يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"С. И. Костровицкий"', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This research was funded by the Russian Science Foundation (project 22-77-10073 "Reconstruction of the thermal state and composition of the lithospheric mantle beneath the kimberlite fields of the Siberian craton") (traceelement mineral composition)., Исследование выполнено за счет гранта РНФ (проект № 22-77-10073 «Реконструкция термального режима и состава литосферной мантии Сибирского кратона в районах проявления кимберлитового магматизма») (определены редкоэлементные составы минералов).

    المصدر: Geodynamics & Tectonophysics; Том 15, № 5 (2024); 0779 ; Геодинамика и тектонофизика; Том 15, № 5 (2024); 0779 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1915/843; Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I.S., 2013. Metasomatism in Lithospheric Mantle Roots: Constraints from Whole-Rock and Mineral Chemical Composition of Deformed Peridotite Xenoliths from Kimberlite Pipe Udachnaya. Lithos 160–161, 201– 215. https://doi.org/10.1016/j.lithos.2012.11.014.; Aulbach S., Kuiper K., Tinguely C., Jacob D., Wijbrans J., Le Roex A., 2024. Origins and Timing of Amphibole and Phlogopite Formation in Kimberlite-Borne Eclogite and Pyroxenite Xenoliths. In: Extended Abstracts of the 12th International Kimberlite Conference (July 8–12, 2024, Yellowknife, Canada). https://doi.org/10.29173/ikc4143.; Burgess S.R., Harte B., 2004. Tracing Lithosphere Evolution through the Analysis of Heterogeneous G9-G10 Garnets in Peridotite Xenoliths, II: REE Chemistry. Journal of Petrology 45 (3), 609–634. https://doi.org/10.1093/petrology/egg095.; Coltorti M., Bonadiman C., Hinton R.W., Siena F., Upton B.G.J., 1999. Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. Journal of Petrology 40 (1), 133–165. https://doi.org/10.1093/petrology/40.1.133.; Donskaya T.V., 2020. Assembly of the Siberian Craton: Constraints from Paleoproterozoic Granitoids. Precambrian Research 348, 105869. https://doi.org/10.1016/j.precamres.2020.105869.; Дымшиц А.М., Муравьева Е.А., Тычков Н.С., Костровицкий С.И., Шарыгин И.С., Головин А.В., Олейников О.Б., Термальное состояние краевой части Сибирского кратона в мезозойскую эру кимберлитового магматизма Куойкского поля (Якутская алмазоносная провинция) // Литосфера. 2023. Т. 23. № 4. С. 515–530. https://doi.org/10.24930/1681-9004-2023-23-4-515-530.; Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S. et al., 2016. Long-Lived Connection between Southern Siberia and Northern Laurentia in the Proterozoic. Nature Geoscience 9, 464–469. https://doi.org/10.1038/ngeo2700.; Гаранин В.К., Кудрявцева Г.П., Харькив А.Д., Чистякова В.Ф. Минералогия ильменитовых гипербазитов из кимберлитовой трубки Обнаженная // Известия АН СССР. Серия геологическая. 1985. Т. 5. С. 85–101.; Grégoire M., Bell D., Le Roex A., 2002. Trace Element Geochemistry of Phlogopite-Rich Mafic Mantle Xenoliths: Their Classification and Their Relationship to PhlogopiteBearing Peridotites and Kimberlites Revisited. Contributions to Mineralogy and Petrology 142, 603–625. https://doi.org/10.1007/s00410-001-0315-8.; Griffin W.L., O’Reilly S.Y., 2007. Cratonic Lithospheric Mantle: Is Anything Subducted? Episodes 30 (1), 43–53. https://doi.org/10.18814/epiiugs/2007/v30i1/006.; Griffin W.L., Ryan C.G., Kaminsky F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999. The Siberian Lithosphere Traverse: Mantle Terranes and the Assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.; Harte B., 1983. Mantle Peridotites and Processes: The Kimberlite Sample. In: C.J. Hawkesworth, M.J. Norry (Eds), Continental Basalts and Their Xenoliths. Shiva Publishing Limited, Nantwich, Cheshire, U.K., p. 46–91.; Iudin D., Ashchepkov I., Babushkina S., Oleinikov O., Medvedev N., 2023. Ancient Mantle Metasomatism in West Ykukite Field Northern Yakutia. In: Abstracts of the General Assembly of the European Geoscience Union (April 24–28, 2023, Vienna, Austria). EGU, EGU23-8651. https://doi.org/10.5194/egusphere-egu23-8651.; Калашникова Т.В. Геохимические характеристики и петрогенезис мантийных ксенолитов из кимберлитовой трубки Обнаженная (Якутская кимберлитовая провинция): Дис. … канд. геол.-мин. наук. Иркутск, 2017. 254 с.; Калашникова Т.В., Соловьева Л.В., Костровицкий С.И. Сравнительная характеристика состава минералов из ксенолитов кимберлитовых трубок «Обнаженная» и «Удачная» // Известия Сибирского отделения Секции наук о Земле Российской академии естественных наук. Геология, поиски и разведка рудных месторождений. 2015. Т. 53. № 4. С. 7–20.; McDonough W.F., Sun S.-S., 1995. The Composition of the Earth. Chemical Geology 120 (3–4), 223−253. https://doi.org/10.1016/0009-2541(94)00140-4.; Nakamura D., 2009. A New Formulation of Garnet-Clinopyroxene Geothermometer Based on Accumulation and Statistical Analysis of a Large Experimental Data Set. Journal of Metamorphic Geology 27 (7), 495–508. https://doi.org/10.1111/j.1525-1314.2009.00828.x.; O’Reilly S.Y., Griffin W.L., 2013. Mantle Metasomatism. In: D.E. Harlov, H. Austrheim (Eds), Metasomatism and the Chemical Transformation of Rock. The Role of Fluids in Terrestrial and Extraterrestrial Processes. Springer, p. 471–533. https://doi.org/10.1007/978-3-642-28394-9_12.; Pokhilenko L.N., Alifirova T.A., Yudin D.S., 2013. 40Ar/39Ar Dating of Phlogopite from Mantle Xenoliths: Evidence of Ancient Deep Metasomatism of the Lithosphere of the Siberian Craton Lithosphere. Doklady Earth Sciences. 449, 309– 312. https://doi.org/10.1134/S1028334X13030057.; Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N., 2015. Carbonatite Metasomatism of Peridotite Lithospheric Mantle: Implications for Diamond Formation and Carbonatite-Kimberlite Magmatism. Russian Geology and Geophysics 56 (1–2), 280–295. https://doi.org/10.1016/j.rgg.2015.01.020.; Соловьева Л.В., Калашникова Т.В., Костровицкий С.И., Иванов А.В., Мацюк С.С., Суворова Л.Ф. Метасоматические и магматические процессы в мантийной литосфере Биректинского террейна Сибирского кратона и их влияние на эволюцию литосферы // Геодинамика и тектонофизика. 2015. Т. 6. № 3. С. 311– 344. https://doi.org/10.5800/GT-2015-6-3-0184.; Solov’eva L.V., Kalashnikova T.V., Kostrovitsky S.I., Ivanov A.V., Matsuk S.S., Suvorova L.F., 2017. Phlogopite and Phlogopite–Amphibole Parageneses in the Lithospheric Mantle of the Birekte Terrane (Siberian Craton). Doklady Earth Sciences 475, 822–827. https://doi.org/10.1134/S1028334X17070273.; Соловьева Л.В., Владимиров Б.М., Днепровская Л.В., Масловская М.Н., Брандт С.Б. Кимберлиты и кимберлитоподобные породы. Вещество верхней мантии под древними платформами. Новосибирск: Наука, 1994. 256 с.; Solov’eva L.V., Yasnygina T.A., Egorov K.N., 2012. Metasomatic Parageneses in Deep-Seated Xenoliths from Pipes Udachnaya and Komsomol’skaya-Magnitnaya as Indicators of Fluid Transfer through the Mantle Lithosphere of the Siberian Craton. Russian Geology and Geophysics 53 (12), 1304–1323. https://doi.org/10.1016/j.rgg.2012.10.004.; Travin A.V., Yudin D.S., Vladimirov A.G., Khromykh S.V., Volkova N.I., Mekhonoshin A.S., Kolotilina T.B., 2009. Thermochronology of the Chernorud Granulite Zone, Ol’khon Region, Western Baikal Area. Geochemistry International 47, 1107–1124. https://doi.org/10.1134/S0016702909110068.; Уханов А.В., Рябчиков И.Д., Харькив А.Д. Литосферная мантия Якутской кимберлитовой провинции. М.: Наука, 1988. 286 с.; Van Achterbergh E., Griffin W.L., Ryan C.G., O’Reilly S.Y., Pearson N.J., Kivi K., Doyle B.J., 2004. Melt Inclusions from the Deep Slave Lithosphere: Implication for the Origin and Evolution of Mantle Derived Carbonatite and Kimberlite. Lithos 76 (1–4), 461–474. https://doi.org/10.1016/j.lithos.2004.04.007.; Witt G., Seck H.A., 1989. Origin of Amphibole in Recrystallized and Porphyroclastic Mantle Xenoliths from the Rhenish Massif: Implications for the Nature of Mantle Metasomatism. Earth and Planetary Science Letters 91 (3–4), 327– 340. https://doi.org/10.1016/0012-821X(89)90007-1.

