يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"С. Д. Афонникова"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: We thank Masato Kanemaki for sharing the HCT-116 RAD21-mAC and SMC2-mAC cell lines. This work was supported by Russian Science Foundation grant No. 23-74-00055. Cell culture was performed at the Collective Center of ICG SB RAS “Collection of Pluripotent Human and Mammalian Cell Cultures for Biological and Biomedical Research” , project number FWNR-2022=0019 (https://ckp.icgen.ru/cells/, http://www.biores.cytogen.ru/ brc_cells/collections/ICG_SB_RAS_CELL). Cryoarchiving and primary analysis of control cell lines HCT-116 RAD21-mAC and SMC2-mAC was supported by the Ministry of Science and Higher Education of the Russian Federation, grant 075-15-2021-1344.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 138-147 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 138-147 ; 2500-3259 ; 10.18699/vjgb-24-15

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4083/1820; Baker M. Reproducibility crisis: Blame it on the antibodies. Nature. 2015;521(7552):274-276. DOI 10.1038/521274a; de Wit E., Nora E.P. New insights into genome folding by loop ex- trusion from inducible degron technologies. Nat. Rev. Genet. 2023; 24(2):73-85. DOI 10.1038/s41576-022-00530-4; Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C., Mirny L.A., Dekker J. A pathway for mitotic chromosome formation. Science. 2018;359(6376):eaao6135. DOI 10.1126/science.aao6135; Kabirova E., Nurislamov A., Shadskiy A., Smirnov A., Popov A., Salnikov P., Battulin N., Fishman V. Function and evolution of the loop extrusion machinery in animals. Int. J. Mol. Sci. 2023;24(5):5017. DOI 10.3390/ijms24055017; Korablev A., Lukyanchikova V., Serova I., Battulin N. On-target CRISPR/Cas9 activity can cause undesigned large deletion in mouse zygotes. Int. J. Mol. Sci. 2020;21(10):3604. DOI 10.3390/ijms21103604; Kruglova A.A., Kizilova E.A., Zhelezova A.I., Gridina M.M., Golubitsa A.N., Serov O.L. Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras. Cell Tissue Res. 2008;334(3):371-380. DOI 10.1007/s00441-008-0702-9; Li S., Prasanna X., Salo V.T., Vattulainen I., Ikonen E. An efficient auxin-inducible degron system with low basal degradation in human cells. Nat. Methods. 2019;16(9):866-869. DOI 10.1038/s41592-019-0512-x; Litwin I., Pilarczyk E., Wysocki R. The emerging role of cohesin in the DNA damage response. Genes (Basel). 2018;9(12):581. DOI 10.3390/genes9120581; Losada A., Hirano M., Hirano T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 1998;12(13):1986-1997. DOI 10.1101/gad.12.13.1986; Nabet B., Roberts J.M., Buckley D.L., Paulk J., Dastjerdi S., Yang A., Leggett A.L., Erb M.A., Lawlor M.A., Souza A., Scott T.G., Vittori S., Perry J.A., Qi J., Winter G.E., Wong K.-K., Gray N.S., Bradner J.E. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 2018;14:431-441. DOI 10.1038/s41589-018-0021-8; Nuebler J., Fudenberg G., Imakaev M., Abdennur N., Mirny L.A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl. Acad. Sci. USA. 2018;115(29): E6697-E6706. DOI 10.1073/pnas.1717730115; Phanindhar K., Mishra R.K. Auxin-inducible degron system: an efficient protein degradation tool to study protein function. Biotechniques. 2023;74(4):186-198. DOI 10.2144/btn-2022-0108; Seitan V.C., Hao B., Tachibana-Konwalski K., Lavagnolli T., MiraBontenbal H., Brown K.E., Teng G., Carroll T., Terry A., Horan K., Marks H., Adams D.J., Schatz D.G., Aragon L., Fisher A.G., Krangel M.S., Nasmyth K., Merkenschlager M. A role for cohesin in T- cell-receptor rearrangement and thymocyte differentiation. Nature. 2011;476(7361):467-471. DOI 10.1038/nature10312; Yesbolatova A., Saito Y., Kitamoto N., Makino-Itou H., Ajima R., Nakano R., Nakaoka H., Fukui K., Gamo K., Tominari Y., Takeuchi H., Saga Y., Hayashi K., Kanemaki M.T. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 2020;11(1):5701. DOI 10.1038/s41467-020-19532-z; Yu K., Liu C., Kim B.-G., Lee D.-Y. Synthetic fusion protein design and applications. Biotechnol. Adv. 2015;33(1):155-164. DOI 10.1016/j.biotechadv.2014.11.005; Yunusova A., Smirnov A., Shnaider T., Lukyanchikova V., Afonnikova S., Battulin N. Evaluation of the OsTIR1 and AtAFB2 AID systems for genome architectural protein degradation in mammalian cells. Front. Mol. Biosci. 2021;8:757394. DOI 10.3389/fmolb.2021.757394; Zhang M., Zhao Y., Liu X., Ruan X., Wang P., Liu L., Wang D., Dong W., Yang C., Xue Y. Pseudogene MAPK6P4-encoded functional peptide promotes glioblastoma vasculogenic mimicry develop ment. Commun. Biol. 2023;6(1):1059. DOI 10.1038/s42003-023-05438-1; https://vavilov.elpub.ru/jour/article/view/4083

  2. 2
    Academic Journal

    المساهمون: The authors thank the Collective Center of ICG SB RAS “Bioinformatics” Joint Computational Center for the use of computational resources.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 26, № 8 (2022); 810-818 ; Вавиловский журнал генетики и селекции; Том 26, № 8 (2022); 810-818 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-22-86

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3583/1674; Baldani J.I., Rouws L., Cruz L.M., Olivares F.L., Schmid M., Hartmann A. The family Oxalobacteraceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (Eds.). The Prokaryotes. Berlin; Heidelberg: Springer, 2014;919-974. DOI 10.1007/978-3-642-30197-1_291.; Bazhenova A., Gao F., Bolgiano B., Harding S.E. Glycoconjugate vaccines against Salmonella enterica serovars and Shigella species: existing and emerging methods for their analysis. Biophys. Rev. 2021;13(2):221-246. DOI 10.1007/s12551-021-00791-z.; Belikov S.I., Petrushin I.S., Chernogor L.I. Genome analysis of the Janthinobacterium sp. strain SLB01 from the diseased sponge of the Lubomirskia baicalensis. Curr. Issues Mol. Biol. 2021;43(3):22202237. DOI 10.3390/cimb43030156.; Caballero-Mellado J., Martínez-Aguilar L., Paredes-Valdez G., Estrada- de los Santos P. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int. J. Syst. Evol. Microbiol. 2004; 54(4):1165-1172. DOI 10.1099/ijs.0.02951-0.; Caroff M., Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 2003;338(23):2431-2447. DOI 10.1016/j.carres.2003.07.010.; Cimermancic P., Medema M.H., Claesen J., Kurita K., Wieland Brown L.C., Mavrommatis K., Pati A., Godfrey P.A., Koehrsen M., Clardy J., Birren B.W., Takano E., Sali A., Linington R.G., Fischbach M.A. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 2014;158(2):412421. DOI 10.1016/j.cell.2014.06.034.; Daniel S.L., Moradi L., Paiste H., Wood K.D., Assimos D.G., Holmes R.P., Nazzal L., Hatch M., Knight J. Forty years of Oxalobacter formigenes, a gutsy oxalate-degrading specialist. Appl. Environ. Microbiol. 2021;87(18):e0054421. DOI 10.1128/AEM.00544-21.; DebRoy C., Roberts E., Fratamico P.M. Detection of O antigens in Escherichia coli. Anim. Heal. Res. Rev. 2011;12(2):169-185. DOI 10.1017/S1466252311000193.; Dhital R., Paudel A., Bohra N., Shin A.K. Herbaspirillum infection in humans: a case report and review of literature. Case Rep. Infect. Dis. 2020;2020:9545243. DOI 10.1155/2020/9545243.; Doerrler W.T. Lipid trafficking to the outer membrane of Gram-negative bacteria. Mol. Microbiol. 2006;60(3):542-552. DOI 10.1111/j.1365-2958.2006.05130.x.; Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460-2461. DOI 10.1093/bioinformatics/btq461.; Emms D.M., Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. DOI 10.1186/s13059-019-1832-y.; Erridge C., Bennett-Guerrero E., Poxton I.R. Structure and function of lipopolysaccharides. Microbes Infect. 