): 711-722. doi:10.1007/s11739-023-03193-z. Epub 2023 Jan 20.; Lucchino B, Finucci A, Ghellere F, et al. Influence of HLA polymorphisms on clinical features of VEXAS syndrome: a potential epistatic mechanism. Rheumatology (Oxford). 2022 Dec 23;62(1):e7-e8. doi:10.1093/rheumatology/keac371.; Al-Hakim A, Savic S. An update on VEXAS syndrome. Expert Rev Clin Immunol. 2023 Feb;19(2):203-215. doi:10.1080/1744666X.2023.2157262. Epub 2022 Dec 26.; Bert-Marcaz C, Briantais A, Faucher B, et al. Expanding the spectrum of VEXAS syndrome: association with acute-onset CIDP. J Neurol Neurosurg Psychiatry. 2022 Jul;93(7): 797-798. doi:10.1136/jnnp-2021-327949. Epub 2021 Dec 6.; Oo TM, Koay JTJ, Lee SF, et al. Thrombosis in VEXAS syndrome. J Thromb Thrombolysis. 2022 May;53(4):965-970. doi:10.1007/s11239-021-02608-y. Epub 2021 Nov 24.; Groarke EM, Dulau-Florea AE, Kanthi Y. Thrombotic manifestations of VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):230-238. doi:10.1053/j.seminhematol.2021.10.006. Epub 2021 Oct 25.; Koster MJ, Kourelis T, Reichard KK, et al. Clinical Heterogeneity of the VEXAS Syndrome: A Case Series. Mayo Clin Proc. 2021 Oct;96(10):2653-2659. doi:10.1016/j.mayocp.2021.06.006. Epub 2021 Sep 3.; Patel BA, Ferrada MA, Grayson PC, Beck DB. VEXAS syndrome: An inflammatory and hematologic disease. Semin Hematol. 2021 Oct;58(4):201-203. doi:10.1053/j.seminhematol.2021.10.005. Epub 2021 Oct 14.; Obiorah IE, Patel BA, Groarke EM, et al. Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1. Blood Adv. 2021 Aug 24;5(16):3203-3215. doi:10.1182/bloodadvances.2021004976.; Temple M, Kosmider O. VEXAS syndrome: a novelty in MDS landscape. Diagnostics (Basel). 2022 Jun 29;12(7):1590. doi:10.3390/diagnostics12071590.; Obiorah IE, Beck DB, Wang W, et al. Myelodysplasia and bone marrow manifestations of somatic UBA1 mutated autoinflammatory disease. Blood. 2020;136(S1):20-21.; Tsuchida N, Kunishita Y, Uchiyama Y, et al. Pathogenic UBA1 variants associated with VEXAS syndrome in Japanese patients with relapsing polychondritis. Ann Rheum Dis. 2021 Aug;80(8):1057-1061. doi:10.1136/annrheumdis-2021-220089. Epub 2021 Mar 31.; Lötscher F, Seitz L, Simeunovic H, et al. Case Report: Genetic Double Strike: VEXAS and TET2-Positive Myelodysplastic Syndrome in a Patient With Long-Standing Refractory Autoinflammatory Disease. Front Immunol. 2022 Jan 20:12:800149. doi:10.3389/fimmu.2021.800149. eCollection 2021.; Kusne Y, Fernandez J, Patnaik MM. Clonal hematopoiesis and VEXAS syndrome: survival of the fittest clones? Semin Hematol. 2021 Oct;58(4):226-229. doi:10.1053/j.seminhematol.2021.10.004. Epub 2021 Oct 9.; Gutierrez-Rodrigues F, Kusne Y, Fernandez J, et al. Spectrum of clonal hematopoiesis in VEXAS syndrome. Blood. 2023 Jul 20; 142(3):244-259. doi:10.1182/blood. 2022018774.; Diarra A, Duployez N, Fournier E, et al. Successful allogeneic hematopoietic stem cell transplantation in patients with VEXAS syndrome: a 2-center experience. Blood Adv. 2022 Feb 8;6(3):998-1003. doi:10.1182/bloodadvances.2021004749.; Kao RL, Jacobsen AA, Billington CJ Jr, et al. A case of VEXAS syndrome associated with EBV-associated hemophagocytic lymphohistiocytosis. Blood Cells Mol Dis. 2022 Mar:93:102636. doi:10.1016/j.bcmd.2021.102636. Epub 2021 Nov 30.; Lee SMS, Fan BE, Lim JH, Goh LL, Lee JSS, Koh LW. A case of VEXAS syndrome manifesting as Kikuchi-Fujimoto disease, relapsing polychondritis, venous thromboembolism and macrocytic anaemia. Rheumatology (Oxford). 2021 Sep 1;60(9):e304-e306. doi:10.1093/rheumatology/keab200.; Gurnari C, Pagliuca S, Durkin L, et al. Vacuolization of hematopoietic precursors: an enigma with multiple etiologies. Blood. 2021 Jul 1;137(26):3685-3689. doi:10.1182/blood.2021010811.; Patel N, Dulau-Florea A, Calvo KR. Characteristic bone marrow findings in patients with UBA1 somatic mutations and VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):204-211. doi:10.1053/j.seminhematol.2021.10.007. Epub 2021 Oct 22.; Temple M, Duroyon E, Croizier C, et al. Atypical splice-site mutations causing VEXAS syndrome. Rheumatology (Oxford). 2021 Dec 1; 60(12):e435-e437. doi:10.1093/rheumatology/keab524.; Hines AS, Koster MJ, Rock AR, et al. Targeted testing of bone marrow specimens with cytoplasmic vacuolization to identify previously undiagnosed cases of VEXAS syndrome. Rheumatology (Oxford). 2023 May 25:kead245. doi:10.1093/rheumatology/kead245. Online ahead of print.; Gurnari C, Rogers HJ. Copper Deficiency. N Engl J Med. 2021 Aug 12;385(7): 640. doi:10.1056/NEJMicm2103532. Epub 2021 Aug 7.; Lacombe V, Prevost M, Bouvier A, et al. Vacuoles in neutrophil precursors in VEXAS syndrome: diagnostic performances and threshold. Br J Haematol. 2021 Oct;195(2): 286-289. doi:10.1111/bjh.17679. Epub 2021 Aug 2.; Gurnari C, McLornan DP. Update on VEXAS and role of allogeneic bone marrow transplant: Considerations on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant. 2022 Nov; 57(11):1642-1648. doi:10.1038/s41409-022-01774-8. Epub 2022 Aug 8.; Loschi M, Roux C, Sudaka I, et al. Allogeneic stem cell transplantation as a curative therapeutic approach for VEXAS syndrome: a case report. Bone Marrow Transplant. 2022 Feb;57(2):315-318. doi:10.1038/s41409-021-01544-y. Epub 2022 Jan 9.; Mangaonkar AA, Langer KJ, Lasho TL, et al. Reduced intensity conditioning allogeneic hematopoietic stem cell transplantation in VEXAS syndrome: Data from a prospective series of patients. Am J Hematol. 2023 Feb; 98(2):E28-E31. doi:10.1002/ajh.26786. Epub 2022 Dec 1.; van Leeuwen-Kerkhoff N, de Witte MA, Heijstek MW, Leavis HL. Case report: Up-front allogeneic stem cell transplantation in a patient with the VEXAS syndrome. Br J Haematol. 2022 Nov;199(3):e12-e15. doi:10.1111/bjh.18424. Epub 2022 Aug 29.; Al-Hakim A, Poulter JA, Mahmoud D, et al. Allogeneic haematopoietic stem cell transplantation for VEXAS syndrome: UK experience. Br J Haematol. 2022 Dec;199(5): 777-781. doi:10.1111/bjh.18488. Epub 2022 Oct 2.; Comont T, Heiblig M, Riviere E, et al. Azacitidine for patients with Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic syndrome (VEXAS) and myelodysplastic syndrome: data from the French VEXAS registry. Br J Haematol. 2022 Feb;196(4): 969-974. doi:10.1111/bjh.17893. Epub 2021 Oct 14.; Raaijmakers MHGP, Hermans M, Aalbers A, et al. Azacytidine Treatment for VEXAS Syndrome. Hemasphere. 2021 Nov 17; 5(12):e661. doi:10.1097/HS9.0000000000000661. eCollection 2021 Dec.; Mekinian A, Zhao LP, Chevret S, et al. A Phase II prospective trial of azacitidine in steroid-dependent or refractory systemic autoimmune/inflammatory disorders and VEXAS syndrome associated with MDS and CMML. Leukemia. 2022 Nov;36(11):2739- 2742. doi:10.1038/s41375-022-01698-8. Epub 2022 Sep 14.; Heiblig M, Patel BA, Groarke EM, et al. Toward a pathophysiology inspired treatment of VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):239-246. doi:10.1053/j.seminhematol.2021.09.001. Epub 2021 Oct 5.; Staels F, Betrains A, Woei-A-Jin FJSH, et al. Case Report: VEXAS Syndrome: From Mild Symptoms to Life-Threatening Macrophage Activation Syndrome. Front Immunol. 2021 Apr 23:12:678927. doi:10.3389/fimmu.2021.678927. eCollection 2021.; Kirino Y, Takase-Minegishi K, Tsuchida N, et al. Tocilizumab in VEXAS relapsing polychondritis: a single-center pilot study in Japan. Ann Rheum Dis. 2021 Nov;80(11):1501-1502. doi:10.1136/annrheumdis-2021-220876. Epub 2021 Jun 21.; Goyal A, Narayanan D, Wong W, et al. Tocilizumab for treatment of cutaneous and systemic manifestations of vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome without myelodysplastic syndrome. JAAD Case Rep. 2022 Mar 2:23: 15-19. doi:10.1016/j.jdcr.2022.02.022. eCollection 2022 May.; Heiblig M, Ferrada MA, Koster MJ, et al. Ruxolitinib is more effective than other JAK inhibitors to treat VEXAS syndrome: a retrospective multicenter study. Blood. 2022 Aug 25;140(8):927-931. doi:10.1182/blood.2022016642; https://mrj.ima-press.net/mrj/article/view/1509

  16. 16
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 32, № 4 (2022); 517-538 ; Пульмонология; Том 32, № 4 (2022); 517-538 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4131/3425; Новак А.А., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: состояние проблемы и перспективы. Медицинский совет. 2021; (1): 276–285. DOI:10.21518/2079-701X-2021-1-276-285.; Богорад А.Е., Дьякова С.Э., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: современные подходы к диагностике и терапии. Российский вестник перинатологии и педиатрии. 2019; 64 (5): 123–133. DOI:10.21508/1027-4065-2019-64-5-123-133.; Knowles M.R., Daniels L.A., Davis S.D. et al. Primary ciliary dyskinesia: recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 2013; 188 (8): 913–922. DOI:10.1164/rccm.201301-0059CI.; Kuehni C.E, Lucas J.S. Diagnosis of primary ciliary dyskinesia: summary of the ERS Task Force report. Breathe (Sheff.). 2017; 13 (3): 166–178. DOI:10.1183/20734735.008517.; Zariwala M.A., Knowles M.R., Leigh M.W., Leigh M.W. Primary ciliary dyskinesia. In: Adam M.P., Mirzaa G.M., Pagon R.A. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993–2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1122/; Lucas J.S.A., Walker W.T., Kuehni C.E., Lazor R. Primary ciliary dyskinesia. In.: Cordier J.F., ed. Orphan Lung Diseases. European Respiratory Society Monographs. 2011; 12: 201–218. DOI:10.1183/1025448x.erm5410.; O’Callaghan C., Chetcuti P., Moya E. High prevalence of primary ciliary dyskinesia in a British Asian population. Arch. Dis. Child. 2010; 95 (1): 51–52. DOI:10.1136/adc.2009.158493.; Kuehni C.E., Frischer T., Strippoli M.P. et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur. Respir. J. 2010; 36 (6): 1248–1258. DOI:10.1183/09031936.00001010.; Coren M.E., Meeks M., Morrison I. et al. Primary ciliary dyskinesia: age at diagnosis and symptom history. Acta Paediatr. 2002; 91 (6): 667–669. DOI:10.1080/080352502760069089.; Kuehni C.E., Goutaki M., Carroll M., Lucas J. Primary ciliary dyskinesia: the patients grow up. Eur. Respir. J. 2016; 48 (2): 297–300. DOI:10.1183/13993003.01098-2016.; Selimzyanova L., Sereda E. Dificulties of primary ciliary dyskinesia diagnosis in children. Eur. Respir. J. 2013, 42 (Suppl. 57): 1236. Available at: https://erj.ersjournals.com/content/42/Suppl_57/P1236; Shah A., Shoemark A., MacNeill S.J. et al. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur. Respir. J. 2016; 48 (2): 441–450. DOI:10.1183/13993003.00209-2016.; Werner C., Onnebrink J.G., Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia. 2015; 4 (1): 2. DOI:10.1186/s13630-014-0011-8.; Ibañez-Tallon I., Heintz N., Omran H. To beat or not to beat: roles of cilia in development and disease. Hum. Mol. Genet. 2003; 12 (Suppl. 1): R27–35. DOI:10.1093/hmg/ddg061.; Kurkowiak M., Zietkiewicz E., Witt M. Recent advances in primary ciliary dyskinesia genetics. J. Med. Genet. 2015; 52 (1): 1–9. DOI:10.1136/jmedgenet-2014-10275.; Shoemark A., Dixon M., Corrin B., Dewar A. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J. Clin. Pathol. 2012; 65 (3): 267–271. DOI:10.1136/jclinpath-2011-200415.; Osinka A., Poprzeczko M., Zielinska M.M. et al. Ciliary proteins: filling the gaps. Recent advances in deciphering the protein composition of motile ciliary complexes. Cells. 2019; 8 (7): 730. DOI:10.3390/cells8070730.; Брагина Е.Е., Сорокина Т.М., Арифулин Е.А., Курило Л.Ф. Генетически обусловленные формы патозооспермии: обзор литературы и результаты исследований. Андрология и генитальная хирургия. 2015; 16 (3): 29–39. DOI:10.17650/2070-9781-2015-16-3-29-39.; Vallet C., Escudier E., Roudot-Thoraval F. et al. Primary ciliary dyskinesia presentation in 60 children according to ciliary ultrastructure. Eur. J. Pediatr. 2013; 172 (8): 1053–1060. DOI:10.1007/s00431-013-1996-5.; Olbrich H., Häffner K., Kispert A. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry. Nat. Genet. 2002; 30 (2): 143–144. DOI:10.1038/ng817.; Shoemark A., Pinto A.L., Patel M.P. et al. PCD Detect: enhancing ciliary features through image averaging and classification. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020; 319 (6): L1048–1060. DOI:10.1152/ajplung.00264.2020.; Брагина Е.Е., Арифулин Е.А., Сенченков Е.П. Генетически обусловленные и функциональные нарушения подвижности сперматозоидов человека. Онтогенез. 2016; 47 (5): 271–286. DOI:10.7868/S0475145016050025.; Lucas J.S., Barbato A., Collins S.A. et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2017; 49 (1): 1601090. DOI:10.1183/13993003.01090-2016.; Kuehni C.E., Frischer T., Strippoli M.P. et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur. Respir. J. 2010; 36 (6): 1248–1258. DOI:10.1183/09031936.0000101023.; Mirra V., Werner C., Santamaria F. Primary ciliary dyskinesia: An update on clinical aspects, genetics, diagnosis, and future treatment strategies. Front. Pediatr. 2017; 5: 135. DOI:10.3389/fped.2017.00135.; Lucas J.S., Leigh M.W. Diagnosis of primary ciliary dyskinesia: searching for a gold standard. Eur. Respir. J. 2014; 44 (6): 1418–1422. DOI:10.1183/09031936.00175614.; Shapiro A.J., Zariwala M.A., Ferkol T. et al. Genetic disorders of mucociliary clearance consortium. diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr. Pulmonol. 2016; 51 (2): 115–132. DOI:10.1002/ppul.23304.; Behan L., Dimitrov B.D., Kuehni C.E. et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (4): 1103–1112. DOI:10.1183/13993003.01551-2015.; Nussbaumer M., Kieninger E., Tschanz S.A. et al. Diagnosis of primary ciliary dyskinesia: discrepancy according to different algorithms. ERJ Open Res. 2021; 7 (4): 00353-2021. DOI:10.1183/23120541.00353-2021.; Мизерницкий Ю.Л., Царегородцев А.Д., ред. Пульмонология детского возраста: проблемы и решения. М.: МНИИ педиатрии и детской хирургии; 2005. Вып. 5.; Escudier E., Couprie M., Duriez B. et al. Computer-assisted analysis helps detect inner dynein arm abnormalities. Am. J. Respir. Crit. Care Med. 2002; 166 (9): 1257–1262. DOI:10.1164/rccm.2111070.; Shoemark A., Boon M., Brochhausen C. et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur. Respir. J. 2020; 55 (4): 1900725. DOI:10.1183/13993003.00725-2019.; Jackson C.L., Behan L., Collins S.A. et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (3): 837–848. DOI:10.1183/13993003.00749-2015.; Knowles M.R., Zariwala M., Leigh M. Primary ciliary dyskinesia. Clin. Chest Med. 2016; 37 (3): 449–461. DOI:10.1016/j.ccm.2016.04.008.; Papon J.F., Coste A., Roudot-Thoraval F. et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2010; 35 (5): 1057–1063. DOI:10.1183/09031936.00046209.; Wallmeier J., Frank D., Shoemark A. et al. De Novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am. J. Hum. Genet. 2019; 105 (5): 1030–1039. DOI:10.1016/j.ajhg.2019.09.022.; Paff T., Loges N.T., Aprea I. et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am. J. Hum. Genet. 2017; 100 (1): 160–168. DOI:10.1016/j.ajhg.2016.11.019.; Hannah W.B., DeBrosse S., Kinghorn B. et al. The expanding phenotype of OFD1-related disorders: Hemizygous loss-of-function variants in three patients with primary ciliary dyskinesia. Mol. Genet. Genomic Med. 2019; 7 (9): e911. DOI:10.1002/mgg3.911.; Stannard W., O’Callaghan C. Ciliary function and the role of cilia in clearance. J. Aerosol Med. 2006; 19 (1): 110–115. DOI:10.1089/jam.2006.19.110.; Bustamante-Marin X.M., Shapiro A., Sears P.R. et al. Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J. Hum. Genet. 