  2. 2
    Academic Journal

    المساهمون: The research was carried out within the topic № 1023110300018¬4¬1.5.4 of the Ministry of Science and Higher Education of the Russian Federation in the Laboratory for Integrated Research of the Arctic of the Institute of the Earth’s Crust SB RAS. The Gtherm program was financially supported by the Russian Science Foundation (№ 22-77-10073, https://rscf.ru/project/22-77-10073/)., Работа выполнена в рамках темы № 1023110300018¬4¬1.5.4 Министерства науки и высшего образования РФ в лаборатории комплексных исследований Арктики ИЗК СО РАН. Построение палеогеотермы и разработка программы Gtherm выполнены за счет гранта Российского научного фонда (№ 22-77-10073,https://rscf.ru/project/22-77-10073/)

    المصدر: Geodynamics & Tectonophysics; Том 15, № 5 (2024); 0778 ; Геодинамика и тектонофизика; Том 15, № 5 (2024); 0778 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1914/842; https://www.gt-crust.ru/jour/article/downloadSuppFile/1914/4036; Алтухова З.А., Зайцев А.И. Особенности вещественного состава и возраст кимберлитовых пород Дюкенского, Лучаканского и Ары­Мастахского полей Якутской провинции // Литосфера. 2006. № 2. С. 34–64.; Аргунов К.П. Результаты изучения алмазоносности территории главных алмазодобывающих стран мира. Якутск: Изд­во ЯНЦ СО РАН, 2006. 176 с.; Ащепков И.В., Иванов А.С., Костровицкий С.И., Вавилов М.А., Бабушкина С.А., Владыкин Н.В., Тычков Н.С., Медведев Н.С., 2019. Мантийные террейны Сибирского кратона: их взаимодействие с плюмовыми расплавами на основании термобарометрии и геохимии мантийных ксенокристаллов // Геодинамика и тектонофизика. 2019. Т. 10. № 2. С. 197–245. https://doi.org/10.5800/GT­2019­10-2-0412.; Bonadiman C., Beccaluva L., Coltorti M., Siena F., 2005. Kimberlite­Like Metasomatism and 'Garnet Signature' in Spinel­Peridotite Xenoliths from Sal, Cape Verde Archipelago: Relics of a Subcontinental Mantle Domain within the Atlantic Oceanic Lithosphere? Journal of Petrology 46 (12), 2465–2493, https://doi.org/10.1093/petrology/egi061.; Burgess S.D., Bowring S.A., 2015. High­Precision Geochronology Confirms Voluminous Magmatism Before, During, and after Earth’s Most Severe Extinction. Science Advances 1, 7. https://doi.org/10.1126/sciadv.1500470.; Cherepanova Y., Artemieva I.M., 2015. Density Heterogeneity of the Cratonic Lithosphere: A Case Study of the Siberian Craton. Gondwana Research 28 (4), 1344–1360. https://doi.org/10.1016/j.gr.2014.10.002.; Day H.W., 2012. A Revised Diamond­Graphite Transition Curve. American Mineralogist 97 (1), 52–62. https://doi.org/10.2138/am.2011.3763.; Donskaya T.V., 2020. Assembly of the Siberian Craton: Constraints from Paleoproterozoic Granitoids. Precambrian Research 348, 105869. https://doi.org/10.1016/j.precamres.2020.105869.; Dymshits A.M., Dorogokupets P.I., Sharygin I.S., Shatskiy A.F., 2023a. Equation of State for Mg3Al2Si3O12 Pyrope: Implications for Post­Garnet Transitions and Mantle Dynamics. Physics of the Earth and Planetary Interiors 343, 107086. https://doi.org/10.1016/j.pepi.2023.107086.; Дымшиц А.М., Муравьева Е.А., Тычков Н.С., Костровицкий С.И., Шарыгин И.С., Головин А.В., Олейников О.Б. Термальное состояние краевой части Сибирского кратона в мезозойскую эру кимберлитового магматизма Куойкского поля (Якутская алмазоносная провинция) // Литосфера. 2023. Т. 23. № 4. С. 515–530. https://doi.org/10.24930/1681­9004­2023­23­4­515­530.; Dymshits A.M., Sharygin I.S., Malkovets V.G., Yakovlev I.V., Gibsher A.A., Alifirova T.A., Vorobei S.S., Potapov S.V., Garanin V.K., 2020. Thermal State, Thickness, and Composition of the Lithospheric Mantle beneath the Upper Muna Kimberlite Field (Siberian Craton) Constrained by Clinopyroxene Xenocrysts and Comparison with Daldyn and Mirny Fields. Minerals 10 (6), 549. https://doi.org/10.3390/min10060549.; Дымшиц А.М., Тычков Н.С. Мантийные ксенокристаллы из кимберлитовых трубок Мир, Комсомольская­Магнитная и Дьянга: приложение к составу и термальному режиму литосферной мантии под Сибирским кратоном // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2023. № 20. С. 545–552. https://doi.org/10.31241/FNS.2023.20.068.; Griffin W.L., Ryan C.G., Kaminsky F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999. The Siberian Lithosphere Traverse: Mantle Terranes and the Assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040­1951(99)00156­0.; Hasterok D., Chapman D.S., 2011. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters 307 (1–2), 59–70. https://doi.org/10.1016/J.EPSL.2011.04.034.; Howarth G.H., Barry P.H., Pernet­Fisher J.F., Baziotis I.P., Pokhilenko N.P., Pokhilenko L.N., Bodnar R.J., Taylor L.A., Agashev A.M., 2014. Superplume Metasomatism: Evidencefrom Siberian Mantle Xenoliths. Lithos 184–187, 209–224. https://doi.org/10.1016/j.lithos.2013.09.006.; Ivanov A.V., Demonterova E.I., Savatenkov V.M., Perepelov A.B., Ryabov V.V., Shevko A.Y., 2018. Late Triassic (Carnian) Lamproites from Noril’sk, Polar Siberia: Evidence for Melting of the Recycled Archean Crust and the Question of Lamproite Source for Some Placer Diamond Deposits of the Siberian Craton. Lithos 296–299, 67–78. https://doi.org/10.1016/j.lithos.2017.10.021.; Kamo S.L., Czamanske G.K., Amelin Y., Fedorenko V.A., Davis D.W., Trofimov V.R., 2003. Rapid Eruption of Siberian Flood­Volcanic Rocks and Evidence for Coincidence with the Permian­Triassic Boundary and Mass Extinction at 251 Ma. Earth and Planetary Science Letters 214 (1–2), 75–91. https://doi.org/10.1016/S0012­821X(03)00347­9.; Костровицкий С.И., Калашникова Т.В., Ащепков И.В. Cостав минералов и P­T­параметры кристаллизации мантийных пород под кимберлитовыми полями Прианабарья // Геодинамика и тектонофизика. 2022. Т. 13. № 4. 0665. https://doi.org/10.5800/GT­2022­13­4­0665.; Костровицкий С.И., Яковлев Д.А., Специус З.В. Неоднородность литосферной мантии под северными полями Якутской провинции и алмазоносность кимберлитов // Эффективность геологоразведочных работ на алмазы: прогнозно­ресурсные, методические, инновационно­технологические пути ее повышения: Материалы V Всероссийской научно­практической конференции с международным участием, посвященной 50­летию Алмазной лаборатории ЦНИГРИ – НИГП АК «АЛРОСА» (ПАО) (29 мая – 01 июня 2018 г.). Мирный, 2018. С. 114–118.; Kuskov O.L., Kronrod V.A., Prokof’ev A.A., Pavlenkova N.I., 2014. Petrological–Geophysical Models of the Internal Structure of the Lithospheric Mantle of the Siberian Craton. Petrology 22, 17–44. https://doi.org/10.1134/S0869591114010056.; Latyshev A.V., Veselovskiy R.V., Ivanov A.V., 2018. Paleomagnetism of the Permian­Triassic Intrusions from the Tunguska Syncline and the Angara­Taseeva Depression, Siberian Traps Large Igneous Province: Evidence of Contrasting Styles of Magmatism. Tectonophysics 723, 41–55. https://doi.org/10.1016/j.tecto.2017.11.035.; Matthews K.J., Maloney K.T., Zahirovic S., Williams S.E., Seton M., Müller R.D., 2016. Global Plate Boundary Evolution and Kinematics Since the Late Paleozoic. Global and Planetary Change 146, 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002.; Муравьева Е.