2002;4(8):837-851. DOI 10.1016/S1286-4579(02)01604-0.; Feng G.-D., Yang S.Z., Li H.P., Zhu H.H. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int. J. Syst. Evol. Microbiol. 2016;66(1):50-55. DOI 10.1099/IJSEM.0.000670.; Grillo-Puertas M., Villegas J.M., Pankievicz V.C.S., Tadra-Sfeir M.Z., Teles Mota F.J., Hebert E.M., Brusamarello-Santos L., Pedraza R.O., Pedrosa F.O., Rapisarda V.A., Souza E.M. Transcriptional resp onses of Herbaspirillum seropedicae to environmental phosphate concentration. Front. Microbiol. 2021;12:666277. DOI 10.3389/FMICB.2021.666277.; Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):10721075. DOI 10.1093/bioinformatics/btt086.; Han M.V., Zmasek C.M. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics. 2009;10:356. DOI 10.1186/1471-2105-10-356.; Han W., Wu B., Li L., Zhao G., Woodward R., Pettit N., Cai L., Thon V., Wang P.G. Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J. Biol. Chem. 2012;287(8):5357-5365. DOI 10.1074/jbc.M111.308486.; Huerta-Cepas J., Szklarczyk D., Heller D., Hernández-Plaza A., Forslund S.K., Cook H., Mende D.R., Letunic I., Rattei T., Jensen L.J., von Mering C., Bork P. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47(D1): D309-D314. DOI 10.1093/nar/gky1085.; Hug I., Couturier M.R., Rooker M.M., Taylor D.E., Stein M., Feldman M.F. Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycos ylation. PLoS Pathog. 2010;6(3):e1000819. DOI 10.1371/journal.ppat.1000819.; Iguchi A., Iyoda S., Kikuchi T., Ogura Y., Katsura K., Ohnishi M., Hayashi T., Thomson N.R. A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Res. 2015;22(1):101-107. DOI 10.1093/dnares/dsu043.; Integrated Taxonomic Information System (ITIS). On-line database. www.itis.gov. (Retrieved 08.21.2022). CC0. https://doi.org/10.5066/F7KH0KBK.; Jung W.J., Kim S.W., Giri S.S., Kim H.J., Kim S.G., Kang J.W., Kwon J., Lee S.B., Oh W.T., Jun J.W., Park S.C. Janthinobacterium tructae sp. nov., isolated from kidney of rainbow trout (Oncorhynchus mykiss). Pathogens. 2021;10(2):229. DOI 10.3390/pathogens10020229.; Kalynych S., Morona R., Cygler M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol. Rev. 2014; 38(5):1048-1065. DOI 10.1111/1574-6976.12070.; Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res.2000;28(1):27-30. DOI 10.1093/nar/28.1.27.; Kim J.K., Park H.Y., Lee B.L. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris. Dev. Comp. Immunol. 2016;60:202-208. DOI 10.1016/j.dci.2016.02.009.; Koh H.-W., Hur M., Kang M.-S., Ku Y.-B., Ghai R., Park S.-J. Physiological and genomic insights into the lifestyle of arsenite-oxidizing Herminiimonas arsenitoxidans. Sci. Rep. 2017;7(1):15007. DOI 10.1038/s41598-017-15164-4.; Lim Y.W., Baik K.S., Han S.K., Kim S.B., Bae K.S. Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. Int. J. Syst. Evol. Microbiol. 2003;53(5):1631-1636. DOI 10.1099/ijs.0.02456-0.; Liu B., Furevi A., Perepelov A.V., Guo X., Cao H., Wang Q., Reeves P.R., Knirel Y.A., Wang L., Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol. Rev. 2020;44(6):655-683. DOI 10.1093/femsre/fuz028.; Liu B., Knirel Y.A., Feng L., Perepelov A.V., Senchenkova S.N., Wang Q., Reeves P.R., Wang L. Structure and genetics of Shigella O antigens. FEMS Microbiol. Rev. 2008;32(4):627-653. DOI 10.1111/J.1574-6976.2008.00114.X.; Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L.L., Tosatto S.C.E., Paladin L., Raj S., Richardson L.J., Finn R.D., Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412-D419. DOI 10.1093/nar/gkaa913.; Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies. Mol. Biol. Evol. 2015;32(1):268-274. DOI 10.1093/MOLBEV/MSU300.; Notredame C., Higgins D.G., Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000; 302(1):205-217. DOI 10.1006/JMBI.2000.4042.; Ofek M., Hadar Y., Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One. 2012;7(7):e40117. DOI 10.1371/journal.pone.0040117.; Pereira S.B., Mota R., Vieira C.P., Vieira J., Tamagnini P. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci. Rep. 2015;5(1):14835. DOI 10.1038/srep14835.; Perepelov A.V., Liu B., Senchenkova S.N., Shashkov A.S., Feng L., Wang L., Knirel Y.A. Structure of O-antigen and functional characterization of O-antigen gene cluster of Salmonella enterica O47 containing ribitol phosphate and 2-acetimidoylamino-2,6-dideoxyL-galactose. Biochemistry (Moscow). 2009;74(4):416-420. DOI 10.1134/S0006297909040099.; Peta V., Raths R., Bücking H. Draft genome sequence of Massilia sp. strain ONC3, a novel bacterial species of the Oxalobacteraceae family isolated from garden soil. Microbiol. Resour. Announc. 2019; 8(32):e00377-19. DOI 10.1128/MRA.00377-19.; Ren M., Li X., Zhang Y., Jin Y., Li S., Huang H. Massilia armeniaca sp. nov., isolated from desert soil. Int. J. Syst. Evol. Microbiol. 2018; 68(7):2319-2324. DOI 10.1099/IJSEM.0.002836.; Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29(1):24-26. DOI 10.1038/nbt.1754.; Samuel G., Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr. Res. 2003;338(23):2503-2519. DOI 10.1016/j.carres.2003.07.009.; Sannigrahi S., Arumugasamy S.K., Mathiyarasu J., K.S. Magnetosomeanti-Salmonella antibody complex based biosensor for the detection of Salmonella typhimurium. Mater. Sci. Eng. C. Mater. Biol. Appl. 2020;114:111071. DOI 10.1016/j.msec.2020.111071.; Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-2069. DOI 10.1093/bioinformatics/btu153.; Sheu S.Y., Chou J.H., Bontemps C., Elliott G.N., Gross E., James E.K., Sprent J.I., Young J.P.W., Chen W.M. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int. J. Syst. Evol. Microbiol. 2012;62(9):2272-2278. DOI 10.1099/IJS.0.037408-0.; Sumrall E.T., Röhrig C., Hupfeld M., Selvakumar L., Du J., Dunne M., Schmelcher M., Shen Y., Loessner M.J. Glycotyping and specific separation of Listeria monocytogenes with a novel bacteriophage protein tool kit. Appl. Environ. Microbiol. 2020;86(13):e00612-20. DOI 10.1128/AEM.00612-20.; Thakur N., Jain S., Changotra H., Shrivastava R., Kumar Y., Grover N., Vashistt J. Molecular characterization of diarrheagenic Escherichia coli pathotypes: Association of virulent genes, serogroups, and antibiotic resistance among moderate-to-severe diarrhea patients. J. Clin. Lab. Anal. 2018;32(5):e22388. DOI 10.1002/jcla.22388.; Tuleski T.R., Kimball J., do Amaral F.P., Pereira T.P., Tadra-Sfeir M.Z., de Oliveira Pedrosa F., Maltempi de Souza E., Balint-Kurti P., Monteiro R.A., Stacey G. Herbaspirillum rubrisubalbicans as a phytopathogenic model to study the immune system of Sorghum bicolor. Mol. Plant Microbe Interact. 2020;33(2):235-246. DOI 10.1094/ MPMI-06-19-0154-R.; Valvano M.A. Genetics and biosynthesis of lipopolysaccharide. In: Tang Y.-W., Sussman M., Liu D., Poxton I., Schwartzman J. (Eds.). Molecular Medical Microbiology. Academic Press, 2015;55-89. DOI 10.1016/B978-0-12-397169-2.00004-4.; Wang L., Wang Q., Reeves P.R. The variation of o antigens in gramne gative bacteria. Subcell. Biochem. 2010;53:123-152. DOI 10.1007/978-90-481-9078-2_6.; Xi D., Wang X., Ning K., Liu Q., Jing F., Guo X., Cao B. O-antigen gene clusters of Plesiomonas shigelloides serogroups and its application in development of a molecular serotyping scheme. Front. Microbiol. 2019;10:741. DOI 10.3389/FMICB.2019.00741.; Zhang Y.Q., Li W.J., Zhang K.Y., Tian X.P., Jiang Y., Xu L.H., Jiang C.L., Lai R. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int. J. Syst. Evol. Microbiol. 2006;56(2):459463. DOI 10.1099/IJS.0.64083-0; https://vavilov.elpub.ru/jour/article/view/3583