2020; 65 (2): 175–180. DOI:10.1038/s10038-019-0686-1.; Fassad M.R., Shoemark A., le Borgne P. et al. C11orf70 mutations disrupting the intraflagellar transport-dependent assembly of multiple axonemal dyneins cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2018; 102 (5): 956–972. DOI:10.1016/j.ajhg.2018.03.024.; Höben I.M., Hjeij R., Olbrich H. et al. Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am. J. Hum. Genet. 2018; 102 (5): 973–984. DOI:10.1016/j.ajhg.2018.03.025.; Watson C.M., Crinnion L.A., Morgan J.E. et al. Robust diagnostic genetic testing using solution capture enrichment and a novel variant-filtering interface. Hum. Mutat. 2014; 35 (4): 434–441. DOI:10.1002/humu.22490.; Fassad M.R., Shoemark A., Legendre M. et al. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. Am. J. Hum. Genet. 2018; 103 (6): 984–994. DOI:10.1016/j.ajhg.2018.10.016.; Loges N.T., Antony D., Maver A. et al. Recessive DNAH9 loss-of-function mutations cause laterality defects and subtle respiratory ciliary-beating defects. Am. J. Hum. Genet. 2018; 103 (6): 995–1008. DOI:10.1016/j.ajhg.2018.10.020.; El Khouri E., Thomas L., Jeanson L. et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am. J. Hum. Genet. 2016; 99 (2): 489–500. DOI:10.1016/j.ajhg.2016.06.022.; Olbrich H., Cremers C., Loges N.T. et al. Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexindynein regulatory complex. Am. J. Hum. Genet. 2015; 97 (4): 546– 554. DOI:10.1016/j.ajhg.2015.08.012.; Boon M., Wallmeier J., Ma L. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Commun. 2014; 5: 4418. DOI:10.1038/ncomms5418.; Hannah W.B., DeBrosse S., Kinghorn B. et al. The expanding phenotype of OFD1-related disorders: Hemizygous loss-of-function variants in three patients with primary ciliary dyskinesia. Mol. Genet. Genomic. Med. 2019; 7 (9): e911. DOI:10.1002/mgg3.911.; Olcese C., Patel M.P., Shoemark A. et al. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat. Commun. 2017; 8: 14279. DOI:10.1038/ncomms14279.; Cindrić S., Dougherty G.W., Olbrich H. et al. SPEF2- and HYDIN-mutant cilia lack the central pair-associated protein SPEF2, aiding primary ciliary dyskinesia diagnostics. Am. J. Respir. Cell. Mol. Biol. 2020; 62 (3): 382–396. DOI:10.1165/rcmb.2019-0086OC.; Liu C., Lv M., He X. et al. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J. Med. Genet. 2020; 57 (1): 31–37. DOI:10.1136/jmedgenet-2019-106011.; Liu W., Sha Y., Li Y. et al. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J. Med. Genet. 2019; 56 (10): 678–684. DOI:10.1136/jmedgenet-2018-105952.; Sha Y., Liu W., Wei X. et al. Biallelic mutations in Sperm flagellum 2 cause human multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. Clin. Genet. 2019; 96 (5): 385–393. DOI:10.1111/cge.13602.; Edelbusch C., Cindrić S., Dougherty G.W. et al. Mutation of serine/ threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum Mutat. 2017; 38 (8): 964–969. DOI:10.1002/humu.23261.; Wallmeier J., Shiratori H., Dougherty G.W. et al. TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization. Am. J. Hum. Genet. 2016; 99 (2): 460–469. DOI:10.1016/j.ajhg.2016.06.014.; Leigh M.W., Ferkol T.W., Davis S.D. et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann. Am. Thorac. Soc. 2016; 13 (8): 1305–1313. DOI:10.1513/AnnalsATS.201511-748OC.; Ferkol T.W., Puffenberger E.G., Lie H. et al. Primary ciliary dyskinesia-causing mutations in amish and mennonite communities. J. Pediatr. 2013; 163 (2): 383–387. DOI:10.1016/j.jpeds.2013.01.061.; Austin-Tse C., Halbritter J., Zariwala M.A. et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet. 2013; 93 (4): 672–686. DOI:10.1016/j.ajhg.2013.08.015.; Fedick A.M., Jalas C., Treff N.R. et al. Carrier frequencies of eleven mutations in eight genes associated with primary ciliary dyskinesia in the Ashkenazi Jewish population. Mol. Genet. Genomic Med. 2015; 3 (2): 137–142. DOI:10.1002/mgg3.124.; Morimoto K., Hijikata M., Zariwala M.A. et al. Recurring large deletion in DRC1 (CCDC164) identified as causing primary ciliary dyskinesia in two Asian patients. Mol. Genet. Genomic Med. 2019; 7 (8): e838. DOI:10.1002/mgg3.838.; Mazor M., Alkrinawi S., Chalifa-Caspi V. et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 2011; 88 (5): 599–607. DOI:10.1016/j.ajhg.2011.03.018.; Castleman V.H., Romio L., Chodhari R. et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am. J. Hum. Genet. 2009; 84 (2): 197–209. DOI:10.1016/j.ajhg.2009.01.011.; Onoufriadis A., Paff T., Antony D. et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2013; 92 (1): 88–98. DOI:10.1016/j.ajhg.2012.11.002.; Olbrich H., Schmidts M., Werner C. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum Genet. 2012; 91 (4): 672–684. DOI:10.1016/j.ajhg.2012.08.016.; Casey J.P., McGettigan P.A., Healy F. et al. Unexpected genetic heterogeneity for primary ciliary dyskinesia in the Irish Traveller population. Eur. J. Hum Genet. 2015; 23 (2): 210–217. DOI:10.1038/ejhg.2014.79.; Zariwala M.A., Gee H.Y., Kurkowiak M. et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum Genet. 2013; 93 (2): 336–345. DOI:10.1016/j.ajhg.2013.06.007.; Panizzi J.R., Becker-Heck A., Castleman V.H. et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 2012; 44 (6): 714–719. DOI:10.1038/ng.2277.; Shoemark A., Moya E., Hirst R.A. et al. High prevalence of CCDC103 p.His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax. 2018; 73 (2): 157–166. DOI:10.1136/thoraxjnl-2017-209999.; Daniels M.L., Leigh M.W., Davis S.D. et al. Founder mutation in RSPH4A identified in patients of Hispanic descent with primary ciliary dyskinesia. Hum. Mutat. 2013; 34 (10): 1352–1356. DOI:10.1002/humu.22371.; Zietkiewicz E., Bukowy-Bieryllo Z., Rabiasz A. et al. CFAP300: Mutations in slavic patients with primary ciliary dyskinesia and a role in ciliary dynein arms trafficking. Am. J. Respir. Cell Mol. Biol. 2019; 61 (4): 440–449. DOI:10.1165/rcmb.2018-0260OC.; LUMC Mutalyzer. Name Checker. Available at: https://mutalyzer.nl/name-checker; Антибиотики и антимикробная терапия. Рекомендации МАКМАХ «Определение чувствительности микроорганизмов к антимикробным препаратам (2021). Доступно на: https://www.antibiotic.ru/minzdrav/category/clinical-recommendations/.; Козлов Р.С., Сухорукова М.В. Эйдельштейн М.В. и др. Определение чувствительности микроорганизмов к антимикробным препаратам: клинические рекомендации. М.; 2015. Доступно на: https://www.antibiotic.ru/files/321/clrec-dsma2015.pdf; Kobbernagel H.E., Buchvald F.F., Haarman E.G. et al. Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): a multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2020; 8 (5): 493–505. DOI:10.1016/S2213-2600(20)30058-8.; Hill A.T., Pasteur M., Cornford C. et al. Primary care summary of the British Thoracic Society Guideline on the management of non-cystic fibrosis bronchiectasis. Prim. Care Respir. J. 2011; 20 (2): 135–140. DOI:10.4104/pcrj.2011.00007.; Quon B.S., Goss C.H., Ramsey B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014; 11 (3): 425–434. DOI:10.1513/AnnalsATS.201311-395FR.; Brodt A.M., Stovold E., Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur. Respir. J. 2014; 44 (2): 382–393. DOI:10.1183/09031936.00018414.; Paff T., Daniels J.M., Weersink E.J. et al. A randomised controlled trial on the effect of inhaled hypertonic saline on quality of life in primary ciliary dyskinesia. Eur. Respir. J. 2017; 49 (2): 1601770. DOI:10.1183/13993003.01770-2016.; Barbato A., Frischer T., Kuehni C.E. et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur. Respir. J. 2009; 34 (6): 1264–1276. DOI:10.1183/09031936.00176608.; Alanin M.C. Bacteriology and treatment of infections in the upper and lower airways in patients with primary ciliary dyskinesia: adressing the paranasal sinuses. Dan. Med. J. 2017; 64 (5): B5361. Available at: http://ugeskriftet.dk/dmj/B5361; Raidt J., Brillault J., Brinkmann F. et al. [Management of primary ciliary dyskinesia]. Pneumologie. 2020; 74 (11): 750–765. DOI:10.1055/a-1235-1520 (in German).; Marthin J.K., Lucas J.S., Boon M. et al. International BEAT-PCD consensus statement for infection prevention and control for primary ciliary dyskinesia in collaboration with ERN-LUNG PCD Core Network and patient representatives. ERJ Open Res. 2021; 7 (3): 00301-2021. DOI:10.1183/23120541.00301-2021.; Cohen-Cymberknoh M., Weigert N., Gileles-Hillel A. et al. Clinical impact of Pseudomonas aeruginosa colonization in patients with primary ciliary dyskinesia. Respir. Med. 2017; 131: 241–246. DOI:10.1016/j.rmed.2017.08.028.; Pasteur M.C., Bilton D., Hill A.T. British Thoracic Society Bronchiectasis non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010; 65 (Suppl. 1): i1–58. DOI:10.1136/thx.2010.136119.; Министерство здравоохранения РФ. Кистозный фиброз (муковисцидоз): клинические рекомендации. 2021–2023. Доступно на: https://cr.minzdrav.gov.ru/schema/372_2; Bergström S.E., Das S. Primary ciliary dyskinesia (immotile-cilia syndrome). 2021. Available at: https://www.uptodate.com/contents/primary-ciliary-dyskinesia-immotile-cilia-syndrome; Altenburg J., de Graaff C.S., Stienstra Y. еt al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA. 2013; 309 (12): 1251–1259. DOI:10.1001/jama.2013.1937.; Li W., Qin Z., Gao J. et al. Azithromycin or erythromycin? Macrolides for non-cystic fibrosis bronchiectasis in adults: a systematic review and adjusted indirect treatment comparison. Chron. Respir. Dis. 2018; 16: 1–9. DOI:10.1177/1479972318790269.; https://journal.pulmonology.ru/pulm/article/view/4131

  17. 17
    Academic Journal

    المصدر: Pediatric pharmacology; Том 19, № 2 (2022); 127-152 ; Педиатрическая фармакология; Том 19, № 2 (2022); 127-152 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2147/1366; Fakhouri F, Zuber J, Fremeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet. 2017;390(10095):681-696. doi: https://doi.org/10.1016/S0140-6736(17)30062-4; Scheiring J, Andreoli SP, Zimmerhackl LB. Treatment and outcome of Shiga-toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol. 2008;23(10):1749-1760. doi: https://doi.org/10.1007/s00467-008-0935-6; BrocklebankV,WoodKM,KavanaghD.ThromboticMicroangiopathy and the Kidney. Clin J Am Soc Nephrol. 2018;13(2):300-317. doi: https://doi.org/10.2215/CJN.00620117; Shatzel JJ, Taylor JA. Syndromes of Thrombotic Microangiopathy. Med Clin North Am. 2017;101(2):395-415. doi: https://doi.org/10.1016/j.mcna.2016.09.010; Mele C, Remuzzi G, Noris M. Hemolytic uremic syndrome. Semin Immunopathol. 2014;36(4):399-420. doi: https://doi.org/10.1007/s00281-014-0416-x; Williams DM, Sreedhar SS, Mickell JJ, Chan JC. Acute kidney failure: a pediatric experience over 20 years. Arch Pediatr Adolesc Med. 2002;156(9):893-900. doi: https://doi.org/10.1001/archpedi.156.9.893; Joseph A, Cointe A, Mariani Kurkdjian P, et al. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel). 2020;12(2):67. doi: https://doi.org/10.3390/toxins12020067; Luara Sh. Gemolitiko-uremicheskii sindrom In: Paediatric nephrology: a textbook for medical practitioners. Leumann E, Tsygin AN, Sarkissian AA, eds. Moscow: Litterra Publishers; 2010. pp. 184-193. (In Russ).; Karpman D, Loos S, Tati R, Arvidsson I. Haemolytic uraemic syndrome. J Intern Med. 2017;281(2):123-148. doi: https://doi.org/10.1111/joim.12546; Blasco M, Guillen E, Quintana LF, et al. Thrombotic microangiopathies assessment: mind the complement. Clin Kidney J. 2020;14(4):1055-1066. doi: https://doi.org/10.1093/ckj/sfaa195; Arnold DM, Patriquin CJ, Nazy I. Thrombotic microangiopathies: a general approach to diagnosis and management. CMAJ. 2017;189(4): E153-E159. doi: https://doi.org/10.1503/cmaj.160142; Sheerin NS, Glover E. Haemolytic uremic syndrome: diagnosis and management. F1000Res. 2019;8(F1000 Faculty Rev):1690. doi: https://doi.org/10.12688/f1000research.19957.1; Ariceta G. Hemolytic Uremic Syndrome. Curr Treat Options Peds. 2020;6(4):252-262. doi: https://doi.org/10.1007/s40746-020-00216-1; Goodship TH. Factor H genotype-phenotype correlations: Lessons from aHUS, MPGN II, and AMD. Kidney Int. 2006;70(1):12-13. doi: https://doi.org/10.1038/sj.ki.5001612; Jokiranta TS. HUS and atypical HUS. Blood. 2017;129(21):2847-2856. doi: https://doi.org/10.1182/blood-2016-11-709865; Sepulveda RA, Tagle R, Jara A. Atypical hemolytic uremic syndrome. Rev Med Chil. 2018;146(6):770-779. doi: https://doi.org/10.4067/s0034-98872018000600770; Nester CM, Barbour T, de Cordoba SR, et al. Atypical aHUS: State of the art. Mol Immunol. 2015;67(1):31-42. doi: https://doi.org/10.1016/j.molimm.2015.03.246; Noris M, Caprioli J, Bresin E, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844-1859. doi: https://doi.org/10.2215/CJN.02210310; Pineda GE, Rearte B, Todero MF, et al. Absence of inter-leukin-10 reduces progression of shiga toxin-induced hemolytic uremic syndrome. Clin Sci (Lond). 2021;135(3):575-588. doi: https://doi.org/10.1042/CS20200468; Campistol JM, Arias M, Ariceta G, et al. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia. 2013;33(1):27-45. doi: https://doi.org/10.3265/Nefrologia.pre2012.Nov.11781; Yan K, Desai K, Gullapalli L, et al. Epidemiology of Atypical Hemolytic Uremic Syndrome: A Systematic Literature Review. Clin Epidemiol. 2020;12:295-305. doi: https://doi.org/10.2147/CLEP.S245642; Loirat C, Fakhouri F, Ariceta G, et al. HUS International. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016;31(1):15-39. doi: https://doi.org/10.1007/s00467-015-3076-8; Bayer G, von Tokarski F, Thoreau B, et al. Etiology and Outcomes of Thrombotic Microangiopathies. Clin J Am Soc Nephrol. 2019;14(4):557-566. doi: https://doi.org/10.2215/CJN.11470918; Bagga A, Khandelwal P, Mishra K, et al. Hemolytic uremic syndrome in a developing country: Consensus guidelines. Pediatr Nephrol. 2019;34(8):1465-1482. doi: https://doi.org/10.1007/s00467-019-04233-7; Aigner C, Schmidt A, Gaggl M, Sunder-Plassmann G. An updated classification of thrombotic microangiopathies and treatment of complement gene variant-mediated thrombotic microangiopathy. Clin Kidney J. 2019;12(3):333-337. doi: https://doi.org/10.1093/ckj/sfz040; Noris M, Remuzzi G. Cardiovascular complications in atypical haemolytic uraemic syndrome. Nat Rev Nephrol. 2014;10(3):174-180. doi: https://doi.org/10.1038/nrneph.2013.280; Formeck C, Swiatecka-Urban A. Extra-renal manifestations of atypical hemolytic uremic syndrome. Pediatr Nephrol. 2019;34(8):1337-1348. doi: https://doi.org/10.1007/s00467-018-4039-7; Sampedro Lopez A, Dominguez Moro B, Baltar Martin JM, et al. Ocular involvement in atypical hemolytic uremic syndrome. Arch Soc Esp Oftalmol. 2017;92(12):594-597. doi: https://doi.org/10.1016/j.oftal.2017.02.007; Ardissino G, Tel F, Testa S, et al. Skin involvement in atypical hemolytic uremic syndrome. Am J Kidney Dis. 2014;63(4):652-655. doi: https://doi.org/10.1053/j.ajkd.2013.09.020; Al-Ahmad M, Kharita L, Wannous H. Atypical hemolytic uremic syndrome with peripheral gangrene and homocysteinemia in a child. Oxf Med Case Reports. 2020;2020(7):omaa048. doi: https://doi.org/10.1093/omcr/omaa048; Scobell RR, Kaplan BS, Copelovitch L. New insights into the pathogenesis of Streptococcus pneumoniae-associated hemolytic uremic syndrome. Pediatr Nephrol. 2020;35(9):1585-1591. doi: https://doi.org/10.1007/s00467-019-04342-3; Holle J, Habbig S, Gratopp Д, et al. Complement activation in children with Streptococcus pneumoniae associated hemolytic uremic syndrome. Pediatr Nephrol. 