А., Дымшиц А.М., Шарыгин И.С., Головин А.В., Логвинова А.М., Олейников О.Б. «Клинопироксеновая» палеогеотерма под кимберлитовой трубкой обнаженной: мощность литосферы под Куойкским полем (Сибирский кратон, Якутия) // Геодинамика и тектонофизика. 2022. Т. 13. № 4. 0664. https://doi.org/10.5800/GT­2022­13­4­0664.; Nimis P., Taylor W.R., 2000. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part I. Calibration and Testing of a Cr­in­Cpx Barometer and an Enstatite­in­Cpx Thermometer. Contributions to Mineralogy and Petrology 139, 541–554. https://doi.org/10.1007/s004100000156.; Pokhilenko N.P., Sobolev N.V., Agashev A.M., Shimizu N., 2002. Permo­Triassic Superplume and Its Influence to the Siberian Lithospheric Mantle. In: Extended Abstracts of the Superplume Workshop (January 28–31, 2002, Tokyo). P. 249–252.; Pokhilenko N.P., Sobolev N.V., Kuligin S.S., Shimizu N., 1999. Peculiarities of Distribution of Pyroxenite Paragenesis Garnets in Yakutian Kimberlites and Some Aspects of the Evolution of the Siberian Craton Lithospheric Mantle. In: Proceedings of the 7th International Kimberlite Conference (April 11–17, 1998, Cape Town, South Africa). Vol. 2. Red Roof Design, Cape Town, p. 689–698.; Ramsay R.R., Tompkins L.A., 1994. The Geology, Heavy Mineral Concentrate Mineralogy, and Diamond Prospectivity of the Boa Esperanca and Cana Verde Pipes, Corrego D’anta, Minas. In: H.O.A. Meyer, O.H. Leonardos (Eds), Kimberlites, Related Rocks and Mantle Xenoliths. Proceeding of the 5th International Kimberlite Conference (Araxá, Brazil). Vol. 1. CPRM, p. 329–345.; Ryan C.G., Griffn W.L., Pearson N.J., 1996. Garnet Geotherms: Pressure­Temperature Data from Cr­Pyrope Garnet Xenocrysts in Volcanic Rocks. Journal of Geophysical Research: Solid Earth 101 (В3), 5611–5625. https://doi.org/10.1029/95JB03207.; Sharygin I.S., Golovin A.V., Tarasov A.A., Dymshits A.M., Kovaleva E., 2022. Confocal Raman Spectroscopic Study of Melt Inclusions in Olivine of Mantle Xenoliths from the Bultfontein Kimberlite Pipe (Kimberley Cluster, South Africa): Evidence for Alkali­Rich Carbonate Melt in the Mantle beneath Kaapvaal Craton. Journal of Raman Spectroscopy 53 (3), 508–524. https://doi.org/10.1002/jrs.6198.; Sobolev N.V., 1977. Deep­Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. AGU, Washington, 279 p. https://doi.org/10.1029/SP011.; Sun J., Liu C., Tappe S., Kostrovitsky S.I., Wu F.­Y., Yakovlev D., Yang Y.­H., Yang J.­H., 2014. Repeated Kimberlite Magmatism beneath Yakutia and Its Relationship to Siberian Flood Volcanism: Insights from in Situ U­Pb and Sr­Nd Perovskite Isotope Analysis. Earth and Planetary Science Letters 404, 283–295. https://doi.org/10.1016/j.epsl.2014.07.039.; Sun J., Tappe S., Kostrovitsky S.I., Liu C.­Z., Skuzovatov S.Yu., Wu F.­Y., 2018. Mantle Sources of Kimberlites through Time: A U­Pb and Lu­Hf Isotope Study of Zircon Megacrysts from the Siberian Diamond Fields. Chemical Geology 479, 228–240. https://doi.org/10.1016/j.chemgeo.2018.01.013.; Tychkov N.S., Yudin D.S., Nikolenko E.I., Malygina E.V., Sobolev N.V., 2018. Mesozoic Lithospheric Mantle of the Northeastern Siberian Craton (Evidence from Inclusions in Kimberlite). Russian Geology and Geophysics 59 (10), 1254– 1270. https://doi.org/10.1016/j.rgg.2018.09.005.; Зайцев А.И., Смелов А.П. Изотопная геохронология пород кимберлитовой формации Якутской провинции. Якутск: Офсет, 2010. 108 с.; Ziberna L., Nimis P., Kuzmin D., Malkovets V.G., 2016. Error Sources in Single­Clinopyroxene Thermobarometry and a Mantle Geotherm for the Novinka Kimberlite, Yakutia. American Mineralogist 101 (10), 2222–2232. https://doi.org/10.2138/am­2016­5540.

  3. 3
    Academic Journal

    المساهمون: Research was implemented in terms of the state assignment of the Ministry of Science and Higher Education of the Russian Federation, project № 0284-2021-0006 "Ultrabasite-basite complexes of the Siberian craton and its folded framing: evolution of composition, geodynamic aspects of formation and ore-bearing capacity"., Исследования были выполнены в рамках государственного задания Минобрнауки РФ на проведение НИР по теме № 0284-2021-0006 «Ультрабазит-базитовые комплексы Сибирского кратона и его складчатого обрамления: эволюция состава, геодинамические аспекты формирования и рудоносность». Авторы выражают глубокую благодарность Л.Ф. Суворовой за микрозондовые анализы

    المصدر: Geodynamics & Tectonophysics; Том 13, № 4 (2022); 0665 ; Геодинамика и тектонофизика; Том 13, № 4 (2022); 0665 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1560/699; Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Afanasiev V.P., Pokhilenko L.Yu., Kuligin S.S., Malygina E.V. et al., 2010. Structure and Evolution of the Lithospheric Mantle beneath Siberian Craton, Thermobarometric Study. Tectonophysics 485 (1–4), 17–41. http://doi.org/10.1016/j.tecto.2009.11.013.; Doucet L.S., Ionov D.A., Golovin A.V., 2013. The Origin of Coarse Garnet Peridotites in Cratonic Lithosphere: New Data on Xenoliths from the Udachnaya Kimberlite, Central Siberia. Contribution Mineralogy and Petrology 165, 1225–1242. http://doi.org/10.1007/s00410-013-0855-8.; Ionov D.A., Doucet L.S., Ashchepkov I.V., 2010. Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. Journal of Petrology 51 (11), 2177–2210. https://doi.org/10.1093/petrology/egq053.; Костровицкий С.И., Специус З.В., Яковлев Д.А., Фон-Дер-Флаасс Г.С., Суворова Л.Ф., Богуш И.Н. Атлас коренных месторождений алмазов Якутской кимберлитовой провинции. Мирный: Мирнинская городская типография, 2015. 480 с.; Nimis P., Grutter H., 2010. Internally Consistent Geothermometers for Garnet Peridotites and Pyroxenites. Contribution to Mineralogy and Petrology 154, 411–427. https://doi.org/10.1007/s00410-009-0455-9.; Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 263 с.; Соловьева Л.В., Владимиров Б.М., Днепровская Л.В., Масловская М.Н., Брандт С.Б. Кимберлиты и кимберлитоподобные породы. Вещество верхней мантии под древними платформами. Новосибирск: Наука, 1994. 256 с.; Stephens W.E., Dawson J.B., 1977. Statistical Comparison between Pyroxenes from Kimberlites and Associated Xenoliths. Journal of Geology 85 (4), 433–449. https://doi.org/10.1086/628317.; Уханов А.В., Рябчиков И.Д., Харькив А.Д. Литосферная мантия Якутской кимберлитовой провинции. М.: Наука, 1988. 286 с.; https://www.gt-crust.ru/jour/article/view/1560

  4. 4
    Academic Journal

    المساهمون: Исследование выполнено при поддержке Российского научного фонда (проект № 20-77-00074 «Эклогитовые и гранат-пироксенитовые ксенолиты из кимберлитовых трубок Сибирского кратона – генезис и время формирования») (исследован химический состав граната).