2021;36(5):1311-1315. doi: https://doi.org/10.1007/s00467-021-04952-w; Bitzan M, AlKandari O, Whittemore B, Yin XL. Complement depletion and Coombs positivity in pneumococcal hemolytic uremic syndrome (pnHUS). Case series and plea to revisit an old pathogenetic concept. Int J Med Microbiol. 2018;308(8):1096-1104. doi: https://doi.org/10.1016/j.ijmm.2018.08.007; Koenig JC, Rutsch F, Bockmeyer C, et al. Nephrotic syndrome and thrombotic microangiopathy caused by cobalamin C deficiency. Pediatr Nephrol. 2015;30(7):1203-1206. doi: https://doi.org/10.1007/s00467-015-3110-x; Grange S, Bekri S, Artaud-Macari E, et al. Adult-onset renal thrombotic microangiopathy and pulmonary arterial hypertension in cobalamin C deficiency. Lancet. 2015;386(9997):1011-1012. doi: https://doi.org/10.1016/S0140-6736(15)00076-8; Rezolyutsiya ekspertnogo soveta po optimizatsii podkhodov k terapii atipich-nogo gemolitiko-uremicheskogo sindroma po itogam zasedani-ya 18 aprelya 2014 goda, g. Moskva. Nephrology and Dialysis. 2014;16(2):304-306. (In Russ).; Goodship TH, Cook HT, Fakhouri F, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017;91(3):539-551. doi: https://doi.org/10.1016/j.kint.2016.10.005; Kato H, Nangaku M, Hataya H, et al. Clinical guides for atypical hemolytic uremic syndrome in Japan. Clin Exp Nephrol. 2016;20(4):536-543. doi: https://doi.org/10.1007/s10157-016-1276-6; Gillespie RS. Pediatric Hemolytic Uremic Syndrome Workup. In: Medscape. November 12, 2018. Available online: https://emedicine.medscape.com/article/982025-workup. Accessed on April 10, 2022.; Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(4):1035-1050. doi: https://doi.org/10.1681/ASN.2004100861; Walsh PR, Johnson S. Treatment and management of children with haemolytic uraemic syndrome. Arch Dis Child. 2018;103(3):285-291. doi: https://doi.org/10.1136/archdischild-2016-311377; Lee H, Kang E, Kang HG, et al. Consensus regarding diagnosis and management of atypical hemolytic uremic syndrome. Korean J Intern Med. 2020;35(1):25-40. doi: https://doi.org/10.3904/kjim.2019.388; Hervent AS, Godefroid M, Cauwelier B, et al. Evaluation of schistocyte analysis by a novel automated digital cell morphology application. Int J Lab Hematol. 2015;37(5):588-596. doi: https://doi.org/10.1111/ijlh.12363; Loirat C, Sonsino E, Varga Moreno A, et al. Hemolytic-uremic syndrome: an analysis of the natural history and prognostic features. Acta Paediatr Scand. 1984;73(4):505-514. doi: https://doi.org/10.1111/j.1651-2227.1984.tb09962.x; Geerdink LM, Westra D, van Wijk JAE, et al. Atypical hemolytic uremic syndrome in children: complement mutations and clinical characteristics. Pediatr Nephrol. 2012;27(8):1283-1291. doi: https://doi.org/10.1007/s00467-012-2131-y; Fremeaux-Bacchi V, Fakhouri F, Garnier A, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013;8(4):554-562. doi: https://doi.org/10.2215/CJN.04760512; Mallett A, Hughes P, Szer J, et al. Atypical haemolytic uraemic syndrome treated with the complement inhibitor eculizumab: the experience of the Australian compassionate access cohort. Intern Med J. 2015;45(10):1054-1065. doi: https://doi.org/10.1111/imj.12864; Shimizu M, Inoue N, Kuroda M, et al. Serum ferritin as an indicator of the development of encephalopathy in entero-hemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Clin Exp Nephrol. 2017;21(6):1083-1087. doi: https://doi.org/10.1007/s10157-017-1391-z; Cheong HI, Jo SK, Yoon SS, et al. Clinical Practice Guidelines for the Management of Atypical Hemolytic Uremic Syndrome in Korea. J Korean Med Sci. 2016;31(10):1516-1528. doi: https://doi.org/10.3346/jkms.2016.31.10.1516; Thurman JM. ComplementBiomarkersofHemolyticUremicSyndrome-If Not One Thing, Maybe Another. Mayo Clin Proc. 2018;93(10):1337-1339. doi: https://doi.org/10.1016/j.mayocp.2018.08.024; Westra D, Volokhina EB, van der Molen RG, et al. Serological and genetic complement alterations in infection-induced and complement-mediated hemolytic uremic syndrome. Pediatr Nephrol. 2017; 32(2):297-309. doi: https://doi.org/10.1007/s00467-016-3496-0; Loirat C., Noris M., Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2008; 23(11):1957-1972. doi: https://doi.org/10.1007/s00467-008-0872-4; Laurence J. Atypical hemolytic uremic syndrome (aHUS): making the diagnosis. Clin Adv Hematol Oncol. 2012;10(10 Suppl 17):1-12.; Erickson YO, Samia NI, Bedell B, et al. Elevated procalcitonin and C-reactive protein as potential biomarkers of sepsis in a subpopulation of thrombotic microangiopathy patients. J Clin Apher. 2009;24(4):150-154. doi: https://doi.org/10.1002/jca.20205; Wada H, Matsumoto T, Suzuki K, et al. Differences and similarities between disseminated intravascular coagulation and thrombotic microangiopathy. Thromb J. 2018;16:14. doi: https://doi.org/10.1186/s12959-018-0168-2; Palma LMP, Sridharan M, Sethi S. Complement in Secondary Thrombotic Microangiopathy. Kidney Int Rep. 2021;6(1):11-23. doi: https://doi.org/10.1016/j.ekir.2020.10.009; Zini G, De Cristofaro R. Diagnostic Testing for Differential Diagnosis in Thrombotic Microangiopathies. Turk J Haematol. 2019;36(4):222-229. doi: https://doi.org/10.4274/tjh.galenos.2019.2019.0165; Iba T, Levy JH, Wada H, et al. Differential diagnoses for sepsis-induced disseminated intravascular coagulation: communication from the SSC of the ISTH. J Thromb Haemost. 2019;17(2):415-419. doi: https://doi.org/10.1111/jth.14354; Harahsheh Y, Ho KM. Thromboelastometry and thromboelastography failed to detect hypercoagulability in thrombotic microangiopathy. Anaesth Intensive Care. 2016;44(4):520-521. doi: https://doi.org/10.1177/0310057X1604400417; Rigamonti D, Simonetti GD. Direct cardiac involvement in childhood hemolytic-uremic syndrome: case report and review of the literature. Eur J Pediatr. 2016;175(12):1927-1931. doi: https://doi.org/10.1007/s00431-016-2790-y; Thomas NJ, Messina JJ, DeBruin WJ, Carcillo JA. Cardiac failure in hemolytic uremic syndrome and rescue with extracorporeal life support. Pediatr Cardiol. 2005;26(1):104-106. doi: https://doi.org/10.1007/s00246-004-0708-3; Schaefer F, Ardissino G, Ariceta G, et al. Clinical and genetic predictors of atypical hemolytic uremic syndrome phenotype and outcome. Kidney Int. 2018;94(2):408-418. doi: https://doi.org/10.1016/j.kint.2018.02.029; Fitzpatrick MM, Shah V, Trompeter RS, et al. Long term renal outcome of childhood haemolytic uraemic syndrome. BMJ. 1991;303(6801): 489-492. doi: https://doi.org/10.1136/bmj.303.6801.489; Karmali MA, Petric M, Bielaszewska M. Evaluation of a microplate latex agglutination method (Verotox-F assay) for detecting and characterizing verotoxins (Shiga toxins) in Escherichia coli. J Clin Microbiol. 1999;37(2):396-399. doi: https://doi.org/10.1128/JCM.37.2.396-399.1999; Fox LC, Cohney SJ, Kausman JY, et al. Consensus opinion on diagnosis and management of thrombotic microangiopathy in Australia and New Zealand. Intern Med J. 2018;48(6):624-636. doi: https://doi.org/10.1111/imj.13804; Baumgartner MR, Horster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130. doi: https://doi.org/10.1186/s13023-014-0130-8; Mikhailova SV, Zakharova EYu, Petrukhin AS. Neirometabolicheskie zabolevaniya u detei i podrostkov. Diagnostika i podkhody k lecheniyu. Moscow: Litterra; 2019. pp. 34-36. (In Russ).; Sharma AP, Greenberg CR, Prasad AN, Prasad C. Hemolytic uremic syndrome (HUS) secondary to cobalamin C (cblC) disorder. Pediatr Nephrol. 2007;22(12):2097-103. doi: https://doi.org/10.1007/s00467-007-0604-1; Chen M, Zhuang J, Yang J, et al. Atypical hemolytic uremic syndrome induced by CblC subtype of methylmalonic academia: A case report and literature review. Medicine (Baltimore). 2017;96(43):e8284. doi: https://doi.org/10.1097/MD.0000000000008284; Laurence J, Haller H, Mannucci PM, et al. Atypical hemolytic uremic syndrome (aHUS): essential aspects of an accurate diagnosis. Clin Adv Hematol Oncol. 2016;14 Suppl. 11(11):2–15.; Raina R, Grewal MK, Radhakrishnan Y, et al. Optimal management of atypical hemolytic uremic disease: challenges and solutions. Int J Nephrol Renovasc Dis. 2019;12:183-204. doi: https://doi.org/10.2147/IJNRD.S215370; Ardissino G, Tel F, Sgarbanti M, et al. Complement functional tests for monitoring eculizumab treatment in patients with atypical hemolytic uremic syndrome: an update. Pediatr Nephrol. 2018;33(3):457-461. doi: https://doi.org/10.1007/s00467-017-3813-2; Gillespie RS. Pediatric Hemolytic Uremic Syndrome. In: Medscape. November 12, 2018. Available online: https://emedicine.medscape.com/article/982025-workup28. Accessed on April 13, 2022.; Proesmans W, Dhooge A, Van Dyck M, Van Geet C. Thrombophilia in childhood hemolytic uremic syndrome. Pediatr Nephrol. 2002;17(8):699-700. doi: https://doi.org/10.1007/s00467-002-0908-0; Ueda Y, Miwa T, Gullipalli D, et al. Blocking Properdin Prevents Complement-Mediated Hemolytic Uremic Syndrome and Systemic Thrombophilia. J Am Soc Nephrol. 2018;29(7):1928-1937. doi: https://doi.org/10.1681/ASN.2017121244; Pundziene B, Dobiliene D, Cerkauskiene R, et al. Longterm follow-up of children with typical hemolytic uremic syndrome. Medicina (Kaunas). 2015;51(3):146-151. doi: https://doi.org/10.1016/j.medici.2015.06.004; Togarsimalemath SK, Si-Mohammed A, Puraswani M, et al. Gastrointestinal pathogens in anti-FH antibody positive and negative Hemolytic Uremic Syndrome. Pediatr Res. 2018;84(1):118-124. doi: https://doi.org/10.1038/s41390-018-0009-9; Imataka G, Wake K, Suzuki M, et al. Acute encephalopathy associated with hemolytic uremic syndrome caused by Escherichia coli O157: Н7 and rotavirus infection. Eur Rev Med Pharmacol Sci. 2015;19(10):1842-1844.; Birlutiu V, Birlutiu RM. Haemolytic-uremic syndrome due to infection with adenovirus: A case report and literature review. Medicine (Baltimore). 2018;97(7):e9895. doi: https://doi.org/10.1097/MD.0000000000009895; Reising A, Hafer C, Hss M, et al. Ultrasound findings in ЕНЕС-associated hemolytic-uremic syndrome and their clinical relevance. Int Urol Nephrol. 2016;48(4):561-570. doi: https://doi.org/10.1007/s11255-015-1194-7; Abrams CM, Njano DR, Bagga B. Abdominal Pain in the Setting of Atypical Hemolytic Uremic Syndrome Caused by Streptococcus pneumoniae Pneumonia. Glob Pediatr Health. 2018;5:2333794X18762866. doi: https://doi.org/10.1177/2333794X18762866; Koehl B, Boyer O, Biebuyck-Gouge N, et al. Neurological involvement in a child with atypical hemolytic uremic syndrome. Pediatr Nephrol. 2010;25(12):2539-2542. doi: https://doi.org/10.1007/s00467-010-1606-y; Toldo I, Manara R, Cogo P, et al. Diffusion-weighted imaging findings in hemolytic uremic syndrome with central nervous system involvement. J Child Neurol. 2009;24(2):247-250. doi: https://doi.org/10.1177/0883073808323022; Eriksson KJ, Boyd SG, Tasker RC. Acute neurology and neurophysiology of haemolytic-uraemic syndrome. Arch Dis Child. 2001;84(5):434-435. doi: https://doi.org/10.1136/adc.84.5.434; Rindy LJ, Chambers AR. Bone Marrow Aspiration And Biopsy. Treasure Island (FL): StatPearls Publishing; 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559232. Accessed on April 13, 2022.; Bain BJ. Bone marrow aspiration. J Clin Pathol. 2001;54(9):657-663. doi: https://doi.org/10.1136/jcp.54.9.657; Thayu M, Chandler WL, Jelacic S, et al. Cardiac ischemia during hemolytic uremic syndrome. Pediatr Nephrol. 2003;18(3):286-289. doi: https://doi.org/10.1007/s00467-002-1039-3; Shpikalova IYu, Pankratenko TE, Emirova KhM, et al. Neurological involvement in patients with STEC-Associated Hemolytic Uremic Syndrome (STEC-HUS): modern aspects of pathogenesis, clinical features and treatment modalities (Review). Nephrology and Dialysis. 2014;16(3):328-338. (In Russ).; Balestracci A, Martin SM, Toledo I, et al. Dehydration at admission increased the need for dialysis in hemolytic uremic syndrome children. Pediatr Nephrol. 2012;27:1407-1410. doi: https://doi.org/10.1007/s00467-012-2158-0; Scully M, Cataland S, Coppo P, et al. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost. 2017;15(2):312-322. doi: https://doi.org/10.1111/jth.13571; Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis. Circulation. 2020;141(22):1739-1741. doi: https://doi.org/10.1161/CIRCULATI0NAHA.120.047419; Ramlall V, Thangaraj P, Meydan C, et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat Med. 2020;26(10):1609-1615. doi: https://doi.org/10.1038/s41591-020-1021-2; Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb Thrombolysis. 2021;51(3):657-662. doi: https://doi.org/10.1007/s11239-020-02297-z; Gillespie RS. Pediatric Hemolytic Uremic Syndrome Treatment & Management. In: Medscape. November 12, 2018. Available online: https://emedicine.medscape.com/article/982025-treatment. Accessed on April 13, 2022.; Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2(1):1-138.; Bruyand M, Mariani-Kurkdjian P, Le Hello S, et al. Paediatric haemolytic uraemic syndrome related to Shiga toxin-producing Escherichia coli, an overview of 10 years of surveillance in France, 2007 to 2016. Euro Surveill. 2019;24(8):1800068. doi: https://doi.org/10.2807/1560-7917.ES.2019.24.8.1800068; Ito S, Hdaka Y, Inoue N, et al. Safety and effectiveness of eculizumab for pediatric patients with atypical hemolytic-uremic syndrome in Japan: interim analysis of post-marketing surveillance. Clin Exp Nephrol. 2019;23(1):112-121. doi: https://doi.org/10.1007/s10157-018-1610-2; Legendre CM, Licht C, Muus P, et al. Terminal complement inhibitor Eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169-2181. doi: https://doi.org/10.1056/NEJMoa1208981; Licht C, Greenbaum LA, Muus P, et al. Efficacy and safety of Eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int. 2015;87(5):1061-1073. doi: https://doi.org/10.1038/ki.2014.42; Krishnappa V, Gupta M, Elrifai M, et al. Atypical hemolytic uremic syndrome: a meta-analysis of case reports confirms the prevalence of genetic mutations and the shift of treatment regimens. Ther Apher Dial. 2018;22(2):178-188. doi: https://doi.org/10.1111/1744-9987.12641; Menne J, Greenbaum L, Licht C, et al. Long-term safety and effectiveness of eculizumab for patients with atypical haemolytic uraemic syndrome: outcomes from a prospective observational clinical trial. Nephrol Dial Transplant. 2017;32(Suppl_3):iii572-iii573. doi: https://doi.org/10.1093/ndt/gfx170.MP3931; Menne J, Delmas Y, Fakhouri F, et al. Eculizumab prevents thrombotic microangiopathy in patients with atypical hemolytic uremic syndrome in a long-term observational study. Clin Kidney J. 2018;12(2):196-205. doi: https://doi.org/10.1093/ckj/sfy035; Puraswani M, Khandelwal P, Saini Н, et al. Clinical and Immunological Profile of Anti-factor Н Antibody Associated Atypical Hemolytic Uremic Syndrome: A Nationwide Database. Front Immunol. 2019;10:1282. doi: https://doi.org/10.3389/fimmu.2019.01282; Boyer O, Balzamo E, Charbit M, et al. Pulse cyclophosphamide therapy and clinical remission in atypical hemolytic uremic syndrome with anti-complement factor Н autoantibodies. Am J Kidney Dis. 2010;55(5):923-927. doi: https://doi.org/10.1053/j.ajkd.2009.12.026; Niaudet P, Gillion Boyer O. Complement-mediated hemolytic uremic syndrome in children. In: UpToDate. Marth 03, 2022. Available online: https://www.uptodate.com/contents/complement-mediat-ed-hemolytic-uremic-syndrome-in-children?search=Complement-mediated%20hemolytic%20uremic%20syndrome%20in%20children&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1. Accessed on April 13, 2022.; Durey MA, Sinha A, Togarsimalemath SK, Bagga A. Anticomplement-factor H-associated glomerulopathies. Nat Rev Nephrol. 