    المصدر: Geodynamics & Tectonophysics; Том 13, № 4 (2022) ; Геодинамика и тектонофизика; Том 13, № 4 (2022) ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1556/695; Ai Y., 1994. A Revision of the Garnet-Clinopyroxene Fe2+–Mg Exchange Geothermometer. Contributions to Mineralogy and Petrology 115, 467–473. https://doi.org/10.1007/BF00320979.; Ashchepkov I.V., Vladykin N.V., Ntaflos T., Downes H., Mitchell R., Smelov A.P., Alymova N.V., Kostrovitsky S.I., Rotman A.Ya., Smarov G.P. et al., 2013. Regularities and Mechanism of Formation of the Mantle Lithosphere Structure beneath the Siberian Craton in Comparison with Other Cratons. Gondwana Research 23 (1), 4–24. https://doi.org/10.1016/j.gr.2012.03.009.; Aulbach S., Jacob D.E., 2016. Major- And Trace-Elements in Cratonic Mantle Eclogites and Pyroxenites Reveal Heterogeneous Sources and Metamorphic Processing of Low-Pressure Protoliths. Lithos 262, 586–605. https://doi.org/10.1016/j.lithos.2016.07.026.; Beard B.L., Fraracci K.N., Taylor L.A., Snyder G.A., Clayton R.A., Mayeda T.K., Sobolev N.V., 1996. Petrography and Geochemistry of Eclogites from the Mir Kimberlite, Yakutia, Russia. Contributions to Mineralogy and Petrology 125, 293–310. https://doi.org/10.1007/s004100050223.; Brey G.P., Köhler T., 1990. Geothermobarometry in Four-Phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.; Brey G.P., Köhler T., Nickel K.G., 1990. Geothermobarometry in Four-Phase Lherzolites. I. Experimental Results from 10 to 60 Kbar. Journal of Petrology 31 (6), 1313–1352. https://doi.org/10.1093/petrology/31.6.1313.; Ellis D.J., Green D.H., 1979. An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria. Contributions to Mineralogy and Petrology 71, 13–22. https://doi.org/10.1007/BF00371878.; Griffin W.L., Ryan C.G., Kaminsky F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999. The Siberian Lithosphere Traverse: Mantle Terranes and the Assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.; Hasterok D., Chapman D.C., 2011. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters 307 (1–2), 59–70. https://doi.org/10.1016/j.epsl.2011.04.034.; Howarth G.H., Barry P.H., Pernet-Fisher J.F., Baziotis I.P., Pokhilenko N.P., Pokhilenko L.N., Bodnar R.J., Taylor L.A., Agashev A.M., 2014. Superplume Metasomatism: Evidence from Siberian Mantle Xenoliths. Lithos 184–185, 209–224. https://doi.org/10.1016/j.lithos.2013.09.006.; Ionov D.A., Doucet L.S., Ashchepkov I.V., 2010. Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. Journal of Petrology 51 (11), 2177–2210. https://doi.org/10.1093/petrology/egq053.; Ionov D.A., Doucet L.S., Carlson R.W., Golovin A.V., Korsakov A.V., 2015. Post Archean Formation of the Lithospheric Mantle in the Central Siberian Craton: Re-Os and PGE Study of Peridotite Xenoliths from the Udachnaya Kimberlite. Geochimica et Cosmochimica Acta 165, 466–483. https://doi.org/10.1016/j.gca.2015.06.035.; Krogh E.J., 1988. The Garnet-Clinopyroxene Fe-Mg Geothermometer – A Reinterpretation of Existing Experimental Data. Contributions to Mineralogy and Petrology 99, 44–48. https://doi.org/10.1007/BF00399364.; Krogh Ravna E., 2000. The Garnet-Clinopyroxene Fe2+–Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology 18 (2), 211–219. https://doi.org/10.1046/j.1525-1314.2000.00247.x.; Mattey D., Lowry D., Macpherson C., 1994. Oxygen Isotope Composition of Mantle Peridotite. Earth Planetary Science Letters 128 (3–4), 231–241. https://doi.org/10.1016/0012-821X(94)90147-3.; Nickel K.G., Green D.H., 1985. Empirical Geothermobarometry for Garnet Peridotites and Implications for the Nature of the Lithosphere, Kimberlites and Diamonds. Earth and Planetary Science Letters 73 (1), 158–170. https://doi.org/10.1016/0012-821X(85)90043-3.; Nimis P., Grutter H., 2010. Internally Consistent Geothermometers for Garnet Peridotites and Pyroxenites. Contribution to Mineralogy and Petrology 154, 411–427. https://doi.org/10.1007/s00410-009-0455-9.; Nimis P., Taylor W.R., 2000. Single Clinopyroxene Thermobarometery for Garnet Peridotites. Part 1, Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology 139, 541–554. https://doi.org/10.1007/s004100000156.; Pokhilenko N.P., Sobolev N.V., Kuligin S.S., Shimizu N., 1999. Peculiarities of Distribution of Pyroxenite Paragenesis Garnets in Yakutian Kimberlites and Some Aspects of the Evolution of the Siberian Craton Lithospheric Mantle. In: Proceedings of the 7th International Kimberlite Conference (April 11–17, 1998, Cape Town, South Africa). Vol. 2. Red Roof Design, Cape Town, p. 689–698.; Rosen O.M., 2003. The Siberian Craton: Tectonic Zonation and Stages of Evolution. Geotectonics 37 (3), 175–192.; Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 263 с.; Solov’eva L.V., Lavrent’ev Y.G., Egorov K.N., Kostrovitsky S.I., Suvorova L.F., 2008. The Genetic Relationship of the Deformed Peridotites and Garnet Megacrysts from Kimberlites with Asthenospheric Melts. Russian Geology and Geophysics 49 (4), 207–224. https://doi.org/10.1016/j.rgg.2007.09.008.; Соловьева Л.В., Владимиров Б.М., Днепровская Л.В., Масловская М.Н., Брандт С.Б. Кимберлиты и кимберлитоподобные породы. Вещество верхней мантии под древними платформами. Новосибирск: Наука, 1994. 256 с.; Уханов А.В., Рябчиков И.Д., Харькив А.Д. Литосферная мантия Якутской кимберлитовой провинции. М.: Наука, 1988. 286 с.; Valley J.W., Kinny P.D., Schulze D.J., Spicuzza M.J., 1998. Zircon Megacrysts from Kimberlite: Oxigen Isotope Heterogeneity among Mantle Melt. Contributions to Mineralogy and Petrology 133, 1–11. https://doi.org/10.1007/s004100050432.; Valley J.W., Kitchen N., Kohn M.J., Niendorf C.R., Spicuzza M.J., 1995. UWG-2, a Garnet Standard for Oxygen Isotope Ratios: Strategies for High Precision and Accuracy with Laser Heating. Geochimica et Cosmochimica Acta 59 (24), 5223–5231. https://doi.org/10.1016/0016-7037(95)00386-X.; https://www.gt-crust.ru/jour/article/view/1556

  5. 5
    Academic Journal

    المساهمون: Работа выполнена при поддержке РФФИ (проект № 19‐05‐00788) и по государственному заданию ИГМ СО РАН (г. Новосибирск), а также НИГП АК «Алроса» ПАО (г. Якутск), ИГХ СО РАН (г. Иркутск), ИГАБМ СО РАН (г. Якутск) и ИЗК СО РАН (г. Иркутск)

    المصدر: Geodynamics & Tectonophysics; Том 10, № 2 (2019); 197-245 ; Геодинамика и тектонофизика; Том 10, № 2 (2019); 197-245 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/839/433; Afanasiev V.P., Ashchepkov I.V., Verzhak V.V., O’Brien H., Palessky S.V., 2013. PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia. Journal of Asian Earth Sciences 70–71, 45–63. https://doi.org/10.1016/j.jseaes.2013.03.002.; Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I.S., 2013. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161, 201–215. https://doi.org/10.1016/j.lithos.2012.11.014.; Agashev A.M., Pokhilenko N.P., Tolstov A.V., Polyanichko V.G., Mal’kovets V.G., Sobolev N.V., 2004. New age data on kimberlites from the Yakutian diamondiferous province. Doklady Earth Sciences 399 (8), 1142–1145.; Agee C.B., 1998. Crystal-liquid density inversions in terrestrial and lunar magmas. Physics of the Earth and Planetary Interiors 107 (1–3), 63–74 https://doi.org/10.1016/S0031-9201(97)00124-6.; Artemieva I.M., Thybo H., Cherepanova Y., 2019. Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth and Planetary Science Letters 505, 13–19. https://doi.org/10.1016/j.epsl.2018.09.034.; Ащепков И.В. Программа мантийных термометров и барометров, использование: реконструкции и калибровки PT методов // Вестник ОНЗ РАН. 2011. Т. 3. NZ6008 https://doi.org/10.2205/2011NZ000138.; Ashchepkov I.V., Alymova N.V., Logvinova A.M., Vladykin N.V., Kuligin S.S., Mityukhin S.I., Downes H., Stegnitsky Y.B., Prokopiev S.A., Salikhov R.F., Palessky S.V., Khmelnikova O.S., 2014. Picroilmenites in Yakutian kimberlites: Variations and genetic models. Solid Earth 5 (2), 915–938. https://doi.org/10.5194/se-5-915-2014.; Ashchepkov I.V., Kuligin S.S., Vladykin N.V., Downes H., Vavilov M.A., Nigmatulina E.N., Babushkina S.A., Tychkov N.S., Khmelnikova O.S., 2016. Comparison of mantle lithosphere beneath Early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts. Geoscience Frontiers 7 (4), 639–662. https://doi.org/10.1016/j.gsf.2015.06.004.; Ashchepkov I.V., Logvinova A.M., Ntaflos T., Vladykin N.V., Kostrovitsky S.I., Spetsius Z., Mityukhin S.I., Prokopyev S.A., Medvedev N.S., Downes H., 2017b. Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle subterranes beneath central Yakutia? Geoscience Frontiers 8 (4), 671–692. https://doi.org/10.1016/j.gsf.2016.08.004.; Ashchepkov I.V., Logvinova A.M., Reimers L.F., Ntaflos T., Spetsius Z.V., Vladykin N.V., Downes H., Yudin D.S., Travin A.V., Makovchuk I.V., Palesskiy V.S., Khmel'nikova O.S., 2015. The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geoscience Frontiers 6 (5), 687–714. https://doi.org/10.1016/j.gsf.2014.08.005.; Ashchepkov I.V., Ntaflos T., Kuligin S.S., Malygina E.V., Agashev A.M., Logvinova A.M., Mityukhin S.I., Alymova N.V., Vladykin N.V., Palessky S.V., Khmelnikova O.S., 2013b. Deep-seated xenoliths from the Brown Breccia of the Udachnaya Pipe, Siberia. In: D. Graham Pearson, H.S. Grütter, J.W. Harris, B.A. Kjarsgaard, H. O’Brien, N.V. Chalapathi Rao, S. Sparks (Eds.), Proceedings of 10th International Kimberlite Conference. Vol. 1 (Special Issue of the Journal of the Geological Society of India), Springer, New Delhi, p. 59–73. https://doi.org/10.1007/978-81-322-1170-9_5.; Ashchepkov I.V., Ntaflos T., Logvinova A.M., Spetsius Z.V., Downes H., Vladykin N.V., 2017а. Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems. Geoscience Frontiers 8 (4), 775–795 https://doi.org/10.1016/j.gsf.2016.06.012.; Ashchepkov I.V., Ntaflos T., Spetsius Z.V., Salikhov R.F., Downes H., 2017c. Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia (Russia). Geoscience Frontiers 8 (4), 693–710. https://doi.org/10.1016/j.gsf.2016.05.008.; Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Afanasiev V.P., Pokhilenko L.N., Kuligin S.S., Malygina E.V., Alymova N.A., Kostrovitsky S.I., Rotman A.Y., Mityukhin S.I., Karpenko M.A., Stegnitsky Y.B., Khemelnikova O.S., 2010. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485 (1–4), 17–41. https://doi.org/10.1016/j.tecto.2009.11.013.; Ashchepkov I.V., Vladykin N.N., Ntaflos T., Kostrovitsky S.I., Prokopiev S.A., Downes H., Smelov A.P., Agashev A.M., Logvinova A.M., Kuligin S.S., Tychkov N.S., Salikhov R.F., Stegnitsky Yu.B., Alymova N.V., Vavilov M.A., Minin V.A., Babushkina S.A., Ovchinnikov Yu.I., Karpenko M.A., Tolstov A.V., Shmarov G.P., 2014a. Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics 634 (1–4), 55–75. https://doi.org/10.1016/j.tecto.2014.07.017.; Ashchepkov I.V., Vladykin N.V., Nikolaeva I.V., Palessky S.V., Logvinova A.M., Saprykin A.I., Khmel’nikova O.S., Anoshin G.N., 2004. Mineralogy and geochemistry of mantle inclusions and mantle column structure of the Yubileinaya kimberlite pipe, Alakit field, Yakutia. Doklady Earth Sciences 395 (3), 378–384.; Ashchepkov I.V., Vladykin N.V., Ntaflos T., Downes H., Mitchell R., Smelov A.P., Alymova N.V., Kostrovitsky S.I., Rotman A.Ya, Smarov G.P., Makovchuk I.V., Stegnitsky Yu.B., Nigmatulina E.N., Khmelnikova O.S., 2013a. Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons. Gondwana Research 23 (1), 4–24. https://doi.org/10.1016/j.gr.2012.03.009.; Ashchepkov I.V., Vladykin N.V., Saprykin A.I., Khmelnikova O.S., Anoshin G.N., 2001. Composition and thermal structure of the mantle in peripheral parts of Siberian craton. Revista Brasileira de Geociências 31 (4), 493–496.; Aulbach S., Griffin W.L., Pearson N.J., O'Reilly S.Y., Kivi K., Doyle B.J., 2004. Mantle formation and evolution, Slave craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology 208 (1–4), 61–88. https://doi.org/10.1016/j.chemgeo.2004.04.006.; Бабушкина С.А. Типоморфизм гранатов трубки Запретная // Разведка и охрана недр. 2013. № 12. С. 13–16.; Bascou J., Doucet L.S., Saumet S., Ionov D.A., Ashchepkov I.V., Golovin A.V., 2011. Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth and Planetary Science Letters 304 (1–2), 71–84. https://doi.org/10.1016/j.epsl.2011.01.016.; Batumike J.M., Griffin W.L., O'Reilly S.Y., 2009. Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos 112 (Supplement 1), 166–176. https://doi.org/10.1016/j.lithos.2009.04.020.; Beard B.L., Fraracci K.N., Taylor L.A., Snyder G.A., Clayton R.N., Mayeda T.K., Sobolev N.V., 1996. Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contributions to Mineralogy and Petrology 125 (4), 293–310. https://doi.org/10.1007/s004100050223.; Boyd F.R., 1973. A pyroxene geotherm. Geochimica et Cosmochimica Acta 37 (12), 2533–2546. https://doi.org/10.1016/0016-7037(73)90263-9.; Boyd F.R., Nixon P.H., 1978. Ultramafic nodules from the Kimberley pipes, South Africa. Geochimica et Cosmochimica Acta 42 (9), 1367–1382. https://doi.org/10.1016/0016-7037(78)90042-X.; Boyd F.R., Pokhilenko N.P., Pearson D.G., Mertzman S.A., Sobolev N.V., Finger L.W., 1997. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology 128 (2–3), 228–246. https://doi.org/10.1007/s004100050305.; Brey G.P., Köhler T., 1990. Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.; Bushenkova N., Tychkov S., Koulakov I., 2002. Tomography on PP-P waves and its application for investigation of the upper mantle in central Siberia. Tectonophysics 358 (1–4), 57–76. https://doi.org/10.1016/S0040-1951(02)00417-1.; Condie K.C., 2004. Supercontinents and superplume events: distinguishing signals in the geologic record. Physics of the Earth and Planetary Interiors 146 (1–2), 319–332. https://doi.org/10.1016/j.pepi.2003.04.002.; Dawson J.B., 1980. Kimberlites and Their Xenoliths. Springer-Verlag, Berlin, New York, 208 p.; Deschamps F., Godard M., Guillot S., Hattori K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96–127. https://doi.org/10.1016/j.lithos.2013.05.019.; Egorov K.N., Kiselev A.I., Men’shagin Y.V., Minaeva Y.A., 2010. Lamproite and kimberlite of the Sayany area: Composition, sources, and diamond potential. Doklady Earth Sciences 435 (2), 1670–1675. https://doi.org/10.1134/S1028334X10120251.; Egorov K.N., Solov’eva L.V., Kovach V.P., Men’shagin Yu.V., Maslovskaya M.N., Sekerin A.P., Bankovskaya E.V., 2006. Petrological features of olivine-phlogopite lamproites of the Sayan region: Evidence from Sr-Nd isotope and ICP-MS trace-element data. Geochemistry International 44 (7), 729–735. https://doi.org/10.1134/S0016702906070093.; Ernst W.G., 2017. Earth’s thermal evolution, mantle convection, and Hadean onset of plate tectonics. Journal of Asian Earth Sciences 145 (Part B), 334–348 https://doi.org/10.1016/j.jseaes.2017.05.037.; Evensen N.M., Hamilton P.J., O'Nions R.K., 1978. Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42 (8), 1199–1212. https://doi.org/10.1016/0016-7037(78)90114-X.; Foley S.F., Pintér Z., 2018. Chapter 1 – Primary melt compositions in the Earth's mantle. In: Y. Kono, C. Sanloup (Eds.), Magmas Under Pressure. Advances in High-Pressure Experiments on Structure and Properties of Melts. Elsevier, Amsterdam, p. 3–42. https://doi.org/10.1016/B978-0-12-811301-1.00001-0.; Foley S.F., Yaxley G.M., Rosenthal A., Buhre S., Kiseeva E.S., Rapp R.P., Jacob D.E., 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112 (Supplement 1), 274–283. https://doi.org/10.1016/j.lithos.2009.03.020.; Гаранин В.К, Звездин A.B., Округин Г.В. Минералогия оксидных минералов из кимберлитов трубки Моркока в связи с оценкой ее алмазоносности (Якутская алмазоносная провинция) // Вестник Московского университета. Серия 4: Геология. 1998. № 4. С. 39–46.; Gaul O.F., Griffin W.L., O'Reilly S.Y., Pearson N.J., 2000. Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters 182 (3–4), 223–235. https://doi.org/10.1016/S0012-821X(00)00243-0.; Gerya T., 2014. Precambrian geodynamics: Concepts and models. Gondwana Research 25 (2), 442–463. https:// doi.org/10.1016/j.gr.2012.11.008.; Gladkochub D.P., DonskayaT.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H., 2019. U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of Paleo-Asian Ocean. Gondwana Research 65, 1–16. https://doi.org/10.1016/j.gr.2018.07.007.; Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Natapov L.M., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., 2006. Siberian Craton and its evolution in terms of Rodinia hypothesis. Episodes 29 (3), 169–174.; Gornova M.A., Belyaev V.A., Belozerova O.Yu., 2013. Textures and geochemistry of the Saramta peridotites (Siberian craton): Melting and refertilization during early evolution of the continental lithospheric mantle. Journal of Asian Earth Sciences 62, 4–17. https://doi.org/10.1016/j.jseaes.2012.10.004.; Граханов А.С., Зарукин Р.А., Богуш И.