2016;12(9):563-578. doi: https://doi.org/10.1038/nrneph.2016.99; Sinha A, Gulati A, Saini S, et al. Indian HUS Registry. Prompt plasma exchanges and immunosuppressive treatment improves the outcomes of anti-factor H autoantibody-associated hemolytic uremic syndrome in children. Kidney Int. 2014;85(5):1151-1160. doi: https://doi.org/10.1038/ki.2013.373; Fakhouri F, ment in atypical drome. Semin doi: https://doi.org/10.1053/j.seminhematol.2018.04.009; Kise T, Fukuyama S, Uehara M. Successful Treatment of Anti-Factor H Antibody-Associated Atypical Hemolytic Uremic Syndrome. Indian J Nephrol. 2020;30(1):35-38. doi: https://doi.org/10.4103/ijn.IJN_336_1; Государственный реестр лекарственных средств. Available online: https://grls.ros-minzdrav.ru. Accessed on April 13, 2022.; Fakhouri F, Fila M, Hummel A, et al. Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: a prospective multicenter study. Blood. 2021;137(18):2438–2449. doi: https://doi.org/10.1182/blood.2020009280; Winthrop KL, Mariette X, Silva JT, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect. 2018;24 Suppl 2:S21-S40. doi: https://doi.org/10.1016/j.cmi.2018.02.002; Wijnsma KL, Duineveld C, Wetzels JFM, van de Kar NCAJ. Eculizumab in atypical hemolytic uremic syndrome: strategies toward restrictive use. Pediatr Nephrol. 2019;34(11):2261-2277. doi: https://doi.org/10.1007/s00467-018-4091-3; Resolution of the interdisciplinary council experts for prevention of severe infections in patients with genetic disorders of regulation of the complement system, receiving therapy with eculizumab. Epidemiology and Vaccinal Prevention. 2017;16(1):51-54. (In Russ).; Apicella M. Treatment and prevention of meningococcal infection. In: UpToDate. December 22, 2020. Available online: https://www.uptodate.com/contents/treatment-and-prevention-of-meningococcal-infection?sectionName=Patients%20receiving%20C5%20inhibitors&search=atypical%20HUS%20children&topicRef=-6084&anchor=H2536994243&source=see_link#H2536994243. Accessed on April 13, 2022.; Tanaka K, Fujita N, Hibino S. Prophylactic amoxicillin for the prevention of meningococcal infection in infants with atypical hemolytic uremic syndrome under treatment with eculizum-ab: a report of two cases. CEN Case Rep. 2020;9(3):247-251. doi: https://doi.org/10.1007/s13730-020-00465-x; McNamara LA, Topaz N, Wang X, et al. High Risk for Invasive Meningococcal Disease Among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. MMWR Morb Mortal Wkly Rep. 2017;66(27):734-737. doi: https://doi.org/10.15585/mmwr.mm6627e1; Molloy L. Preventing meningococcal disease in patients receiving Soliris. In: Healio. May 16, 2018. Available online: https://www.healio.com/news/infectious-disease/20180509/preventing-meningococ-cal-disease-in-patients-receiving-soliris. Accessed on April 13, 2022.; Cohn AC, MacNeil JR, Clark TA, et al. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2013;62(RR-2):1-28.; American Academy of Pediatrics. Meningococcal infections. In: Kimberlin DW, Jackson MA, Long SS, Brady MT. Red Book. 20182021. Report of the Committee on Infectious Diseases. Itasca, IL: American Academy of Pediatrics; 2018. p. 550.; Krone M, Lam T-T, Vogel U, Claus H. Susceptibility of invasive Neisseria meningitidis strains isolated in Germany to azithromycin, an alternative agent for post-exposure prophylaxis. J Antimicrob Chemother. 2020;75(4):984-987. doi: https://doi.org/10.1093/jac/dkz535; Kozlovskaya NL, Prokopenko EI, Emirova KhM, Serikova SYu. Klinicheskie rekomendatsii po diagnostike i lecheniyu atipichnogo gemolitiko-uremicheskogo sindroma. Nephrology and Dialysis. 2015;17(3):242-264. (In Russ).; Macia M; de Alvaro Moreno F, Dutt T, et al. Current evidence on the discontinuation of eculizumab in patients with atypical haemolytic uraemic syndrome. Clin Kidney J. 2017;10(3):310-319. doi: https://doi.org/10.1093/ckj/sfw115; Go RS, Winters JL, Leug N, et al. Thrombotic microangiopathy care pathway: a consensus statement for the Mayo Clinic complement alternative pathway - thrombotic microangiopathy (CAP-TMA) disease-oriented group. Mayo Clin Proc. 2016;91(9):1189-1211. doi: https://doi.org./10.1016/j.mayocp.2016.05.015; Menne J, Delmas Y, Fakhouri F, et al. Outcome in patients with atypical hemolytic uremic syndrome treated with Eculizumab in a long-term observational study. BMC Nephrology. 2019;20(1):125-137. doi: https://doi.org/10.1186/s12882-019-1314-1; Avila Bernabeu AI, Cavero Escribano T, Cao Vilarino M. Atypical Hemolytic Uremic Syndrome: New Challenges in the Complement Blockage Era. Nephron. 2020;144(11):537-549. doi: https://doi.org/10.1159/000508920; Chaturvedi S, Dhaliwal N, Hussain S, et al. Outcomes of a clinician-directed protocol for discontinuation of complement inhibition therapy in atypical hemolytic uremic syndrome. Blood Adv. 2021;5(5):1504-1512. doi: https://doi.org/10.1182/bloodadvances.2020003175; Raina R, Krishnappa V, Blaha T, et al. Atypical Hemolytic-Uremic Syndrome: An Update on Pathophysiology, Diagnosis, and Treatment. Ther Apher Dial. 2019;23(1):4-21. doi: https://doi.org/10.1111/1744-9987.12763; Ariceta G, Besbas N, Johnson S, et al. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol. 2009;24(4):687-696. doi: https://doi.org/10.1007/s00467-008-0964-1; Filip C, Nicolescu A, Cinteza E, et al. Cardiovascular Complications of Hemolytic Uremic Syndrome in Children. Maedica (Bucur). 2020;15(3): 305-309. doi: https://doi.org/10.26574/maedica.2020.15.3.305; Gomez-Lado C, Martinon-Torres F, Alvarez-Moreno A, et al. Reversible posterior leukoencephalopathy syndrome: An infrequent complication in the course of haemolytic-uremic syndrome. Rev Neurol. 2007;44(8):475-478.; Dyck MV, Proesmans W. Renoprotection by ACE inhibitors after severe hemolytic uremic syndrome. Pediatr Nephrol. 2004;19(6):688-690. doi: https://doi.org/10.1007/s00467-004-1451-y; Caletti MG, Balestracci A, Missoni M, Vezzani C. Additive antiproteinuric effect of enalapril and losartan in children with hemolytic uremic syndrome. Pediatr Nephrol. 2013;28(5):745-750. doi: https://doi.org/10.1007/s00467-012-2374-7; Noris M, Bresin E, Mele C, Remuzzi G. Genetic Atypical Hemolytic-Uremic Syndrome. 2007 Nov 16 [updated 2016 Jun 9]. In: GeneReviews® [Internet]. Adam MP, Ardinger HH, Pagon RA, et al., eds. Seattle (WA): University of Washington, Seattle; 1993-2021.; Matzke GR, Aronoff GR, Atkinson AJ Jr, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2011;80(11):1122-1137. doi: https://doi.org/10.1038/ki.2011.322; Smyth B, Jones C, Saunders J. Prescribing for patients on dialysis. Aust Prescr. 2016;39(1):21-24. doi: https://doi.org/10.18773/austprescr.2016.008; Lea-Henry TN, Carland JE, Stocker SL, et al. Clinical Pharmacokinetics in Kidney Disease: Fundamental Principles. Clin J Am Soc Nephrol. 2018;13(7):1085-1095. doi: https://doi.org/10.2215/CJN.00340118; Roberts DM, Sevastos J, Carland JE, et al. Clinical Pharmacokinetics in Kidney Disease: Application to Rational Design of Dosing Regimens. Clin J Am Soc Nephrol. 2018;13(8):1254-1263. doi: https://doi.org/10.2215/CJN.05150418; Krid S, Roumenina LT, Beury D, et al. Renal transplantation under prophylactic eculizumab in atypical hemolytic uremic syndrome with CFH/CFHR1 hybrid protein. Am J Transplant. 2012;12(7):1938-1944. doi: https://doi.org/10.1111/j.1600-6143.2012.04051.x; Weitz M, Amon O, Bassler D, et al. Prophylactic eculizum-ab prior to kidney transplantation for atypical hemolytic uremic syndrome. Pediatr Nephrol. 2011;26(8):1325-1329. doi: https://doi.org/10.1007/s00467-011-1879-9; Bresin E, Daina E, Noris M, et al. Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin J Am Soc Nephrol. 2006;1(1):88-99. doi: https://doi.org/10.2215/CJN.00050505; Alasfar S, Alachkar N. Atypical hemolytic uremic syndrome post-kidney transplantation: two case reports and review of the literature. Front Med (Lausanne). 2014;1:52. doi: https://doi.org/10.3389/fmed.2014.00052; Claes KJ, Massart A, Collard L, et al. Belgian consensus statement on the diagnosis and management of patients with atypical hemolytic uremic syndrome. Acta Clin Belg. 2018;73(1):80-89. doi: https://doi.org/10.1080/17843286.2017.1345185; Kaabak MM, Molchanova EA, Nesterenko IV, et al. Interdisciplinary expert council resolution. Kidney transplantation in patients with atypical hemolytic-uremic syndrome: clinical and organizational-methodical aspects of patient management. Clinical Nephrology. 2018;(3):8-14. (In Russ.) doi: https://doi.org/10.18565/nephrology.2018.3.8-14; Gonzalez Suarez ML, Thongprayoon C, Mao MA, et al. Outcomes of Kidney Transplant Patients with Atypical Hemolytic Uremic Syndrome Treated with Eculizumab: A Systematic Review and Meta-Analysis. J Clin Med. 2019;8(7):919. doi: https://doi.org/10.3390/jcm8070919; Siedlecki AM, Isbel N, Vande Walle J, et al. Eculizumab use for kidney transplantation patients with a diagnosis of atypical hemolytic uremic syndrome. Kidney Int Rep. 2018;4(3):434-446. doi: https://doi.org/10.1016/j.ekir.2018.11.010; Bonthuis M, Harambat J, Berard E, et al. Recovery of Kidney Function in Children Treated with Maintenance Dialysis. Clin J Am Soc Nephrol. 2018;13(10):1510-1516. doi: https://doi.org/10.2215/CJN.01500218; https://www.pedpharma.ru/jour/article/view/2147

  18. 18
    Academic Journal

    المصدر: Pediatric pharmacology; Том 19, № 4 (2022); 342-353 ; Педиатрическая фармакология; Том 19, № 4 (2022); 342-353 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2192/1424; Muenzer J, Wraith JE, Clarke LA. Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics. 2009;123(1):19-29. doi: https://doi.org/10.1542/peds.2008-0416; Martins AM, Dualibi AP, Norato D, et al. Guidelines for the Management of Mucopolysaccharidosis Type I. J Pediatr. 2009;155(4 Suppl):S32-S46. doi: https://doi.org/10.1016/j.jpeds.2009.07.005; Thomas JA, Beck M, Clarke JTR, Cox GF Childhood onset of Scheie syndrome, the attenuated form of mucopolysaccharidosis I. J Inherit Metab Dis. 2010;33(4):421-427. doi: https://doi.org/10.1007/s10545-010-9113-7; Vijay S, Wraith JE. Clinical presentation and follow-up of patients with the attenuated phenotype of mucopolysaccharidosis type I. Acta Paediatr. 2005;94(7):872-877. doi: https://doi.org/10.1111/j.1651-2227.2005.tb02004.x; Leroy JG. Disorders of lysosomal enzymes: clinical phenotypes. In: Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects. Royce PM, Steinman B, eds. 2nd ed. Hoboken, NJ: John Wiley & Sons; 2003.; Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA. 1999;281(3):249-254. doi: https://doi.org/10.1001/jama.281.3.249; Neufeld E, Muenzer J. The mucopolysaccharidoses. In: The Metabolic and Molecular Basis of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, et al., eds. 8th ed. New York, NY: McGraw-Hill; 2001. pp. 3421-3452.; Oussoren E, Keulemans J, van Diggelen OP, et al. Residual a-L-iduronidase activity in fibroblasts of mild to severe Mucopolysaccharidosis type I patients. Mol Genet Metab. 2013;109(4):377-381. doi: https://doi.org/10.1016/j.ymgme.2013.05.016; Beesley CE, Meaney CA, Greenland G, et al. Mutational analysis of 85 mucopolysaccharidosis type I families: frequency of known mutations, identification of 17 novel mutations and in vitro expression of missense mutations. Hum Genet. 2001;109(5):503-511. doi: https://doi.org/10.1007/s004390100606; Aronovich EL, Pan D, Whitley CB. Molecular genetic defect underlying alpha-L-iduronidase pseudodeficiency. Am J Hum Genet. 1996;58(1):75-85.; De Ru MH, Boelens JJ, Das AM, et al. Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J Rare Dis. 2011;6:55. doi: https://doi.org/10.1186/1750-1172-6-55; Jameson E, Jones S, Remmington T. Enzyme replacement therapy with laronidase for treating mucopolysaccharidosis type I. Cochrane Database Sys Rev. 2016;4:CD009354. doi: https://doi.org/10.1002/14651858.CD009354.pub4; Clarke LA, Wraith JE, Beck M, et al. Long-term efficacy and safety of laronidase in the treatment of mucopolysaccharidosis I. Pediatrics. 2009;123(1):229-240. doi: https://doi.org/10.1542/peds.2007-3847; D'Aco K, Underhill L, Rangachari L, et al. Diagnosis and treatment trends in mucopolysaccharidosis I: findings from the MPS I Registry. Eur J Pediatr. 2012;171(6):911-919. doi: https://doi.org/10.1007/s00431-011-1644-x; Braunlin EA, Stauffer NR, Peters CH, et al. Usefulness of bone marrow transplantation in the Hurler syndrome. Am J Cardiol. 2003;92(7):882-886. doi: https://doi.org/10.1016/s0002-9149(03)00909-3; Eisengart JB, Rudser KD, Tolar J, et al. Enzyme replacement is associated with better cognitive outcomes after transplant in Hurler syndrome. J Pediatr. 2013;162(2):375-380.e.1. doi: https://doi.org/10.1016/j.jpeds.2012.07.052; Dornelles AD, Artigalas O, da Silva AA, et al. Efficacy and safety of intravenous laronidase for mucopolysaccharidosis type I: A system atic review and meta-analysis. PLoS One. 2017;12(8):e0184065. doi: https://doi.org/10.1371/journal.pone.0184065; Giugliani R, Federhen A, Rojas MV, et al. Mucopolysaccharidosis I, II, and VI: Brief review and guidelines for treatment. Genet Mol Biol. 2010;33(4):589-604. doi: https://doi.org/10.1590/S1415-47572010005000093; Eisengart JB, Rudser KD, Xue Y, et al. Long-term outcomes of systemic therapies for Hurler syndrome: an international multicenter comparison. Genet Med. 2018;20(11):1423-1429. doi: https://doi.org/10.1038/gim.2018.29; Arn P, Wraith JE, Underhill L, et al. Characterization of Surgical Procedures in Patients with Mucopolysaccharidosis Type I: Findings from the MPS I Registry. J Pediatr. 2009;154(6):859-864.e3. doi: https://doi.org/10.1016/j.jpeds.2008.12.024; Миронов С.П., Колесов С.В., Переверзев В.С. и др. Опыт хирургического лечения краниовертебрального стеноза у пациентов с мукополисахаридозом I, II, VI типов // Хирургия позвоночника. — 2018. — Т. 15. — № 4. — С. 32-40. — doi: https://doi.org/10.14531/2018.4.32-40; Williams N, Challoumas D, Eastwood DM. Does orthopaedic surgery improve quality of life and function in patients with mucopolysaccharidoses? J Child Orthop. 2017;11(4):289-297. doi: https://doi.org/10.1302/1863-2548.11.170042; ATS statement: Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med. 2002;166(1):111-117. doi: https://doi.org/10.1164/ajrccm.166.1.at1102; Demoly P, Adkinson NF, Brockow K, et al. International Consensus on drug allergy. Allergy. 2014;69(4):420-437. doi: https://doi.org/10.1111/all.12350; Demoly P, Adkinson NF, Brockow K, et al. International Consensus ondrug allergy. Allergy. 2014 Apr;69(4):420-37; Simons FE, Ebisawa M, Sanchez-Borges M, et al. 2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines. World Allergy Organ J. 2015;8(1):32. doi: https://doi.org/10.1186/s40413-015-0080-1; Bitencourt FH, Vieira TA, Steiner CE, et al. Medical Costs Related toEnzyme Replacement Therapy for Mucopolysaccharidosis Types I, II, and VI in Brazil: A Multicenter Study. Value Health Reg Issues. 2015;8:99-106. doi: https://doi.org/10.1016/j.vhri.2015.08.002; Вашакмадзе Н.Д. Мультидисциплинарные принципы ведения детей с мукополисахаридозами в повышении эффективности их диагностики и лечения: автореф. дис. . докт. мед. наук. — Екатеринбург; 2019. — 47 с.; Berger KI, Fagondes SC, Giugliani R, et al. Respiratory and sleep disorders in mucopolysaccharidosis. J Inherit Metab Dis. 2013;36(2):201-210. doi: https://doi.org/10.1007/s10545-012-9555-1; Scarpa M, Lourenço CM, Amartino H. Epilepsy in mucopolysaccharidosis disorders. Mol Genet Metab. 