Н., Ядренкин А.Б. Открытие верхнетриасовых россыпей алмазов в Оленекском заливе моря Лаптевых // Отечественная геология. 2009. № 1. C. 53–61.; Grégoire M., Bell D., Le Roex A., 2002. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contributions to Mineralogy and Petrology 142 (5), 603–625. https://doi.org/10.1007/s00410-001-0315-8.; Grégoire M., Bell D.R., Le Roex A.P., 2003. Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. Journal of Petrology 44 (4), 629–657. https://doi.org/10.1093/petrology/44.4.629.; Griffin W.L., Fisher N.I., Friedman J., Ryan C.G., O’Reilly S.Y., 1999а. Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. Journal of Petrology 40 (5), 679–704. https://doi.org/10.1093/petroj/40.5.679.; Griffin W.L., Natapov L.M., O'Reilly S.Y., van Achterbergh E., Cherenkova A.F., Cherenkov V.G., 2005. The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos 81 (1–4), 167–187. https://doi.org/10.1016/j.lithos.2004.10.001.; Griffin W.L., O’Reilly S.Y., 2007. Cratonic lithospheric mantle: is anything subducted? Episodes 30 (1), 43–53.; Griffin W.L., O’Reilly S.Y., Abe N., Aulbach S., Davies R.M., Pearson N.J., Doyle B.J., Kivi K., 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Research 127 (1–3), 19–41. https://doi.org/10.1016/S0301-9268(03)00180-3.; Griffin W.L., O’Reilly S.Y., Afonso J.C., Begg G.C., 2009. The composition and evolution of lithospheric mantle: a reevaluation and its tectonic implications. Journal of Petrology 50 (7), 1185–1204. https://doi.org/10.1093/petrology/egn033.; Griffin W.L., Ryan C.G., Kaminsky F.V., O'Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999c. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.; Griffin W.L., Shee S.R., Ryan C.G., Win T.T., Wyatt B.A., 1999b. Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology 134 (2–3), 232–250. https://doi.org/10.1007/s004100050481.; Gudmundsson G., Wood B.J., 1995. Experimental tests of garnet peridotite oxygen barometry. Contributions to Mineralogy and Petrology 119 (1), 56–67. https://doi.org/10.1007/BF00310717.; Helmstaedt H., 2009. Crust–mantle coupling revisited: the Archean Slave craton, NWT, Canada. Lithos 112 (Supplement 2), 1055–1068. https://doi.org/10.1016/j.epsl.2011.04.034.; Herzberg C., 2004. Geodynamic information in peridotite petrology. Journal of Petrology 45 (12), 2507–2530. https://doi.org/10.1093/petrology/egh039.; Ionov D.A., Doucet L.S., Ashchepkov I.V., 2010. Composition of the lithospheric mantle in the Siberian Craton: new constraints from fresh peridotites in the Udachnaya-East Kimberlite. Journal of Petrology 51 (11), 2177–2210. https://doi.org/10.1093/petrology/egq053.; Ionov D.A., Doucet L.S., Carlson R.W., Golovin A.V., Korsakov A.V., 2015. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochimica et Cosmochimica Acta 165, 466–483. https://doi.org/10.1016/j.gca.2015.06.035.; Ionov D.A., Doucet L.S., Xu Y., Golovin A.V., Oleinikov O.B., 2018. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochimica et Cosmochimica Acta 224, 132–153. https://doi.org/10.1016/j.gca.2017.12.028.; Jagoutz E., Lowry D., Mattey D., Kudrjavtseva G., 1994. Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust. Geochimica et Cosmochimica Acta 58 (23), 5191–5207. https://doi.org/10.1016/0016-7037(94)90304-2.; Karato S.I., 2010. Rheology of the Earth's mantle: A historical review. Gondwana Research 18 (1), 17–45. https:// doi.org/10.1016/j.gr.2010.03.004.; Kopylova M.G., Caro G., 2004. Mantle xenoliths from the Southeastern Slave craton: Evidence for chemical zonation in a thick, cold lithosphere. Journal of Petrology 45 (5), 1045–1067. https://doi.org/10.1093/petrology/egh003.; Koreshkova M.Yu., Downes H., Nikitina L.P., Vladykin N.V., Larionov A.N., Sergeev S.A., 2009. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambrian Research 168 (3–4), 197–212. https://doi.org/10.1016/j.precamres.2008.09.007.; Корнилова В.П., Специус З.В., Помазанскией Б.С. Петрографо-минералогические особенности и целесообразность переоценки алмазоносности кимберлитовых трубок Лорик и Светлана (Западно-Укукитское поле, Якутия) // Региональная геология и металлогения. 2016. № 68. C. 92–99.; Kostrovitsky S.I., Alymova N.V., Yakovlev D.A., Serov I.V., Ivanov A.S., Serov V.P., 2006. Specific features of picroilmenite composition in various diamondiferous fields of the Yakutian province. Doklady Earth Sciences 406 (1), 19–23. https://doi.org/10.1134/S1028334X06010065.; Kostrovitsky S.I., Morikiyo T., Serov I.V., Yakovlev D.A., Amirzhanov A.A., 2007. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russian Geology and Geophysics 48 (3), 272–290. https:// doi.org/10.1016/j.rgg.2007.02.011.; Koulakov I., Bushenkova N., 2010. Upper mantle structure beneath the Siberian craton and surrounding areas based on fieldal tomographic inversion of P and PP travel times. Tectonophysics 486 (1–4), 81–100. https://doi.org/10.1016/j.tecto.2010.02.011.; Krogh E.J., 1988. The garnet-clinopyroxene Fe-Mg geothermometer – a reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology 99 (1), 44–48. https://doi.org/10.1007/BF00399364.; Кулигин С.С. Комплекс ксенолитов пироксенитов различных регионов Сибирской платформы: Дис. … канд. геол.-мин. наук. Новосибирск: ОИГГМ СО РАН, 1997. 190 с.; Kuskov O.L., Kronrod V.A., Prokof’ev A.A., 2011. Thermal structure and thickness of the lithospheric mantle underlying the Siberian Craton from the kraton and kimberlit superlong seismic profiles. Izvestiya, Physics of the Solid Earth 47 (3), 155–175. https://doi.org/10.1134/S1069351310111011.; Kuskov O.L., Kronrod V.A., Prokof’ev A.A., Pavlenkova N.I., 2014a. Lithospheric mantle structure of the Siberian craton inferred from the superlong Meteorite and Rift seismic profiles. Russian Geology and Geophysics 55 (7), 892–906. https://doi.org/10.1016/j.rgg.2014.06.008.; Kuskov O.L., Kronrod V.A., Prokofyev A.A., Pavlenkova N.I., 2014b. Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics 615–616, 154–166. https://doi.org/10.1016/j.tecto.2014.01.006.; Лаврентьев Ю.Г., Усова Л.В. Новая версия программы «Карат» для количественного рентгеноспектрального микроанализа // Журнал аналитической химии. 1994. Т. 46. № 5. С. 462–468.; Лаврентьев Ю.Г., Усова Л.В., Кузнецова А.И., Летов С.В. Рентгеноспектральный квантометрический микроанализ важнейших минералов кимберлитов // Геология и геофизика. 1987. Т. 28. № 5. С. 75–81.; Лазько Е.Е., Роден М.Ф. Гранатовые перидотиты и пироксениты в субконтинентальной литосфере центральной части Сибирского кратона (ксенолиты из трубки Мир) // Проблемы прогнозирования, поисков и изучения месторождений полезных ископаемых на пороге ХХI века. Воронеж: Изд-во Воронежского государственного университета, 2003. С. 307–318.; Lazarov M., Brey G.P., Weyer S., 2012. Evolution of the South African mantle – A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: Inter-mineral trace element and isotopic equilibrium. Lithos 154, 193–209. https://doi.org/10.1016/j.lithos.2012.07.013.; Lee C.T.A., Luffi P., Chin E.J., 2011. Building and destroying continental mantle. Annual Review of Earth and Planetary Sciences 39, 59–90. https://doi.org/10.1146/annurev-earth-040610-133505.; Lehtonen M.L., O'Brien H.E., Peltonen P., Johanson B.S., Pakkanen L.K., 2004. Layered mantle at the Karelian Craton margin: P–T of mantle xenocrysts and xenoliths from the Kaavi–Kuopio kimberlites, Finland. Lithos 77 (1–4), 593–608. https://doi.org/10.1016/j.lithos.2004.04.026.; Liu J., Rudnick R.L., Walker R.J., Gao S., Wu F.-Y., Piccoli P.M., Yuan H., Xu W.-L., Xu Y.-G., 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochimica et Cosmochimica Acta 75 (13), 3881–3902. https://doi.org/10.1016/j.lithos.2004.04.026.; Logvinova A.M., Taylor L.A., Floss C., Sobolev N.V., 2005. Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. International Geology Review 47 (12), 1223–1233. https://doi.org/10.2747/00206814.47.12.1223.; Malkovets V.G., Griffin W.L., O'Reilly S.Y., Wood B.J., 2007. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35 (4), 339–342. https://doi.org/10.1130/G23092A.1.; Малыгина Е.В. Минералогия ксенолитов зернистых перидотитов из кимберлитовой трубки Удачная в связи с проблемой состава верхней мантии Сибирской платформы: Дис. … канд. геол.-мин. наук. Новосибирск: ИГМ СО РАН, 2000. 195 с.; Manikyamba C., Kerrich R., 2012. Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geoscience Frontiers 3 (3), 225–240. https://doi.org/10.1016/j.gsf.2011.11.009.; Manning C.E., 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters 223 (1–2), 1–16. https://doi.org/10.1016/j.epsl.2004.04.030.; McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chemical Geology 120 (3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4.; McGregor I.D., 1974. The system MgO-SiO2–Al2O3: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. American Mineralogist 59 (11), 110–119.; McKenzie D., Priestley K., 2008. The influence of lithospheric thickness variations on continental evolution. Lithos 102 (1–2), 1–11. https://doi.org/10.1016/j.lithos.2007.05.005.; Mei S., Bai W., Hiraga T., Kohlstedt D.L., 2002. Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth and Planetary Science Letters 201 (3–4), 491–507. https://doi.org/10.1016/S0012821X(02)00745-8.; Misra K.C., Anand M., Taylor L.A., Sobolev N.V., 2004. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contributions to Mineralogy and Petrology 146 (6), 696–714. https://doi.org/10.1016/j.lithos.2004.03.026.; Nickel K.G., Green D.H., 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters 73 (1), 158–170. https://doi.org/10.1016/0012-821X(85)90043-3.; Nicolas A., Dupuy C., 1984. Origin of ophiolitic and oceanic lherzolites. Tectonophysics 110 (3–4), 177–187. https:// doi.org/10.1016/0040-1951(84)90259-2.; Nimis P., Kuzmin D.V., Malkovets V., 2016. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. American Mineralogist 101 (10), 2222–2232. https://doi.org/10.2138/am-2016-5540.; Nimis P., Taylor W.R., 2000. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology 139 (5), 541–554. https://doi.org/10.1007/s004100000156.; Nimis P., Zanetti A., Dencker I., Sobolev N.V., 2009. Major and trace element composition of chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): Metasomatic processes, thermobarometry and diamond potential. Lithos 112 (3–4), 397–412. https://doi.org/10.1016/j.lithos.2009.03.038.; Олейников О.Б. Ксенолиты глубинных серпентинизированных щелочно-ультраосновных пород из кимберлитовой трубки Юбилейная // Отечественная геология. 2000. № 5. С. 74–76.; O'Neill H.S.C., Pownceby M.I., Wall V.J., 1988. Ilmenite-rutile-iron and ulvospinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvospinel (Fe2TiO4). Geochimica et Cosmochimica Acta 52 (8), 2065–2072. https://doi.org/10.1016/0016-7037(88)90185-8.; O’Neill H.St.C., Wall V.J., 1987. The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. Journal of Petrology 28 (6), 1169–1191. https://doi.org/10.1093/petrology/28.6.1169.; O'Neill H.S.C., Wood B.J., 1979. An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contributions to Mineralogy and Petrology 70 (1), 59–70. https://doi.org/10.1007/BF00371872.; O'Reilly S.Y., Zhang M., Griffin W.L., Begg G., Hronsky J., 2009. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos 112 (Supplement 2), 1043–1054. https://doi.org/10.1016/j.lithos.2009.04.028.; Овчинников Ю.И. Глубинные ксенолиты кимберлитовой трубки Обнаженная и базальтов Минусинской впадины: Дис. … канд. геол.-мин. наук. Новосибирск: ОИГГМ СО РАН, 1990. 225 с.; Parkinson I.J., Pearce J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology 39 (9), 1577–1618. https://doi.org/10.1093/petroj/39.9.1577.; Pavlenkova N.I., 2011. Seismic structure of the upper mantle along the long-range PNE profiles – rheological implication. Tectonophysics 508 (1–4), 85–95. https://doi.org/10.1016/j.tecto.2010.11.007.; Pearson D.G., 1999. The age of continental roots. In: R.D. van der Hilst, W.F. McDonough (Eds.), Composition, deep structure and evolution of continents. Developments in Geotectonics, vol. 24, p. 171–194. https://doi.org/10.1016/S0024-4937(99)00026-2.; Pearson D.G., Irvine G.J., Carlson R.W., Kopylova M.G., Ionov D.A., 2002. The development of lithospheric keels beneath the earliest continents: time constraints using PGE and Re-Os isotope systematics. In: C.M.R. Fowler, C.J. Ebinger, C.J. Hawkesworth (Eds.), The Early Earth: physical, chemical and biological development. Geological Society, London, Special Publications, vol. 199, p. 65–90. https://doi.org/10.1144/GSL.SP.2002.199.01.04.; Pearson D.G., Snyder G.A., Shirey S.B., Taylor L.A., Carlson R.W., Sobolev N.V., 1995. Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374 (6524), 711–713. https://doi.org/10.1038/374711a0.; Perchuk A.L., Safonov O.G., Smit C.A., van Reenen D.D., Zakharov V.S., Gerya T.V., 2018. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust. Tectonophysics 746, 572–586. https://doi.org/10.1016/j.tecto.2016.11.041.; Pernet-Fisher J.F., Howarth G.H., Liu Y., Barry P.H., Carmody L., Valley J.W., Bodnar R.J., Spetsius Z.V., Taylor L.A., 2014. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology 167 (3), 981. https://doi.org/10.1007/s00410-014-0981-y.; Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N., 2015. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russian Geology and Geophysics 56 (1–2), 280–295. https://doi.org/10.1016/j.rgg.2015.01.020.; Pokhilenko N.P., Pearson D.G., Boyd F.R., Sobolev N.V., 1991. Megacrystalline dunites: sources of Siberian diamonds. Carnegie Institute Washington Yearbook 90, 11–18.; Pokhilenko N.P., Sobolev N.V., Chernyi S.D., Yanygin Yu.T., 2000. Pyropes and chromites from kimberlites in the Nakyn Field (Yakutia) and Snipe Lake District (Slave River Region, Canada): evidence for anomalous structure of the lithosphere. Doklady Earth Sciences 372 (4), 638–642.; Похиленко Н.П., Соболев Н.В., Соболев В.С., Лаврентьев Ю.Г. Ксенолит алмазоносных ильменитовых пироповых лерцолитов из кимберлитовой трубки Удачная // Доклады АН СССР. 1976. Т. 231. № 2. С. 438–441.; Pollack H.N., Chapman D.S., 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38 (3–4), 279–296. https://doi.org/10.1016/0040-1951(77)90215-3.; Пономаренко А.И., Соболев Н.В., Похиленко Н.П., Лаврентьев Ю.Г., Соболев В.С. Алмазоносный гроспидит и алмазоносные дистеновые эклогиты из кимберлитовой трубки «Удачная», Якутия // Доклады АН СССР. 1976. Т. 226. № 4. С. 927–930.; Pouchou J.L., Pichoir F., 1984. A new model for quantitative X-ray microanalysis. Part I: application to the analysis of homogeneous samples. Recherche Aerospatiale 3, 167–192.; Riches A.J.V., Liu Y., Day J.M.D., Spetsius Z.V., Taylor L.A., 2010. Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120 (3–4), 368–378. https://doi.org/10.1016/j.lithos.2010.09.006.; Roden M.F., Patiño-Douce A.E., Jagoutz E., Laz'ko E.E., 2006. High pressure petrogenesis of Mg-rich garnet pyroxenites from Mir kimberlite, Russia. Lithos 90 (1–2), 77–91. https://doi.org/10.1016/j.lithos.2006.01.005.; Родионов А.С., Похиленко Н.П., Соболев Н.В. Сравнительная характеристика главнейших минералов концентрата двух разновидностей кимберлита трубки Дальняя // Геология и геофизика. 1984. Т. 25. № 5. С. 38–50.; Rosen O.M., 2003. The Siberian craton: tectonic zonation and stages of evolution. Geotectonics 37 (3), 175–192.; Rosen O.M., Levskii L.K., Zhuravlev D.Z., Rotman A.Ya., Spetsius Z.V., Makeev A.F., Zinchuk N.N., Manakov A.V., Serenko V.P., 2006. Paleoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigraphy and Geological Correlation 14 (6), 581–601. https://doi.org/10.1134/S0869593806060013.; Розен О.М., Манаков А.В., Зинчук Н.Н. Сибирский кратон: формирование, алмазоносность. М.: Научный мир, 2006. 212 с.; Rosen O.M., Serenko V.P., Spetsius Z.V., Manakov A.V., Zinchuk N.N., 2002. Yakutian kimberlite province: position in the structure of the Siberian craton and composition of the upper and lower crust. Geologiya i Geofizika (Russian Geology and Geophysics) 43 (1), 3–26.; Ryan C.G., Griffin W.L., Pearson N.J., 1996. Garnet geotherms: Pressure‐temperature data from Cr‐pyrope garnet xenocrysts in volcanic rocks. Journal of Geophysical Research: Solid Earth 101 (B3), 5611–5625. https://doi.org/10.1029/95JB03207.; Santosh M., Maruyama S., Yamamoto S., 2009. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research 15 (3–4), 324–341. https://doi.org/10.1016/j.gr.2008.11.004.; Секерин А.П., Меньшагин Ю.В., Лащенов В.А. Щелочноультраосновные породы и карбонатиты Восточного Саяна // Доклады АН СССР. 1988. T. 299. № 3. С. 711–714.; Секерин А.П., Меньшагин Ю.В., Лащенов В.А. Докембрийские лампроиты Присаянья // Доклады АН. 1993. T. 329. № 3. С. 328–331.; Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V., 2015. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Research 28 (1), 106–120. https://doi.org/10.1016/j.gr.2014.03.018.; Smelov A.P., Andreev A.P., Altukhova Z.A., Babushkina S.A., Bekrenev K.A., Zaitsev A.I., Izbekov E.D., Koroleva O.V., Mishnin V.M., Okrugin A.V., Oleinikov O.B., Surnin A.A., 2010. Kimberlites of the Manchary pipe: a new kimberlite field in Central Yakutia. Russian Geology and Geophysics 51 (1), 121–126. https://doi.org/10.1016/j.rgg.2009.12.012.; Смелов А.П., Ащепков И.В., Олейников О.Б., Сурнин А.А., Бабушкина С.А., Полуфунтикова Л.И., Королева О.В. Химический состав и Р-Т условия образования барофильных минералов из кимберлитовой трубки Манчары (Центральная Якутия) // Отечественная геология. 2009. № 5. С. 27–31.; Смелов А.П., Биллер А.Я., Зайцев А.И. Соотношение различных кристалломорфологических типов алмаза в туффитах карнийского яруса северо-восточной части Якутской кимберлитовой провинции // Отечественная геология. 2011. № 5. C. 50–55.; Smelov A.P., Kotov A.B., Sal’nikova E.B., Kovach V.P., Beryozkin V.I., Kravchenko A.A., Dobretsov V.N., Velikoslavinskii S.D., Yakovleva S.Z., 2012. Age and duration of the formation of the Billyakh tectonic melange zone, Anabar shield. Petrology 20 (3), 286–300. https://doi.org/10.1134/S0869591112030058.; Смелов А.П., Ковач В.П., Габышев В.Д. Тектоническое строение и возраст фундамента восточной части Северо-Азиатского кратона // Отечественная геология. 1998. № 6. С. 6–10.; Smelov A.P., Zaitsev A.I., 2013. The age and localization of kimberlite magmatism in the Yakutian kimberlite province: constraints from isotope geochronology – an overview. In: D.G. Pearson et al. (Eds.), Proceedings of 10th International Kimberlite Conference, vol. 1 (Special Issue of the Journal of the Geological Society of India), p. 225–234. https://doi.org/10.1007/978-81-322-1170-9_14.; Smith C.B., Pearson D.G., Bulanova G.P., Beard A.D., Carlson R.W., Wittig N., Sims K., Chimuka L., Muchemwa E., 2009. Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton. Lithos 112 (Supplement 2), 1120–1132. https://doi.org/10.1016/j.lithos.2009.05.013.; Snyder D.B., 2008. Stacked uppermost mantle layers within the Slave craton of NW Canada as defined by anisotropic seismic discontinuities. Tectonics 27 (4), TC4006. https://doi.org/10.1029/2007TC002132.; Snyder D.B., Humphreys E., Pearson D.G., 2017. Construction and destruction of some North American cratons. Tectonophysics 694, 464–485. https://doi.org/10.1016/j.tecto.2016.11.032.; Snyder G.A., Taylor L.A., Crozaz G., Halliday A.N., Beard B.L., Sobolev V.N., Sobolev N.V., 1997. The origins of Yakutian eclogite xenoliths. Journal of Petrology 38 (1), 85–113. https://doi.org/10.1093/petroj/38.1.85.; Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 264 с.; Sobolev N.V., Lavrent'ev Y.G., Pokhilenko N.P., Usova L.V., 1973. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contributions to Mineralogy and Petrology 40 (1), 39–52. https://doi.org/10.1007/BF00371762.; Sobolev N.V., Logvinova A.M., Nikolenko E.I., Lobanov S.S., 2013. Mineralogical criteria for the diamond potential of Upper Triassic placers on the northeastern margin of the Siberian Platform. Russian Geology and Geophysics 54 (8), 903–916. https://doi.org/10.1016/j.rgg.2013.07.010.; Sobolev N.V., Logvinova A.M., Zedgenizov D.A., Seryotkin Y.V., Yefimova E.S., Floss C., Taylor L.A., 2004. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77 (1–4), 225–242. https://doi.org/10.1016/j.lithos.2004.04.001.; Соболев Н.В., Похиленко Н.П., Ефимова Э.С. Ксенолиты алмазоносных перидотитов в кимберлитах и проблема происхождения алмазов // Геология и геофизика. 1984. Т. 25. № 12. С. 63–80.; Sobolev N.V., Pustyntsev V.I., Kuznetsova I.K., Khar'kiv A.D., 1970. New data on the mineralogy of the diamond-bearing eclogites from the “Mir” pipe (Yakutia). International Geology Review 12 (6), 657–659. https://doi.org/10.1080/00206817009475272.; Sobolev N.V., Sobolev V.N., Snyder G.A., Yefimova E.S., Taylor L.A., 1999. Significance of eclogitic and related parageneses of natural diamonds. International Geology Review 41 (2), 129–140. https://doi.org/10.1080/0020681990 9465135.; Соболев В.С., Соболев Н.В. О хроме и хромсодержащих минералах в глубинных ксенолитах кимберлитовых трубок // Геология рудных месторождений. 1967. № 2. С. 18–37.; Spetsius Z.V., 2004. Petrology of highly aluminous xenoliths from kimberlites of Yakutia. Lithos 77 (1–4), 525–538. https://doi.org/10.1016/j.lithos.2004.04.021.; Spetsius Z.V., Belousova E.A., Griffin W.L., O’Reilly S.Y., Pearson N.J., 2002. Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth and Planetary Science Letters 199 (1–2), 111–126. https://doi.org/10.1016/j.lithos.2004.04.021.; Специус З.В., Серенко В.П. Состав континентальной мантии и нижней коры под Сибирской платформой. М.: Наука, 1990. 271 с.; Spetsius Z.V., Taylor L.A., Valley J.W., Deangelis M.T., Spicuzza M., Ivanov A.S., Banzeruk V.I., 2008. Diamondiferous xenoliths from crustal subduction: garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia. European Journal of Mineralogy 20 (3), 375–385. https://doi.org/10.1127/0935-1221/2008/0020-1828.; Stachel T., Viljoen K.S., McDade P., Harris J.W., 2004. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton – the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contributions to Mineralogy and Petrology 147 (1), 32–47. https://doi.org/10.1007/s00410-003-0535-1.; Sun J., Liu C.-Z., Tappe S., Kostrovitsky S.I., Wu F.-Y., Yakovlev D., Yang Y.-H., Yang J.-H., 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth and Planetary Science Letters 404, 283–295. https://doi.org/10.1016/j.epsl.2014.07.039.; Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Y., Wu F.-Y., 2018. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chemical Geology 479, 228–240. https://doi.org/10.1016/j.chemgeo.2018.01.013.; Suvorov V.D., Mel’nik E.A., Mishen’kina Z.R., Pavlov E.V., Kochnev V.A., 2013. Seismic inhomogeneities in the upper mantle beneath the Siberian craton (Meteorite profile). Russian Geology and Geophysics 54 (9), 1108–1120. https://doi.org/10.1016/j.rgg.2013.07.023.; Suvorov V.D., Melnik E.A., Thybo H., Perchuć E., Parasotka B.S., 2006. Seismic velocity model of the crust and uppermost mantle around the Mirnyi kimberlite field in Siberia. Tectonophysics 420 (1–2), 49–73. https://doi.org/10.1016/j.tecto.2006.01.009.; Суворов В.Д., Юрин Ю.А., Парасотка Б.С. Структура нижней части земной коры и верхов мантии западной части Якутской кимберлитовой провинции (по данным ГСЗ) // Геология и геофизика. 1994. Т. 35. № 11. С. 126–133.; Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., Romer R.L., Stracke A., Joyce N., Hoefs J., 2006. Genesis of ultramafic lamprophyres and carbonatites at AillikBay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology 47 (7), 1261–1315. https://doi.org/10.1093/petrology/egl008.; Taylor L.A., Snyder G.A., Keller R., Remley D.A., Anand M., Wiesli R., Valley J., Sobolev N.V., 2003. Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contributions to Mineralogy and Petrology 145 (4), 424–443. https://doi.org/10.1007/s00410-003-0465-y.; Taylor W.R., Kammerman M., Hamilton R., 1998. New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. In: 7th International kimberlite conference. Extended abstracts. Cape Town, p. 891–901.; Tolstov A.V., Minin V.A., Vasilenko V.B., Kuznetsova L.G., Razumov A.N., 2009. A new body of highly diamondiferous kimberlites in the Nakyn field of the Yakutian kimberlite province. Russian Geology and Geophysics 50 (3), 162–173. https://doi.org/10.1016/j.rgg.2008.09.001.; Van Hunen J, van den Berg A.P., 2008. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103 (1–2), 217–235. https://doi.org/10.1016/j.lithos.2007.09.016.; Владимиров Б.М., Волянюк Н.Я., Пономаренко А.И. Глубинные включения из кимберлитов, базальтов и кимберлитоподобных пород. М.: Наука, 1976. 284 с.; Wyllie P.J., Ryabchikov I.D., 2000. Volatile components, magmas and critical fluids in upwelling mantle. Journal of Petrology 41 (7), 1195–1206. https://doi.org/10.1093/petrology/41.7.1195.; Зайцев А.И., Смелов А.П. Изотопная геохронология пород кимберлитовой формации Якутской провинции. Якутск: Институт геологии алмаза и благородных металлов СО РАН, 2010. 105 с.; https://www.gt-crust.ru/jour/article/view/839