2017;122S:55-61. doi: https://doi.org/10.1016/j.ymgme.2017.10.006; Braunlin EA, Harmatz PR, Scarpa M, et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J Inherit Metab Dis. 2011;34(6):1183-1197. doi: https://doi.org/10.1007/s10545-011-9359-8; Dornelles AD, Artigalas O, da Silva AA, et al. Efficacy and safety of intravenous laronidase for mucopolysaccharidosis type I: A systematic review and meta-analysis. PLoS One. 2017;12(8):e0184065. doi: https://doi.org/10.1371/journal.pone.0184065; Lin HY, Shih SC, Chuang CK, et al. Assessment of bone mineral density bydual energy x-ray absorptiometry in patients with mucopolysaccharidoses. Orphanet J Rare Dis. 2013;8:71. doi: https://doi.org/10.1186/1750-1172-8-71; Escolar ML, Jones SA, Shapiro EG, et al. Practical managementof behavioral problems in mucopolysaccharidoses disorders. Mol Genet Metab. 2017;122S:35-40. doi: https://doi.org/10.1016/j.ymgme.2017.09.010; Motamed M, Thorne S, Narula A. Treatment of otitis media with effusion in children with mucopolysaccharidoses. Int J Pediatr Otorhinolaryngol. 2000;53(2):121-124. doi: https://doi.org/10.1016/s0165-5876(00)00320-7; Mucopolysaccharidosis Type I. Adam MP, Ardinger HH, Pagon RA, et al., eds. Seattle (WA):University of Washington, Seattle; 19932020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1162. Accessed on September 20, 2022.; Congedi S, Orzalesi M, Di Pede C, Benini F. Pain in Mucopolysaccharidoses: Analysis of the Problem and Possible Treatments. Int J Mol Sci. 2018;19(10):3063. doi: https://doi.org/10.3390/ijms19103063; Venekamp RP, Hearne BJ, Chandrasekharan D, et al. Tonsillectomy or adenotonsillectomy versus non-surgical management for obstructive sleep-disordered breathing in children. Cochrane Database Syst Rev. 2015;2015(10):CD011165. doi: https://doi.org/10.1002/14651858.CD011165.pub2; Yang L, Shan Y, Wang S, et al. Endoscopic assisted adenoidectomy versus conventional curettage adenoidectomy: a meta-analysis of randomized controlled trials. Springerplus. 2016;5:426. doi: https://doi.org/110.1186/s40064-016-2072-1; Harrison R, Schaefer S, Warner L, et al. Transnasal adenoidectomy in mucopolysaccharidosis. Int J Pediatr Otorhinolaryngol. 2018;111: 149-152. doi: https://doi.org/10.1016/j.ijporl.2018.04.028; Mitchell RB, Archer SM, Ishman SL, et al. Clinical Practice Guideline: Tonsillectomy in Children (Update). Otolaryngol Head Neck Surg. 2019;160(1_Suppl):S1-S42. doi: https://doi.org/10.1177/0194599818801757; Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-381.; Borg G. Borg's Perceived Exertion and Pain Scales. USA: Human Kinetics; 1998. p. 2.; Grant S, Aitchison T, Henderson E, et al. A comparison of there-producibility and the sensitivity to change of visual analogue scales, Borg scales, and Likertscales in normal subjects during submaxi-mal exercise. Chest. 1999;116(5):1208-1217. doi: https://doi.org/10.1378/chest.116.5.1208; Braunlin E, Steinberger J, DeFor T, et al. Metabolic Syndrome and Cardiovascular Risk Factors after Hematopoietic Cell Transplantation in Severe Mucopolysaccharidosis Type I (Hurler Syndrome). Biol Blood Marrow Transplant. 2018;24(6):1289-1293. doi: https://doi.org/10.1016/j.bbmt.2018.01.028; https://www.pedpharma.ru/jour/article/view/2192

  19. 19
    Academic Journal

    المؤلفون: Alexander A. Baranov, Leyla S. Namazova-Baranova, Sergey I. Kutsev, Sergey N. Avdeev, Elena V. Polevichenko, Andrey S. Belevskiy, Elena I. Kondratyeva, Olga I. Simonova, Nataliya Yu. Kashirskaya, Victoria D. Sherman, Anna Yu. Voronkova, Evgeniya L. Amelina, Tatyana E. Gembitskaya, Stanislav A. Krasovskiy, Alexey G. Chermenskiy, Tatyana A. Stepanenko, Liliia R. Selimzyanova, Elena A. Vishneva, Yulia V. Gorinova, Elena A. Roslavtseva, Irina K. Asherova, Natalya A. Ilyenkova, Sergey K. Zyryanov, Niso D. Odinayeva, Tatyana Yu. Maksimycheva, Alexander V. Orlov, Sergey Yu. Semykin, Marina Yu. Chernukha, Igor A. Shaginyan, Lusine R. Avetisyan, Galina L. Shumkova, Natalya A. Krylova, Ivan A. Dronov, Maria N. Kostyleva, Ludmila A. Zhelenina, Nikolay N. Klimko, Yuliya V. Borzova, Natalya V. Vasilyeva, Tatyana S. Bogomolova, Anna A. Speranskaya, Irina A. Baranova, Evgeny G. Furman, Vera V. Shadrina, Nikolay F. Shchapov, Nika V. Petrova, Ivan V. Pashkov, Olga M. Tsirulnikova, Dmitriy P. Polyakov, Valeriy M. Svistushkin, Eduard V. Sin'kov, Vyacheslav B. Chernykh, Svetlana A. Repina, Dmitriy A. Blagovidov, Mikhail P. Kostinov, Olga V. Kondratenko, Artem V. Lyamin, Svetlana V. Polikarpova, Alexander V. Polyakov, Tagui A. Adyan, Dmitry V. Goldshtein, Tatiana B. Bukharova, Anna S. Efremova, Elena S. Ovsyankina, Ludmila V. Panova, Irina V. Cherkashina, А. А. Баранов, Л. С. Намазова-Баранова, С. И. Куцев, С. Н. Авдеев, Е. В. Полевиченко, А. С. Белевский, Е. И. Кондратьева, О. И. Симонова, Н. Ю. Каширская, В. Д. Шерман, А. Ю. Воронкова, Е. Л. Амелина, Т. Е. Гембицкая, С. А. Красовский, А. Г. Черменский, Т. А. Степаненко, Л. Р. Селимзянова, Е. А. Вишнева, Ю. В. Горинова, Е. А. Рославцева, И. К. Ашерова, Н. А. Ильенкова, С. К. Зырянов, Н. Д. Одинаева, Т. Ю. Максимычева, А. В. Орлов, С. Ю. Семыкин, М. Ю. Чернуха, И. А. Шагинян, Л. Р. Аветисян, Г. Л. Шумкова, Н. А. Крылова, И. А. Дронов, М. Н. Костылева, Л. А. Желенина, Н. Н. Климко, Ю. В. Борзова, Н. В. Васильева, Т. С. Богомолова, А. А. Сперанская, И. А. Баранова, Е. Г. Фурман, В. В. Шадрина, Н. Ф. Щапов, Н. В. Петрова, И. В. Пашков, О. М. Цирульникова, Д. П. Поляков, В. М. Свистушкин, Э. В. Синьков, В. Б. Черных, С. А. Репина, Д. А. Благовидов, М. П. Костинов, О. В. Кондратенко, А. В. Лямин, С. В. Поликарпова, А. В. Поляков, Т. А. Адян, Д. В. Гольдштейн, Т. Б. Бухарова, А. С. Ефремова, Е. С. Овсянкина, Л. В. Панова, И. В. Черкашина

    المصدر: Pediatric pharmacology; Том 19, № 2 (2022); 153-195 ; Педиатрическая фармакология; Том 19, № 2 (2022); 153-195 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2169/1386; Муковисцидоз / под ред. Н.И. Капранова, Н.Ю. Каширской. — М.: МЕДПРАКТИКА-М; 2014. — 672 с.; Национальный консенсус «Муковисцидоз: определение, диагностические критерии, терапия» / под ред. Е.И. Кондратьевой, Н.Ю. Каширской, Н.И. Капранова. — М.: ООО «Компания БОРГЕС»; 2016. — 205 с. Доступно по: https://mukoviscidoz.org/doc/konsensus/CF_consensus_2017.pdf. Ссылка активна на 17.04.2022.; De Boeck K. Cystic fibrosis in the year 2020: disease with a new face. Acta Paediatr. 2020;109(5):893-899. doi: https://doi.org/10.1111/apa.15155; Lopes-Pacheco M. CFTR modulators: Shedding light on precision medicine for cystic fibrosis. Front Pharmacol. 2016;7:275. doi: https://doi.org/10.3389/fphar.2016.00275; Регистр больных муковисцидозом в Российской Федерации. 2019 год / под ред. А.Ю. Воронковой, Е.Л. Амелиной, Н.Ю. Каширской и др. — М.: ИД «МЕДПРАКТИКА-М»; 2021. — 68 с. Доступно по: https://mukoviscidoz.org/doc/registr/10472_block_Registre_2017%20site.pdf. Ссылка активна на 17.04.2022.; Mogayzel PJ, Naureckas ET, Robinson KA. Cystic Fibrosis Pulmonary Guidelines. Am J Respir Crit Care Med. 2013;187(7):680-689. doi: https://doi.org/10.1164/rccm.201207-1160oe; Шагинян И.А., Капранов Н.И., Чернуха М.Ю. и др. Микробный пейзаж нижних дыхательных путей у различных возрастных групп детей, больных муковисцидозом // Журнал микробиологии, эпидемиологии и иммунобиологии. — 2010. — № 1. — С. 15-20.; Чернуха М.Ю., Шагинян И.А., Капранов Н.И. и др. Персистенция Burkholderia cepacia у больных муковисцидозом // Журнал микробиологии, эпидемиологии и иммунобиологии. — 2012. — № 4. — С. 93-98.; Demco CA, Stern RC, Doershuk CF. Stenotrophomonas maltophilia in cystic fibrosis: incidence and prevalence. Pediatr Pulmonol. 1998;25(5):304-308. doi: https://doi.org/10.1002/(sici)1099-0496(199805)25:53.0.co;2-i; Аветисян Л.Р., Медведева О.С., Чернуха М.Ю. и др. Эпидемиологические и микробиологические особенности хронической инфекции легких у больных муковисцидозом вызванной Staphylococcus aureus // Педиатрия. Журнал им. Г.Н. Сперанского. — 2020. — Т. 99. — № 2. — С. 102-111. — doi: https://doi.org/10.24110/0031-403X-2020-99-2-102-111; Сиянова Е.А., Чернуха М.Ю., Аветисян Л.Р. и др. Мониторинг хронической инфекции легких у больных муковисцидозом, вызванной бактериями Pseudomonas aeruginosa // Педиатрия. Журнал им. Г.Н. Сперанского. — 2018. — Т. 97. — № 2. — C. 77-86. doi: https://doi.org/10.24110/0031-403X-2018-97-2-77-86; Liu JC, Modha DE, Gaillard EA. What is the clinical significance of filamentous fungi positive sputum cultures in patients with cystic fibrosis? J Cyst Fibros. 2013;12(3);187-193. doi: https://doi.org/10.1016/j.jcf.2013.02.003; Aaron SD, Vandemheen KL, Freitag A, et al. Treatment of Aspergillus fumigatus in patients with cystic fibrosis: a randomized, placebo-controlled pilot study. PLoS One. 2012;7(4):e36077. doi: https://doi.org/10.1371/journal.pone.0036077; Eickmeier O, Hector A, Singh A, Hart D. Fungi in Cystic Fibrosis: Recent Findings and Unresolved Questions. Curr Fungal Infect Rep. 2015;9:1-5. doi: https://doi.org/10.1007/s12281-014-0211-0; Климко Н.Н. Микозы: диагностика и лечение: руководство для врачей. — 3-е изд., перераб. и доп. — М.: Фармтек; 2017. — 272 с.; Pinet M, Carrere J, Cimon B, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis — a review. Med Mycol. 2009;47(4):387-397. doi: https://doi.org/10.1080/13693780802609604; Denning DW, Cadranel J, Beigelman-Aubry C, et al. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J. 2016;47(1):45-68. doi: https://doi.org/10.1183/13993003.00583-2015; Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax. 2015;70(3):270-277. doi: https://doi.org/10.1136/thoraxjnl-2014-206291; Burke MS, Ragi JM, Karamanoukian HL, et al. New strategies in thenon-operative management of meconium ileus. J Pediat Surg. 2002;37(5):760-764. doi: https://doi.org/10.1053/jpsu.2002.32272; Castellani C, Duff AJA, Bell SC, et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros. 2018;17(2):153-178. doi: https://doi.org/10.1016/j.jcf.2018.02.006; Кондратьева Е.И., Шерман В.Д., Амелина Е.Л. и др. Клинико-генетическая характеристика и исходы мекониевого илеуса при муковисцидозе // Российский вестник перинаталогии и педиатрии. — 2016. — Т. 61. — № 6. — С. 77-81. — doi: https://doi.org/10.21508/1027-4065-2016-6-77-81; Debray D, Narkewicz MR, Bodewes FA, et al. Cystic Fibrosis-related Liver Disease: Research Challenges and Future Perspectives. J Pediatr Gastroenterol Nutr. 2017;65(4):443-448. doi: https://doi.org/10.1097/MPG.0000000000001676; Ciuca IM, Pop L, Tamaj L, et al. Cystic fibrosis liver disease-from diagnosis to risk factors. Rom J Morphol Embryol. 2014;55(1):91-95.; Klotter V, Gunchick C, Siemers E, et al. Assessment of pathologic increase in liver stiffness enables earlier diagnosis of CFLD: Results from a prospective longitudinal cohort study. PLoS One. 2017;12(6):e0178784. doi: https://doi.org/10.1371/journal.pone.0178784; Bombieri C, Claustres M, De Boeck K, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros. 2011;10(Suppl 2):86-102. doi: https://doi.org/10.1016/S1569-1993(11)60014-3; Terliesner N, Vogel M, Steighardt A, et al. Cystic-fibrosis related-diabetes (CFRD) is preceded by and associated with growth failure and deteriorating lung function. J Pediatr Endocrinol Metab. 2017;30(8):815-821. doi: https://doi.org/10.1515/jpem-2017-0005; Edenborough FP. Women with cystic fibrosis and their potential for reproduction. Thorax. 2001;56(8):649-655. doi: https://doi.org/10.1136/thorax.56.8.649; Амелина Е.Л., Красовский С.А., Шугинин И.О. Муковисцидоз и беременность: клинико-генетические, функциональные и микробиологические характеристики пациенток // Педиатрия. Журнал им. Г.Н. Сперанского. — 2014. — Т. 93. — № 4. — С. 38-43.; King SL, Topliss DJ, Kotsimbos T, et al. Reduced bone density in cystic fibrosis: AF508 mutation is an independent risk factor. Eur Respir J. 2005;25(1):54-61. doi: https://doi.org/10.1183/09031936.04.00050204; Симанова Т.В. Клинико-генетические особенности и костный метаболизм у больных муковисцидозом: автореф дис. . канд. мед. наук. — М.; 2009. — 28 с.; Красовский С.А. Остеопороз у взрослых больных муковисцидозом: автореф. дис. . канд. мед. наук. — М.; 2012.; Горинова Ю.В. Остеопения при хронических болезнях легких у детей: автореф. дис. . канд. мед. наук. — М., 2005.; Соболенкова В.С. Системный анализ в ранней диагностике и лечении остеопенического синдрома при муковисцидозе: автореф. дис. . канд. мед. наук. Тула; 2009.; Aris RM, Merkel PA, Bachrach LK, et al. Consensus statement: Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90(3):1888-1896. doi: https://doi.org/10.1210/jc.2004-1629; Капустина Т.Ю., Капранов Н.И. Состояние минеральной плотности костной ткани у пациентов с муковисцидозом // Педиатрия. Журнал им. Г.Н. Сперанского. — 2008. — Т. 87. — № 5. — С. 36-41.; Smyth AR, Bell SC, Bojcin S, et al. Flume European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibrosis. 2014;13(Suppl 1):S23-S42. doi: https://doi.org/10.1016/j.jcf.2014.03.010; Stevens DA, Moss RB, Kurup VP, et al. Allergic bronchopulmonary aspergillosis in cystic fibrosis — state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin Infect Dis. 2003;37(Suppl 3):S225-S264. doi: https://doi.org/10.1086/376525; Geller DE, Kaplowitz H, Light MJ, Colin AA. Allergic bronchopulmonary aspergillosis in cystic fibrosis: reported prevalence, regional distribution, and patient characteristics. Scientific Advisory Group, Investigators, and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Chest. 1999;116(3):639-646. doi: https://doi.org/10.1378/chest.116.3.639; Mastella G, Rainisio M, Harms HK, et al. Allergic bronchopulmonary aspergillosis in cystic fibrosis: a European epidemiological study. Eur Respir J. 2000;16(3):464-471. doi: https://doi.org/10.1034/j.1399-3003.2000.016003464.x; Zolin A, Orenti A, van Rens J., Et al. ECFS Patient Registry. Annual Data Report (2017 data). Version 1.2019. Available online: https://www.ecfs.eu/sites/default/files/general-content-images/working-groups/ecfs-patient-registry/ECFSPR_Report2017_v1.3.pdf. Accessed on April 17, 2022.; Leung DH, Narkewicz MR. Cystic Fibrosis-related cirrhosis. J Cyst Fibros. 2017;16(Suppl 2):S50-S61. doi: https://doi.org/10.1016/j.jcf.2017.07.002; Pseudo-Bartter's syndrome. In: Clinical Guidelines: Care of Children with Cystic Fibrosis. Royal Brompton Hospital; 2020. 8th ed. pp. 173-174. Available online: https://www.rbht.nhs.uk/sites/nhs/files/Cystic%20fibrosis%20guidelines/CF%20G%202020/CF%20guideline%202020%20FINAL_edited.pdf. Accessed on April 17, 2022.; Mayer-Hamblett N, Kloster M, Ramsey BW, et al. Incidence and clinical significance of elevated liver function tests in cystic fibrosis clinical trials. Contemp Clin Trials. 2013;34(2):232-238. doi: https://doi.org/10.1016/j.cct.2012.11.005; Akata D, Akhan O. Liver manifestations of cystic fibrosis. Eur J Radiol. 2007;61(1):11-17. doi: https://doi.org/10.1016/j.ejrad.2006.11.008; Williams SM, Goodman R, Thomson A, et al. Ultrasound evaluation of liver disease in cystic fibrosis as part of an annual assessment clinic: a 9-year review. Clin Radiol. 2002;57(5):365-370. doi: https://doi.org/10.1053/crad.2001.0861; Mueller-Abt PR, Frawley KJ, Greer RM, et al. Comparison of ultrasound and biopsy findings in children with cystic fibrosis related liver disease. J Cyst Fibros. 2008;7(3):215-221. doi: https://doi.org/10.1016/j.jcf.2007.08.001; Durand F, Valla D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J Hepatol. 2005;42(Suppl 1):S100-S107. doi: https://doi.org/10.1016/j.jhep.2004.11.015; Brunt ME. Grading and staging the histopathological lesions of chronic hepatitis: The Knodell histology activity index and beyond. Hepatology. 2000;31(1):241-246. doi: https://doi.org/10.1002/hep.510310136; Moran A, Brunzell C, Cohen RC. Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care. 2010;33(12):2697-2708. doi: https://doi.org/10.2337/dc10-1768; Gordon CM, Leonard MB, Zemel BS. 2013 Pediatric Position Development Conference: Executive Summary and Reflections. J Clin Densitom. 2014;17(2):219-224. doi: https://doi.org/10.1016/j.jocd.2014.01.007; Southern KW, Merelle MM, Dankert-Roelse JE, Nagelkerke AD. Newborn screening for cystic fibrosis. Cochrane Database Syst Rev. 2009;2009(1):CD001402. doi: https://doi.org/10.1002/14651858.CD001402.pub2; Шерман В.Д., Кондратьева Е.И., Воронкова А.Ю. и др. Влияние неонатального скрининга на течение муковисцидоза на примере группы пациентов Московского региона // Медицинский Совет. — 2017. — № 18. — С. 124-128. doi: https://doi.org/10.21518/2079-701X-2017-18-124-128; Шерман В.Д., Капранов Н.И., Каширская Н.Ю., Кондратьева Е.И. Роль неонатального скрининга в оптимизации медицинской помощи больным муковисцидозом в РФ // Медицинская генетика. — 2013. — Т. 12. — № 11. — С. 24-29.; Farrell PM, Rosenstein BJ, White TB, et al. Cystic fibrosis foundation. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr. 2008;153(2):4-14. doi: https://doi.org/10.1016/j.jpeds.2008.05.005; Collie JT, Massie RJ, Jones OA, et al. Sixty-five years since the New York heat wave: advances in sweat testing for cystic fibrosis. Pediatr Pulmonol. 2014;49(2):106-117. doi: https://doi.org/10.1002/ppul.22945; Mattar ACV, Leone C, Rodrigues JC, Adde FV. Sweat conductivity: an accurate diagnostic test for cystic fibrosis? J Cyst Fibros. 2014;13(5):528-533. doi: https://doi.org/10.1016/j.jcf.2014.01.002; Hug MJ, Tummler B. Intestinal current measurements to diagnose cystic fibrosis. J Cyst Fibros. 2004;3(Suppl 2):157-158. doi: https://doi.org/10.1016/j.jcf.2004.05.033; Sosnay PR, White TB, Farrell PM, et al. Diagnosis of Cystic Fibrosis in Nonscreened Populations. J Pediatr. 2017;181S:S52-S57.e7. doi: http://doi.org/10.1016/j.jpeds.2016.09.068; Cystic Fibrosis Mutation Database. Available online: http://www.genet.sickkids.on.ca. Accessed on April 17, 2022.; Richards S, Aziz N, Bale S, et al. Rehm, the ACMG Laboratory Quality Assurance Committee Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi: http://doi.org/10.1038/gim.2015.30; Turck D, Braegger CP, Colombo C, et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr. 2016;35(3):557-577. doi: http://doi.org/10.1016/j.clnu.2016.03.004; Cystic fibrosis: diagnosis and management NICE guideline. National Institute for Health and Care Excellence; 2017. Available online: https://www.nice.org.uk/guidance/ng78/resources/cystic-fibrosis-diagnosis-and-management-pdf-1837640946373. Accessed on April 17, 2022.; Goss CH, Mayer-Hamblett N, Kronmal RA, et al. Laboratory parameter profiles among patients with cystic fibrosis. J Cyst Fibros. 2007;6(2):117-123. doi: http://doi.org/10.1016/j.jcf.2006.05.012; Nazareth D, Walshaw M. A review of renal disease in cystic fibrosis. J Cyst Fibros. 2013;12(4):309-317. doi: http://doi.org/10.1016/j.jcf.2013.03.005; Public Health England. Identification of Pseudomonas species and other NonGlucose Fermenters. UK Standards for Microbiology Investigations. 2015. ID 17. Issue 3. 41 p. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/422699/ID_17i3.pdf. Accessed on April 17, 2022.; H0iby N, Ciofu O, Bjarnsholt T. Pseudomonas. In: Pfaller MA, Richter SS, Funke G, et al. Manual of Clinical Microbiology. 11th ed. ASM Press; 2015. p. 774. doi: https://doi.org/10.1128/9781555817381.ch42; Определение чувствительности микроорганизмов к антимикробным препаратам: клинические рекомендации. — Межрегиональная ассоциация по клинической микробиологии и антимикробной терапии; 2021. Доступно по: https://www.antibiotic.ru/files/321/clrec-dsma2018.pdf. Ссылка активна на 17.04.2022.; Patterson TF. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63(4):e1-e60. doi: https://doi.org/10.1093/cid/ciw326; Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect. 2018;24(Suppl 1):e1-e38. doi: https://doi.org/10.1016/j.cmi.2018.01.002; Chaaban MR, Kejner A, Rowe SM, Woodworth BA. Cystic fibrosis chronic rhinosinusitis: a comprehensive review. Am J Rhinol Allerg. 2013;27(5):387-395. doi: https://doi.org/10.2500/ajra.2013.27.3919; Roby BB, McNamara J, Finkelstein M, Sidman J. Sinus surgery in cystic fibrosis patients: Comparison of sinus and lower airway cultures. Int J Pediatr Otorhinolaryngol. 2008;72(9):1365-1369. doi: https://doi.org/10.1016/j.ijporl.2008.05.011; Decision Making in Medicine: An Algorithmic Approach. Mushlin SB, Greene HL, eds. 3rd ed. Philadelphia, PA: Mosby Elsevier; 2009. 768 p. Available online: https://books.google.ru/books?id=kdBRlPlU3aUC&printsec=frontcover&hl=ru&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. Accessed on: April 17, 2022.; Middleton PG, Wagenaar M, Matson AG, et al. Australian standards of care for cystic fibrosis-related diabetes. Respirology. 2014;19(2):185-192. doi: https://doi.org/10.1111/resp.12227; Moran A, Pillay K, Becker DJ, et al. ISPAD Clinical Practice Consensus Guidelines 2014. Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes 2014;15(Suppl. 20):65-76. doi: https://doi.org/10.1111/pedi.12178; Prentice B, Hameed S, Verge CF, et al. Diagnosing cystic fibrosis-related diabetes: current methods and challenges. Expert Rev Respir Med. 2016;10(7):799-811. doi: https://doi.org/10.1080/17476348.2016.1190646; Tangpricha V, Kelly A, Stephenson A, et al. An Update on the Screening, Diagnosis, Management, and Treatment of Vitamin D Deficiency in Individuals with Cystic Fibrosis: Evidence-Based Recommendations from the Cystic Fibrosis Foundation. J Clin Endocrinol Metab. 2012;97(4):1082-1093. doi: https://doi.org/10.1210/jc.2011-3050; Репина С.А., Красовский С.А., Роживанов Р.В. и др. Андрологическое обследование пациентов с легочной и смешанной формой муковисцидоза // Андрология и генитальная хирургия. — 2018. — Т. 19. — № 2. — С. 31-39. — doi: https://doi.org/10.17650/2070-9781-2018-19-2-31-39; Штаут М.И., Шилейко Л.В., Репина С.А. и др. Комплексное сперматологическое обследование пациентов с муковисцидозом // Андрология и генитальная хирургия. — 2017. — T. 18. — № 4. — С. 69-76. — doi: https://doi.org/10.17650/2070-9781-2017-18-4-69-76; Jungwirth A, Diemer T, Kopa Z, et al. EAU Guidelines on Male Infertility. European Association of Urology; 2018. 46 p. Available online: https://d56bochluxqnz.cloudfront.net/media/EAU-Guidelines-on-Male-Infertility-2018-large-text.pdf. Accessed on April 17, 2022.; Leifke E, Friemert M, Heilmann M, et al. Sex steroid sand body composition in men with cystic fibrosis. Eur J Endocrinol. 2003;148(5):551-557. doi: https://doi.org/10.1530/eje.0.1480551; Blackman SM, Tangpricha V. Endocrine Disordersin Cystic Fibrosis. Pediatr Clin North Am. 2016;63(4):699-708. doi: https://doi.org/10.1016/j.pcl.2016.04.009; Yoon JC, Casella JL, Litvin M, Dobs AS. Male reproductive health in cystic fibrosis. J Cyst Fibros. 2019;18(Suppl 2):S105-S110. doi: doi: https://doi.org/10.1016/j.jcf.2019.08.00718; Baatallah N, Bitam S, Martin N, et al. Cis variants identified in F508del complex alleles modulate CFTR channel rescue by small molecules. Hum Mutat. 2018;39(4):506-514. doi: https://doi.org/10.1002/humu.23389; Landsverk ML, Douglas GV, Tang S, et al. Diagnostic approaches to apparent homozygosity. Genet Med. 2012;14(10):877-882. doi: https://doi.org/10.1038/gim.2012.58; Hantash FM, Rebuyon A, Peng M, et al. Apparent homozygosity of a novel frame shift mutation in the CFTR gene because of a large deletion. J Mol Diagn. 2009;11(3):253-256. doi: https://doi.org/10.2353/jmoldx.2009.080117; Rechitsky S, Strom C, Verlinsky O, et al. Allele dropout in polar bodies and blastomeres. J Assist Reprod Genet. 1998;15(5):253-257. doi: https://doi.org/10.1023/a:1022532108472; Hantash FM, Redman JB, Goos D, et al. Characterization of a recurrent novel large duplication in the cystic fibrosis transmembrane conductance regulator gene. J Mol Diagn. 2007;9(4):556-560. doi: https://doi.org/10.2353/jmoldx.2007.060141; Hantash FM, Redman JB, Starn K, et al. Novel and recurrent rearrangements in the CFTR gene: clinical and laboratory implications for cystic fibrosis screening. Hum Genet. 2006;119(1-2):126-136. doi: https://doi.org/10.1007/s00439-005-0082-0; Dekkers JF, van der Ent CK, Beekman JM. Novel opportunities for CFTR-targeting drug development using organoids. Rare Dis. 2013;1:e27112. doi: https://doi.org/10.4161/rdis.27112; Boj SF, Vonk AM, Statia M, et al. Forskolin-induced swelling in intestinal organoids: an in vitro assay for assessing drug response in cystic fibrosis patients. J Vis Exp. 2017;(120):55159. doi: https://doi.org/10.3791/55159; Dekkers JF, Berkers G, Kruisselbrink E, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016;8(344):344ra384. doi: https://doi.org/10.1126/SCITRANSLMED.AAD8278; Vonk AM, van Mourik P, Ramalho AS, et al. Protocol for Application, Standardization and Validation of the Forskolin-Induced Swelling Assay in Cystic Fibrosis Human Colon Organoids. STAR Protoc. 2020;1(1):100019. doi: https://doi.org/10.1016/J.XPRO.2020.10001; Connett GJ. Lumacaftor-ivacaftor in the treatment of cystic fibrosis: design, development and place in therapy. Drug Des Devel Ther. 2019;13:2405-2412. doi: https://doi.org/10.2147/DDDT.S153719; Berkers G, van Mourik P, Vonk AM, et al. Rectal Organoids Enable Personalized Treatment of Cystic Fibrosis. Cell Rep. 2019;26(7):1701-1708.e3. doi: https://doi.org/10.1016/j.celrep.2019.01.068; Southern KW, Patel S, Sinha IP, Nevitt SJ. Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis. Cochrane Database Syst Rev. 2018;8(8):CD010966. doi: https://doi.org/10.1002/14651858.CD010966.pub2; Kolodziej M, de Veer MJ, Cholewa M, et al. Thompson Lung function imaging methods in Cystic Fibrosis pulmonary disease. Respir Res. 2017;18(1):96. doi: https://doi.org/10.1186/s12931-017-0578-x; Leutz-Shmidt P, Eichinger M, Stahl M, et al. Ten years of chest MRI for patients with cystic fibrosis: Translation from the bench to clinical routine. Radiologe. 2019;59(Suppl 1):10-20. doi: https://doi.org/10.1007/s00117-019-0553-2; Carter JM, Johnson BT, Patel A, et al. Lund-Mackay staging system in cystic fibrosis: a prognostic factor for revision surgery? The Ochsner J. 2014;14:184-187.; Kang SH, Dalcin PTR, Piltcher OB, Migliavacca RO. Chronic rhinosinusitis and nasal polyposis in cystic fibrosis: update on diagnosis and treatment. J Bras Pneumol. 2015;41(1):65-76. doi: https://doi.org/10.1590/S1806-37132015000100009; Детская хирургия: национальное руководство / под ред. Ю.Ф. Исакова, А.Ф. Дронова. — М.: ГЭОТАР-Медиа; 2009. — С. 328-331.; De Backer AI, De Schepper AM, Deprettere A, et al. Radiographic manifestations of intestinal obstruction in the newborn. JBR-BTR. 1999;82(4):159-166.; Sermet-Gaudelus I, Bianchi ML, Garabedian M, et al. European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros. 2011;10(2):S16-S23. doi: https://doi.org/10.1016/S1569-1993(11)60004-0; Bone mineralisation in cystic fibrosis: Report of the UK Cystic Fibrosis Trust Bone Mineralisation Working Group. Bromley: Cystic Fibrosis Trust; 2007. Available online: https://www.sifc.it/wp-content/uploads/2020/09/LineeGuidaSifc_Febbraio2007_BoneMineralisationInCF_UK_CFTrust_1.pdf. Accessed on April 17, 2022.; Скрипникова И.А., Щеплягина Л.А., Новиков В.Е. и др. Возможности костной рентгеновской денситометрии в клинической практике: методические рекомендации. — 2-е изд., доп. — М.; 2015.; Hardinge M, Annandale J, Bourne S, et al. British Thoracic Society Standards of Care Committee British Thoracic Society guidelines for home oxygen use in adults. Thorax. 2015;70(Suppl 1):i1-i43. doi: https://doi.org/10.1136/thoraxjnl-2015-206865; Hayes D Jr, Wilson K, Krivchenia K, et al. Home Oxygen Therapy for Children. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2019;199(3):e5-e23. doi: https://doi.org/10.1164/rccm.201812-2276ST; Lam S, Nettel-Aguirre A, Van Biervliet S, et al. Transient Elastography in the Evaluation of Cystic Fibrosis-Associated Liver Disease: Systematic Review and Meta-analysis. J Can Assoc Gastroenterol. 2019;2(2):71-80. doi: https://doi.org/10.1093/jcag/gwy029; Jungwirth A, Giwercman A, Tournaye H, et al. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol. 2012;62(2):324-332. doi: https://doi.org/10.1016/j.eururo.2012.04.048; Zivanovic S, Saranac L, Kostic G. The case of pseudo-Bartter's syndrome: an atypical presentation of cystic fibrosis. Facta universitatis Series Medicine and biology. 2008;15(1):33-36.; Franco LP, Camargos PA, Becker HM, Guimaraes RE. Nasal endoscopic evaluation of children and adolescents with cystic fibrosis. Braz J Otorhinolaryngol. 2009;75(6):806-813. doi: https://doi.org/10.1016/s1808-8694(15)30541-3; Поляков Д.П., Карнеева О.В., Белавина П.И. Хронический риносинусит у детей с муковисцидозом: современные тенденции и собственный опыт // Российская ринология. — 2018. — Т. 26. — № 4. — С. 17-25. — doi: https://doi.org/10.17116/rosrino20182604117; Okafor S, Kelly KM, Halderman AA. Management of Sinusitis in the Cystic Fibrosis Patient. Immunol Allergy Clin North Am. 2020;40(2):371-383. doi: https://doi.org/10.1016/j.iac.2019.12.008; Hug MJ, Derichs N, Bronsveld I, Clancy JP. Measurement of ion transport function in rectal biopsies. Methods Mol Biol. 2011;741:87-107. doi: https://doi.org/10.1007/978-1-61779-117-8_7; Zommer-van Ommen DD, de Poel E, Krusselbrink E, et al. Comparison of Ex Vivo and in Vitro Intestinal Cystic Fibrosis Models to measure CFTR-dependent Ion Chanel Activity. J Cyst Fibros. 2018;17(3):316-324. doi: https://doi.org/10.1016/j.jcf.2018.02.007; Carlyle BE, Borowitz DS, Glick PL. A review of pathophysiology and management of fetuses and neonates with meconium ileus for the pediatric surgeon. J Pediat Surg. 2012;47(4):772-781. doi: https://doi.org/10.1016/j.jpedsurg.2012.02.019; Munck A, Alberti C, Colombo C, et al. International prospective study of distal intestinal obstruction syndrome in cystic fibrosis: Associated factors and outcome. J Cyst Fibros. 2016;15(4):531-539. doi: https://doi.org/10.1016/j.jcf.2016.02.002; Sandy NS, Massabki LHP, Goncalves AC, et al. Distal intestinal obstruction syndrome: a diagnostic and therapeutic challenge in cystic fibrosis. J Pediatr (Rio J). 2020;96(6):732-740. doi: https://doi.org/10.1016/j.jped.2019.08.009; Canny JD, Brookes A, Bowley DB. Distal intestinal obstruction syndrome and colonic pathologies in cystic fibrosis. Br J Hosp Med (Lond). 2017;78(1):38-43. doi: https://doi.org/10.12968/hmed.2017.78.1.38; Alattar Z, Thornley C, Behbahaninia M, Sisley A. Proximal small bowel obstruction in a patient with cystic fibrosis: a case report. Surg Case Rep. 2019;5(1):143. doi: https://doi.org/10.1186/s40792-019-0701-y; Abicht T, Jones C, Coyan G, et al. A technique for the surgical treatment of distal intestinal obstructive syndrome by hand-assisted laparoscopy. Surg Laparosc Endosc Percutan Tech. 2012;22(3):e142-e143. doi: https://doi.org/10.1097/SLE.0b013e318248b463; Martins LM, Camargos PA, Becker HM, et al. Guimaraes. Hearing loss in cystic fibrosis. Int J Pediat Otorhinolaryngol. 2010;74(5):469-473. doi: https://doi.org/10.1016/j.ijporl.2010.01.021; ENT complications. In: Clinical Guidelines: Care of children with cystic fibrosis. Royal Brompton Hospital; 2017. 7th ed. pp. 149-1521. Available online: https://www.rbht.nhs.uk/sites/nhs/files/Cystic%20fibrosis%20guidelines/CF%20guideline%202017%20FINAL%20-%2013%201%2017.pdf. Accessed on April 17, 2022.; Kreicher KL, Bauschard MJ, Clemmens CS, et al. Audiometric Assessment of Pediatric Patients With Cystic Fibrosis. J Cyst Fibros. 2018;17(3):383-390. doi: https://doi.org/10.1016/j.jcf.2017.10.007; Репина С.А., Красовский С.А., Сорокина Т.М. и др. Патогенный вариант 3849+10kbC>T гена CFTR как главный предиктор сохранения фертильности у мужчин с муковисцидозом // Генетика. — 2019. — Т. 55. — № 12. — C. 1481-1486. — doi: https://doi.org/10.1134/S0016675819120105; Хирургические болезни недоношенных детей: национальное руководство / под ред. Ю.А. Козлова, В.А. Новожилова, А.Ю. Разумовского. — М.: ГЭОТАР-Медиа; 2019. — С. 329-393.; Yang C, Montgomery M. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev. 2018;9(9):CD001127. doi: https://doi.org/10.1002/14651858.CD001127.pub4; Casale M, Vella P, Moffa A, et al. Hyaluronic acid and upper airway inflammation in pediatric population: a systematic review. Int J Pediatr Otorhinolaryngol. 2016;85:22-26. doi: https://doi.org/10.1016/j.ijporl.2016.03.015; Wark P, McDonald VM Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst Rev. 2018;9(9):CD001506. doi: https://doi.org/10.1002/14651858.CD001506.pub4; Nevitt SJ, Thornton J, Murray CS, Dwyer T. Inhaled mannitol for cystic fibrosis. Cochrane Database Syst Rev. 2020;5(5):CD008649. doi: https://doi.org/10.1002/14651858.CD008649.pub4; Ziebach R, Pietsch-Breitfeld B, Bichler M, et al. Bronchodilatory effects of salbutamol, ipratropium bromide, and their combination: double-blind, placebo-controlled crossover study in cystic fibrosis. Pediatr Pulmonol. 2001;31(6):431-435. doi: https://doi.org/10.1002/ppul.1071; Avital A, Sanchez I, Chernick V. Efficacy of salbutamol and ipratropium bromide in decreasing bronchial hyperreactivity in children with cystic fibrosis. Pediatr Pulmonol. 1992;13(1):34-37. doi: https://doi.org/10.1002/ppul.1950130109; Smith S, Edwards CT. Long-acting inhaled bronchodilators for cystic fibrosis. Cochrane Database Syst Rev.2017;12(12):CD012102. doi: https://doi.org/10.1002/14651858.CD012102.pub2; Halfhide C, Evans HJ, Couriel J. Inhaled bronchodilators for cystic fibrosis. Cochrane Database Syst Rev. 2005;(4):CD003428. doi: https://doi.org/10.1002/14651858.CD003428.pub2; Ratjen F, Munck A, Kho P, Angyalosi G. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax. 2010;65(4): 286-291. doi: https://doi.org/10.1136/thx.2009.121657; Taccetti G, Bianchini E, Cariani L. Early antibiotic treatment for Pseudomonas aeruginosa eradication in patients with cystic fibrosis: A randomised multicentre study comparing two different protocols. Thorax. 2012;67(10):853-859. doi: https://doi.org/10.1136/thoraxjnl-2011-200832; Proesmans M, Vermeulen F, Boulanger L, et al. Comparison of two treatment regimens for eradication of Pseudomonas aeruginosa infection in children with cystic fibrosis. J Cyst Fibros. 2013;12(1):29-34. doi: https://doi.org/10.1016/j.jcf.2012.06.001; Flume PA, Mogayzel PJ, Robinson KA. Cystic Fibrosis Pulmonary Guidelines: Treatment of Pulmonary Exacerbations. Am J Respir Crit Care Med. 2009;180(9):802-808. doi: https://doi.org/10.1164/rccm.200812-1845PP; McKinzie CJ, Chen L, Ehlert K, et al. Off-label use of intravenous antimicrobials for inhalation in patients with cystic fibrosis. Pediatr Pulmonol. 2019;54(Suppl 3):S27-S45. doi: https://doi.org/10.1002/ppul.24511; Antibiotic treatment for cystic fibrosis: Report of the UK Cystic Fibrosis Trust Antibiotic Group. London: Cystic Fibrosis Trust; 2009. Available online: https://www.cysticfibrosis.org.uk/sites/default/files/2020-11/Anitbiotic%20Treatment.pdf. Accessed on April 17, 2022.; Solis A, Brown D, Hughes J. Methicillin-resistant Staphylococcus aureus in children with cystic fibrosis: An eradication protocol. Pediatr Pulmonol. 2003;36(3):189-195. doi: https://doi.org/10.1002/ppul.10231; Zobell JT, Epps KL, Young DC, et al. Utilization of antibiotics for methicillin-resistant Staphylococcus aureus infection in cystic fibrosis. Pediatr Pulmonol. 2015;50(6):552-559. doi: https://doi.org/10.1002/ppul.23132; Jennings MT, Boyle MP, Weaver D, et al. Eradication strategy for persistent methicillin-resistant infection in individuals with cystic fibrosis — the PMEP trial: study protocol for a randomized controlled trial. Trials. 2014;15:223. doi: https://doi.org/10.1186/1745-6215-15-223; Kiefer A, Bogdan C, Melichar VO. Successful eradication of newly acquired MRSA in six of seven patients with cystic fibrosis applying a short-term local and systemic antibiotic scheme. BMC Pulm Med. 2018;18(1):20. doi: https://doi.org/10.1186/s12890-018-0588-6; Maiz L, Canton R, Mir N. Aerosolized vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infection in cystic fibrosis. Pediatr Pulmonol. 1998;26(4):287-289. doi: https://doi.org/10.1002/(sici)1099-0496(199810)26:43.0.co;2-#; Weathers L, Riggs D, Santeiro M, Weibley RE. Aerosolized vancomycin for treatment of airway colonization by methicillin resistant Staphylococcus aureus. Pediatr Infect Dis J. 1990;9(3):220-221. doi: https://doi.org/10.1097/00006454-199003000-00017; Jennings MJ, Boyle MP, Bucur C, et al. Pharmacokinetics and safety of inhaled vancomycin in patients with cystic fibrosis. Pediatr Pulmonol. 2012;47(S35):320.; Boyle MP, Chmiel J. Persistent methicillin resistant Staphylococcus aureus eradication protocol (PMEP). In: ClinicalTrials. gov. May 9, 2012. Available online: http://clinicaltrials.Gov/ct2/show/nct01594827. Accessed on April 17, 2022.; Chmiel JF, Aksamit TR, Chotirmall SH, et al. Antibiotic Management of Lung Infections in Cystic Fibrosis. I. The Microbiome, Methicillin-Resistant Staphylococcus aureus, Gram-Negative Bacteria, and Multiple Infections. Ann Am Thorac Soc. 2014;11(7):1120-1129. doi: https://doi.org/10.1513/AnnalsATS.201402-050AS; Doring G, Flume P, Heijerman H, et al. Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012;11(6):461-479. doi: https://doi.org/10.1016/j.jcf.2012.10.004; Garazzino S, Altieri E, Silvestro E, et al. Ceftolozane/Tazobactam for Treating Children With Exacerbations of Cystic Fibrosis Due to Pseudomonas aeruginosa: A Review of Available Data. Front Pediatr. 2020;8:173. doi: https://doi.org/10.3389/fped.2020.00173; European Society of Clinical Microbiology and Infection Diseases. Rational for EUCAST clinical breakpoints. In: EUCAST. European Committee on Antimicrobial Susceptibility Testing. Version 1.0. pp. 1-16. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Ceftolozane-tazobactam_Rationale_1.0_20200515_v1.pdf. Accessed on April 17, 2022.; Morton R, Doe S, Banya W, Simmond NJ. Clinical benefit of continuous nebulised Aztreonam Lysine for Inhalation (AZLI) in adults with cystic fibrosis — a retrospective cohort study. J Cyst Fibros. 2017;16(Suppl 1):S55.; Smith S, Rowbotham NJ, Regan KH. Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev. 2018;3(3):CD001021. doi: https://doi.org/10.1002/14651858.CD001021.pub3; WHO AnthroPlus for personal computers Manual: Software for assessing growth of the world's children and adolescents. Geneva: World Health Organization; 2009. Available online: http://www.who.int/growthref/tools/en. Accessed on April 17, 2022.; Regan KH, Bhatt J. Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev. 2019;4(4):CD009876. doi: https://doi.org/10.1002/14651858.CD009876.pub4; Frost F, Shaw M, Nazareth D. Antibiotic therapy for chronic infection with Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev. 2019;6(6):CD013079. doi: https://doi.org/10.1002/14651858.CD013079.pub2; Weidmann A, Webb AK, Dodd ME, Jones AM. Successful treatment of cepacia syndrome with combination nebulised and intravenous antibiotic therapy. J Cyst Fibros. 2008;7(5):409-411. doi: https://doi.org/10.1016/j.jcf.2008.02.005; Abbott IJ, Peleg AY. Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies. Semin Respir Crit Care Med. 2015;36(1):99-110. doi: https://doi.org/10.1055/s-0034-1396929; Swenson CE, Sadikot RT. Achromobacter Respiratory Infections. Ann Am Troc Soc. 2015;12(2);252-258. doi: https://doi.org/10.1513/AnnalsATS.201406-288FR; Wang M, Ridderberg W, Hansen CR, et al. Early treatment with inhaled antibiotics postpones next occurrence of Achromobacter in cystic fibrosis. J Cyst Fibros. 2013;12(6):638-643. doi: https://doi.org/10.1016/j.jcf.2013.04.013; Edwards BD, Greysson-Wong J, Somayaji R, et al. Forbes Prevalence and Outcomes of Achromobacter Species Infections in Adults with Cystic Fibrosis: a North American Cohort Study. J Clin Microbiol. 2017;55(7):2074-2085. doi: https://doi.org/10.1128/JCM.02556-16; Dupont C, Jumas-Bilak E, Michon AL, et al. Impact of High Diversity of Achromobacter Populations within Cystic Fibrosis Sputum Samples on Antimicrobial Susceptibility Testing. J Clin Microbiol. 2016;55(1):206-215. doi: https://doi.org/10.1128/JCM.01843-16; Woods GL, Brown-Elliott BA, Conville PS, et al. Susceptibility testing of Mycobacteria, Nocardiae, and Aerobic Actinomycetes. 2nd ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2011. Report No.: M24-A2.; Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72(Suppl 2):ii1-ii64. doi: https://doi.org/10.1136/thoraxjnl-2017-210927; Floto RA, Olivier KN, Saiman L, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2015;71(Suppl 1):i1-i22 doi: https://doi.org/10.1136/thoraxjnl-2015-207360; Согласованные рекомендации Американского фонда кистозного фиброза (муковисцидоза) и Европейского общества кистозного фиброза по лечению микобактериоза у пациентов с кистозным фиброзом / peg. пер. Н.Ю. Каширская. — СПб.: Благотворительный фонд «Острова»; 2017. — 32 с.; Федеральные клинические рекомендации по организации и проведению микробиологической и молекулярно-генетической диагностики туберкулеза. — М.-Тверь: ООО «Издательство «Триада», 2014. — 56 с.; Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367-416. doi: https://doi.org/10.1164/rccm.200604-571ST; Olivier KN, Weber DJ, Wallace RJ Jr, et al. Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med. 2003;167(6):828-834. doi: https://doi.org/10.1164/rccm.200207-678OC; Martiniano SL, Sontag MK, Daley CL, et al. Clinical significance of a first positive nontuberculous mycobacteria culture in cystic fibrosis. Ann Am Thorac Soc. 2014;11(1):36-44. doi: https://doi.org/10.1513/AnnalsATS.201309-310OC; Козлова Я.И., Борзова Ю.В., Суслова И.Е. и др. Аспергиллез легких у больных муковисцидозом // Журнал инфектологии. — 2018. — Т 10. — № 2. — С. 48-54. — doi: https://doi.org/10.22625/2072-6732-2018-10-2-48-54; Proesmans M, Vermeulen F, Vreys M, De Boeck K. Use of nebulized amphotericin B in the treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis. Int J Pediatr. 2010;2010:376287. doi: https://doi.org/10.1155/2010/376287; Hayes D Jr, Murphy BS, Lynch JE, Feola DJ. Aerosolized amphotericin for the treatment of allergic bronchopulmonary aspergillosis. Pediatr Pulmonol. 2010;45(11):1145-1148. doi: https://doi.org/10.1002/ppul.21300; Elphick HE, Southern KW Antifungal therapies for allergic bronchopulmonary aspergillosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2016;11:CD002204.; Ассоциация клинических фармакологов. Официальный ответ на письмо № А-3/2 от 06 марта 2018. — 14 марта 2018. — № 29-2018. [Association of Clinical Pharmacologists. Official response to letter No. A-3/2 dated March 06, 2018. March 14, 2018. No. 29-2018. (In Russ).] Available online: https://mukoviscidoz.org/doc/med_doc/otvet-farmakologov.pdf. Accessed on April 17, 2022.; Burks TF. 10.08.3.2.3. Pancreatic enzyme preparations. In: Comprehensive Toxicology. Elsevier, NY; 2010. Vol. 10. Available online: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fibrosing-colonopathy. Accessed on April 17, 2022.; Somaraju UR, Solis-Moya A. Pancreatic enzyme replacement therapy for people with cystic fibrosis. Cochrane Database Syst Rev. 2014;(10):CD008227. doi: https://doi.org/10.1002/14651858.CD008227.pub2; Meyer JH, Elashoff J, Porter-Fink V, et al. Human postprandial gastric emptying of 1-3 millimeter spheres. Gastroenterology. 1988;94(6):1315-1325. doi: https://doi.org/10.1016/0016-5085(88)90669-5; Mundlos S, Kuehnelt P, Adler G. Monitoring enzyme re-placement treatment in exocrine pancreatic insufficiency using the cholesteryl octanoate breath test. Gut. 1990;31(11):1324-1328. doi: https://doi.org/10.1136/gut.31.11.1324; Singh VK, Schwarzenberg SJ. Pancreatic insufficiency in Cystic Fibrosis. J Cyst Fibros. 2017;16(Suppl 2):S70-S78. doi: https://doi.org/10.1016/j.jcf.2017.06.011; Brodsky J, Dougherty S, Ramkrishna M, et al. Elevation of 1-hour plasma glucose during oral glucose tolerance testing is associated with worse pulmonary function in cystic fibrosis. Diabetes Care. 2011;34(2):292-295. doi: https://doi.org/10.2337/dc10-1604; Hardin DS, Rice J, Rice M, Rosenblatt R. Use of the insulin pump in treat cystic fibrosis related diabetes. J Cyst Fibros. 2009;8(3):174-178. doi: https://doi.org/10.1016/j.jcf.2008.12.001; van der Feen C, van der Doef HP, van der Ent CK, Houwen RH. Ursodeoxycholic acid treatment is associated with improvement of liver stiffness in cystic fibrosis patients. J Cyst Fibros. 2016;15(6):834-838. doi: https://doi.org/10.1016/j.jcf.2016.07.009; Cheng K, Ashby D, Smyth RL, et al. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J Cyst Fibros. 2011;10(2):S29-S36. doi: http://doi.org/10.1016/S1569-1993(11)60006-4; Ивашкин В.Т., Маевская М.В., Павлов Ч.С. и др. Клинические рекомендации Российского общества по изучению печени и Российской гастроэнтерологической ассоциации по лечению осложнений цирроза печени // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. — 2016. — Т. 26. — № 4. — С. 71-102. — doi: https://doi.org/10.22416/1382-4376-2016-26-4-71-102; Marquette M., Haworth C.S. Bone health and disease in cystic fibrosis. Paediatr Respir Rev. 2016;20(Suppl):2-5. doi: https://doi.org/10.1016/j.prrv.2016.06.003; Zhekaite E, Kondratyeva E, Ilenkova N, et al. The model for determining risk groups for the development of vitamin D deficiency and prevention algorithm in children with cystic fibrosis using the multifactor dimensionality reduction method. J Cyst Fibros. 2021;20(S1):S34. doi: https://doi.org/10.1016/S1569-1993(21)01015-8; Жекайте Е.К. Изучение влияния генетических и экзогенных факторов на развитие дефицита витамина D у детей и подростков с муковисцидозом в возрастном аспекте. Вопросы профилактики: автореф. дис. . канд. мед. наук. М.; 2020.; Баранов А.А., Намазова-Баранова Л.С., Симонова О.И. и др. Современные представления о диагностике и лечении детей с муковисцидозом // Педиатрическая фармакология. — 2015. — Т. 12. — №. 5. — С. 589-604. — doi: https://doi.org/10.15690/pf.v12i5.1462; Harvey R, Hannan S.A, Badia L, Scadding G. Nasal saline irrigations for the symptoms of chronic rhinosinusitis. Cochrane Database Syst Rev. 2007;(3):CD006394. doi: https://doi.org/10.1002/14651858.CD006394.pub2; Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):):1-12. doi: https://doi.org/10.4193/Rhino12.000.; Beer H, Southern KW, Swift AC. Topical nasal steroids for treating nasal polyposis in people with cystic fibrosis. Cochrane Database Syst Rev. 2015;(6):CD008253. doi: https://doi.org/10.1002/14651858.CD008253.pub4; Mehta S, Hill NS. Noninvasive ventilation. Am J Respir Crit Care Med. 2001;163(2):540-577. doi: https://doi.org/10.1164/ajrccm.163.2.9906116; Clinical indications for noninvasive positive pressure ventilation in chronic respiratory failure due to restrictive lung disease, COPD, and nocturnal hypoventilation — a consensus conference report. Consensus conference. Chest. 1999;116(2):521-534. doi: https://doi.org/10.1378/chest.116.2.521; Kapnadak SG, Dimango E, Hadjiliadis D, et al. Cystic Fibrosis Foundation consensus guidelines for the care of individuals with advanced cystic fibrosis lung disease. J Cyst Fibros. 2020;19(3):344-354. doi: https://doi.org/10.1016/j.jcf.2020.02.015; King CS, Brown AW, Aryal S, et al. Critical Care of the Adult Patient With Cystic Fibrosis. Chest. 2019;155(1):202-214. doi: https://doi.org/10.1016/j.chest.2018.07.025; Flume PA. Pneumothorax in cystic fibrosis. Curr Opin Pulm Med. 2011;17(4):220-225. doi: https://doi.org/10.1097/MCP.0b013e328345e1f8; Shinohara T, Tsuda M, Koyama N. Management of meconium-related ileus in very low-birthweight infants. Pediat Int. 2007;49: 641644. doi: https://doi.org/10.1111/j.1442-200X.2007.02457.x; Parikh NS, Ahlawat R, Ahlawat R. Meconium Ileus. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537008. Accessed on April 17, 2022.; Colombo C, Ellemunter H, Houwen R, et al. ECFS Guidelines for the diagnosis and management of distal intestinal obstruction syndrome in cystic fibrosis patients. J Cyst Fibros. 2011;10(Suppl 2):S24-S28. doi: https://doi.org/10.1016/S1569-1993(11)60005-2; Schauble AL, Bisaccia EK, Lee G, Nasr SZ. N-acetylcysteine for Management of Distal Intestinal Obstruction Syndrome. J Pediatr Pharmacol Ther. 2019;24(5):390-397. doi: https://doi.org/10.5863/1551-6776-24.5.390; Wu HX, Zhu M, Xiong XF, et al. Efficacy and Safety of CFTR Corrector and Potentiator Combination Therapy in Patients with Cystic Fibrosis for the F508del-CFTR Homozygous Mutation: A Systematic Review and Meta-analysis. Adv Ther. 2019;36(2):451-461. doi: https://doi.org/10.1007/s12325-018-0860-4; Wainwright CE, Elborn JS, Ramsey BW, et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220-231. doi: https://doi.org/10.1056/NEJMoa1409547; Mayer-Hamblett N, Retsch-Bogart G, Kloster M, et al OPTIMIZE Study Group Azithromycin for Early Pseudomonas Infection in Cystic Fibrosis. The OPTIMIZE Randomized Trial. Am J Respir Crit Care Med. 2018;198(9):1177-1187. doi: https://doi.org/10.1164/rccm.201802-0215OC; Nichols DP, Odem-Davis K, Cogen JD, et al. Pulmonary Outcomes Associated with Long-Term Azithromycin Therapy in Cystic Fibrosis. Am J Respir Crit Care Med. 2020;201(4):430-437. doi: https://doi.org/10.1164/rccm.201906-1206OC; Southern KW, Barker PM, Solis-Moya A, Patel L. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev. 2011;(12):CD002203. doi: https://doi.org/10.1002/14651858.CD002203.pub3; Pukhalsky AL, Shmarina GV, Kapranov NI, et al. Anti-inflammatory and immunomodulating effects of clarithromycin in patients with cystic fibrosis lung disease. Mediators Inflamm. 2004;13(2):111-117. doi: https://doi.org/10.1080/09629350410001688495; Konstan MW, Schluchter MD, Storfer-Isser A, Davis PB. Use of ibuprofen for the treatment of airway in flammation in CF: an update. Pediatr Pulmonol. 2002;34(S24):164.; Schluchter MD, Konstan MW, Xue L, Davis PB. Relationship between high-dose ibuprofen use and rate of decline in FEV1 among young patients with mild lung disease in the CFF Registry. Pediatr Pulmonol. 2004;38(S27):322.; Lands LC, Stanojevic S. Oral non-steroidal antiinflammatory drug therapy for lung disease in cystic fibrosis. Cochrane Database Syst Rev. 2019;9(9):CD001505. doi: https://doi.org/10.1002/14651858.CD001505.pub5; Physiotherapy for People with Cystic Fibrosis: from Infant to Adult. 7th ed. IPG/CF; 2019. Available online: https://www.ecfs.eu/sites/default/files/general-content-files/working-groups/IPG%20CF_Blue%20Booklet_7th%20edition%202019.pdf. Accessed on April 30, 2022.; Руководство по клиническому питанию / под ред. В.М. Луфта. — 3-е изд., перераб. — СПб.: Арт-Экспресс; 2016. — 409 с.; Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации / ФГАУ «НМИЦ здоровья детей» Минздрава России. — М.; 2019. — C. 70-71.; Sinaasappel M, Stern M, Littlewood J, et al. Nutrition in patients with cystic fibrosis: a European Consensus. J Cyst Fibrosis. 2002;1(2): 51-75. doi: https://doi.org/10.1016/S1569-1993(02)00032-2; Кондратьева Е.И., Максимычева Т.Ю., Портнов Н.М. и др. Первые результаты применения компьютерной программы «Мониторинг нутритивного статуса, рациона питания и ферментной терапии» // Вопросы детской диетологии. — 2016. — Т. 14. — № 6. — С. 5-12. — doi: https://doi.org/10.20953/1727-5784-2016-6-5-12; Кондратьева Е.И., Орлов А.В., Максимычева Т.Ю. и др. Возможности оптимизации ферментной терапии при муковисцидозе // Педиатрия. Журнал им Г.Н. Сперанского. — 2018. — Т. 97. — № 6. — С. 104-112. — doi: https://doi.org/10.24110/0031-403X-2018-97-6-104-112; Максимычева Т.Ю., Кондратьева Е.И., Сорвачёва Т.Н. Оценка и коррекция нутритивного статуса у детей с муковисцидозом // Вопросы практической педиатрии. — 2018. — Т. 13. — № 5. — С. 24-32. — doi: https://doi.org/10.20953/1817-7646-2018-5-24-32; Максимычева Т.Ю., Кондратьева Е.И., Сорвачёва Т.Н., Одинаева Н.Д. Опыт коррекции нутритивного статуса нутритивного статуса у детей с муковисцидозом с использованием компьютерных систем и средств сетевой коммуникации // Сибирское медицинское обозрение. — 2019. — № 4. — С. 67-73. — doi: https://doi.org/10.20333/2500136-2019-4-67-73; Flume PA, Mogayzel PJ, Robinson KA, et al. Cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax. Am J Respir Crit Care Med. 2010;182(3):298-306. doi: https://doi.org/10.1164/rccm.201002-0157OC; Flume PA, Yankaskas JR, Ebeling M, et al. Massive hemoptysis in cystic fibrosis. Chest. 2005;128(2):729-738. doi: https://doi.org/10.1378/chest.128.2.729; Hamilos DL. Nasal and sinus problems in cystic fibrosis patients. In: The Nose and Sinuses in Respiratory Disorders (ERS Monograph). Bachert C, Bourdin A, Chanez P, eds. Sheffield: European Respiratory Society; 2017. pp. 48-66. doi: https://doi.org/10.1183/2312508X.10009616; Moss RB, King VV. Management of sinusitis in cystic fibrosis by endoscopic surgery and serial antimicrobial lavage. Reduction in recurrence requiring surgery. Arch Otolaryngol Head Neck Surg. 1995;121(5):566-572. doi: https://doi.org/10.1001/archotol.1995.01890050058011; Keck T, Rozsasi A. Medium-term symptom outcomes after paranasal sinus surgery in children and young adults with cystic fibrosis. Laryngoscope. 2007;117:475-479. doi: https://doi.org/10.1097/MLG.0b013e31802d6e4f.; Liang J, Higgins TS, Ishman SL, et al. Surgical management of chronic rhinosinusitis in cystic fibrosis: a systematic review. Int Forum Allergy Rhinol. 2013;3(10):814-822. doi: https://doi.org/10.1002/alr.21190; Boczar M, Sawicka E, Zybert K, Meconium ileus in newborns with cystic fibrosis - results of treatment in the group of patients operated on in the years 2000-2014. Dev Period Med. 2015;19(1):32-40.; Yusen R, Edwards L, Dipchand A. The Registry of the International Society for Heart and Lung Transplantation: Thirty-third Adult Lung and Heart-Lung Transplant Report-2016; Focus Theme: Primary Diagnostic Indications for Transplant. J Heart Lung Transplant. 2016;35(11):1170-1184. doi: https://doi.org/10.1016/j.healun.2016.09.001; Репина С.А., Красовский С.А., Шмарина Г.В. и др. Состояние репродуктивной системы и алгоритм решения вопроса деторождения у мужчин с муковисцидозом // Альманах клинической медицины. — 2019. — Т. 47. — № 1. — С. 26-37. doi: https://doi.org/10.18786/2072-0505-2019-47-001; Malfroot A, Adam G, Ciofu O, et al. Immunisation in the current management of cystic fibrosis patients J Cyst Fibros. 2005;4(2):77-87. doi: https://doi.org/10.1016/j.jcf.2004.10.003; Муковисцидоз, хронические воспалительные болезни легких // МУ 3.3.1.1123-02. Мониторинг поствакцинальных осложнений и их профилактика: методические указания. — М.; 2002. — 44 с. — Ч. 9.6.5.; Федеральное руководство по использованию лекарственных средств (формулярная система) / под ред. А.Г. Чучалина, В.В. Яснецова. — 17-е изд., перераб. и доп. — М.: ООО «Видокс»; 2016. — С. 745-768.; Чучалин А.Г., Биличенко Т.И., Осипова Г.Л. и др. Вакцинопрофилактика болезней органов дыхания в рамках первичной медико-санитарной помощи населению: клинические рекомендации // Пульмонология. — 2015. — № 2. — С. 1-19.; Зверев В.В., Костинов М.П., Магаршак О.О. и др. Руководство по клинической иммунологии в респираторной медицине / под ред. М.П. Костинова, А.Г. Чучалина. — 2-е изд. — М.: Группа МДВ; 2018. — 304 с.; Ежлова Е.Б., Мельникова А.А., Баранов А.А. и др. Эпидемиология и вакцинопрофилактика инфекции, вызываемой Streptococcus pneumoniae: методические рекомендации // Вакцинация. — 2011. — № 2. — С. 36-47.; Pneumococcal: Chapter 25. In: The Green Book. 2013. Available online: https://www.gov.uk/government/publications/pneumococcal-the-green-book-chapter-25. Accessed on April 17, 2022.; Kobayashi M, Bennett NM, Gierke R, et al. Intervals Between PCV13 and PPSV23 Vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 2015;64(34):944-947. doi: https://doi.org/10.15585/mmwr.mm6434a4; Burgess L, Southern KW. Pneumococcal vaccines for cystic fibrosis. Cochrane Database Syst Rev. 2014;(8):CD008865. doi: https://doi.org/10.1002/14651858.CD008865.pub3; Костинов М.П., Магаршак О.О., Полищук В.Б. и др. Вакцинация взрослых с бронхолегочной патологией: руководство для врачей / под ред. М.П. Костинова. — М.: Арт-студия «Созвездие»; 2013. — 112 с.; Рыжов А.А., Костинов М.П., Магаршак О.О. Применение вакцин против пневмококковой и гемофильной типа b инфекций у лиц с хронической патологией // Эпидемиология и вакцино-профилактика. — 2004. — № 6. — С. 24-27.; Ong EL. Bilton D, Abbott J. et al. Influenza vaccination in adults with cystic fibrosis. BMJ. 1991;303(6802):6557-6802. doi: https://doi.org/10.1136/bmj.303.6802.557; Gross PA, Denning CR, Gaerlan PF, et al. Annual influenza vaccination: immune response in patients over 10 years. Vaccine. 1996;14(13):1280-1284. doi: https://doi.org/10.1016/s0264-410x(96)00004-7; Dharmaraj P, Smyth RL. Vaccines for preventing influenza in people with cystic fibrosis. Cochrane Database Syst Rev. 2014;2014(3):CD001753. doi: https://doi.org/10.1002/14651858.CD001753.pub3; МР 3.3.1.0001-10. Эпидемиология и вакцинопрофилактика инфекции, вызываемой Haemophilus influenzae типа b: методические рекомендации. — М.; 2010. — С. 10.; Haemophilus influenzae type b (Hib) Vaccination Position Paper — July 2013. Wkly Epidemiol Rec. 2013;88(39):413-428.; Cerquetti M, Giufre M. Why we need a vaccine for non-typeable Haemophilus influenzae. Hum Vaccin Immunother. 2016;12(9):2357-2361. doi: https://doi.org/10.1080/21645515.2016.1174354.; Баранов А.А., Брико Н.И., Горелов А.В. и др. Стратегии контроля ветряной оспы в России. Итоги Международного совещания Экспертного Совета по вопросам профилактики ветряной оспы (W.A.V.E) // Вопросы современной педиатрии. — 2010. — Т. 9. — № 3. — С. 5-12.; Баранов А.А., Намазова-Баранова Л.С., Таточенко В.К. и др. Иммунопрофилактика менингококковой инфекции у детей: методические рекомендации. 2-е изд., доп. М.:Педиатр; 2019. 36 с.; Баранов А.А., Намазова-Баранова Л.С., Таточенко В.К. и др. Вакцинопрофилактика ротавирусной инфекции: клинические рекомендации. — М.; 2017. — 24 с.; Баранов А.А., Намазова-Баранова Л.С., Давыдова И.В. и др. Иммунопрофилактика респираторно-синцитиальной вирусной инфекции у детей: федеральные клинические рекомендации. М.: ПедиатрЪ; 2016. 28 с.; Kua KP, Lee SWH. Systematic Review of the Safety and Efficacy of Palivizumab among Infants and Young Children with Cystic Fibrosis. Pharmacotherapy. 2017;37(6):755-769. doi: https://doi.org/10.1002/phar.1936; https://www.pedpharma.ru/jour/article/view/2169

  20. 20
    Academic Journal

    المصدر: Medical Genetics; Том 21, № 2 (2022); 44-50 ; Медицинская генетика; Том 21, № 2 (2022); 44-50 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2045/1553; Talbi S., Bonnet C., Riahi Z., et al. Genetic heterogeneity of congenital hearing impairment in Algerians from the Ghardaïa province.International Journal of Pediatric Otorhinolaryngology. 2018;112:1-5. https://doi.org/10.1016/j.ijporl.2018.06.012; Petit C., Levilliers J., Hardelin J. Molecular genetics of hearing loss. AnnuRevGenet. 2001;35:589-646. https://doi.org/10.1146/annurev.genet.35.102401.091224; Зинченко С.П., Кириллов А.Г., Абрукова А.В., и др. Генетико-эпидемиологическое исследование наследственных (изолированных и синдромальных) нарушений слуха в Республике Чувашия. Медицинская генетика. 2007;6(5):18-28.; Петрина Н.В., Близнец Е.А., Зинченко Р.А., и др. Частота мутаций гена GJB2 у больных наследственной несиндромальной нейросенсорной тугоухостью в девяти популяциях Карачаево-Черкесской Республики. Медицинская генетика. 2017;16(2):19-25.; Шокарев Р.А., Амелина С.С., Кривенцова Н.В., и др. Генетико-эпидемиологическое и молекулярно-генетическое исследование наследственной тугоухости в Ростовской области. Медицинская генетика. 2005;4(12):556-567.; Zinchenko R.A., Sharonova E.I., Osetrova A.A. Hereditary deafness in Kirov oblast: Estimation of the incidence rate and DNA diagnosis in children.Rus J of Genetics. 2012;48(4):455-462 doi:10.1134/S1022795412030131; Zinchenko R.A., Kadyshev V.V., Еl’chinоvа G.I., et al. Study of the genetic load and diversity of hereditary diseases in the Russian population of the Karachay-Cherkess Republic.Int J Med Epidemiol Genet. 2018;9(4):34-42.; Kenneson A., Van Naarden Braun K., Boyle C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. GenetMed. 2002;4:258-274. https://doi.org/10.1097/00125817-200207000-00004; Chan D. K., Chang K.W. GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. The Laryngoscope. 2014;124(2):E34-E53. https://doi.org/10.1002/lary.24332; Tsukada K., Nishio S., Hattori M., Usami S. Ethnic-Specific Spectrum of GJB2 and SLC26A4 Mutations: Their Origin and a Literature Review. Annals of Otology, Rhinology & Laryngology. 2015;124(5S):61S-76S; Bliznetz E.A., Galkina V.A., Matyushchenko G.N., et al. Changes in the connexin 26 gene (GJB2) in Russian patients with hearing loss: Results of long-term molecular diagnostics of hereditary nonsyndromic hearing loss.Rus J of Genetics. 2012;48(1):101-112. doi:10.1134/s1022795412010036; Животовский Л.А. Популяционная биометрия. 1991. Москва: Наука. 271с.; Lin Y.-H., Wu.P-C., Tsai C.-Y., et al. Hearing Impairment with Monoallelic GJB2 Variants. A GJB2 Cause or Non-GJB2 Cause? J Mol Diagn 2021;XX:1-13. (in Press.) https://doi.org/10.1016/j.jmoldx.2021.07.007; Resmerita I., Cozma R.S., Popescu R., et al. Genetics of Hearing Impairment in North-Eastern Romania-A Cost-Effective Improved Diagnosis and Literature Review. Genes (Basel). 2020 Dec 15;11(12):1506. doi:10.3390/genes11121506.; Bruzzone R., Veronesi V., Gomès D., et al. Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett. 2003 Jan 2;533(1-3):79-88. doi:10.1016/s0014-5793(02)03755-9.; Mani R.S., Ganapathy A., Jalvi R., et al. Functional consequences of novel connexin 26 mutations associated with hereditary hearing loss Eur J Hum Genet. 2009 Apr;17(4):502-9. doi:10.1038/ejhg.2008.179.; The National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/clinvar/variation/17006/(accessed 31 January 2022).; Bliznetz E.A., Lalayants M.R., Markova T.G., et al. Update of the GJB2/DFNB1 mutation spectrum in Russia: a founder Ingush mutation del(GJB2-D13S175) is the most frequent among other large deletions. J Hum Genet. 2017 Aug;62(8):789-795. doi:10.1038/jhg.2017.42.; https://www.medgen-journal.ru/jour/article/view/2045